JP2001273884A - Sealed type battery and manufacturing method thereof - Google Patents
Sealed type battery and manufacturing method thereofInfo
- Publication number
- JP2001273884A JP2001273884A JP2000088170A JP2000088170A JP2001273884A JP 2001273884 A JP2001273884 A JP 2001273884A JP 2000088170 A JP2000088170 A JP 2000088170A JP 2000088170 A JP2000088170 A JP 2000088170A JP 2001273884 A JP2001273884 A JP 2001273884A
- Authority
- JP
- Japan
- Prior art keywords
- package
- exhaust port
- injection
- electrolyte
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Filling, Topping-Up Batteries (AREA)
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は密閉形電池およびそ
の製造方法に関し、さらに詳しくは、捲回式極群を収納
したパッケージに電解液を注入してなるもので、容積効
率に優れかつ電気的特性の安定したポリマー電解質電池
などの密閉形電池およびその製造方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed battery and a method for manufacturing the same, and more particularly, to a sealed battery in which an electrolytic solution is injected into a package containing a wound electrode group, which is excellent in volumetric efficiency and electrical. The present invention relates to a sealed battery such as a polymer electrolyte battery having stable characteristics and a method for producing the same.
【0002】[0002]
【従来の技術】近年における電子技術の大きな進歩によ
り、一般ユーザー向けの電子機器の小型軽量化が飛躍的
に進んできている。このような技術革新に伴って、電池
に対しても小型軽量化と共に信頼性のさらなる向上が要
望されている。特に、携帯電話、PHS、小型パーソナ
ルコンピュータなどの携帯機器類は、エレクトロニクス
技術の進展に伴って小型化、軽量化が著しく、これらの
機器類に用いられる電源としての電池においても小型
化、軽量化が求められるようになってきている。2. Description of the Related Art In recent years, with the great progress of electronic technology, the size and weight of electronic devices for general users have been dramatically reduced. Along with such technical innovations, there is a demand for a battery that is smaller and lighter and further improved in reliability. In particular, portable devices such as mobile phones, PHSs, and small personal computers have been significantly reduced in size and weight with the development of electronics technology, and the batteries used as power supplies for these devices have also been reduced in size and weight. Is required.
【0003】小型・軽量化に適し携帯機器類などの用途
に期待できる電池の一つとして、例えばリチウムイオン
電池のごとく角形または扁平形の非水電解液系の密閉形
電池がある。この密閉形電池は、円筒形電池と比較して
各種機器内に装填したときのデッドスペースが小さく、
容積効率で有利であるところから重用されている。ま
た、この種の密閉形電池は、その構造面からみて、電解
質をポリマーでゲル化したものであることから、漏液し
難く、安全性においても優れているところから、その普
及が急速に進んでいる。As one of batteries that are suitable for miniaturization and weight reduction and can be expected for applications such as portable equipment, there are square or flat nonaqueous electrolyte sealed batteries such as lithium ion batteries. This sealed battery has a smaller dead space when loaded into various devices compared to a cylindrical battery,
It is heavily used because it is advantageous in volumetric efficiency. In addition, from the viewpoint of the structure, this type of sealed battery is a type in which the electrolyte is gelled with a polymer, so that it is difficult to leak liquid and is excellent in safety. In.
【0004】このように普及が進んできている、例えば
リチウムイオン電池に代表されるポリマー電解質を内蔵
した密閉形電池について以下説明する。この密閉形電池
は、一般に電解質層を介して正極および負極が積層され
た極群がパッケージに気密封止されて収納され、この極
群の正極および負極にそれぞれ連結された正極端子およ
び負極端子がパッケージ外部に露出するように構成され
たものである。[0004] A sealed battery having a built-in polymer electrolyte typified by, for example, a lithium ion battery will be described below. In this sealed battery, generally, an electrode group in which a positive electrode and a negative electrode are stacked via an electrolyte layer is hermetically sealed and housed in a package, and a positive electrode terminal and a negative electrode terminal respectively connected to the positive electrode and the negative electrode of this electrode group are provided. It is configured to be exposed outside the package.
【0005】従来の密閉形電池においては、例えば、下
記のごとき以下3つの製造形態がある。第1の形態は、
ゲル状ポリマー電解質を含む正極、セパレータ、負極を
積層されて成る場合。第2の形態は、例えば米国特許第
5837015号明細書や特開平9−330740号公
報に開示されているように、重合性官能基を有するモノ
マーまたはマクロマーと電解液から成る溶液を、密閉形
容器(パッケージ)の中に注入した後にゲル化させる場
合。第3の形態は、例えば特開平9−320617号公
報に開示されているように、極群内に電解液を吸収して
ゲル化するポリマーを予め含ませておき、この極群を収
容したパッケージ内に、電解液を注液してゲルを形成さ
れて成る場合である。[0005] In the conventional sealed type battery, for example, there are the following three production modes as follows. The first form is
A case in which a positive electrode containing a gel polymer electrolyte, a separator, and a negative electrode are laminated. In a second embodiment, a solution comprising a monomer or macromer having a polymerizable functional group and an electrolytic solution is sealed in a closed container as disclosed in, for example, US Pat. No. 5,837,015 and JP-A-9-330740. When gelling after injection into (package). In a third embodiment, as disclosed in, for example, Japanese Patent Application Laid-Open No. 9-320617, a package containing a polymer that absorbs an electrolytic solution and gels in an electrode group and contains the electrode group is contained in advance. In this case, a gel is formed by injecting an electrolytic solution.
【0006】上述の第2、第3の製造形態である、所謂
電解液後注液方式と称することができる製造形態の場合
は、上述の第1の製造形態に比べ、電池製造時の作業性
が良い点、更には、電解液注液後に直ちに封止可能なこ
とから、電池内部及び電解液が雰囲気に暴露される時間
を短くすることができ、製造工程中において、水分等の
ごとく電池にとって有害な物質の浸入の機会を少なくす
ることが出来る点でも有利である。In the case of the above-described second and third manufacturing modes, which are so-called electrolyte post-injection systems, the workability in battery manufacturing is higher than that of the first manufacturing mode. In addition, since the sealing can be performed immediately after the electrolyte is injected, the time during which the inside of the battery and the electrolyte are exposed to the atmosphere can be shortened. It is also advantageous in that the chance of intrusion of harmful substances can be reduced.
【0007】一方、この電解液後注液方式の場合、パッ
ケージ内に注液した電解液が、狭い隙間を有した極群内
に速やかに浸透すること、また、注液終了時点で極群内
にガスが残存しないことが電池性能を良好に維持する条
件である。例えばリチウムイオン電池の場合その製造過
程においては、1回目の充電において電極面から電解液
の分解生成物である炭酸ガスやエチレン、プロピレン等
の炭化水素ガスが発生することが知られている。この充
電で発生したガスは速やかに系外に取り除くことが望ま
れる。On the other hand, in the case of the electrolyte post-injection method, the electrolyte injected into the package quickly penetrates into the electrode group having a narrow gap, and the electrode group is injected at the end of the injection. The condition that no gas remains in the battery is a condition for maintaining good battery performance. For example, in the case of a lithium-ion battery, it is known that, during the first charging, a carbon dioxide gas, a decomposition product of an electrolytic solution, or a hydrocarbon gas such as ethylene or propylene is generated from the electrode surface during the first charging. It is desired that the gas generated by this charging be promptly removed from the system.
【0008】実用新案登録第2602648号公報に
は、捲回面に対向する位置に注液孔が設けられた電池を
開示している。しかしながら、この構造では注液時の電
解液の流れを一定方向に揃えることができず、注液と同
時に気体を排出することが困難であり、気体が極群内部
や電槽内部に残留してしまうといった問題点があった。Japanese Utility Model Registration No. 2602648 discloses a battery in which a liquid injection hole is provided at a position facing a winding surface. However, in this structure, the flow of the electrolytic solution at the time of pouring cannot be aligned in a certain direction, and it is difficult to discharge gas simultaneously with pouring, and the gas remains inside the electrode group or the battery case. There was a problem that it would.
【0009】[0009]
【発明が解決しようとする課題】このように電解液後注
液方式の密閉形電池においては、電解液の分解生成物で
あるガスが極群中に残存してしまうと、電池の内部イン
ピーダンスを増大させ、電極面での電流分布を不均一に
する。その結果、高率放電での電圧低下や放電容量の低
下の原因となり、電池性能を著しく低下させてしまうと
いう問題があった。そして、特に、上述の第2の製造形
態においては、ゲル電解質の形成材料溶液は、モノマー
またはマクロマーを含むために、これらを含まない単な
る電解液に比べ溶液粘度が高い。したがって、パッケー
ジ内に、形成材料溶液を注入したときの極群への該液の
浸透が遅く生産性が上がらないという欠点がある。ま
た、形成材料溶液の粘性が高いことから、1回目の充電
によって発生したガスが電池外部に抜けにくく、生産性
並びに電池性能の面においても問題を抱えている。As described above, in a sealed battery of the electrolyte post-injection type, if gas as a decomposition product of the electrolyte remains in the electrode group, the internal impedance of the battery is reduced. To make the current distribution on the electrode surface non-uniform. As a result, there is a problem that a voltage drop or a discharge capacity drop at a high rate discharge is caused and battery performance is significantly reduced. In particular, in the above-described second production mode, since the gel electrolyte forming material solution contains a monomer or a macromer, the solution viscosity is higher than that of a mere electrolytic solution containing neither of them. Therefore, there is a drawback that when the forming material solution is injected into the package, the permeation of the solution into the electrode group is slow and productivity does not increase. In addition, since the viscosity of the forming material solution is high, gas generated by the first charging is difficult to escape to the outside of the battery, and there is a problem in productivity and battery performance.
