JP2001259810A - Continuous casting method - Google Patents
Continuous casting methodInfo
- Publication number
- JP2001259810A JP2001259810A JP2000081347A JP2000081347A JP2001259810A JP 2001259810 A JP2001259810 A JP 2001259810A JP 2000081347 A JP2000081347 A JP 2000081347A JP 2000081347 A JP2000081347 A JP 2000081347A JP 2001259810 A JP2001259810 A JP 2001259810A
- Authority
- JP
- Japan
- Prior art keywords
- slab
- solid
- light reduction
- temperature
- center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鋼の連続鋳造方法
に関し、詳しくは連続鋳造鋳片の中心部に発生する成分
偏析を鋳造工程において防止する方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for steel, and more particularly, to a method for preventing segregation of components in a central portion of a continuously cast slab in a casting process.
【0002】[0002]
【従来の技術】鋼の凝固過程における最終凝固部では、
炭素、燐、硫黄等の溶質元素は未凝固相に濃縮される。
この溶質元素が濃縮された溶鋼(濃化溶鋼と云う)が流
動して集積し、その状態で凝固すると初期濃度に比べて
格段に高濃度となり、成分偏析部が生成される。このよ
うな濃化溶鋼の流動・集積が、鋼の成分偏析の主たる生
成原因である。2. Description of the Related Art In the final solidification part in the solidification process of steel,
Solute elements such as carbon, phosphorus and sulfur are concentrated in the uncoagulated phase.
Molten steel in which the solute elements are concentrated (referred to as concentrated molten steel) flows and accumulates. When solidified in this state, the concentration becomes much higher than the initial concentration, and a component segregation portion is generated. Such flow and accumulation of the concentrated molten steel is a main cause of steel component segregation.
【0003】鋼が凝固すると体積収縮が起こり、この凝
固収縮に伴い、連続鋳造の場合には鋳片の引き抜き方向
へ溶鋼が吸引されて流動する。連続鋳造鋳片の凝固末期
の未凝固相には十分な量の溶鋼が存在しないので、凝固
収縮に伴い最終凝固部であるデンドライト樹間の濃化溶
鋼が流動をおこし、それが鋳片中心部に集積して凝固
し、所謂中心偏析が生成される。[0003] When the steel solidifies, volume shrinkage occurs. With this solidification shrinkage, in the case of continuous casting, molten steel is sucked and flows in the direction of drawing the slab. Since there is no sufficient amount of molten steel in the unsolidified phase at the end of solidification of continuous cast slabs, the concentrated molten steel between the dendrite trees, which is the final solidified part, flows along with the solidification shrinkage, and it flows in the center of the slab. And solidifies to form so-called center segregation.
【0004】この中心偏析は鋼製品の品質を劣化させ
る。例えば、石油輸送用及び天然ガス輸送用のラインパ
イプ材においては、サワーガスの作用により中心偏析を
起点として水素誘起割れが発生し、又、飲料水用の缶製
品に用いられる深絞り材においては、成分の偏析により
加工性に異方性が出現する。そのため、鋳造工程から圧
延工程に至るまで、中心偏析を低減する対策が多数提案
されている。[0004] This center segregation degrades the quality of steel products. For example, in line pipe materials for oil transportation and natural gas transportation, hydrogen-induced cracking occurs from the center segregation as a starting point due to the action of sour gas, and in deep drawing materials used for can products for drinking water, Anisotropy appears in workability due to segregation of components. Therefore, many measures have been proposed to reduce center segregation from the casting process to the rolling process.
【0005】そのなかで、安価に且つ効果的に鋳片の中
心偏析を低減する手段として、例えば特開平8−132
203号公報や特開平8−192256号公報に開示さ
れるように、未凝固鋳片を複数対のロールで圧下する
(以下「軽圧下」と呼ぶ)方法が提案されている。この
軽圧下方法は、鋳片の凝固収縮量に見合った圧下速度で
鋳片を徐々に圧下して未凝固相の体積を減少させ、デン
ドライト樹間の濃化溶鋼の流動を起こさないようにして
中心偏析を防止することを目的としている。[0005] Among them, as means for reducing the center segregation of the cast slab inexpensively and effectively, for example, Japanese Patent Laid-Open No. 8-132 is disclosed.
As disclosed in JP-A-203-203 and JP-A-8-192256, there has been proposed a method of reducing the unsolidified slab with a plurality of pairs of rolls (hereinafter referred to as "light reduction"). This light reduction method reduces the volume of the unsolidified phase by gradually reducing the volume of the slab at a reduction speed corresponding to the amount of solidification shrinkage of the slab, so as not to cause the flow of concentrated molten steel between dendrite trees. The purpose is to prevent center segregation.
【0006】[0006]
【発明が解決しようとする課題】軽圧下方法では鋳片の
凝固殻はロールにより曲げ変形を受けるため、凝固殻の
固液界面には引張り応力が作用する。固液界面に割れが
発生する限界の引張り歪み量は1%前後であり、従っ
て、軽圧下量が多すぎると固液界面に割れが発生し、こ
の割れ部にデンドライト樹間の濃化溶鋼が吸い込まれ
て、偏析度の大きい偏析を形成する。更に軽圧下量を多
くすると、デンドライト樹間の濃化溶鋼は鋳造方向とは
逆方向に絞り出されて、鋳片中心部には炭素、燐、硫黄
等の溶質元素濃度が少ない偏析(この場合は負偏析とい
う)が生成する。一方、軽圧下量が少なすぎると、凝固
に伴う体積収縮によって溶鋼は吸引されるため、デンド
ライト樹間の濃化溶鋼の流動を抑制できずに中心偏析が
生成する。In the light reduction method, since the solidified shell of the slab undergoes bending deformation by the roll, a tensile stress acts on the solid-liquid interface of the solidified shell. The limit of tensile strain at which cracking occurs at the solid-liquid interface is about 1%. Therefore, if the amount of light reduction is too large, cracking occurs at the solid-liquid interface. It is sucked and forms segregation with a high degree of segregation. When the amount of light reduction is further increased, the concentrated molten steel between the dendrite trees is squeezed out in the direction opposite to the casting direction, and segregation with a low concentration of solute elements such as carbon, phosphorus, and sulfur in the center of the slab (in this case, Is called negative segregation). On the other hand, if the amount of light reduction is too small, the molten steel is sucked by the volume shrinkage accompanying solidification, so that the flow of the concentrated molten steel between the dendrite trees cannot be suppressed and center segregation is generated.