【0010】上述の第3の製造形態においては、電解液
を注液した後、この電解液のゲル化が進むことで該電解
液の粘度が増大するため、この場合においても、1回目
の充電によって発生したガスが電池外部に抜け難い問題
を抱えている。したがって、この場合においても、電池
製造過程において、極群中にガスが残存しやすく、前記
のように高率放電での電圧低下や放電容量の低下の原因
となり、電池の性能低下を招く傾向があった。In the above-described third production mode, after the electrolyte is injected, the gelation of the electrolyte proceeds to increase the viscosity of the electrolyte. There is a problem that it is difficult for gas generated by the gas to escape to the outside of the battery. Therefore, also in this case, in the battery manufacturing process, gas is likely to remain in the electrode group, which causes a decrease in voltage and a decrease in discharge capacity at high-rate discharge as described above, which tends to cause a decrease in battery performance. there were.
【0011】また、電池製造工程において、パッケージ
内に電解液を注入した後は、その注入口は、注入口の対
面部分を接着して密閉する。しかし、パッケージ内への
電解液注入時に、パッケージの注液口に電解液が付着し
てしまう。このように注液口に電解液が付着して面が汚
染されると、電解液注入後に注液口を閉じるときに、注
入口部分の密着あるいは接着困難な界面が出来てしま
い、パッケージの密閉が不完全になることがある。この
ように密閉が不完全であることによって、長期保存性な
どの点で電池の性能が劣化するという問題があった。特
に、捲回状態で極めて密集した極群がパッケージ内に収
納された構造の密閉形電池では、電解液注入時において
該電解液の極群内部への浸透に時間を要すること、ま
た、製造時の充電によって生じるガスが、極群間の狭い
間隙を通り且つ粘性の高い電解液内を移動しなければな
らないことから、このガスの排気は極めて困難であっ
た。In the battery manufacturing process, after the electrolyte is injected into the package, the injection port is sealed by bonding the portion facing the injection port. However, when the electrolytic solution is injected into the package, the electrolytic solution adheres to the liquid inlet of the package. If the electrolyte is attached to the injection port and the surface is contaminated, the injection port may be closed or a difficult interface may be formed when closing the injection port after injecting the electrolyte. May be incomplete. As described above, there is a problem that the performance of the battery is deteriorated in terms of long-term storability due to imperfect sealing. Particularly, in a sealed battery having a structure in which pole groups extremely densely packed in a wound state are housed in a package, it takes time to infiltrate the electrolyte into the inside of the pole group at the time of injecting the electrolyte. Since the gas generated by charging the gas must move through a narrow gap between the electrode groups and within the highly viscous electrolytic solution, it is extremely difficult to exhaust the gas.
【0012】本発明は上記したような問題に鑑みてなさ
れたものであり、その目的とするところは、粘性の高い
電解液或いは注入後に粘性が高くなってゲル電解質を生
成する電解液をパッケージに注入する所謂電解液後注入
方式の密閉形電池において、電解液の注入が容易でかつ
パッケージ内の気体排出が効果的にでき、さらに電解液
注入後のパッケージの密閉が確実にできて品質安定性が
よく且つ性能劣化もなく電気的特性に優れた密閉形電池
およびその製造方法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object the purpose of packaging a highly viscous electrolytic solution or an electrolytic solution having a high viscosity after injection to produce a gel electrolyte in a package. In a sealed battery of the so-called electrolyte post-injection type in which the electrolyte is injected, the electrolyte can be easily injected, the gas in the package can be effectively discharged, and the package can be securely sealed after the electrolyte is injected, so that the quality is stable. It is an object of the present invention to provide a sealed battery which is excellent in electrical characteristics without deterioration in performance and excellent in performance, and a method for manufacturing the same.
【0013】[0013]
【課題を解決するための手段】本発明は、請求項1に記
載したように、捲回された極群が収納されたパッケージ
に電解液を注入してなる密閉形電池であって、前記極群
の捲回端面に対向するパッケージ内壁面の位置に、前記
電解液を注入可能で且つパッケージ内の気体を排気可能
な注液兼排気口が配置されてなることを特徴とする密閉
形電池である。このような構成により上記目的を達成す
ることができる。すなわち、極群の捲回端面に対向した
位置に配置された注液兼排気口から電解液を注入するこ
とにより、注入時の液圧を、極群の隙間が開口した捲回
端面に直接加えることができる。したがって、電解液の
極群内への浸透を迅速にでき、極群内の気体を効果的に
押し出して、電解液と気体との置換を迅速かつ確実に行
うことができる。また、電解液注入後の充電によって発
生するガスの排出に際しても、ガスは、その多くは極群
の捲回端面から出る(極群捲回軸方向に移動する)よう
に移動する。ガスのこのような移動に対して、注液兼排
気口が捲回端面に対向したところに位置していることに
より、ガスのパッケージ外への排出を容易にする。According to the present invention, there is provided a sealed battery in which an electrolytic solution is injected into a package accommodating a wound group of electrodes, according to the present invention. A sealed battery characterized in that an injection / exhaust port capable of injecting the electrolytic solution and exhausting gas in the package is arranged at a position on an inner wall surface of the package opposite to a winding end surface of the group. is there. With such a configuration, the above object can be achieved. That is, by injecting the electrolytic solution from a liquid injection / exhaust port arranged at a position facing the wound end face of the electrode group, the liquid pressure at the time of injection is directly applied to the wound end face having the gap between the electrode groups opened. be able to. Therefore, it is possible to quickly infiltrate the electrolyte into the electrode group, to effectively push out the gas in the electrode group, and to quickly and reliably replace the electrolyte with the gas. Also, when discharging the gas generated by charging after the injection of the electrolyte, most of the gas moves so as to exit from the winding end face of the electrode group (move in the electrode group winding axis direction). With respect to such a movement of the gas, since the liquid injection / exhaust port is located at a position facing the wound end surface, the gas can be easily discharged out of the package.
【0014】本発明は、請求項2に記載されているよう
に、注液兼排気口が、パッケージ内壁面の端部寄りの位
置に設けられたことを特徴とする密閉形電池である。こ
のように、注液兼排気口が、パッケージ内壁面の端部寄
りの位置に設けられたことにより、注液のとき、極群に
対して電解液が捲回端面の片側寄りの位置から浸透して
行くことができ、極群内の気体を電解液にて効果的に押
し出し、注入した電解液と気体との置換をスムーズに行
うことが出きる。According to a second aspect of the present invention, there is provided a sealed battery wherein the liquid injection / exhaust port is provided at a position near an end of the inner wall surface of the package. In this way, the liquid injection / exhaust port is provided at a position near the end of the inner wall surface of the package, so that when the liquid is injected, the electrolyte permeates the electrode group from a position near one side of the wound end face. The gas in the electrode group can be effectively pushed out with the electrolytic solution, and the gas can be smoothly replaced with the injected electrolytic solution.
【0015】本発明は、請求項3に記載されているよう
に、パッケージの内壁面に、パッケージ内方からパッケ
ージ外方に向かって壁面間隔を狭める傾斜部が設けら
れ、該傾斜部が前記注液兼排気口に連続するように構成
されたことを特徴とする密閉形電池である。すなわち、
パッケージ内方からパッケージ外方に向かって壁面間隔
を狭める傾斜部が注液兼排気口に連続するように設けら
れたことにより、電解液の注入時においては、電解液の
注液によって押し出された気体を、この傾斜部が注液兼
排気口に効果的に集めることができる。また、充電時に
発生したガスを抜くときは、注液兼排気口を上方位置す
るだけで、この傾斜部が発生したガスの注液兼排気口へ
の案内する機能を発揮することができる。According to a third aspect of the present invention, an inclined portion is provided on the inner wall surface of the package, the inclined portion decreasing the wall interval from the inside of the package toward the outside of the package. A sealed battery characterized by being configured to be continuous with a liquid / exhaust port. That is,
Since the inclined portion that narrows the wall interval from the inside of the package toward the outside of the package is provided so as to be continuous with the injection / exhaust port, when the electrolyte is injected, the electrolyte is pushed out by the injection of the electrolyte. The gas can be effectively collected by the inclined portion at the injection / exhaust port. Further, when the gas generated during charging is to be removed, the function of guiding the generated gas to the liquid injection / exhaust port can be exhibited only by positioning the liquid injection / exhaust port above.
【0016】本発明は、請求項4に記載されているよう
に、注液兼排気口は、捲回端面に対向するパッケージ内
壁面の一方側に二ヵ所に設けられたことを特徴とする密
閉形電池である。したがって、電解液の注入並びにガス
の排出を複数箇所からでき、注液並びにガス排気をより
効果的に行うことができる。また、注液兼排気口を上側
にして注液を行うときに、パッケージが不測に傾いた場
合でも、高い位置にある方の注液兼排気口を排気口とし
て効果的に利用することができる。また、パッケージを
予め傾けてセットした状態で注液して、若干高い位置に
ある注液兼排気口を排気用とすると共に低い位置にある
方を注液用として積極的に利用することもできる。According to a fourth aspect of the present invention, there is provided a hermetically sealed container, wherein the liquid injection / exhaust port is provided at two locations on one side of the inner wall surface of the package opposed to the wound end surface. Battery. Therefore, the injection of the electrolytic solution and the discharge of the gas can be performed from a plurality of places, and the liquid injection and the gas exhaust can be performed more effectively. In addition, when performing the liquid injection with the liquid injection / exhaust port on the upper side, even if the package is unexpectedly inclined, the liquid injection / exhaust port located at a higher position can be effectively used as the exhaust port. . It is also possible to inject the liquid in a state where the package is tilted in advance and to use the liquid injection / exhaust port located at a slightly higher position for exhausting and to positively use the one located at a lower position for liquid injection. .
【0017】本発明は、請求項5に記載されているよう
に、注液兼排気口を構成する内壁面が熱融着性樹脂にて
構成され、該注液兼排気口が熱溶着されたことを特徴と
する密閉形電池である。したがって、この注液兼排気口
は加熱によって容易に融着封止でき、確実な密閉を保証
することができる。According to a fifth aspect of the present invention, the inner wall of the liquid injection / exhaust port is formed of a heat-fusible resin, and the liquid injection / exhaust port is heat-welded. It is a sealed battery characterized by the above. Therefore, the injection / exhaust port can be easily fused and sealed by heating, so that reliable sealing can be ensured.
【0018】本発明は、請求項6に記載されているよう
に、捲回された極群を収納するパッケージに電解液を注
入する工程を有する密閉形電池の製造方法において、前
記極群の捲回端面に対向するパッケージ内壁面でその端
部寄りに設けた注液兼排気口を上方に位置させ、前記注
液兼排気口から注液すると同時に、注液によってパッケ
ージ内の気体を該注液兼排気口から排出することを特徴
とする密閉形電池の製造方法である。このように、極群
の捲回端面に対向した位置に配置された注液兼排気口か
ら電解液を注入することにより、注入時の液圧を、極群
の隙間が開口した捲回端面に直接加えることができ、ま
た、注液兼排気口を上方に位置させることで、注液の流
れと気体の流れとを重力を利用して効果的に分けること
ができるだけでなく、更に注液兼排気口が、パッケージ
内壁面の端部寄りの位置に設けられたことにより、注液
のとき、極群に対して電解液が捲回端面の片側寄りの位
置から浸透して行くことができ、極群内の気体を電解液
にて効果的に押し出し、注入した電解液と気体との置換
をスムーズに行うことが出きる。According to a sixth aspect of the present invention, there is provided a method of manufacturing a sealed battery including a step of injecting an electrolytic solution into a package accommodating the wound electrode group. The liquid injection / exhaust port provided near the end of the package inner wall surface facing the turning end face is positioned above, and simultaneously the liquid is injected from the liquid injection / exhaust port, and the gas in the package is injected by the liquid injection. A method for manufacturing a sealed battery, wherein the battery is discharged from an exhaust port. In this way, by injecting the electrolyte from the injection / exhaust port disposed at a position facing the winding end face of the electrode group, the liquid pressure at the time of injection is adjusted to the winding end face where the gap between the electrode groups is opened. It can be added directly, and by arranging the injection / exhaust port upward, the flow of injection and the flow of gas can not only be effectively separated by gravity, but also Since the exhaust port is provided at a position near the end of the inner wall surface of the package, at the time of injection, the electrolyte can penetrate the electrode group from a position near one side of the wound end surface, The gas in the electrode group can be effectively pushed out by the electrolytic solution, and the injected electrolytic solution can be replaced with the gas smoothly.
【0019】[0019]
【発明の実施の形態】以下、本発明に係る実施の形態に
ついて図を参照して詳細に説明する。図1は、本発明に
係る密閉形電池の第1実施の形態を示すもので、電池内
部を示す概略平面図である。図2は、図1におけるA−
A線に沿った部分の断面図である。図3は、本発明に係
る密閉形電池の第2実施の形態を示すもので、電池内部
を示す概略平面図である。図4は、本発明に係る密閉形
電池の第3実施の形態を示すもので、電池内部を示す概
略平面図である。図5は、図4におけるA−A線に沿っ
た部分の断面図である。図6は、本発明に係る密閉形電
池の第4実施の形態を示すもので、電池内部を示す概略
平面図である。Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a first embodiment of a sealed battery according to the present invention, and is a schematic plan view showing the inside of the battery. FIG. 2 is a cross-sectional view of FIG.
It is sectional drawing of the part along A line. FIG. 3 shows a second embodiment of the sealed battery according to the present invention, and is a schematic plan view showing the inside of the battery. FIG. 4 shows a third embodiment of the sealed battery according to the present invention, and is a schematic plan view showing the inside of the battery. FIG. 5 is a cross-sectional view of a portion taken along line AA in FIG. FIG. 6 shows a fourth embodiment of the sealed battery according to the present invention, and is a schematic plan view showing the inside of the battery.
【0020】(第1実施の形態)図1及び図2に示す本
実施の形態における電池100は、袋状のパッケージ7
によって画成された内部空間11に、正極、負極および
セパレータを捲回した極群1の本体と、この極群1に正
極リードとして接続された正極端子5および負極リード
として接続された負極端子6、さらには電解液が収納さ
れた構造である。パッケージ7は、内部空間11を形成
するべくその周縁部分の融着部8において適宜融着され
ている。そして、本実施形態における特徴的な構成は、
極群1の捲回端面4(図2参照)に対向した壁面10
(図1において、壁部10は、密閉形電池100のパッ
ケージ7がフレキシブルな素材を融着部8にて貼り合わ
せた扁平構造であることから、矩形状の内部空間11を
構成する「辺」として構成されている)の位置に、電解
液を注入可能で且つパッケージ7内の気体(充電時に発
生した発生ガスを含む)を排気可能な注液兼排気口9が
配置された構成である。(First Embodiment) A battery 100 according to the present embodiment shown in FIGS.
Of the electrode group 1 in which a positive electrode, a negative electrode and a separator are wound, a positive electrode terminal 5 connected to the electrode group 1 as a positive electrode lead, and a negative electrode terminal 6 connected as a negative electrode lead And a structure in which an electrolytic solution is accommodated. The package 7 is appropriately fused at a fusion portion 8 at a peripheral portion thereof to form an internal space 11. And the characteristic configuration in this embodiment is:
Wall surface 10 facing winding end surface 4 of pole group 1 (see FIG. 2)
(In FIG. 1, since the package 7 of the sealed battery 100 has a flat structure in which a flexible material is bonded by a fusion bonding portion 8 in FIG. 1, the “side” constituting the rectangular internal space 11 is formed. ), And a liquid injection / exhaust port 9 capable of injecting an electrolytic solution and exhausting gas (including generated gas generated during charging) in the package 7 is arranged.
【0021】また、パッケージ7は、比較的柔軟性のあ
る素材にて構成されており、例えば、内面に加熱により
適宜溶融して接着することのできる融着性樹脂層を有す
る金属箔と樹脂フィルム(樹脂フィルムがパッケージ7
の内面側)のラミネート材から構成されている。したが
って、この注液兼排気口9は加熱によって融着封止で
き、パッケージ7の密閉ができる。The package 7 is made of a relatively flexible material. For example, a metal foil and a resin film having a fusible resin layer on the inner surface which can be appropriately melted and bonded by heating. (Resin film is package 7
(Inner side). Therefore, the injection / exhaust port 9 can be fused and sealed by heating, and the package 7 can be hermetically sealed.
【0022】なお、極群1は帯状の形態の電極をスパイ
ラル状に捲回した構造のものである。すなわち、正極と
セパレータと負極とを有する帯状の積層体を、捲回軸線
2を中心にしてスパイラル状に扁平に捲回した構成であ
り、その一方の捲回端面4(図中において上方側)から
正極端子5および負極端子6を取り出すように構成され
ている。したがって、極群1の捲回周面3は、電極自身
によって閉じた構成であるが、捲回端面4は、図2に示
すように、正負両電極とセパレータの積層体が渦巻き状
(正負電極間には、セパレータを介して隙間が形成され
ている)を呈している面である。The electrode group 1 has a structure in which a strip-shaped electrode is spirally wound. That is, a strip-shaped laminate having a positive electrode, a separator, and a negative electrode is spirally and flatly wound around the winding axis 2, and one of the winding end surfaces 4 (upper side in the figure) From the positive terminal 5 and the negative terminal 6. Therefore, the wound peripheral surface 3 of the electrode group 1 is configured to be closed by the electrode itself, but the wound end surface 4 has a spiral shape (positive and negative electrode) as shown in FIG. In between, a gap is formed via a separator).