【0007】中心偏析を防止するためには、濃化溶鋼の
絞り出しが発生しない程度まで軽圧下量を多くすること
が好ましいが、従来、引張り歪みによる固液界面の割れ
を防止するために軽圧下量の上限が制限されており、こ
の観点からは軽圧下による鋳片偏析防止対策は未だ充分
とは云い難い。In order to prevent center segregation, it is preferable to increase the amount of light reduction to such an extent that the concentrated molten steel is not squeezed out. However, in the past, light reduction was carried out in order to prevent cracking of the solid-liquid interface due to tensile strain. The upper limit of the amount is limited, and from this viewpoint, it is difficult to say that measures for preventing slab segregation by light reduction are sufficient.
【0008】更に、連続鋳造では鋳片の支持を複数対の
ロールで行っており、鋳片はロールとロールの間では支
持されておらず、そのため、凝固殻に作用する溶鋼静圧
によりロール間では凝固殻の膨れ(以下「バルジング」
と記す)が発生する。このバルジングによる未凝固相の
体積変化に伴い溶鋼が流動し、そのため、ロール間で発
生するバルジングも中心偏析の原因の1つとなってい
る。軽圧下方法では、ロールを用いているためにロール
間ではバルジングが発生し、このバルジングによる中心
偏析を防ぎきれないという問題点もある。Further, in continuous casting, the slab is supported by a plurality of pairs of rolls, and the slab is not supported between the rolls. Therefore, the slab is not supported between the rolls by the static pressure of the molten steel acting on the solidified shell. Then, the swelling of the solidified shell (hereinafter "bulging")
Occurs). The molten steel flows along with the volume change of the unsolidified phase due to the bulging, and therefore bulging generated between the rolls is also one of the causes of the center segregation. In the light reduction method, bulging occurs between the rolls because the rolls are used, and there is a problem that the center segregation due to the bulging cannot be prevented.
【0009】一方、需要家からの鋼材品質に対する要求
は厳格化を増し、中心偏析の更なる低減化が望まれてい
る。[0009] On the other hand, demands for steel quality from customers are becoming increasingly severe, and further reduction of center segregation is desired.
【0010】本発明は上記事情に鑑みなされたもので、
その目的とするところは、軽圧下方法により連続鋳造鋳
片の中心偏析を低減する際に、鋳片の固液界面に割れを
発生させることなく、濃化溶鋼の絞り出しが発生しない
限界まで軽圧下量を大きくすることが可能であり、中心
偏析の大幅な低減が達成され、近年の厳しい品質要求に
も対処可能な鋳片を製造することのできる連続鋳造方法
を提供することである。The present invention has been made in view of the above circumstances,
The purpose is to reduce the center segregation of the continuous cast slab by the light reduction method, without causing cracks at the solid-liquid interface of the slab, and reducing the pressure to the limit where concentrated molten steel does not squeeze out. An object of the present invention is to provide a continuous casting method capable of increasing the amount, achieving a large reduction in center segregation, and producing a slab that can cope with recent severe quality requirements.
【0011】[0011]
【課題を解決するための手段】第1の発明による連続鋳
造方法は、内部に未凝固相を有する鋳片を複数対のロー
ルにより軽圧下しつつ連続鋳造する方法において、少な
くとも軽圧下開始時から軽圧下終了時までの期間、鋳片
の表面温度と固液界面温度との温度差を800℃以上に
保持して軽圧下することを特徴とするものである。According to a first aspect of the present invention, there is provided a continuous casting method in which a slab having an unsolidified phase therein is continuously cast while being lightly reduced by a plurality of pairs of rolls. During the period until the end of the light reduction, the temperature difference between the surface temperature of the slab and the solid-liquid interface temperature is maintained at 800 ° C. or more, and the light reduction is performed.
【0012】第2の発明による連続鋳造方法は、第1の
発明において、0.8〜1.6mm/minの圧下速度
の範囲で鋳片を軽圧下することを特徴とするものであ
る。[0012] The continuous casting method according to the second invention is characterized in that, in the first invention, the slab is lightly reduced at a reduction speed of 0.8 to 1.6 mm / min.
【0013】第3の発明による連続鋳造方法は、第1の
発明又は第2の発明において、鋳片厚み方向中心部の固
相率が0.4以下の時点から軽圧下を開始し、鋳片厚み
方向中心部が凝固完了するまで軽圧下を継続することを
特徴とするものである。[0013] The continuous casting method according to a third aspect of the present invention is the method according to the first or second aspect, wherein light reduction is started at a point where the solid phase ratio at the center in the thickness direction of the slab is 0.4 or less. Light reduction is continued until the center in the thickness direction is solidified.
【0014】鋳片表面を急冷して鋳片表面と固相界面と
の温度差を大きくすると、鋳片表面には引張り応力、固
液界面には圧縮が作用する。ここで鋳片表面温度と固相
界面温度との温度差をΔTとし、温度差(ΔT)により
発生する応力を図1を参照して説明する。尚、図1は凝
固殻の温度勾配と温度勾配により生ずる応力を模式的に
示す図であり、(a)が温度勾配を示し、(b)が応力
分布を示している。When the temperature of the slab surface and that of the solid phase interface are increased by rapidly cooling the slab surface, tensile stress acts on the slab surface and compression acts on the solid-liquid interface. Here, the temperature difference between the slab surface temperature and the solid phase interface temperature is ΔT, and the stress generated by the temperature difference (ΔT) will be described with reference to FIG. FIG. 1 is a diagram schematically showing the temperature gradient of the solidified shell and the stress caused by the temperature gradient, wherein (a) shows the temperature gradient and (b) shows the stress distribution.
【0015】従来、鋳片表面温度を900℃以上に制御
して軽圧下することが一般的であった。この場合には、
固液界面3Aの温度(TL )と鋳片表面1Aの温度(T
S )との温度差(ΔT)は400〜500℃程度であ
る。この温度分布を図1(a)では破線で示している。
それに対して、例えば表面温度を600℃程度まで低下
させて温度差(ΔT)を800℃以上とした場合(図1
では表面温度を600℃としている)を実線で示してい
る。ここで、固液界面3Aの温度(TL )は、通常固相
線温度に等しい。Conventionally, it has been common practice to control the surface temperature of the slab to 900 ° C. or more and reduce the pressure. In this case,
The temperature (T L ) of the solid-liquid interface 3A and the temperature (T L ) of the slab surface 1A
The temperature difference (ΔT) from S ) is about 400 to 500 ° C. This temperature distribution is shown by a broken line in FIG.