【0023】このように構成される密閉形電池100の
製造工程における電解液並びに充電時のガス排気につい
て説明する。先ず、捲回された極群1が収納されたパッ
ケージ7に対して、パッケージ7の注液兼排気口9から
電解液を適宜手段により注入(図1の矢印S方向に注
入)する。なお、電解液の注入時におけるパッケージ7
の向きは、注液兼排気口9が上になるように適宜保持さ
れている。この電解液の注液(矢印S方向からの注液)
によって、パッケージ7内に進入した電解液は、例えば
図1における矢印S1,S2,S3のように流動し、捲
回端面4のセパレータおよびセパレータと正・極電極の
界面に沿って極群1内に浸透してパッケージ下方側から
充填されてき、この電解液の流入によって押し出された
気体は、注液兼排気口9から排出される。A description will be given of the electrolytic solution and the gas exhaust during charging in the manufacturing process of the sealed battery 100 configured as described above. First, an electrolytic solution is injected into the package 7 in which the wound electrode group 1 is stored from the injection / exhaust port 9 of the package 7 by appropriate means (injected in the direction of arrow S in FIG. 1). The package 7 at the time of injecting the electrolyte is
Is appropriately held so that the liquid injection / exhaust port 9 faces upward. Injection of this electrolyte (injection from the direction of arrow S)
As a result, the electrolyte that has entered the package 7 flows, for example, as shown by arrows S1, S2, and S3 in FIG. 1, and flows into the electrode group 1 along the separator on the winding end surface 4 and the interface between the separator and the positive electrode and the negative electrode. The gas that has penetrated into the package and has been filled from the lower side of the package and has been pushed out by the inflow of the electrolytic solution is discharged from the injection / exhaust port 9.
【0024】すなわち、極群1の捲回端面4に対向した
位置に配置された注液兼排気口9から電解液が注入され
ると、注入時の液圧が、極群1の隙間(セパレータと正
・極電極の界面)の一端側4aに集中して加えられるの
で、例えば図1における矢印S1,S2,S3のように
流動し、捲回端面4の一端側4a(図中において右側の
位置)から、セパレータおよびセパレータと正・極電極
の界面に沿って極群1内に浸透してパッケージ下方側か
ら充填されて行く。一方、電解液によって押された気体
は、図中における矢印H1,H2,H3にて示すよう
に、前述の一端側4aとは反対側から注液兼排気口9に
スムーズ流れていき、注液兼排気口9から排出されるの
で、電解液の極群1内への浸透を迅速にできる。また、
電解液注入後の充電行程においては、極群1から炭酸ガ
スや炭化水素ガスなどが発生する。この発生したガス
は、注液兼排気口9からパッケージ7の外への排出され
る。すなわち、ガスの多くは極群1の捲回端面4の全域
から捲回軸線2方向に移動(図中の矢印H1,H2,H
3方向およびS1,S2,S3方向の逆向き方向に移
動)して、注液兼排気口9からパッケージ7外へ出る。That is, when the electrolytic solution is injected from the injection / exhaust port 9 disposed at a position facing the wound end face 4 of the electrode group 1, the liquid pressure at the time of injection increases the gap (separator) of the electrode group 1. Is concentrated on one end 4a of the interface between the positive electrode and the positive electrode, so that it flows, for example, as shown by arrows S1, S2, and S3 in FIG. From the position), penetrates into the electrode group 1 along the separator and the interface between the separator and the positive electrode, and is filled from the lower side of the package. On the other hand, as shown by arrows H1, H2, and H3 in the figure, the gas pushed by the electrolytic solution flows smoothly from the opposite side to the above-mentioned one end 4a into the injection / exhaust port 9, and Since the electrolyte solution is exhausted from the exhaust port 9, the electrolyte solution can quickly penetrate into the electrode group 1. Also,
In the charging process after the injection of the electrolytic solution, carbon dioxide gas, hydrocarbon gas, and the like are generated from the electrode group 1. The generated gas is discharged from the injection / exhaust port 9 to the outside of the package 7. That is, most of the gas moves in the direction of the winding axis 2 from the entire wound end face 4 of the pole group 1 (arrows H1, H2, H in the figure).
3 and in the directions opposite to the S1, S2, and S3 directions) to exit the package 7 through the liquid injection / exhaust port 9.
【0025】また、本実施の形態のように、注液兼排気
口9が極群1の捲回端面4に対向していることに加え
て、注液兼排気口9の配置が、捲回端面4に対面する壁
面10の片側に偏っている構成となっている。このよう
な構成となっていることにより、電解液の注液時におい
て、注液された電解液は、極群1の注液兼排気口9側の
部分から優先的に浸透し且つ捲回端面4の一端側4aか
ら浸透していくので、捲回端面4の全体を先にぬらして
しまうことがなく、極群1からの気体の排出路が確保さ
れる。すなわち、注液兼排気口9が壁面10のセンター
付近に位置するような構成の場合であると浸透完了前に
極群1の片側(上部)のみがぬれてしまうことによっ
て、電解液の注入時に極群1内の気体の退路が遮断され
てしまうような状態が生じるが、本実施の形態の如く注
液兼排気口9が壁面10の片側に偏っていることによ
り、気体の退路を絶つような状態を回避することができ
る。Further, as in the present embodiment, in addition to the liquid injection / exhaust port 9 facing the wound end face 4 of the electrode group 1, the arrangement of the liquid injection / exhaust port 9 is not It is configured to be biased to one side of the wall surface 10 facing the end surface 4. With such a configuration, at the time of injecting the electrolyte, the injected electrolyte preferentially permeates from the injection / exhaust port 9 side of the electrode group 1 and the wound end face. Since the water permeates from one end 4a of the electrode group 4, the entire winding end face 4 is not wetted first, and a gas discharge path from the electrode group 1 is secured. That is, in the case where the liquid injection / exhaust port 9 is located near the center of the wall surface 10, only one side (upper part) of the electrode group 1 gets wet before the infiltration is completed. Although a state in which the retreat of the gas in the electrode group 1 is blocked may occur, the retreat and exhaust port 9 is biased to one side of the wall surface 10 as in the present embodiment. State can be avoided.
【0026】また、本実施の形態においては、電解液が
極群1内に浸透するとき、電解液の毛細管現象および注
液された電解液と極群1が内包していた気体の密度の差
によって、電解液と気体の置換がスムースに進行する。
したがって、電解液の注液工程において、注液を迅速に
するべく減圧含浸を要する場合には高価な設備を必要と
するだけでなく、その工程が煩雑になるが、本実施の形
態のように構成された密閉形電池100であれば、複雑
且つ高価な設備を用いることなく、極めて容易かつ効果
的な注液が可能である。Also, in the present embodiment, when the electrolyte penetrates into electrode group 1, the capillary action of the electrolyte and the difference in density between the injected electrolyte and the gas contained in electrode group 1 are considered. Thereby, the replacement of the electrolyte with the gas proceeds smoothly.
Therefore, in the electrolyte solution injection step, when vacuum impregnation is required to speed up the injection, not only expensive equipment is required but also the process becomes complicated, but as in the present embodiment, With the configured sealed battery 100, extremely easy and effective injection is possible without using complicated and expensive equipment.
【0027】(第2実施の形態)図3は、本発明に係る
密閉形電池の第2実施の形態を示す。なお、図3におい
ては、第1実施の形態における構成要素と同じ要素につ
いては、同じ符号を付してその説明を省略する。本第2
実施の形態においては、図3に示すように、パッケージ
37の内壁面に、パッケージ37の内方からパッケージ
外方(図中においては上方)に向かって壁面間隔を狭め
る傾斜部31,32が設けられている。そして、傾斜部
31,32が注液兼排気口9に連続するように構成され
ている。(Second Embodiment) FIG. 3 shows a sealed battery according to a second embodiment of the present invention. In FIG. 3, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. Book second
In the embodiment, as shown in FIG. 3, inclined portions 31 and 32 are provided on the inner wall surface of the package 37 so as to narrow the wall interval from inside the package 37 to the outside of the package (upward in the figure). Have been. The inclined portions 31 and 32 are configured to be continuous with the liquid injection / exhaust port 9.
【0028】このように、極群1の捲回端面4に対面す
る内壁面が、パッケージ内方からパッケージ外方に向か
って壁面間隔を狭める傾斜部31,32として構成さ
れ、且つ注液兼排気口9に連続するようになっているこ
とにより、電解液の注入時において、例えばパッケージ
7が若干傾いて(図3において、左右の何れかに傾い
て)保持されていたとしても、この傾斜部31,32が
電解液の注液によって押し出される気体(電解液に置換
されて極群1から排出される気体も含む)を、注液兼排
気口9にスムーズに案内(押し出された気体H1,H
2,H3の案内方向である矢印H方向へ案内)して外に
排気することができる。一方、電解液の注入後の充電時
においては、傾斜部31,32が、極群1内に発生した
ガスを、例えば図3における矢印H1,H2,H3のよ
うに注液兼排気口9へ効率よく案内し、効果的なガス排
気をすることができる。As described above, the inner wall surface facing the winding end surface 4 of the electrode group 1 is formed as the inclined portions 31 and 32 for narrowing the wall interval from the inside of the package toward the outside of the package, and is also used for injection and exhaust. By being continuous with the opening 9, even when the package 7 is held slightly inclined (either left or right in FIG. 3) during the injection of the electrolytic solution, for example, the inclined portion Gases 31 and 32 that are extruded by the injection of the electrolyte (including the gas that is replaced by the electrolyte and discharged from the electrode group 1) are smoothly guided to the injection / exhaust port 9 (the extruded gases H1 and H2). H
2, H3), and can be exhausted to the outside. On the other hand, at the time of charging after the injection of the electrolyte, the inclined portions 31 and 32 cause the gas generated in the electrode group 1 to be injected into the liquid injection / exhaust port 9 as shown by arrows H1, H2 and H3 in FIG. It can guide efficiently and exhaust gas effectively.
【0029】(第3実施の形態)図4および図5は、本
発明に係る密閉形電池の第3実施の形態を示す。なお、
図4および図5においても、第1実施の形態における構
成要素と同じ要素については、同じ符号を附してその説
明を適宜省略する。図4に示す密閉形電池300は、パ
ッケージ47の壁面10の両角部に近い所に注液兼排気
口9が2つ設けられた構造である。このような構成の場
合、2箇所に注液兼排気口9があることから、電解液の
注入時並びに充電時において、注液兼排気口9が形成さ
れた側を上方にしておけば、電池300の保持状態が傾
いた場合でも、極群1から排出された気体は、どちらか
1方の高い位置にある注液兼排気口9にスムーズに移行
し、パッケージ外に排気される。また、注液兼排気口9
が2つ設けられた構造であることによって、注液口と排
気口を適宜使い分けることができる。(Third Embodiment) FIGS. 4 and 5 show a sealed battery according to a third embodiment of the present invention. In addition,
4 and 5, the same elements as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate. The sealed battery 300 shown in FIG. 4 has a structure in which two injection / exhaust ports 9 are provided near both corners of the wall surface 10 of the package 47. In the case of such a configuration, since the liquid injection / exhaust port 9 is provided at two places, if the side where the liquid injection / exhaust port 9 is formed is placed at the upper side during the injection of the electrolytic solution and at the time of charging, the battery can be obtained. Even when the holding state of 300 is tilted, the gas discharged from the electrode group 1 smoothly moves to the liquid injection / exhaust port 9 which is located at one of the higher positions, and is exhausted out of the package. Injection and exhaust port 9
, The liquid injection port and the exhaust port can be properly used.
【0030】(第4実施の形態)図6は、本発明に係る
密閉形電池の第4実施の形態を示す。なお、図6におい
ても、第1実施の形態における構成要素と同じ要素につ
いては、同じ符号を付してその説明を省略する。本第4
実施の形態は、上記した第2実施の形態と第3実施の形
態とを組み合わせた構成である。すなわち、図6に示す
ように、パッケージ47の内壁面に、パッケージ47の
内方からパッケージ外方(図中においては上方)に向か
って、二つの注液兼排気口9に向かって壁面間隔を狭め
る傾斜部61,62および傾斜部63,64が設けられ
ている。なお、本実施の形態における作用について、上
記した第2実施の形態と第3実施の形態と同様で、二つ
の注液兼排気口9を有していることに加えて、傾斜部6
1,62および傾斜部63,64を有していることによ
る相乗効果を有している。(Fourth Embodiment) FIG. 6 shows a sealed battery according to a fourth embodiment of the present invention. In FIG. 6, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. Book 4
The embodiment has a configuration in which the above-described second embodiment and the third embodiment are combined. That is, as shown in FIG. 6, on the inner wall surface of the package 47, the space between the wall surfaces is set from the inside of the package 47 toward the outside of the package 47 (upward in the figure) toward the two liquid injection / exhaust ports 9. Narrowing inclined portions 61 and 62 and inclined portions 63 and 64 are provided. The operation of the present embodiment is the same as that of the above-described second and third embodiments.
1 and 62 and the inclined portions 63 and 64 have a synergistic effect.
【0031】上記第2実施の形態、第3実施の形態およ
び第4実施の形態において示したいずれの密閉形電池2
00,300、400においても、注液兼排気口9の内
面が熱融着性樹脂で形成されていることから、注液兼排
気口9を閉じる行程は、加熱によって極めて容易で完全
な封止が可能である。すなわち、注液工程およびガス排
気の過程で注液兼排気口9の内面が、電解液あるいはゲ
ル状の電解質溶液で汚染されることは避けがたく、この
注液兼排気口9の内面が一旦電解液で汚染されてしまう
と、注液口内面の一部が金属である場合、封口の方式が
樹脂との接着あるいはかしめいずれの方式にしても界面
を完全に気密封止することはきわめて難しい。しかし、
本発明における各実施の形態の如くパッケージ7の内面
が全て融着性樹脂であることで、注液工程で融着面であ
る注液兼排気口9の内面が電解液で汚染されても、加熱
によって樹脂同士の融着は、電解質に汚染に全く左右さ
れることがなく、極めて容易で完全な封止が可能であ
る。Any of the sealed batteries 2 shown in the second, third and fourth embodiments.
Also in 00, 300 and 400, since the inner surface of the injection / exhaust port 9 is formed of a heat-fusible resin, the process of closing the injection / exhaust port 9 is extremely easy and complete sealing by heating. Is possible. That is, it is inevitable that the inner surface of the injection / exhaust port 9 is contaminated with the electrolytic solution or the gel-like electrolyte solution during the injection step and the gas exhaust process. If the inside of the injection port is made of metal, it is extremely difficult to completely hermetically seal the interface regardless of whether the sealing method is adhesion to resin or caulking, if it is contaminated with electrolyte. . But,
Since the inner surface of the package 7 is entirely made of a fusible resin as in each embodiment of the present invention, even if the inner surface of the injection / exhaust port 9 which is the fusion surface in the injection step is contaminated with the electrolytic solution, The fusion of the resins by heating is not affected by the contamination of the electrolyte at all, and is very easy and complete sealing is possible.
【0032】(実施例)上記第1、第2、第3および第
4の各実施の形態に示す密閉形電池100,200,3
00,400を用いて、注液兼排気口9を上方に位置さ
せるようにして電解液の注入を行った。この結果、何れ
の場合においても、電解液の浸透の過程で、電解液と極
群内の気体と置換が円滑に行われ、押し出された気体が
注液兼排気口9から排出されて迅速(一分程度の時間)
な注液ができた。また、密閉形電池100,200,3
00,400を用いて、充電を行った結果、何れの場合
においても、極群から発生したガスを、注液兼排気口9
から排出させることができた。また、加熱部材を用いて
注液兼排気口9をその外表面から押さえるようにして加
熱したところ、注液兼排気口9の部分の樹脂同士が融着
し、完全な封止ができた。(Embodiments) The sealed batteries 100, 200, and 3 shown in the first, second, third, and fourth embodiments.
Using 00 and 400, the electrolyte was injected such that the injection / exhaust port 9 was positioned above. As a result, in any case, during the permeation of the electrolytic solution, the electrolytic solution and the gas in the electrode group are smoothly replaced, and the extruded gas is discharged from the injection / exhaust port 9 and quickly ( About one minute)
Liquid injection was completed. In addition, the sealed batteries 100, 200, 3
As a result of charging by using the electrodes 00 and 400, in each case, the gas generated from the electrode group was injected into the injection / exhaust port 9.
Could be discharged from When the injection and exhaust port 9 was heated by using a heating member so as to be pressed from the outer surface, the resin at the injection and exhaust port 9 was fused together, and complete sealing was achieved.
【0033】(比較例)一方、図7に示すような密閉形
電池70を作成して電解液の注入並びに充電を行った。
本比較例にて用いた密閉形電池70は、パッケージ77
における注液兼排気口9の形成位置以外の構成は、上記
の各実施例と全く同じ構成とした。なお、図7に示す構
成においては、図1に示したものと同一の構成要素につ
いて同一の符号を用いてその説明を省略するが、図7に
示す密閉形電池70は、注液兼排気口79が極群1の捲
回軸線2に平行な側面80のほぼ中央にある構成とし
た。Comparative Example On the other hand, a sealed battery 70 as shown in FIG. 7 was prepared, and an electrolyte was injected and charged.