On the other hand, for example, when the surface temperature is lowered to about 600 ° C. and the temperature difference (ΔT) is set to 800 ° C. or more (FIG. 1).
In this example, the surface temperature is set to 600 ° C.). Here, the temperature ( TL ) of the solid-liquid interface 3A is usually equal to the solidus temperature.
【0016】図1(b)は、この温度分布から凝固殻3
に作用する応力分布を算出した結果であり、破線は温度
差(ΔT)が400〜500℃の場合を示し、実線は温
度差(ΔT)が800℃以上の場合を示している。図1
(b)に示すように、温度差(ΔT)が400〜500
℃であっても固液界面3Aには圧縮力が作用するが、温
度差(ΔT)を800℃以上とすることで固液界面3A
には大きな圧縮力が作用する。これは、鋳片表面1Aは
温度降下により収縮しようとするが、凝固殻3の内部は
それほど温度が降下しないために収縮の抵抗となり、鋳
片表面1A側に引張り力が作用し、固液界面3A側に圧
縮力が作用するからである。FIG. 1B shows that the solidified shell 3
Is a result of calculating a stress distribution acting on the temperature difference (ΔT) of 400 to 500 ° C., and a solid line indicates a case where the temperature difference (ΔT) is 800 ° C. or more. FIG.
As shown in (b), the temperature difference (ΔT) is 400 to 500.
Although a compressive force acts on the solid-liquid interface 3A even when the temperature is 0 ° C., the solid-liquid interface 3A
Has a large compressive force. This is because the slab surface 1A tends to shrink due to the temperature drop, but the inside of the solidified shell 3 does not drop so much, so that the inside of the solidified shell 3 becomes a resistance to shrinkage, a tensile force acts on the slab surface 1A side, and the solid-liquid interface This is because a compressive force acts on the 3A side.
【0017】固液界面に圧縮力を付与しつつ軽圧下を行
えば、軽圧下により凝固殻に作用する引張り力は打ち消
される。前述したように固液界面に割れが発生する限界
の引張り歪み量は1%前後であるが、本発明では圧縮力
が作用しているので、軽圧下による引張り力で凝固殻に
割れを生じさせるまでには、従来の軽圧下量の限界値を
はるかに越える軽圧下量を加えることが可能となる。
尚、本発明の軽圧下量とは、ロールの絞り込み勾配に等
しく、又、軽圧下鋳造とは、各ロールの絞り込み勾配、
即ち軽圧下量を鋳片の引き抜き方向1m当たり鋳片厚み
の0.2〜2.0%として圧下しつつ鋳造することであ
る。When a light pressure is applied while applying a compressive force to the solid-liquid interface, the tensile force acting on the solidified shell by the light pressure is canceled. As described above, the limit of tensile strain at which cracking occurs at the solid-liquid interface is about 1%. However, in the present invention, since a compressive force is acting, cracks are generated in the solidified shell by a tensile force under light pressure. By this time, it is possible to add a light reduction amount far exceeding the conventional limit value of the light reduction amount.
Incidentally, the light reduction amount of the present invention is equal to the reduction gradient of the roll, and the light reduction casting is the reduction gradient of each roll,
That is, casting is performed while reducing the amount of light reduction to 0.2 to 2.0% of the thickness of the slab per 1 m in the drawing direction of the slab.
【0018】定性的には鋳片表面温度を下げるほど固液
界面に圧縮力が作用するが、その大きさを精度よく計算
することは困難である。その理由は、鋼の凝固点近傍の
機械的性質の正確なデータがないためである。そこで、
表面冷却と軽圧下量即ち軽圧下ロールのロール間隔の絞
り込み勾配(mm/m)を変更した実験を行い、固液界
面割れの発生限界軽圧下量を調査した。Qualitatively, a compressive force acts on the solid-liquid interface as the slab surface temperature is lowered, but it is difficult to calculate the magnitude with high accuracy. The reason is that there is no accurate data on the mechanical properties near the solidification point of steel. Therefore,
An experiment was conducted in which the surface cooling and the amount of light reduction, that is, the narrowing gradient (mm / m) of the roll interval of the light reduction roll were changed, and the limit light reduction amount at which solid-liquid interface cracking occurred was investigated.
【0019】実験では、後述する実施例で用いたスラブ
連続鋳造機を用い、鋳片の引き抜き速度(Vc)を1.
3m/minの一定にし、軽圧下帯直前の二次冷却を調
整して鋳片表面温度と固液界面温度との温度差(ΔT)
を400〜1050℃の範囲で変更すると共に、軽圧下
量即ち軽圧下ロールのロール間隔の絞り込み勾配(mm
/m)を0.3〜1.6mm/mの範囲で変更した。そ
して、得られたスラブ鋳片のマクロ組織から固液界面割
れの有無を判定した。その調査結果を図2に示す。軽圧
下ロールの直径は280mmで、分割ロールを用いてい
る。In the experiment, the slab continuous casting machine used in Examples described later was used, and the drawing speed (Vc) of the slab was set at 1.
The temperature difference (ΔT) between the slab surface temperature and the solid-liquid interface temperature by adjusting the secondary cooling just before the low pressure zone at a constant 3 m / min.
Is changed within the range of 400 to 1050 ° C., and the light reduction amount, that is, the narrowing gradient of the roll interval of the light reduction roll (mm)
/ M) was changed in the range of 0.3 to 1.6 mm / m. Then, the presence or absence of a solid-liquid interface crack was determined from the macrostructure of the obtained slab slab. FIG. 2 shows the result of the investigation. The diameter of the roll under light pressure is 280 mm, and a split roll is used.