The sealed battery 70 used in this comparative example is a package 77
Except for the position where the liquid injection / exhaust port 9 is formed, the configuration is exactly the same as in each of the above embodiments. In the configuration shown in FIG. 7, the same components as those shown in FIG. 1 are denoted by the same reference numerals and the description thereof will be omitted. However, the sealed battery 70 shown in FIG. 79 is located substantially at the center of the side surface 80 of the pole group 1 parallel to the winding axis 2.
【0034】この構成において、注液兼排気口79を横
にした状態(図7に示すように正極端子5および負極端
子6を上にした状態)で注液兼排気口79から電解液
を、上記実施例と全く同じ条件で注入した。この結果、
注液(矢印Sにて示す方向から注液)された電解液は、
極群1の側面3に当たり、矢印S7,S8にて示すよう
に捲回端面4への回り込みに時間がかかり、また極群1
内部への進入がスムーズに行かず、極群内包気体が抜け
にくいためか、電解液と気体との置換が進まず極群内へ
の液の浸透がスムーズに進まない結果、上記実施例の場
合と比べて、電解液の充填時間を10倍〜100倍程度
多く必要とした。また、1回目の充電で発生したガスが
注液兼排気口79に移行しにくく、極群1内並びにパッ
ケージ77内に残存していた。更にまた、密閉形電池7
0の構成において、注液兼排気口79を上側にした状態
(図7に示す状態から、左へ90度回転した状態)で注
液兼排気口79から電解液を注入した。また、この状態
で充電を行った。この場合においても、電解液と気体と
の置換がスムーズに進まず上記実施例の場合と比べて、
電解液の充填時間を多く必要とし、また、充電時のガス
排気が明らかに不十分であった。In this configuration, the electrolyte is injected from the injection / exhaust port 79 while the injection / exhaust port 79 is laid down (the positive electrode terminal 5 and the negative electrode terminal 6 are up as shown in FIG. 7). The injection was performed under exactly the same conditions as in the above example. As a result,
The injected electrolyte (injected from the direction shown by arrow S)
It hits the side face 3 of the pole group 1 and takes time to turn around to the winding end face 4 as shown by arrows S7 and S8.
In the case of the above embodiment, the permeation of the liquid into the electrode group does not proceed smoothly because the gas entering the inside of the electrode group does not proceed smoothly because the gas contained in the electrode group is not easily released and the gas contained in the electrode group is difficult to escape. In comparison with the case, the filling time of the electrolytic solution was required to be about 10 to 100 times longer. Further, the gas generated in the first charging was not easily transferred to the liquid injection / exhaust port 79, and remained in the electrode group 1 and the package 77. Furthermore, the sealed battery 7
In the configuration of No. 0, the electrolyte was injected from the injection / exhaust port 79 with the injection / exhaust port 79 turned upward (rotated 90 degrees to the left from the state shown in FIG. 7). Further, charging was performed in this state. Also in this case, the substitution between the electrolyte and the gas does not proceed smoothly, compared to the case of the above embodiment,
This required a long time to fill the electrolyte, and gas exhaust during charging was clearly insufficient.
【0035】[0035]
【発明の効果】以上詳述したように、本発明の請求項1
に係る構成によれば、極群の捲回端面に対向するパッケ
ージ内壁面の位置に、前記電解液を注入可能で且つパッ
ケージ内の気体を排気可能な注液兼排気口が配置されて
なるので、注液兼排気口から電解液を注入することで、
注入時の液圧を、極群の捲回端面に直接加えることがで
きて、電解液の極群内への浸透を迅速化が図れ、電解液
と気体との置換を迅速かつ確実に行うことができる。ま
た、充電によって発生するガスの排出時には、注液兼排
気口によってガスのパッケージ外への排出を容易かつ確
実にでき、生産性に優れかつ電気的特性に優れた密閉形
電池を提供することができる。As described in detail above, claim 1 of the present invention
According to the configuration according to the above, the injection / exhaust port capable of injecting the electrolytic solution and exhausting the gas in the package is disposed at the position of the inner wall surface of the package facing the winding end surface of the electrode group. By injecting the electrolyte from the injection and exhaust port,
The liquid pressure at the time of injection can be directly applied to the wound end face of the electrode group, so that the penetration of the electrolyte into the electrode group can be accelerated, and the replacement of the electrolyte with the gas can be performed quickly and reliably. Can be. In addition, when discharging gas generated by charging, it is possible to easily and reliably discharge gas to the outside of the package by a liquid injection / exhaust port, and to provide a sealed battery excellent in productivity and excellent in electrical characteristics. it can.
【0036】本発明の請求項2に係る構成によれば、注
液兼排気口が、パッケージ内壁面の端部寄りの位置に設
けられたことにより、注液のとき、極群に対して電解液
が捲回端面の片側寄りの位置から浸透して行くことがで
き、極群内の気体を電解液にて効果的に押し出し、注入
した電解液と気体との置換を迅速に行うことが出き生産
性に優れかつ電気的特性に優れた密閉形電池を提供する
ことができる。According to the configuration of the second aspect of the present invention, the liquid injection / exhaust port is provided at a position near the end of the inner wall surface of the package. The liquid can penetrate from a position near one side of the wound end face, and the gas in the electrode group can be effectively pushed out with the electrolyte, and the gas can be quickly replaced with the injected electrolyte. A sealed battery having excellent productivity and excellent electrical characteristics can be provided.
【0037】本発明の請求項3に係る構成によれば、パ
ッケージ内方からパッケージ外方に向かって壁面間隔を
狭める傾斜部が注液兼排気口に連続するように設けられ
たことにより、電解液の注入時においては、電解液の注
液によって押し出された気体を、この傾斜部が注液兼排
気口に効果的に集めることができる。また、充電時に発
生したガスを抜くときは、注液兼排気口を上方位置する
だけで、この傾斜部が発生したガスの注液兼排気口への
案内する機能を発揮することができ、その位置決め精度
を高くしなくてもよく生産性に優れかつガス抜き等が良
くでき電気的特性に優れた密閉形電池を提供することが
できる。According to the structure of the third aspect of the present invention, the inclined portion for reducing the wall interval from the inside of the package toward the outside of the package is provided so as to be continuous with the liquid injection / exhaust port. When the liquid is injected, the gas pushed out by the injection of the electrolytic solution can be effectively collected at the injection / exhaust port by the inclined portion. Also, when discharging the gas generated during charging, the function of guiding the generated gas to the liquid injection / exhaust port can be exhibited only by locating the liquid injection / exhaust port above. It is possible to provide a sealed battery that is excellent in productivity, good in degassing and the like, and excellent in electrical characteristics without having to increase the positioning accuracy.
【0038】本発明の請求項4に係る構成によれば、注
液兼排気口が、捲回端面に対向するパッケージ内壁面の
一方側に二ヵ所に設けられたので、電解液の注入並びに
ガスの排出を二箇所からでき、注液並びにガス排気をよ
り効果的に行うことができ、両注液兼排気口のうち一方
を排気用或いは注液用として適宜利用することができ、
特に、生産性に優れた密閉形電池を提供することができ
る。According to the configuration of the fourth aspect of the present invention, since the liquid injection / exhaust port is provided at two locations on one side of the inner wall surface of the package opposed to the winding end surface, the injection of the electrolytic solution and the gas supply are performed. Can be discharged from two places, liquid injection and gas exhaust can be performed more effectively, and one of both liquid injection and exhaust ports can be appropriately used for exhaust or liquid injection,
In particular, a sealed battery excellent in productivity can be provided.
【0039】本発明の請求項5に係る構成によれば、注
液兼排気口を構成する内壁面が熱融着性樹脂にて構成さ
れて該注液兼排気口が熱溶着可能になされたので、注液
兼排気口は加熱によって容易に融着封止できて生産性に
優れかつ確実な密閉を保証することができ電気的特性に
優れた密閉形電池を提供することができる。According to the fifth aspect of the present invention, the inner wall surface constituting the liquid injection / exhaust port is made of a heat-fusible resin, and the liquid injection / exhaust port can be thermally welded. Therefore, the injection / exhaust port can be easily fused and sealed by heating, so that it is possible to provide a sealed battery having excellent productivity and assured tight sealing, and having excellent electrical characteristics.