【0020】図2に示すように、鋳片の表面温度と固液
界面との温度差(ΔT)が大きくなるほど、固液界面割
れ発生の限界軽圧下量は大きくなり、固液界面割れが起
り難くなることが分かる。そして、この温度差(ΔT)
を800℃以上にすると、限界軽圧下量は温度差(Δ
T)が400〜500℃の場合よりも格段に大きくな
り、軽圧下量が0.9〜1.2mm/mの範囲まで軽圧
下することができる。As shown in FIG. 2, as the temperature difference (ΔT) between the surface temperature of the slab and the solid-liquid interface increases, the critical light reduction amount at which solid-liquid interface cracking occurs increases, and solid-liquid interface cracking occurs. It turns out that it becomes difficult. And this temperature difference (ΔT)
Is set to 800 ° C. or more, the critical light reduction amount becomes the temperature difference (Δ
T) is much larger than in the case of 400 to 500 ° C., and the amount of light reduction can be lightly reduced to the range of 0.9 to 1.2 mm / m.
【0021】従って、本発明では少なくとも軽圧下開始
時から軽圧下終了時までの期間、鋳片表面温度と固液界
面温度との温度差(ΔT)を800℃以上に保持して、
軽圧下することとした。Therefore, in the present invention, the temperature difference (ΔT) between the slab surface temperature and the solid-liquid interface temperature is maintained at 800 ° C. or more at least during the period from the start of light reduction to the end of light reduction.
We decided to slightly reduce the pressure.
【0022】又、圧下速度を0.8〜1.6mm/mi
nの範囲に制御することが好ましい。圧下速度が0.8
mm/min未満では、凝固収縮に伴う濃化溶鋼の流動
を十分に阻止することができず、一方、圧下速度が1.
6mm/minを越えると、濃化溶鋼は鋳造方向とは逆
方向に絞り出され、鋳片中心部には負偏析が生成される
ことがあるからである。圧下速度は、鋳片引き抜き速度
と、軽圧下ロールのロール間隔の絞り込み勾配(mm/
m)即ち軽圧下量との乗算値である。Further, the rolling speed is set to 0.8 to 1.6 mm / mi.
It is preferable to control in the range of n. 0.8 reduction speed
If it is less than mm / min, the flow of the concentrated molten steel due to solidification shrinkage cannot be sufficiently prevented.
If it exceeds 6 mm / min, the concentrated molten steel is squeezed out in the direction opposite to the casting direction, and negative segregation may be generated at the center of the slab. The rolling speed is the slab drawing speed and the narrowing gradient (mm /
m), that is, a value multiplied by the light reduction amount.
【0023】更に、鋳片厚み方向中心部の固相率が0.
4以下の時点から軽圧下を開始し、鋳片厚み方向中心部
が凝固完了するまで軽圧下を継続することが好ましい。
鋳片厚み方向中心部の固相率が0.4を越えてから軽圧
下を開始しても、すでに濃化溶鋼の移動が発生してお
り、中心偏析の低減効果が少なく、又、凝固途中で軽圧
下を停止すると、同様に中心偏析の低減効果が少ない。Further, the solid fraction at the center in the thickness direction of the slab is 0.1%.
It is preferable to start the light reduction from a time point of 4 or less and continue the light reduction until the center of the slab thickness direction is completely solidified.
Even if light reduction is started after the solid phase ratio at the center of the slab thickness direction exceeds 0.4, the movement of the concentrated molten steel has already occurred, and the effect of reducing center segregation is small. When the light reduction is stopped, the effect of reducing the center segregation is similarly small.
【0024】[0024]
【発明の実施の形態】以下、本発明を図面を参照して説
明する。図3は、本発明の実施の形態の例を示す図であ
って、スラブ連続鋳造機の側面概要図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 3: is a figure which shows the example of embodiment of this invention, and is a side schematic diagram of a slab continuous casting machine.
【0025】図3に示すように、浸漬ノズル5を介して
鋳型6内に鋳造された溶鋼は、鋳型6内で冷却されて凝
固殻3を形成し、内部に未凝固相2を有する鋳片1とし
て、鋳型6の下方に設けたサポートロール8、ガイドロ
ール9、及びピンチロール10に支持されつつ、ピンチ
ロール10の駆動力により鋳型6の下方に連続的に引き
抜かれる。鋳片1は、これらのロールを通過する間、水
スプレー又はエアーミストスプレーから構成される二次
冷却帯(図示せず)で冷却され、凝固殻3の厚みを増大
して、やがて内部までの凝固を完了する。As shown in FIG. 3, the molten steel cast in the mold 6 through the immersion nozzle 5 is cooled in the mold 6 to form a solidified shell 3 and a slab having an unsolidified phase 2 therein. As 1, while being supported by the support roll 8, the guide roll 9, and the pinch roll 10 provided below the mold 6, it is continuously pulled out below the mold 6 by the driving force of the pinch roll 10. While passing through these rolls, the slab 1 is cooled in a secondary cooling zone (not shown) composed of water spray or air mist spray to increase the thickness of the solidified shell 3 and eventually reach the inside. Complete coagulation.
【0026】連続鋳造機の引き抜き方向下流側には、複
数対の軽圧下ロール11からなる軽圧下帯4が設置され
ており、又、軽圧下帯4と下部矯正ロール12との間に
は鋳片1を強冷却可能な水スプレー7が配置されてい
る。図3に示すように、鋳片1を強冷却可能な水スプレ
ー7の設置位置は、下部矯正ロール12の下流側とする
ことが好ましい。下部矯正ロール12の上流側で鋳片1
を強冷却すると、下部矯正ロール12を通過する際の鋳
片表面温度が低下し過ぎ、鋳片1に矯正歪みによる横割
れが発生することがあるが、水スプレー7の設置位置を
下部矯正ロール12の下流側とすることで、これを未然
に防止することができる。On the downstream side in the drawing direction of the continuous casting machine, there is provided a light pressure lowering band 4 comprising a plurality of pairs of light pressure lowering rolls 11. A water spray 7 capable of strongly cooling the piece 1 is arranged. As shown in FIG. 3, the installation position of the water spray 7 capable of strongly cooling the slab 1 is preferably on the downstream side of the lower straightening roll 12. The slab 1 on the upstream side of the lower straightening roll 12
When the slab 1 is strongly cooled, the surface temperature of the slab when passing through the lower straightening roll 12 is too low, and horizontal cracks may occur in the slab 1 due to the straightening distortion. By setting it downstream of 12, this can be prevented beforehand.
【0027】種々の鋳造条件において予め伝熱計算等に
より凝固殻3の厚み及び鋳片厚み方向中心部の固相率を
求めておき、軽圧下帯4内で凝固が完了するように、鋳
片引き抜き速度及び二次冷却強度等の鋳造条件を調整す
る。そして、調整した鋳造条件で鋳造しつつ鋳片1を軽
圧下する。Under various casting conditions, the thickness of the solidified shell 3 and the solid phase ratio at the center in the thickness direction of the slab are determined in advance by heat transfer calculation or the like. Adjust casting conditions such as drawing speed and secondary cooling strength. Then, the slab 1 is slightly reduced while casting under the adjusted casting conditions.
【0028】その際、下部矯正ロール12を通過した鋳
片1を水スプレー7により急速に冷却し、軽圧下帯4に
入る時の鋳片表面温度(TS )と固液界面温度(TL )
との温度差(ΔT)を800℃以上とし、軽圧下帯4で
はその状態を保ちつつ鋳片1を冷却する。At this time, the slab 1 that has passed through the lower straightening roll 12 is rapidly cooled by a water spray 7, and the slab surface temperature (T S ) and the solid-liquid interface temperature (T L ) when entering the low-pressure lower zone 4. )
The temperature difference (ΔT) is set to 800 ° C. or more, and the slab 1 is cooled in the light pressure lower zone 4 while maintaining the state.
【0029】具体的には、例えば下部矯正ロール12を
通過する時の鋳片表面温度を900℃以上とし、その
後、水スプレー7により急冷して軽圧下する時の鋳片表
面温度を500〜700℃程度まで低下させ、軽圧下帯
4の通過中はこの温度に保持する。このように鋳片1を
急速に冷却するためには、水スプレー7は、その設置長
さにも関係するが、鋳片表面1m2 当たりの1分間の冷
却水量が100〜2000l(以下「l/m2 ・mi
n」と記す)の範囲であることが必要である。尚、鋳片
1を急速に冷却する手段は水スプレー7に限るものでは
なく、例えば鋳片表面に層流の冷却水を流すような冷却
方法としても良い。又、下部矯正ロール12における横
割れ感受性の低い鋼種であれば、軽圧下帯4に入る時の
鋳片表面温度(TS )と固液界面温度(TL )との温度
差(ΔT)が800℃以上となるように、水スプレー7
を設置せずに、鋳型直下の二次冷却帯から二次冷却強度
を調整しても良い。Specifically, for example, the slab surface temperature when passing through the lower straightening roll 12 is set to 900 ° C. or higher, and then the slab surface temperature when rapidly cooled by the water spray 7 and lightly reduced to 500 to 700. C., and is maintained at this temperature during the passage through the low pressure zone 4. In order to rapidly cool the slab 1 in this way, the water spray 7 has a cooling water amount of 100 to 2000 l per 1 m 2 of the slab surface (hereinafter referred to as “l”), depending on the installation length. / M 2 · mi
n "). The means for rapidly cooling the slab 1 is not limited to the water spray 7, but may be, for example, a cooling method in which laminar cooling water flows on the slab surface. Further, if the lower straightening roll 12 is a steel type having low lateral cracking susceptibility, the temperature difference (ΔT) between the slab surface temperature (T S ) and the solid-liquid interface temperature (T L ) at the time of entering the light reduction zone 4 is reduced. Water spray 7 so that the temperature is 800 ° C or more.
The secondary cooling intensity may be adjusted from the secondary cooling zone immediately below the mold without installing the mold.
【0030】圧下速度は、好ましくは0.8〜1.6m
m/minの範囲に制御して鋳片1を軽圧下する。圧下
速度は、鋳片引き抜き速度と軽圧下ロール11のロール
間隔の絞り込み勾配(mm/m)即ち軽圧下量との乗算
値であるので、鋳造条件として決めた引き抜き速度に基
づき、絞り込み勾配(mm/m)を設定すれば良い。更
に、鋳片厚み方向中心部の固相率が0.4以下の時点か
ら軽圧下を開始することが好ましい。この場合には、軽
圧下帯4の入り口で鋳片厚み方向中心部の固相率が0.
4以下になり、且つ、軽圧下帯4内で凝固が完了するに
充分な長さの軽圧下帯4が必要である。The rolling speed is preferably 0.8 to 1.6 m.
The slab 1 is lightly reduced under the control of m / min. The reduction speed is a product of the slab drawing speed and the drawing gradient (mm / m) of the roll interval of the light reduction roll 11, that is, the light reduction amount. Therefore, the drawing reduction (mm) is determined based on the drawing speed determined as the casting condition. / M) may be set. Further, it is preferable to start the light reduction from the time when the solid phase ratio at the center of the slab thickness direction is 0.4 or less. In this case, the solid fraction at the center of the slab thickness direction at the entrance of the low pressure lower zone 4 is 0.1%.
4 and a sufficient length of the light reduction zone 4 is required to complete the solidification in the light reduction zone 4.
【0031】このようにして鋳造することで、鋳片1の
固液界面には圧縮力が付与され、鋳片1の固液界面に割
れを発生させることなく、濃化溶鋼の絞り出しが発生し
ない限界まで軽圧下量を多くすることが可能となり、そ
の結果、鋳片1の凝固収縮に伴う濃化溶鋼の流動が阻止
され、鋳片1の中心偏析を大幅に低減することができ
る。又、鋳片表面温度と固液界面温度との温度差(Δ
T)を800℃以上としているので、凝固殻3の強度が
高くなって、軽圧下帯4におけるロール間バルジングが
低減し、ロール間バルジングに起因する中心偏析も低減
させることができる。By casting in this manner, a compressive force is applied to the solid-liquid interface of the slab 1, and no cracking occurs at the solid-liquid interface of the slab 1, and the concentrated molten steel does not squeeze out. The light reduction amount can be increased to the limit, and as a result, the flow of the concentrated molten steel accompanying the solidification shrinkage of the slab 1 is prevented, and the center segregation of the slab 1 can be greatly reduced. The temperature difference between the slab surface temperature and the solid-liquid interface temperature (Δ
Since T) is set to 800 ° C. or higher, the strength of the solidified shell 3 is increased, and bulging between rolls in the light pressure lowering zone 4 is reduced, and center segregation due to bulging between rolls can also be reduced.
【0032】尚、上記説明はスラブ連続鋳造機に関する
説明であるが、本発明はスラブ鋳片に限定されるもので
なく、ブルーム連続鋳造機やビレット連続鋳造機にも適
用でき、又、鋳片の形状も矩形型に限るものではなく円
形であっても良い。Although the above description relates to a continuous slab caster, the present invention is not limited to a slab caster, and can be applied to a bloom continuous caster or a billet continuous caster. Is not limited to a rectangular shape but may be a circle.