【0040】本発明の請求項6に係る製造方法によれば
極群の捲回端面に対向した位置に配置された注液兼排気
口から電解液を注入することにより、注入時の液圧を、
極群の隙間が開口した捲回端面に直接加えることがで
き、また、注液兼排気口を上方に位置させることで、注
液の流れと気体の流れとを重力を利用して効果的に分け
ることができるだけでなく、更に注液兼排気口が、パッ
ケージ内壁面の端部寄りの位置に設けられたことによ
り、注液のとき、極群に対して電解液が捲回端面の片側
寄りの位置からの浸透を可能にして、極群内の気体を電
解液にて効果的に押し出すことができ、この結果、注入
した電解液と気体との置換を迅速に行うことが出きる生
産性に優れた密閉形電池の製造方法を提供できる。According to the manufacturing method of the sixth aspect of the present invention, by injecting the electrolyte from the injection / exhaust port disposed at the position facing the end face of the winding of the electrode group, the hydraulic pressure at the time of injection is reduced. ,
The gap between the pole groups can be added directly to the open winding end face, and the injection and exhaust port is located at the top, effectively using the gravity to flow the injection liquid and the gas flow. Not only can it be separated, but also the injection / exhaust port is provided near the end of the inner wall of the package. And the gas in the electrode group can be effectively pushed out by the electrolyte solution, and as a result, the replacement of the gas with the injected electrolyte solution can be performed quickly. And a method of manufacturing a sealed battery excellent in the above.
【図1】本発明に係る密閉形電池の第1実施の形態を示
すもので、電池内部を示す概略平面図である。FIG. 1 shows a first embodiment of a sealed battery according to the present invention, and is a schematic plan view showing the inside of the battery.
【図2】図1におけるA−A線に沿った部分の断面図で
ある。FIG. 2 is a sectional view of a portion taken along line AA in FIG.
【図3】本発明に係る密閉形電池の第2実施の形態を示
すもので、電池内部を示す概略平面図である。FIG. 3 is a schematic plan view showing the inside of the battery according to a second embodiment of the sealed battery according to the present invention.
【図4】本発明に係る密閉形電池の第3実施の形態を示
すもので、電池内部を示す概略平面図である。FIG. 4 is a schematic plan view showing the inside of the battery according to a third embodiment of the sealed battery according to the present invention.
【図5】図4におけるA−A線に沿った部分の断面図で
ある。FIG. 5 is a sectional view of a portion taken along line AA in FIG. 4;
【図6】本発明に係る密閉形電池の第4実施の形態を示
すもので、電池内部を示す概略平面図である。FIG. 6 is a schematic plan view showing the inside of the battery according to a fourth embodiment of the sealed battery according to the present invention.
【図7】比較電池の電池内部を示す概略平面図である。FIG. 7 is a schematic plan view showing the inside of a comparative battery.
1 極群 2 極群の捲回軸線 3 極群の側面 4 極群の捲回端面 5 正極端子 6 負極端子 7,37,47,77 パッケージ 8 融着部 9 注液兼排気口 10 内壁面 11 内部空間 31,32,61,62,63,64 傾斜部 100,200,300,400 密閉形電池 DESCRIPTION OF SYMBOLS 1 Pole group 2 Pole group winding axis line 3 Pole group side face 4 Pole group winding end face 5 Positive electrode terminal 6 Negative terminal 7, 37, 47, 77 Package 8 Fused part 9 Injection and exhaust port 10 Inner wall surface 11 Internal space 31,32,61,62,63,64 Inclined part 100,200,300,400 Sealed battery
フロントページの続き (72)発明者 山内 健治 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 Fターム(参考) 5H023 AA03 AS01 5H029 AJ14 BJ04 BJ14 CJ13 DJ02Continued on the front page (72) Inventor Kenji Yamauchi 2-3-1, Furube-cho, Takatsuki-shi, Osaka F-term in Yuasa Corporation 5H023 AA03 AS01 5H029 AJ14 BJ04 BJ14 CJ13 DJ02
Claims (6)
に電解液を注入してなる密閉形電池であって、 前記極群の捲回端面に対向するパッケージ内壁面の位置
に、前記電解液を注入可能で且つパッケージ内の気体を
排気可能な注液兼排気口が配置されてなることを特徴と
する密閉形電池。1. A sealed battery in which an electrolytic solution is injected into a package containing a wound electrode group, wherein the electrolytic solution is provided at a position on an inner wall surface of the package facing a wound end surface of the electrode group. A sealed battery comprising a liquid injection / exhaust port capable of injecting liquid and exhausting gas in a package.
壁面の端部寄りの位置に設けられたことを特徴とする請
求項1記載の密閉形電池。2. The sealed battery according to claim 1, wherein the liquid injection / exhaust port is provided at a position near an end of the inner wall surface of the package.
内方からパッケージ外方に向かって壁面間隔を狭める傾
斜部が設けられ、該傾斜部が前記注液兼排気口に連続す
るように構成されたことを特徴とする請求項1または2
に記載の密閉形電池。3. An inner wall surface of the package is provided with an inclined portion for decreasing a wall interval from the inside of the package toward the outside of the package, and the inclined portion is configured to be continuous with the liquid injection / exhaust port. 3. The method according to claim 1, wherein
A sealed battery according to claim 1.
向するパッケージ内壁面の一方側に二ヵ所に設けられた
ことを特徴とする請求項1から3の何れかに記載の密閉
形電池。4. The hermetic seal according to claim 1, wherein the liquid injection / exhaust port is provided at two places on one side of an inner wall surface of the package opposed to the wound end surface. Shaped batteries.
融着性樹脂にて構成され、該注液兼排気口が融着封止さ
れたことを特徴とすることを特徴とする請求項1から4
の何れかに記載の密閉形電池。5. The method according to claim 1, wherein an inner wall surface of the liquid injection / exhaust port is made of a heat-fusible resin, and the liquid injection / exhaust port is fusion-sealed. Claims 1 to 4
The sealed battery according to any one of the above.
電解液を注入する工程を有する密閉形電池の製造方法に
おいて、 前記極群の捲回端面に対向するパッケージ内壁面でその
端部寄りに設けた注液兼排気口を上方に位置させ、前記
注液兼排気口から注液すると同時に、注液によってパッ
ケージ内の気体を該注液兼排気口から排出することを特
徴とする密閉形電池の製造方法。6. A method for manufacturing a sealed battery, comprising a step of injecting an electrolytic solution into a package accommodating a wound electrode group, wherein the package inner wall surface facing the wound end surface of the electrode group is closer to the end. A liquid filling / exhaust port provided at the upper side is positioned upward, and simultaneously with the liquid pouring from the liquid pouring / exhaust port, the gas in the package is discharged from the liquid pouring / exhaust port by the liquid pouring. Battery manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000088170A JP2001273884A (en) | 2000-03-28 | 2000-03-28 | Sealed type battery and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000088170A JP2001273884A (en) | 2000-03-28 | 2000-03-28 | Sealed type battery and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001273884A true JP2001273884A (en) | 2001-10-05 |
Family
ID=18604082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000088170A Pending JP2001273884A (en) | 2000-03-28 | 2000-03-28 | Sealed type battery and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001273884A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005071673A (en) * | 2003-08-20 | 2005-03-17 | Denso Corp | Battery |
JP2007018968A (en) * | 2005-07-11 | 2007-01-25 | Toyota Motor Corp | Battery |
US7662511B2 (en) * | 2003-05-21 | 2010-02-16 | Samsung Sdi Co., Ltd. | Secondary battery having an enlarged electrolytic solution inlet |
JP2013521612A (en) * | 2010-03-01 | 2013-06-10 | アップル インコーポレイテッド | Integrated frame battery cell |
WO2013115549A1 (en) * | 2012-02-02 | 2013-08-08 | 주식회사 엘지화학 | Rechargeable battery comprising a zig-zag shaped sealing part |
JP2013257951A (en) * | 2012-06-11 | 2013-12-26 | Hitachi Vehicle Energy Ltd | Square secondary battery |
JP2014022073A (en) * | 2012-07-12 | 2014-02-03 | Hitachi Vehicle Energy Ltd | Manufacturing method and apparatus for square secondary battery |
JP2015032414A (en) * | 2013-08-01 | 2015-02-16 | トヨタ自動車株式会社 | Method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
JP2015232942A (en) * | 2014-06-09 | 2015-12-24 | 株式会社Gsユアサ | Power storage element, and method for manufacturing power storage element |
KR101804619B1 (en) | 2015-01-13 | 2017-12-04 | 주식회사 엘지화학 | Prismatic type secondary battery |
US9960406B2 (en) | 2014-06-09 | 2018-05-01 | Gs Yuasa International Ltd. | Energy storage device and method of manufacturing energy storage device |
WO2019044560A1 (en) * | 2017-08-31 | 2019-03-07 | 株式会社村田製作所 | Secondary cell and method for manufacturing same |
CN114665161A (en) * | 2022-04-19 | 2022-06-24 | 天科新能源有限责任公司 | Preparation process method and structure of lithium ion safety storage battery |
KR20220101577A (en) * | 2021-01-11 | 2022-07-19 | 주식회사 엘지에너지솔루션 | Battery cell and battery module including the same |
CN115172952A (en) * | 2022-09-07 | 2022-10-11 | 楚能新能源股份有限公司 | Air bag structure of soft-package battery cell and packaging method of soft-package battery cell |