【0033】[0033]
【実施例】図3に示すスラブ連続鋳造機を用い、軽圧下
開始時期の鋳片表面温度、鋳片厚み方向中心部の固相
率、及び、軽圧下量即ち軽圧下ロールの絞り込み勾配
(mm/m)を変化させて鋳造した。鋳造後のスラブ鋳
片からサンプルを採取し、各サンプルの中心偏析を調査
して、鋳片の表面温度と固液界面温度との温度差(Δ
T)、鋳片厚み方向中心部の固相率、及び、軽圧下量の
中心偏析に及ぼす影響を調査した。EXAMPLE Using a continuous slab casting machine shown in FIG. 3, the slab surface temperature at the start of light reduction, the solid fraction at the center in the thickness direction of the slab, and the light reduction amount, that is, the narrowing gradient of the light reduction roll (mm / M). Samples were taken from the cast slab slabs, the center segregation of each sample was investigated, and the temperature difference between the slab surface temperature and the solid-liquid interface temperature (Δ
T), the influence of the solid phase ratio at the center of the slab thickness direction and the amount of light reduction on the center segregation were investigated.
【0034】用いた連続鋳造機は、鋳型直下に2.8m
の垂直部を有し、それに続く湾曲部の半径が10mであ
る垂直曲げ型のスラブ連続鋳造機である。軽圧下帯を鋳
型内溶鋼湯面から20〜32mの範囲に設置し、炭素濃
度が0.08〜0.1mass%の中炭素鋼を、厚み250
mm、幅2100mmの鋳片として引き抜き速度1.3
m/minで鋳造した。そして、鋳片厚み方向中心部の
固相の晶出開始位置が鋳型内溶鋼湯面から約22mとな
り、鋳片厚み方向中心部の完全凝固位置が鋳型内溶鋼湯
面から約28mとなるように、軽圧下帯に入る以前の二
次冷却強度を調整した。又、軽圧下帯の直前に設置した
水スプレーから鋳片上面側に200〜600l/m2 ・
min、下面側に300〜1200l/m2 ・minの
冷却水を噴霧して強冷却し、鋳片表面温度を変化させ、
温度差(ΔT)の中心偏析に及ぼす影響を調査した。The continuous casting machine used was 2.8 m directly below the mold.
This is a vertical bending type slab continuous casting machine having a vertical portion of 10 m and a radius of a curved portion following the vertical portion is 10 m. A light pressure lowering zone is set within a range of 20 to 32 m from the molten steel surface in the mold, and a medium carbon steel having a carbon concentration of 0.08 to 0.1 mass% is applied to a thickness of 250 to
mm, width 2100 mm slab, drawing speed 1.3
It was cast at m / min. Then, the crystallization start position of the solid phase at the center of the slab thickness direction is about 22 m from the molten steel surface in the mold, and the fully solidified position at the center of the slab thickness direction is about 28 m from the molten steel surface in the mold. The secondary cooling strength before entering the low pressure zone was adjusted. Moreover, 200-600 l / m < 2 >
min, spraying 300 to 1200 l / m 2 · min of cooling water on the lower surface side to strongly cool and change the slab surface temperature,
The influence of the temperature difference (ΔT) on the center segregation was investigated.
【0035】中心偏析は、スラブ厚さ中心部を厚さ方向
に30mmの範囲に渡って1mmのスライス試料を採取
して炭素の分析を行い、炭素濃度の最大値Cmax と溶鋼
の炭素濃度C0 との比(Cmax /C0 )を中心偏析度と
して評価する方法で行った。この場合、中心偏析度が1
に近づくほど中心偏析は軽減することになる。The center segregation is performed by taking a slice sample of 1 mm over a range of 30 mm in the thickness direction of the center of the slab and analyzing the carbon, and analyzing the maximum carbon concentration C max and the carbon concentration C of the molten steel. The evaluation was performed by evaluating the ratio to 0 (C max / C 0 ) as the degree of central segregation. In this case, the center segregation degree is 1
, The center segregation is reduced.
【0036】図4は、軽圧下量を1.0mm/m、表面
と固液界面との温度差(ΔT)を950℃として、鋳片
厚み中心部の計算固相率が0未満〜0.6となる時点か
ら完全凝固するまで軽圧下した時の、軽圧下開始時期と
中心偏析との関係を調査した結果を示す図である。図4
の横軸は軽圧下開始時の鋳片厚さ中心部の固相率(計算
値)及び液相厚み(計算値)である。この場合、各々の
試験において、軽圧下帯では鋳片厚み方向中心部の計算
固相率が前記所定値となるまでは軽圧下せずに鋳片を支
持するのみとした。図4に示すように鋳片厚み方向中心
部の固相率が0.4以下で軽圧下を開始した場合には中
心偏析の低減効果があるが、0.4を越える固相率で軽
圧下を開始した場合には中心偏析の改善効果は少なかっ
た。FIG. 4 shows that the calculated solid fraction at the center of the slab thickness is less than 0 to 0. 0, with the light reduction amount being 1.0 mm / m and the temperature difference (ΔT) between the surface and the solid-liquid interface being 950 ° C. 6 is a diagram showing the results of an investigation of the relationship between the timing of light reduction start and center segregation when light reduction is performed from time point 6 until complete solidification. FIG.
The horizontal axis indicates the solid fraction (calculated value) and the liquid phase thickness (calculated value) at the center of the slab thickness at the start of light reduction. In this case, in each test, the slab was only supported without light reduction until the calculated solid fraction at the center of the slab thickness direction in the light reduction zone reached the above-mentioned predetermined value. As shown in FIG. 4, when the solid phase ratio at the center of the slab thickness direction is 0.4 or less and light reduction is started, there is an effect of reducing center segregation. In the case of starting, the effect of improving the center segregation was small.