WO2023065974A1 (en) * | 2021-10-20 | 2023-04-27 | 宁德时代新能源科技股份有限公司 | Battery cell, battery and electric device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61171052A (en) * | 1985-01-24 | 1986-08-01 | Matsushita Electric Ind Co Ltd | Manufacture of enclosed type lead storage battery |
JPS6264047A (en) * | 1985-09-17 | 1987-03-20 | Matsushita Electric Ind Co Ltd | Manufacture of sealed lead-acid battery |
JPH10241741A (en) * | 1997-02-27 | 1998-09-11 | Sanyo Electric Co Ltd | Lithium ion battery and fluid injection |
JPH10270072A (en) * | 1997-03-21 | 1998-10-09 | Japan Storage Battery Co Ltd | Manufacture of nonaqueous electrolyte secondary battery |
JPH10334884A (en) * | 1997-05-28 | 1998-12-18 | Toshiba Battery Co Ltd | Filling method for nonaqueous electrolyte, and nonaqueous electrolyte filler |
JPH1125936A (en) * | 1997-06-26 | 1999-01-29 | Hitachi Maxell Ltd | Square sealed battery and its manufacture |
JPH1186824A (en) * | 1997-09-03 | 1999-03-30 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
JP2000067906A (en) * | 1998-08-19 | 2000-03-03 | Sony Corp | Solid electrolyte battery |
JP2000223087A (en) * | 1999-01-29 | 2000-08-11 | Mitsubishi Electric Corp | Thin battery and its manufacture |
JP2001015099A (en) * | 1999-06-25 | 2001-01-19 | Toshiba Battery Co Ltd | Manufacture of thin battery |
-
2000
- 2000-03-28 JP JP2000088170A patent/JP2001273884A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61171052A (en) * | 1985-01-24 | 1986-08-01 | Matsushita Electric Ind Co Ltd | Manufacture of enclosed type lead storage battery |
JPS6264047A (en) * | 1985-09-17 | 1987-03-20 | Matsushita Electric Ind Co Ltd | Manufacture of sealed lead-acid battery |
JPH10241741A (en) * | 1997-02-27 | 1998-09-11 | Sanyo Electric Co Ltd | Lithium ion battery and fluid injection |
JPH10270072A (en) * | 1997-03-21 | 1998-10-09 | Japan Storage Battery Co Ltd | Manufacture of nonaqueous electrolyte secondary battery |
JPH10334884A (en) * | 1997-05-28 | 1998-12-18 | Toshiba Battery Co Ltd | Filling method for nonaqueous electrolyte, and nonaqueous electrolyte filler |
JPH1125936A (en) * | 1997-06-26 | 1999-01-29 | Hitachi Maxell Ltd | Square sealed battery and its manufacture |
JPH1186824A (en) * | 1997-09-03 | 1999-03-30 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
JP2000067906A (en) * | 1998-08-19 | 2000-03-03 | Sony Corp | Solid electrolyte battery |
JP2000223087A (en) * | 1999-01-29 | 2000-08-11 | Mitsubishi Electric Corp | Thin battery and its manufacture |
JP2001015099A (en) * | 1999-06-25 | 2001-01-19 | Toshiba Battery Co Ltd | Manufacture of thin battery |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7662511B2 (en) * | 2003-05-21 | 2010-02-16 | Samsung Sdi Co., Ltd. | Secondary battery having an enlarged electrolytic solution inlet |
JP2005071673A (en) * | 2003-08-20 | 2005-03-17 | Denso Corp | Battery |
JP2007018968A (en) * | 2005-07-11 | 2007-01-25 | Toyota Motor Corp | Battery |
JP2013521612A (en) * | 2010-03-01 | 2013-06-10 | アップル インコーポレイテッド | Integrated frame battery cell |
WO2013115549A1 (en) * | 2012-02-02 | 2013-08-08 | 주식회사 엘지화학 | Rechargeable battery comprising a zig-zag shaped sealing part |
JP2015505138A (en) * | 2012-02-02 | 2015-02-16 | エルジー・ケム・リミテッド | Secondary battery with zigzag seal |
US9070929B2 (en) | 2012-02-02 | 2015-06-30 | Lg Chem, Ltd. | Secondary battery having zigzag-shaped sealing part |
JP2013257951A (en) * | 2012-06-11 | 2013-12-26 | Hitachi Vehicle Energy Ltd | Square secondary battery |
JP2014022073A (en) * | 2012-07-12 | 2014-02-03 | Hitachi Vehicle Energy Ltd | Manufacturing method and apparatus for square secondary battery |
JP2015032414A (en) * | 2013-08-01 | 2015-02-16 | トヨタ自動車株式会社 | Method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery |
US9960406B2 (en) | 2014-06-09 | 2018-05-01 | Gs Yuasa International Ltd. | Energy storage device and method of manufacturing energy storage device |
JP2015232942A (en) * | 2014-06-09 | 2015-12-24 | 株式会社Gsユアサ | Power storage element, and method for manufacturing power storage element |
KR101804619B1 (en) | 2015-01-13 | 2017-12-04 | 주식회사 엘지화학 | Prismatic type secondary battery |
US11670802B2 (en) | 2017-08-31 | 2023-06-06 | Murata Manufacturing Co., Ltd. | Method of manufacturing secondary battery including releasing gas generated during initial charging from opening of outer package |
WO2019044560A1 (en) * | 2017-08-31 | 2019-03-07 | 株式会社村田製作所 | Secondary cell and method for manufacturing same |
JPWO2019044560A1 (en) * | 2017-08-31 | 2020-04-16 | 株式会社村田製作所 | Secondary battery and manufacturing method thereof |
KR102561810B1 (en) * | 2021-01-11 | 2023-07-31 | 주식회사 엘지에너지솔루션 | Battery cell and battery module including the same |
KR20220101577A (en) * | 2021-01-11 | 2022-07-19 | 주식회사 엘지에너지솔루션 | Battery cell and battery module including the same |
KR20230117310A (en) * | 2021-01-11 | 2023-08-08 | 주식회사 엘지에너지솔루션 | Battery cell and battery module including the same |
KR102587122B1 (en) * | 2021-01-11 | 2023-10-10 | 주식회사 엘지에너지솔루션 | Battery cell and battery module including the same |
US12132215B2 (en) | 2021-01-11 | 2024-10-29 | Lg Energy Solution, Ltd. | Battery cell and battery module including the same |
WO2023065974A1 (en) * | 2021-10-20 | 2023-04-27 | 宁德时代新能源科技股份有限公司 | Battery cell, battery and electric device |
CN114665161A (en) * | 2022-04-19 | 2022-06-24 | 天科新能源有限责任公司 | Preparation process method and structure of lithium ion safety storage battery |
CN114665161B (en) * | 2022-04-19 | 2024-04-26 | 天科新能源有限责任公司 | Preparation process method and structure of lithium ion safety reserve battery |
CN115172952A (en) * | 2022-09-07 | 2022-10-11 | 楚能新能源股份有限公司 | Air bag structure of soft-package battery cell and packaging method of soft-package battery cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4433650B2 (en) | Lithium secondary cell and connection structure of lithium secondary cell | |
JP4571610B2 (en) | Pouch-type lithium secondary battery and manufacturing method thereof | |
JP2001273884A (en) | Sealed type battery and manufacturing method thereof | |
KR100929033B1 (en) | Cap assembly and secondary battery having the same | |
JP2015173123A (en) | Stacked constructions for electrochemical batteries | |
JP2007265967A (en) | Secondary battery and its manufacturing method | |
WO2000041263A1 (en) | Thin battery and method of manufacturing | |
KR102483158B1 (en) | The Method For Manufacturing Secondary Battery And The Apparatus For Degassing Secondary Battery | |
JP4297877B2 (en) | Can-type secondary battery | |
KR20100060980A (en) | Insulation case for secondary battery and secondary battery having the same | |
KR101299166B1 (en) | Process for Preparation of Battery Pack Containing Electrode Assembly in Pack Case of Polymer Coating Layer | |
JP4412610B2 (en) | Lithium secondary battery | |
KR100867929B1 (en) | Secondary battery | |
KR20080009462A (en) | Cap assembly and rechargeable battery using the same | |
KR102715868B1 (en) | The Method For Manufacturing Secondary Battery | |
KR101357311B1 (en) | Pouch type secondary battery and method of preparing the same | |
KR20140134916A (en) | Method for manufacturing pouch for secondary battery and pouch of secondary battery | |
KR100436714B1 (en) | Prismatic type lithium secondary battery | |
JP2002343337A (en) | Method of infusion and draining of electrolytic solution for lithium secondary battery | |
JP2004146238A (en) | Separator for battery, and battery | |
JP4067337B2 (en) | Battery pack manufacturing method and battery pack | |
KR102164973B1 (en) | Pouch-typed Secondary Battery Comprising Jelly-Roll Electrode Assembly | |
JP4063595B2 (en) | Battery pack | |
KR20150051467A (en) | Second Battery Having Sealing Member of Self- Sealability | |
CN207529999U (en) | A kind of battery and mobile terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20051219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060125 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060907 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080514 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080710 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081110 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090305 |