【0037】図5は、表面と固液界面との温度差(Δ
T)を950℃とし、軽圧下開始時期を鋳片厚み方向中
心部の固相率が0.3の時点として、圧下速度(=軽圧
下量×引き抜き速度)を変更して、鋳片が完全に凝固す
るまで軽圧下した時の中心偏析に及ぼす圧下速度の影響
を調査した結果を示す図である。図5に示すように、中
心偏析は圧下速度が0.8〜1.6mm/minの範囲
で改善されることが判明した。FIG. 5 shows the temperature difference between the surface and the solid-liquid interface (Δ
T) was set to 950 ° C., the light reduction start time was set to the time when the solid phase ratio in the center of the slab thickness direction was 0.3, and the reduction speed (= light reduction amount × drawing speed) was changed to complete the slab. FIG. 6 is a view showing the results of an investigation on the effect of the rolling speed on the center segregation when light reduction is performed until the solidification occurs. As shown in FIG. 5, it was found that the center segregation was improved when the rolling speed was in the range of 0.8 to 1.6 mm / min.
【0038】図6は、軽圧下量を0.8mm/m、軽圧
下開始時期を鋳片厚み方向中心部の固相率が0.3の時
点とし、表面と固液界面との温度差(ΔT)を400〜
1050℃の範囲に変化させて完全凝固するまで軽圧下
した時の、温度差(ΔT)と中心偏析との関係を調査し
た結果を示す図である。図6に示すように、温度差(Δ
T)を大きくするほど中心偏析は軽減し、温度差(Δ
T)を800℃以上とすることで、中心偏析を安定して
低減させることができた。FIG. 6 shows that the light reduction amount is 0.8 mm / m, the light reduction start time is the time when the solid fraction in the center of the slab thickness direction is 0.3, and the temperature difference between the surface and the solid-liquid interface ( ΔT) from 400 to
It is a figure which shows the result of investigating the relationship between temperature difference ((DELTA) T) and center segregation at the time of changing into the range of 1050 degreeC, and lightly reducing until it completely solidifies. As shown in FIG. 6, the temperature difference (Δ
As T) increases, the center segregation decreases and the temperature difference (Δ
By setting T) to 800 ° C. or higher, center segregation could be stably reduced.
【0039】[0039]
【発明の効果】本発明では、鋳片の固液界面に圧縮力を
与えて鋳片を軽圧下するので、鋳片の固液界面に割れを
発生させることなく、濃化溶鋼の絞り出しが発生しない
限界まで軽圧下量を大きくすることが可能となる。又、
鋳片表面温度を低下させるので鋳片強度が高くなり、ロ
ール間バルジングも抑制される。そのため、中心偏析を
大幅に低減させることが可能となり、近年の厳しい品質
要求にも対処可能な鋳片を安定して製造することができ
る。According to the present invention, since a compressive force is applied to the solid-liquid interface of the slab to lower the slab lightly, cracking does not occur at the solid-liquid interface of the slab. It is possible to increase the amount of light reduction to the limit that does not occur. or,
Since the slab surface temperature is lowered, slab strength is increased, and bulging between rolls is suppressed. For this reason, center segregation can be greatly reduced, and a cast piece that can cope with recent severe quality requirements can be stably manufactured.
【図1】凝固殻の温度勾配と温度勾配により生ずる応力
を模式的に示す図であり、(a)は温度勾配を示し、
(b)は応力分布を示す図である。FIG. 1 is a diagram schematically showing a temperature gradient of a solidified shell and a stress generated by the temperature gradient, wherein (a) shows a temperature gradient;
(B) is a figure which shows a stress distribution.
【図2】鋳片表面温度と固液界面温度との温度差と、固
液界面での割れ発生限界軽圧下量との関係を調査した結
果を示す図である。FIG. 2 is a diagram showing a result of investigation on a relationship between a temperature difference between a slab surface temperature and a solid-liquid interface temperature and a limit reduction in crack generation at a solid-liquid interface.
【図3】本発明の実施の形態の例を示す図であって、ス
ラブ連続鋳造機の側面概要図である。FIG. 3 is a view showing an example of an embodiment of the present invention and is a schematic side view of a slab continuous casting machine.
【図4】軽圧下開始時期と中心偏析との関係を調査した
結果を示す図である。FIG. 4 is a diagram showing the results of an investigation of the relationship between the timing of light rolling start and center segregation.
【図5】圧下速度と中心偏析との関係を調査した結果を
示す図である。FIG. 5 is a diagram showing the results of an investigation on the relationship between the rolling speed and center segregation.
【図6】表面と固液界面温度との温度差と、中心偏析と
の関係を調査した結果を示す図である。FIG. 6 is a diagram showing the results of an investigation on the relationship between the temperature difference between the surface and the solid-liquid interface temperature and center segregation.
1 鋳片 2 未凝固相 3 凝固殻 4 軽圧下帯 5 浸漬ノズル 6 鋳型 7 水スプレー 8 サポートロール 9 ガイドロール 10 ピンチロール 11 軽圧下ロール 12 下部矯正ロール DESCRIPTION OF SYMBOLS 1 Cast piece 2 Unsolidified phase 3 Solidified shell 4 Light pressure lower zone 5 Immersion nozzle 6 Mold 7 Water spray 8 Support roll 9 Guide roll 10 Pinch roll 11 Light pressure lower roll 12 Lower straightening roll
フロントページの続き (72)発明者 堤 康一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4E004 KA13 MC07 MC19 Continuation of the front page (72) Inventor Koichi Tsutsumi 1-2-1 Marunouchi, Chiyoda-ku, Tokyo F-term in Nihon Kokan Co., Ltd. 4E004 KA13 MC07 MC19
Claims (3)
ロールにより軽圧下しつつ連続鋳造する方法において、
少なくとも軽圧下開始時から軽圧下終了時までの期間、
鋳片の表面温度と固液界面温度との温度差を800℃以
上に保持して軽圧下することを特徴とする連続鋳造方
法。1. A method of continuously casting a slab having an unsolidified phase therein while lightly reducing the slab by a plurality of pairs of rolls,
At least the period from the start of light reduction to the end of light reduction,
A continuous casting method characterized in that a temperature difference between a surface temperature of a slab and a solid-liquid interface temperature is maintained at 800 ° C. or more and light reduction is performed.
の範囲で鋳片を軽圧下することを特徴とする請求項1に
記載の連続鋳造方法。2. The continuous casting method according to claim 1, wherein the slab is lightly reduced in a reduction speed range of 0.8 to 1.6 mm / min.
下の時点から軽圧下を開始し、鋳片厚み方向中心部が凝
固完了するまで軽圧下を継続することを特徴とする請求
項1又は請求項2に記載の連続鋳造方法。3. The method according to claim 1, wherein light reduction is started at a point where the solid phase ratio at the center of the slab thickness direction is 0.4 or less, and the reduction is continued until solidification of the center of the slab thickness direction is completed. The continuous casting method according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000081347A JP3511973B2 (en) | 2000-03-23 | 2000-03-23 | Continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000081347A JP3511973B2 (en) | 2000-03-23 | 2000-03-23 | Continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001259810A true JP2001259810A (en) | 2001-09-25 |
JP3511973B2 JP3511973B2 (en) | 2004-03-29 |
Family
ID=18598299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000081347A Expired - Fee Related JP3511973B2 (en) | 2000-03-23 | 2000-03-23 | Continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3511973B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007290035A (en) * | 2006-03-28 | 2007-11-08 | Kobe Steel Ltd | Method for producing steel material |
JP2008018439A (en) * | 2006-07-11 | 2008-01-31 | Kobe Steel Ltd | Continuous casting method for slab steel with less center segregation |
JP2008260056A (en) * | 2007-04-16 | 2008-10-30 | Kobe Steel Ltd | Continuous casting method for slab steel less in central segregation |
JP2009297756A (en) * | 2008-06-16 | 2009-12-24 | Jfe Steel Corp | Continuous casting method for round slab for seamless steel tube |
JP2010069499A (en) * | 2008-09-18 | 2010-04-02 | Jfe Steel Corp | Method for producing continuously cast slab |
JP2011005524A (en) * | 2009-06-26 | 2011-01-13 | Jfe Steel Corp | Method for continuously casting high carbon steel |
JP2011224583A (en) * | 2010-04-16 | 2011-11-10 | Jfe Steel Corp | Method for determining centerline segregation of continuously cast slab |
CN113843400A (en) * | 2020-06-25 | 2021-12-28 | 宝山钢铁股份有限公司 | Slab cooling and reduction method for improving quality of casting blank |
CN114367645A (en) * | 2022-01-14 | 2022-04-19 | 江苏省沙钢钢铁研究院有限公司 | Method for reducing surface cracks of alloy steel, alloy steel and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62158555A (en) * | 1985-12-30 | 1987-07-14 | Nippon Steel Corp | Continuous casting method |
JPS63252655A (en) * | 1987-04-08 | 1988-10-19 | Nkk Corp | Method for casting under light draft |
JPH05269561A (en) * | 1992-03-23 | 1993-10-19 | Sumitomo Metal Ind Ltd | Method for continuously casting steel |
-
2000
- 2000-03-23 JP JP2000081347A patent/JP3511973B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62158555A (en) * | 1985-12-30 | 1987-07-14 | Nippon Steel Corp | Continuous casting method |
JPS63252655A (en) * | 1987-04-08 | 1988-10-19 | Nkk Corp | Method for casting under light draft |
JPH05269561A (en) * | 1992-03-23 | 1993-10-19 | Sumitomo Metal Ind Ltd | Method for continuously casting steel |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007290035A (en) * | 2006-03-28 | 2007-11-08 | Kobe Steel Ltd | Method for producing steel material |
JP2008018439A (en) * | 2006-07-11 | 2008-01-31 | Kobe Steel Ltd | Continuous casting method for slab steel with less center segregation |
JP4515419B2 (en) * | 2006-07-11 | 2010-07-28 | 株式会社神戸製鋼所 | Continuous casting method of slab steel with little center segregation |
JP2008260056A (en) * | 2007-04-16 | 2008-10-30 | Kobe Steel Ltd | Continuous casting method for slab steel less in central segregation |
JP2009297756A (en) * | 2008-06-16 | 2009-12-24 | Jfe Steel Corp | Continuous casting method for round slab for seamless steel tube |
JP2010069499A (en) * | 2008-09-18 | 2010-04-02 | Jfe Steel Corp | Method for producing continuously cast slab |
JP2011005524A (en) * | 2009-06-26 | 2011-01-13 | Jfe Steel Corp | Method for continuously casting high carbon steel |
JP2011224583A (en) * | 2010-04-16 | 2011-11-10 | Jfe Steel Corp | Method for determining centerline segregation of continuously cast slab |
CN113843400A (en) * | 2020-06-25 | 2021-12-28 | 宝山钢铁股份有限公司 | Slab cooling and reduction method for improving quality of casting blank |
CN114367645A (en) * | 2022-01-14 | 2022-04-19 | 江苏省沙钢钢铁研究院有限公司 | Method for reducing surface cracks of alloy steel, alloy steel and preparation method thereof |
CN114367645B (en) * | 2022-01-14 | 2023-09-26 | 江苏省沙钢钢铁研究院有限公司 | Method for reducing surface cracks of alloy steel, alloy steel and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3511973B2 (en) | 2004-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6115735B2 (en) | Steel continuous casting method | |
JP3511973B2 (en) | Continuous casting method | |
JP3401785B2 (en) | Cooling method of slab in continuous casting | |
JP5045408B2 (en) | Manufacturing method of continuous cast slab | |
JPH09295113A (en) | Production of round cast billet by continuous casting | |
JP2001259809A (en) | Continuous casting method | |
JPH08238550A (en) | Method for continuously casting steel | |
JP2001138021A (en) | Method for reducing center segregation of continuous cast slab | |
JP3402251B2 (en) | Continuous casting method | |
JP3104627B2 (en) | Unsolidified rolling production method of round billet | |
JP3240978B2 (en) | Manufacturing method of continuous cast slab | |
JP3362703B2 (en) | Continuous casting method | |
JP3319379B2 (en) | Continuous casting method of steel billet | |
JP3374761B2 (en) | Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate | |
JP2001334353A (en) | Method for continuously casting steel | |
JP3402291B2 (en) | Continuously cast slab, method for continuously casting the same, and method for producing a thick steel plate | |
JPH07276020A (en) | Continuous casting method | |
JPH0390261A (en) | Continuous casting method | |
JP3846676B2 (en) | Steel continuous casting method | |
JP7332870B2 (en) | Extraction method of slab | |
JP7371821B1 (en) | Continuous steel casting method | |
WO2024004447A1 (en) | Steel continuous casting method | |
JP3275828B2 (en) | Continuous casting method | |
JP2000218350A (en) | Continuous casting method | |
JP3277873B2 (en) | Manufacturing method of continuous cast slab |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031229 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3511973 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080116 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090116 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090116 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100116 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110116 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140116 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |