JP2001252780A - Method of joining by laser beam for cylinders of different kinds of metals - Google Patents
Method of joining by laser beam for cylinders of different kinds of metalsInfo
- Publication number
- JP2001252780A JP2001252780A JP2000065067A JP2000065067A JP2001252780A JP 2001252780 A JP2001252780 A JP 2001252780A JP 2000065067 A JP2000065067 A JP 2000065067A JP 2000065067 A JP2000065067 A JP 2000065067A JP 2001252780 A JP2001252780 A JP 2001252780A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- inner cylinder
- outer cylinder
- laser
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 43
- 239000002184 metal Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000005304 joining Methods 0.000 title abstract description 15
- 150000002739 metals Chemical class 0.000 title description 8
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 26
- 239000000956 alloy Substances 0.000 claims abstract description 26
- 238000009792 diffusion process Methods 0.000 claims abstract description 13
- 239000007769 metal material Substances 0.000 claims abstract description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 16
- 239000010936 titanium Substances 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 239000000155 melt Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 239000006104 solid solution Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000003466 welding Methods 0.000 abstract description 23
- 229910000765 intermetallic Inorganic materials 0.000 abstract description 17
- 239000007791 liquid phase Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 229910000851 Alloy steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000001307 helium Substances 0.000 description 5
- 229910052734 helium Inorganic materials 0.000 description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910001149 41xx steel Inorganic materials 0.000 description 1
- 229910016570 AlCu Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910003336 CuNi Inorganic materials 0.000 description 1
- 229910016347 CuSn Inorganic materials 0.000 description 1
- 229910002535 CuZn Inorganic materials 0.000 description 1
- 229910002555 FeNi Inorganic materials 0.000 description 1
- 229910004337 Ti-Ni Inorganic materials 0.000 description 1
- 229910010380 TiNi Inorganic materials 0.000 description 1
- 229910011209 Ti—Ni Inorganic materials 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Laser Beam Processing (AREA)
- Thermally Insulated Containers For Foods (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、異種金属で構成さ
れる内外の円筒体を嵌め合わせて気密容器を製造する方
法に係り、金属製魔法瓶や電機給湯器などの真空容器を
製造する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an airtight container by fitting inner and outer cylindrical bodies made of different kinds of metals, and more particularly to a method of manufacturing a vacuum container such as a metal thermos or an electric water heater. .
【0002】[0002]
【従来の技術】近時、魔法瓶などの真空容器や調理用品
では高付加価値製品の要求が高まり素材がSUS304
のようなオーステナイト系ステンレス鋼から純チタン製
に変わりつつある。チタンを採用する理由は、比重がス
テンレス鋼の約60%程度と軽いので製品が軽量化する
こと、また、高い耐腐食性や抗菌性などの数々の優れた
特性を有しているからである。2. Description of the Related Art Recently, the demand for high-value-added products for vacuum containers such as thermos bottles and cooking utensils has increased, and materials such as SUS304 have been used.
Is changing from austenitic stainless steel to pure titanium. The reason for using titanium is that the specific gravity is about 60% that of stainless steel, which is lighter, so that the product is lighter and has many excellent properties such as high corrosion resistance and antibacterial properties. .
【0003】しかし、チタンは、高価であること、ステ
ンレス鋼に比べて加工性が不良であることなどの欠点を
有する素材である。そのため、その製品の目的に合わせ
て内瓶にチタン、外瓶にステンレス鋼を使った異種金属
組み合わせ構造体が需要家から要望されている。[0003] However, titanium is a material having disadvantages such as being expensive and having poor workability as compared with stainless steel. Therefore, there is a demand from customers for a heterogeneous metal combination structure using titanium for the inner bottle and stainless steel for the outer bottle according to the purpose of the product.
【0004】金属製魔法瓶は2重の瓶の間を真空にした
容器で構成されている。その製造方法としては内側の瓶
を外側の瓶にはめ込んだあと口金の縁の部分をTIG
(タングステンイナートガスアーク)溶接し、また反対
側は外瓶の底にあけた穴から真空排気したあと栓をする
方法で製造する。[0004] A metal thermos is constituted by a container in which the space between two bottles is evacuated. As a manufacturing method, the inner jar is inserted into the outer jar, and then the edge of the base is TIG.
(Tungsten inert gas arc) It is manufactured by welding and the other side is evacuated from the hole drilled in the bottom of the outer bottle and then plugged.
【0005】[0005]
【発明が解決しようとする課題】しかし、TIG溶接法
は入熱量が比較的大きく、熱源の微妙なコントロールが
難しいことから、異種金属をTIG溶接すると、溶融金
属が過剰に希釈混合されるために、溶接金属が脆い金属
間化合物を形成し、凝固冷却時の熱応力によって溶接金
属部に割れを生じ、極端な場合は破断してしまう。ま
た、破断に至らない場合であっても接合界面に亀裂が発
生するので、真空漏れを生じてしまう。このため、内瓶
と外瓶とは同じ材料を用いるように設計・製造され、異
種金属を組み合わせた金属製の魔法瓶は事実上製造が不
可能とされている。However, the TIG welding method has a relatively large heat input and it is difficult to finely control the heat source. Therefore, when TIG welding of different metals, the molten metal is excessively diluted and mixed. In addition, the weld metal forms a brittle intermetallic compound, and cracks occur in the weld metal due to thermal stress during solidification and cooling, and in extreme cases, the weld metal breaks. Further, even if the fracture does not occur, a crack is generated at the joint interface, which causes a vacuum leak. For this reason, the inner bottle and the outer bottle are designed and manufactured to use the same material, and it is virtually impossible to manufacture a metal thermos made of a combination of different metals.
【0006】ところで、異種金属の接合技術として実質
的に母材を溶融しないろう付け法や拡散接合法などの非
溶融接合法が一般に知られている。しかし、これらの非
溶融接合法は接合強度が不足すること、および真空加圧
装置などの付帯設備がついているために装置が大型化・
複雑化することから、ろう付け法や拡散接合法は金属製
魔法瓶の製造には採用されていない。[0006] As a joining technique for dissimilar metals, a non-fusion joining method such as a brazing method or a diffusion joining method that does not substantially melt the base material is generally known. However, these non-melt joining methods have insufficient joining strength, and have additional equipment such as vacuum pressurization equipment, which makes the equipment larger and larger.
Due to complexity, brazing and diffusion bonding have not been employed in the production of metal thermos.
【0007】このような技術的背景から脆い金属間化合
物をほとんど生じることなく金属製魔法瓶の口金部分を
強固に接合することができる技術を確立することが強く
望まれている。[0007] From such a technical background, there is a strong demand for establishing a technique capable of firmly joining a base portion of a metal thermos without generating a brittle intermetallic compound.
【0008】本発明は上記の課題を解決するためになさ
れたものであって、金属間化合物を実質的に生成しない
か又は生成したとしても接合強度に実質的な影響を及ぼ
すことなく、異種金属円筒体を強固かつ確実に嵌め合わ
せ(重ね合わせ)接合することができる異種金属円筒体
のレーザー接合方法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and does not substantially produce an intermetallic compound or, even if it produces, an intermetallic compound without substantially affecting bonding strength. An object of the present invention is to provide a laser joining method for dissimilar metal cylinders, which can firmly and surely fit (overlap) the cylinders.
【0009】[0009]
【課題を解決するための手段】一般に、クラッド金属製
魔法瓶等の溶接加工製品では従来TIG溶接などが用い
られてきた。しかし、異材溶接においては界面の微妙な
制御が重要ではあるが、TIG溶接では界面への入熱制
御が困難である。そこで、本発明では入熱量の微妙な制
御が可能なレーザー溶接法を用いることにより界面への
入熱量を高精度にコントロールし、表材の融液による裏
材の過剰希釈を抑制する。In general, TIG welding and the like have been used for welding products such as clad metal thermos bottles. However, in dissimilar material welding, delicate control of the interface is important, but in TIG welding, it is difficult to control heat input to the interface. Therefore, in the present invention, the amount of heat input to the interface is controlled with high precision by using a laser welding method capable of finely controlling the amount of heat input, and excessive dilution of the backing material by the melt of the surface material is suppressed.
【0010】溶融接合法を用いて異種金属を接合する場
合には、金属間化合物の生成を可能な限り抑制し、亀裂
を生じない溶接金属を形成することが肝要である。本発
明者らは、レーザー溶接法の応用について長年月にわた
り鋭意研究と努力を重ねた結果、金属間化合物を実質的
に生成しないか又は生成したとしても接合強度に実質的
な影響を及ぼすことなく、異種金属同士を強固かつ確実
に接合することができる本発明を完成させるに至った。When joining dissimilar metals using the fusion joining method, it is important to suppress the formation of intermetallic compounds as much as possible and to form a weld metal that does not crack. The inventors of the present invention have made intensive studies and efforts over many months on the application of the laser welding method, and as a result, have produced substantially no intermetallic compound or even if produced, without substantially affecting the bonding strength. Thus, the present invention has been completed in which different kinds of metals can be bonded firmly and reliably.
【0011】本発明に係る異種金属円筒体のレーザー接
合方法は、異なる組成の金属材料からなる内筒を外筒の
なかに挿入して両者を嵌め合わせる工程と、前記内筒の
内表面よりも手前にレーザー光の焦点がくるように前記
内筒の内表面にレーザー光を照射して、前記内筒の側か
ら入射される熱エネルギーにより前記内筒を厚さ方向に
完全溶融させるとともに、その融液と前記外筒との界面
において主として固液拡散による合金層を形成せしめる
工程と、を具備することを特徴とする。[0011] The laser joining method for dissimilar metal cylinders according to the present invention comprises the steps of: inserting an inner cylinder made of a metal material having a different composition into an outer cylinder and fitting them together; Irradiating the inner surface of the inner cylinder with laser light so that the laser light comes to the front, and the inner cylinder is completely melted in the thickness direction by heat energy incident from the side of the inner cylinder. Forming an alloy layer mainly by solid-liquid diffusion at the interface between the melt and the outer cylinder.
【0012】レーザー溶接において、レーザー発振器か
ら発振させたレーザー光は光学系によって焦点位置では
非常に細径のビームに絞り込むことができ、高エネルギ
ー密度のビーム光の入射により深い溶け込みが得られ
る。しかし、本発明では光学系により意図的に焦点を照
射面から外したレーザー光を内筒の内表面に照射するの
で、照射面積が拡大され、接合界面に平均的に熱エネル
ギーが入射されるようになる。これにより内筒の溶融す
る部位が幅広となるとともに、溶け込みが浅くなり、接
合界面に平均的に熱エネルギーが入射され、融液と外筒
との界面において主として固液拡散による合金層が形成
される。この合金層は、主として固液拡散により形成さ
れるので、脆い金属間化合物層が実質的に生成されない
か、又は金属間化合物層が生成されたとしても実質的に
接合強度に影響を及ぼさない。このため溶接金属部に割
れを生じることなく、必要な接合強度が得られる。In laser welding, a laser beam oscillated from a laser oscillator can be narrowed down to a very small beam at a focal position by an optical system, and deep penetration can be obtained by incidence of a beam beam with a high energy density. However, in the present invention, the laser beam intentionally defocused from the irradiation surface by the optical system is irradiated onto the inner surface of the inner cylinder, so that the irradiation area is enlarged and heat energy is incident on the bonding interface on average. become. As a result, the melting portion of the inner cylinder becomes wider, the penetration becomes shallower, heat energy is incident on the bonding interface on average, and an alloy layer is formed mainly at the interface between the melt and the outer cylinder by solid-liquid diffusion. You. Since this alloy layer is mainly formed by solid-liquid diffusion, a brittle intermetallic compound layer is not substantially generated, or even if an intermetallic compound layer is generated, the bonding strength is not substantially affected. For this reason, the required joining strength can be obtained without causing cracks in the weld metal portion.
【0013】なお、内筒を構成する金属材料は、外筒を
構成する金属材料を多く固溶するか、又は第2の金属部
材との間で脆性化合物を形成しない金属又は合金からな
ることが好ましい。内筒を構成する金属材料として純チ
タン(JIS1種)を用いることが好ましいが、この他
に工業的純度を有する純チタン(JIS2種〜4種)、
α型チタン合金、β型チタン合金、α−β型チタン合金
(例えばTi−6Al−4V)、TiNi系合金(形状
記憶合金)などを用いることができる。It is to be noted that the metal material forming the inner cylinder may be made of a metal or an alloy which does not form a brittle compound with the second metal member either as a solid solution of the metal material forming the outer cylinder or as a solid solution. preferable. It is preferable to use pure titanium (JIS class 1) as the metal material constituting the inner cylinder, but in addition to this, pure titanium (JIS class 2 to class 4) having industrial purity,
An α-type titanium alloy, a β-type titanium alloy, an α-β type titanium alloy (for example, Ti-6Al-4V), a TiNi-based alloy (shape memory alloy), or the like can be used.
【0014】一方、外筒を構成する金属材料としてオー
ステナイト系ステンレス鋼(例えばJISSUS30
4)を用いることが好ましいが、この他にフェライト系
ステンレス鋼、マルテンサイト系ステンレス鋼、Ni系
合金鋼、CrNi系合金鋼、CrNiCo系合金鋼、M
o系合金鋼、CrMo系合金鋼、低合金鋼、炭素鋼、N
i基合金、Cr基合金、Mo基合金、W基合金、Mg基
合金、FeNi系合金、CrNi系合金、FeCrNi
系合金、CrNiCo系合金、FeCrNiCo系合
金、純銅、Cu基合金、CuNi系合金、CuSn系合
金、CuZn系合金、AlCu系合金など種々の金属・
合金を用いることができる。On the other hand, austenitic stainless steel (for example, JISSUS30) is used as a metal material constituting the outer cylinder.
It is preferable to use 4), but in addition, ferritic stainless steel, martensitic stainless steel, Ni-based alloy steel, CrNi-based alloy steel, CrNiCo-based alloy steel, M
o-based alloy steel, CrMo-based alloy steel, low alloy steel, carbon steel, N
i-based alloy, Cr-based alloy, Mo-based alloy, W-based alloy, Mg-based alloy, FeNi-based alloy, CrNi-based alloy, FeCrNi
Alloys, CrNiCo-based alloys, FeCrNiCo-based alloys, pure copper, Cu-based alloys, CuNi-based alloys, CuSn-based alloys, CuZn-based alloys, AlCu-based alloys, etc.
Alloys can be used.
【0015】この場合に、内筒の厚さは外筒の厚さより
も薄くすることが望ましいが、内筒の厚さを0.15〜
2.00mmの範囲とし、かつ外筒の厚さを0.30m
m以上とすることが更に望ましい。内筒の厚さが0.1
5mmを下回ると、フィラー無しでは融液が不足して外
筒の面が露出するようになるので、その厚さ下限値は
0.15mmとした。一方、内筒の厚さが2.00mm
を上回ると、焦点を外したレーザー光が界面まで十分に
入射されなくなり、必要な接合強度が得られなくなるか
又は接合強度が不十分になるので、その厚さ上限値は
2.00mmとした。In this case, it is desirable that the thickness of the inner cylinder is smaller than the thickness of the outer cylinder.
2.00mm range and outer cylinder thickness 0.30m
It is more desirable to be at least m. Inner cylinder thickness is 0.1
If the thickness is less than 5 mm, without the filler, the melt becomes insufficient and the surface of the outer cylinder is exposed. Therefore, the lower limit of the thickness is set to 0.15 mm. On the other hand, the thickness of the inner cylinder is 2.00 mm
When the value exceeds the limit, the out-of-focus laser light is not sufficiently incident on the interface, and the necessary bonding strength cannot be obtained or the bonding strength becomes insufficient. Therefore, the upper limit of the thickness is set to 2.00 mm.
【0016】外筒の厚さが0.30mmを下回ると、厚
さ方向の熱移動よりも面方向の熱移動のほうが過大にな
り、十分な接合強度が得られなくなるとともに熱影響部
(HAZ)の幅が増大するので、その厚さ下限値は0.
30mmとした。なお、外筒は厚ければ厚いほど重ね合
わせ接合が容易になるので、外筒の上限値はとくに定め
ない。なお、外筒の厚さが薄い場合は、外筒側から適当
な冷却手段を用いて冷却することが望ましい。If the thickness of the outer cylinder is less than 0.30 mm, the heat transfer in the surface direction becomes excessively large than the heat transfer in the thickness direction, so that sufficient bonding strength cannot be obtained and the heat affected zone (HAZ) Is increased, so that the lower limit of the thickness is 0.1 mm.
It was 30 mm. The upper limit of the outer cylinder is not particularly defined, because the thicker the outer cylinder, the easier the overlap joining becomes. When the thickness of the outer cylinder is small, it is desirable to cool the outer cylinder from the outer cylinder side by using an appropriate cooling means.
【0017】[0017]
【発明の実施の形態】以下、添付の図面を参照しながら
本発明の種々の好ましい実施の形態について説明する。
本実施形態では図1に示す異種金属製魔法瓶を製造する
場合を例にとって説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
In this embodiment, a case where the different-type metal thermos shown in FIG. 1 is manufactured will be described as an example.
【0018】異種金属製魔法瓶3の本体は内瓶1、外瓶
2および外蓋22からなるものである。内瓶1と外瓶2
とは口金溶接部4で接合され、外蓋22は外瓶2を深絞
りするか、又は外瓶2と同材質の別部材を外瓶2の開口
端部に溶接することにより形成されている。内瓶1を外
瓶2に嵌め込んだ後、口金の縁の部分をレーザー溶接
し、また反対側は外蓋22の底にあけた栓口23を介し
て真空排気した後に、栓をして内部を気密にする。The main body of the dissimilar metal thermos 3 comprises an inner bottle 1, an outer bottle 2 and an outer lid 22. Inner bottle 1 and outer bottle 2
The outer lid 22 is formed by deep drawing the outer bottle 2 or welding another member of the same material as the outer bottle 2 to the open end of the outer bottle 2. . After fitting the inner bottle 1 into the outer bottle 2, the edge of the base is laser-welded, and the other side is evacuated through a stopper port 23 opened at the bottom of the outer lid 22, and then stoppered. Make the inside airtight.
【0019】表1に、内瓶1として供試した純チタン
(JIS1種)および外瓶2として供試したステンレス
鋼(JISSUS304)の組成をそれぞれ示す。な
お、チタン系材料は上記組成のみに限定されるものでは
なく、例えばTi−6Al−4VやTi−4.5V−3
Al−2Mo−2FeやTi−Ni形状記憶合金などを
例示することができる。Table 1 shows the compositions of pure titanium (JIS Class 1) used as the inner bottle 1 and stainless steel (JISSUS304) used as the outer bottle 2. The titanium-based material is not limited to the above composition, and may be, for example, Ti-6Al-4V or Ti-4.5V-3
Examples thereof include Al-2Mo-2Fe and Ti-Ni shape memory alloy.
【0020】レーザー溶接機10は図示しないレーザー
発振器および出力制御器を備えている。レーザー溶接機
10の溶接トーチ11内には光ファイバー12と2つの
光学レンズ13a,13bが収納されている。溶接ト−
チ11は図示しない不活性ガス供給源に連通し、溶接ト
ーチ11の内部を通ってレーザー照射面5に適量のアル
ゴンガスが供給されるようになっている。The laser welding machine 10 includes a laser oscillator and an output controller (not shown). An optical fiber 12 and two optical lenses 13a and 13b are housed in a welding torch 11 of the laser welding machine 10. Welding toe
The tube 11 communicates with an inert gas supply source (not shown) so that an appropriate amount of argon gas is supplied to the laser irradiation surface 5 through the inside of the welding torch 11.
【0021】光ファイバー12は図示しないレーザー発
振器の光源に光学的に接続されている。第1及び第2の
光学レンズ13a,13bは図示しないアクチュエータ
によりそれぞれ可動に支持され、焦点15の位置を変え
たり、ビーム径を縮小拡大したりできるようになってい
る。The optical fiber 12 is optically connected to a light source of a laser oscillator (not shown). The first and second optical lenses 13a and 13b are movably supported by actuators (not shown) so that the position of the focal point 15 can be changed and the beam diameter can be reduced or enlarged.
【0022】出力制御器(図示せず)は、電源からレー
ザー発振器への給電量を調整するとともに、レーザーを
パルス発振するために電源をON/OFF制御するよう
になっている。1パルス時間は5マイクロ秒から20マ
イクロ秒の範囲とすることが好ましい。本実施例で使用
するレーザー光はパルスYAGレーザーであるが、連続
発振YAGレーザーや連続発振CO2レーザーでも可能
であり、これのみに限定されるわけではない。An output controller (not shown) adjusts the amount of power supplied from the power supply to the laser oscillator, and controls ON / OFF of the power supply for pulse oscillation of the laser. One pulse time is preferably in the range of 5 to 20 microseconds. The laser light used in this embodiment is a pulse YAG laser, but may be a continuous wave YAG laser or a continuous wave CO 2 laser, and is not limited to this.
【0023】ここでレーザービームは、照射径が1mm
から1.2mm程度になるようにデフォーカスする。こ
れは照射径が小さいと溶融領域が下側の板2にまで進
み、生成した金属間化合物の制御が困難となるからであ
る。またそれよりも大きい場合には十分な溶融領域が得
られず界面に接合層が形成されないからである。Here, the irradiation diameter of the laser beam is 1 mm.
Is defocused so as to be about 1.2 mm from the center. This is because if the irradiation diameter is small, the melting region advances to the lower plate 2 and it is difficult to control the generated intermetallic compound. On the other hand, if it is larger than this, a sufficient melting region cannot be obtained, and no bonding layer is formed at the interface.
【0024】また、パルスレーザーを用いる場合には、
1パルスあたりのエネルギーを5Jから10Jの間にす
るのが好ましい。5J/パルス以下の場合には安定して
界面8に拡散層6を形成するだけの入熱とならず、10
J/パルス以上の場合にはビーム径を拡げても下の板を
溶融しすぎ、脆性の金属間化合物を形成してしまうから
である。When a pulse laser is used,
Preferably, the energy per pulse is between 5 J and 10 J. In the case of 5 J / pulse or less, the heat input for forming the diffusion layer 6 at the interface 8 stably is not obtained,
This is because if the beam diameter is J / pulse or more, the lower plate is excessively melted even if the beam diameter is increased, and a brittle intermetallic compound is formed.
【0025】また、ここで界面8には金属間化合物を形
成させないことが重要ではあるが、そのためには例えば
チタンと鉄の関係のように内筒の構成金属成分(チタ
ン)は外筒の構成金属成分(鉄)を多く固溶でき、金属
間化合物を形成し難い関係にあることが好ましい。その
組み合わせの場合、レーザー照射によって溶融した領域
に、外筒の金属成分が溶融してきたとしても、固溶すれ
ば脆性な金属間化合物を形成しないからである。Here, it is important not to form an intermetallic compound at the interface 8. For this purpose, for example, the metal component (titanium) constituting the inner cylinder is composed of the outer cylinder as in the case of titanium and iron. It is preferable that a large amount of the metal component (iron) can be dissolved in a solid solution, so that an intermetallic compound is hardly formed. This is because, in the case of the combination, even if the metal component of the outer cylinder is melted in the region melted by the laser irradiation, a brittle intermetallic compound is not formed if the metal component is dissolved.
【0026】図2に示すように、本発明では2つの光学
レンズ13a,13bの位置を可変調整することにより
焦点15を内筒1の照射面5よりも手前に位置させ、幅
広のレーザー光14を照射する。このとき第1の金属部
材1に供給される入熱密度Qは下式(1)により求めら
れる。ただし、W1は光ファイバーのコア径、θ1は光
ファイバーの開口数NA(ファイバー開口部から発散し
た光の発散角の正弦と物体空間の絶対屈折率との積)か
ら求められる発散角(ここで、空気の屈折率n0は約1
である)、f1は第1レンズ13aの焦点距離、f2は
第2レンズ13bの焦点距離、L1は焦点から照射面ま
での距離、θ2は鉛直線に対するレーザー光軸の傾斜
角、Pはレーザー発振器の出力電力、η1は第1の金属
部材の吸収率をそれぞれ表わす。なお、開口数NAは、
光学器械で入射ひとみ(絞り)の半径が物点において張
る角uの正弦と物体空間の絶対屈折率nとの積nsin
uをいう。As shown in FIG. 2, in the present invention, the focal point 15 is positioned before the irradiation surface 5 of the inner cylinder 1 by variably adjusting the positions of the two optical lenses 13a and 13b, and the wide laser light 14 Is irradiated. At this time, the heat input density Q supplied to the first metal member 1 is obtained by the following equation (1). Here, W1 is the core diameter of the optical fiber, and θ1 is the divergence angle (here, air) obtained from the numerical aperture NA of the optical fiber (the product of the sine of the divergence angle of the light diverging from the fiber opening and the absolute refractive index in the object space). Has a refractive index n0 of about 1
F1 is the focal length of the first lens 13a, f2 is the focal length of the second lens 13b, L1 is the distance from the focal point to the irradiation surface, θ2 is the inclination angle of the laser optical axis with respect to the vertical line, and P is the laser oscillator And η1 respectively represent the absorptance of the first metal member. The numerical aperture NA is
The product n sin of the sine of the angle u at which the radius of the entrance pupil (aperture) extends at the object point and the absolute refractive index n of the object space in the optical instrument
u.
【0027】 Q=η1×P/[{(W1×f2/f1)+(L1×θ1×f1/f2)}/cosθ2] …(1) このような入熱密度Qが照射面5から内筒1に入射され
ると、照射面下部の金属が厚さ方向および面方向に溶融
し、拡散層6が形成される。このうち厚さ方向への溶融
領域は界面8に達するとそれ以上は進展しなくなるが、
内筒の融液が外筒と接触し、界面8で相互拡散を生じ
る。この固液界面8での実質的な固相拡散により内筒1
と外筒2とを接合する接合層7が形成される。このと
き、溶け込み深さdを内筒の厚さt1と実質的に同じ程
度にするために、レーザー発振器の出力電力Pを制御す
る。Q = η1 × P / [{(W1 × f2 / f1) + (L1 × θ1 × f1 / f2)} / cos θ2] (1) Such a heat input density Q from the irradiation surface 5 to the inner cylinder When the light is incident on the metal layer 1, the metal under the irradiation surface is melted in the thickness direction and the surface direction, and the diffusion layer 6 is formed. Of these, the molten region in the thickness direction does not progress further when reaching the interface 8, but
The melt in the inner cylinder comes into contact with the outer cylinder, causing mutual diffusion at the interface 8. Due to the substantial solid-phase diffusion at the solid-liquid interface 8, the inner cylinder 1
And a joining layer 7 for joining the outer cylinder 2 to the outer cylinder 2. At this time, the output power P of the laser oscillator is controlled to make the penetration depth d substantially equal to the thickness t1 of the inner cylinder.
【0028】次に、本発明の種々の実施例についてそれ
ぞれ説明する。Next, various embodiments of the present invention will be described.
【0029】(実施例1)パルスYAGレーザーを用い
て肉厚0.3mmの純チタン内瓶と肉厚0.4mmのオ
ーステナイト系ステンレス鋼(SUS304)外瓶とを
異種金属レーザー溶接した。ここで内瓶の直径(内径)
は46mmである。レーザー照射位置は内瓶の側からで
照射角は垂直から約45°に傾けた。この傾斜角は30
°〜60°の範囲内で自由に変えることができる。パル
ス幅を10マイクロ秒、デフォーカスを1mm(ビーム
径1.2mm)とし、繰り返しを30Hz、溶接速度を
10mm/秒とする条件でレーザー溶接し、完成した円
筒体についてリーク試験を行なった。(Example 1) Using a pulse YAG laser, dissimilar metal laser welding was performed between an inner bottle of pure titanium having a thickness of 0.3 mm and an outer bottle of austenitic stainless steel (SUS304) having a thickness of 0.4 mm. Where the diameter of the inner bottle (inner diameter)
Is 46 mm. The laser irradiation position was from the side of the inner bottle, and the irradiation angle was inclined at about 45 ° from vertical. This inclination angle is 30
It can be freely changed within the range of ° to 60 °. Laser welding was performed under the conditions that the pulse width was 10 microseconds, the defocus was 1 mm (beam diameter 1.2 mm), the repetition was 30 Hz, and the welding speed was 10 mm / second, and a leak test was performed on the completed cylinder.
【0030】リーク試験はヘリウムリークディテクタを
用いて行なった。被検体をヘリウムリークディテクタに
取り付け、外底部をゴムパッキンに密着させ、二重容器
の内部を内圧が1.0×10-3Torr以下になるまで
排気する。大きな漏れがある場合は、この排気段階で不
合格品となる。排気時間は約45秒間(量産時と同じ)
である。The leak test was performed using a helium leak detector. The subject is attached to a helium leak detector, the outer bottom is brought into close contact with a rubber packing, and the inside of the double container is evacuated until the internal pressure becomes 1.0 × 10 −3 Torr or less. If there is a large leak, it will be rejected at this evacuation stage. Exhaust time is about 45 seconds (same as mass production)
It is.
【0031】排気後、箱形のカバー全体を上方から下降
させ、Heガスを細いホース状のものから内筒の内側に
一定時間放出させ、排気側についている検出器で一定時
間Heガスの流量を測定する。一定の流量を超えるもの
を不合格とする。この場合に、Heガス噴出時間を約4
秒間(量産時と同じ)とし、測定時間を約10秒間(量
産時と同じ)とした。Heガスを4秒間流したときの漏
れ量が3.0×10-9Pa・m3/秒以下のものを合格
とし、これを上回る漏れ量のものを不合格とした。表2
にヘリウムリーク試験の結果を示す。また、参考のため
に同条件で作製した平板重ね試験片の剪断強度に及ぼす
照射エネルギーの関係を図4に示す。図中にて白三角を
結んでなる曲線Aはせん断荷重/レーザー照射エネルギ
ー相関特性線を示し、黒三角を結んでなる曲線Bはせん
断応力/レーザー照射エネルギー相関特性線を示す。表
2および図4から明らかなように、レーザー照射エネル
ギーが5J/パルス以上のものはヘリウムリーク試験で
合格となり、レーザー照射エネルギーが4J/パルス以
下のものはヘリウムリーク試験で不合格となった。ま
た、不合格品は破断強度も1kN/20mm以下と低い
ことが判明した。これは照射エネルギー不足から火熱が
低いため、未接合部分が発生し、リークに至ったものと
考えられる。一方、照射エネルギーが8J/パルス以上
では接合強度が若干低下しているが、リーク試験結果は
合格であった。これは真空容器としては多少強度が低く
ても、高い火熱で全体的に接合させることが重要である
ためである。しかし、12J/パルス以上の照射エネル
ギーの場合は、外筒(ステンレス鋼)の過剰希釈により
溶接金属中に多量の金属間化合物が生成され、接合部に
亀裂が発生した。このように照射エネルギーが過剰にな
る場合も容器の真空は保てなくなることが判明した。従
って、本実施例の条件下ではレーザー照射エネルギーを
5〜10J/パルスの範囲とすることが好ましく、6〜
8J/パルスの範囲とすることがさらに好ましいといえ
る。After exhausting, the entire box-shaped cover is lowered from above, He gas is released from the thin hose-shaped thing to the inside of the inner cylinder for a certain time, and the flow rate of the He gas is measured for a certain time by the detector on the exhaust side. Measure. Those exceeding a certain flow rate are rejected. In this case, the He gas ejection time is about 4 hours.
Seconds (same as in mass production), and the measurement time was about 10 seconds (same in mass production). Those with a leak rate of 3.0 × 10 −9 Pa · m 3 / sec or less when flowing He gas for 4 seconds were judged as acceptable, and those with a leak rate exceeding this were judged as unacceptable. Table 2
Shows the results of the helium leak test. FIG. 4 shows the relationship between the irradiation energy and the shear strength of the flat plate test piece manufactured under the same conditions for reference. In the figure, a curve A connecting white triangles indicates a shear load / laser irradiation energy correlation characteristic line, and a curve B connecting black triangles indicates a shear stress / laser irradiation energy correlation characteristic line. As is clear from Table 2 and FIG. 4, those with a laser irradiation energy of 5 J / pulse or more passed the helium leak test, and those with a laser irradiation energy of 4 J / pulse or less failed the helium leak test. It was also found that the rejected products had a low breaking strength of 1 kN / 20 mm or less. This is considered to be due to the fact that the unheated portion was generated due to the low heating energy due to the shortage of irradiation energy, which led to the leakage. On the other hand, when the irradiation energy was 8 J / pulse or more, the bonding strength was slightly lowered, but the result of the leak test passed. This is because it is important that the entire vessel be joined with high heat even if the strength of the vacuum vessel is somewhat low. However, when the irradiation energy was 12 J / pulse or more, a large amount of intermetallic compound was generated in the weld metal due to excessive dilution of the outer cylinder (stainless steel), and cracks were generated in the joint. It has been found that even when the irradiation energy becomes excessive, the vacuum of the container cannot be maintained. Therefore, it is preferable that the laser irradiation energy be in the range of 5 to 10 J / pulse under the conditions of the present embodiment, and 6 to 10 J / pulse.
It can be said that the range of 8 J / pulse is more preferable.
【0032】(実施例2)パルスYAGレーザーを用い
て肉厚0.3mmの純チタン内瓶と肉厚0.4mmのオ
ーステナイト系ステンレス鋼(SUS304)外瓶とを
レーザー溶接した。ここで直径は46mmである。レー
ザー照射位置は内瓶からで照射角は垂直から60度斜め
に傾けた。パルス幅を20マイクロ秒、照射エネルギー
を4J/パルス、デフォーカスを1mm(ビーム径1.
2mm)とし、繰り返しが25Hz、溶接速度を2.5
mm/秒(1rpm)とした結果、リークは発生せず、
真空を保つことが判明した。10マイクロ秒の場合と比
べて低いエネルギーでも可能となるのは、パルス幅が長
く速度が遅いために、溶け混みが浅く界面が拡散接合を
形成しやすいことによると考えられる。Example 2 Using a pulsed YAG laser, an inner bottle of pure titanium having a thickness of 0.3 mm and an outer bottle of austenitic stainless steel (SUS304) having a thickness of 0.4 mm were laser-welded. Here, the diameter is 46 mm. The laser irradiation position was from the inner bottle, and the irradiation angle was inclined at an angle of 60 degrees from the vertical. Pulse width 20 microseconds, irradiation energy 4 J / pulse, defocus 1 mm (beam diameter 1.
2 mm), the repetition rate is 25 Hz, and the welding speed is 2.5
mm / sec (1 rpm), no leakage occurred,
It was found that the vacuum was kept. It is considered that the reason why the energy can be lower than that in the case of 10 microseconds is that since the pulse width is long and the speed is low, the melting and mixing are shallow and the interface easily forms a diffusion junction.
【0033】(比較例1)パルスYAGレーザーを用い
て肉厚0.3mmの純チタン内瓶と肉厚0.4mmのオ
ーステナイト系ステンレス鋼(SUS304)外瓶とを
レーザー溶接した。ここで直径は46mmである。レー
ザー照射位置は外瓶からで照射角は垂直から30度斜め
に傾けた。パルス幅を10マイクロ秒、デフォーカスを
2mm(ビーム径1.2mm)とし、繰り返しが30H
z、溶接速度を10mm/秒とした場合には、10J/
パルス以下では照射後半が未接合状態となり、12J/
パルス以上では過剰な溶け込みにより表面に穴があき、
真空容器は形成されなかった。これはレーザー照射によ
る照射側(外瓶)と他方(内瓶)の熱膨張差により、隙
間が生き、そうすると更に熱膨張差が大きくなり、未接
合となったものと考えられる。また、12J/パルス以
上の高エネルギーでは接合部が金属間化合物で形成さ
れ、亀裂が発生したものである。(Comparative Example 1) A pure titanium inner bottle having a thickness of 0.3 mm and an outer bottle of austenitic stainless steel (SUS304) having a thickness of 0.4 mm were laser-welded using a pulse YAG laser. Here, the diameter is 46 mm. The laser irradiation position was from the outer bottle, and the irradiation angle was inclined at an angle of 30 degrees from the vertical. Pulse width is 10 microseconds, defocus is 2 mm (beam diameter 1.2 mm), and repetition is 30 H
z, when the welding speed is 10 mm / sec, 10 J /
Below the pulse, the latter half of the irradiation is in an unbonded state, and 12J /
Above the pulse, a hole is formed in the surface due to excessive penetration,
No vacuum vessel was formed. This is considered to be due to the difference in thermal expansion between the irradiation side (outer bottle) and the other side (inner bottle) due to the laser irradiation, whereby a gap was alive, and the difference in thermal expansion was further increased. At a high energy of 12 J / pulse or more, a joint is formed of an intermetallic compound and a crack is generated.
【0034】[0034]
【表1】 [Table 1]
【0035】[0035]
【表2】 [Table 2]
【0036】[0036]
【発明の効果】本発明の方法によると、ステンレス鋼と
チタンとの組み合わせのように脆い金属間化合物をつく
りやすいために従来では溶融接合が不可能又は困難とさ
れてきた異種金属の組み合わせを、脆化部分をほとんど
生じることなく強固かつ健全に接合することができるの
で、魔法瓶のような異種金属円筒体の製品を設計する際
に、その自由度が大幅に増大する。According to the method of the present invention, a combination of dissimilar metals, which has conventionally been considered impossible or difficult because of the tendency to form brittle intermetallic compounds such as a combination of stainless steel and titanium, Since it can be firmly and soundly joined with almost no embrittlement, the degree of freedom in designing a product of a dissimilar metal cylinder such as a thermos bottle is greatly increased.
【図1】異種金属円筒体としての金属製魔法瓶の概要を
示す概略構成図。FIG. 1 is a schematic configuration diagram showing an outline of a metal thermos as a dissimilar metal cylinder.
【図2】レーザー照射部及びその近傍を示す模式図。FIG. 2 is a schematic view showing a laser irradiation part and its vicinity.
【図3】接合界面の状態を示す拡大模式図。FIG. 3 is an enlarged schematic diagram showing a state of a bonding interface.
【図4】剪断強度に及ぼすパルスエネルギーの関係を示
す特性線図。FIG. 4 is a characteristic diagram showing the relationship between pulse energy and shear strength.
1…内瓶(内筒)、 2…外瓶(外筒)、 3…魔法瓶、 4…口金溶接部、 5…照射面(内表面)、 6…拡散層、 7…接合層、 8…界面、 10…レーザー溶接機、 12…光ファイバー、 13a,13b…レンズ、 14…レーザー光、 15…焦点、 22…外蓋、 23…排気及び栓口。 DESCRIPTION OF SYMBOLS 1 ... Inner bottle (inner cylinder), 2 ... Outer bottle (outer cylinder), 3 ... Thermos bottle, 4 ... Weld part, 5 ... Irradiation surface (inner surface), 6 ... Diffusion layer, 7 ... Bonding layer, 8 ... Interface Reference numeral 10: Laser welding machine, 12: Optical fiber, 13a, 13b: Lens, 14: Laser light, 15: Focus, 22: Outer lid, 23: Exhaust and stopper.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 103:14 B23K 103:14 (72)発明者 平賀 仁 新潟県長岡市深沢町上ノ山2085番地16 株 式会社レーザー応用工学研究所内 Fターム(参考) 4B002 AA01 BA22 BA31 BA44 CA32 4E068 AH02 BF00 BG02 CA03 DB01 DB04 DB05 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B23K 103: 14 B23K 103: 14 (72) Inventor Jin Hiraga 2085-16 Uenoyama, Fukasawa-cho, Nagaoka City, Niigata Prefecture 16 shares F-term in the Laser Engineering Laboratory of Japan (reference) 4B002 AA01 BA22 BA31 BA44 CA32 4E068 AH02 BF00 BG02 CA03 DB01 DB04 DB05
Claims (9)
筒のなかに挿入して両者を嵌め合わせる工程と、前記内
筒の内表面よりも手前にレーザー光の焦点がくるように
前記内筒の内表面にレーザー光を照射して、前記内筒の
側から入射される熱エネルギーにより前記内筒を厚さ方
向に完全溶融させるとともに、その融液と前記外筒との
界面において主として固液拡散による合金層を形成せし
める工程と、を具備することを特徴とする異種金属円筒
体のレーザー接合方法。A step of inserting an inner cylinder made of a metal material having a different composition into an outer cylinder and fitting them together; and a step of focusing the laser beam on the near side of the inner surface of the inner cylinder. By irradiating the inner surface of the cylinder with laser light, the inner cylinder is completely melted in the thickness direction by thermal energy incident from the side of the inner cylinder, and solidified mainly at the interface between the melt and the outer cylinder. Forming an alloy layer by liquid diffusion.
は外筒よりも熱膨張係数の小さい材料でつくられている
ことを特徴とする方法。2. The method of claim 1, wherein said inner cylinder is made of a material having a lower coefficient of thermal expansion than said outer cylinder.
において、レーザー光の照射面積が1mm2以上である
ことを特徴とする方法。3. The method according to claim 1, wherein an irradiation area of the laser beam is 1 mm 2 or more.
において、レーザー光をパルス発振させることを特徴と
する方法。4. The method according to claim 1, wherein the laser light is pulsed.
照射エネルギーを5〜10Jの範囲とすることを特徴と
する方法。5. The method according to claim 4, wherein the laser irradiation energy is in the range of 5 to 10 J.
において、前記内筒を構成する材料は、前記外筒を構成
する成分を多く固溶するか、又は前記外筒を構成する成
分との間で脆性化合物を形成しない金属又は合金からな
ることを特徴とする方法。6. The method according to claim 1, wherein the material forming the inner cylinder forms a solid solution with a large amount of the components forming the outer cylinder, or the components forming the outer cylinder. A metal or alloy that does not form a brittle compound with the alloy.
において、前記内筒は純チタン又はチタン系合金からな
り、前記外筒は鉄系材料からなることを特徴とする方
法。7. The method according to claim 1, wherein the inner cylinder is made of pure titanium or a titanium-based alloy, and the outer cylinder is made of an iron-based material.
において、前記内筒の厚さを前記外筒の厚さよりも薄く
することを特徴とする方法。8. The method according to claim 1, wherein the thickness of the inner cylinder is smaller than the thickness of the outer cylinder.
において、前記内筒の厚さを0.15〜2.00mmの
範囲とし、前記外筒の厚さを0.30mm以上とするこ
とを特徴とする方法。9. The method according to claim 1, wherein the thickness of the inner cylinder is in a range of 0.15 to 2.00 mm, and the thickness of the outer cylinder is 0.30 mm or more. A method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000065067A JP2001252780A (en) | 2000-03-09 | 2000-03-09 | Method of joining by laser beam for cylinders of different kinds of metals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000065067A JP2001252780A (en) | 2000-03-09 | 2000-03-09 | Method of joining by laser beam for cylinders of different kinds of metals |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001252780A true JP2001252780A (en) | 2001-09-18 |
Family
ID=18584657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000065067A Pending JP2001252780A (en) | 2000-03-09 | 2000-03-09 | Method of joining by laser beam for cylinders of different kinds of metals |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001252780A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008023550A (en) * | 2006-07-20 | 2008-02-07 | Nuclear Fuel Ind Ltd | Stopper welding equipment |
WO2013187015A1 (en) * | 2012-06-15 | 2013-12-19 | 三恵技研工業株式会社 | Vacuum double container, and method for producing same |
CN103479240A (en) * | 2012-06-12 | 2014-01-01 | 三恵技研工业株式会社 | Vacuum double container, and method for producing same |
JP2016187470A (en) * | 2015-03-30 | 2016-11-04 | 新光産業株式会社 | Vacuum insulated container |
CN106536120A (en) * | 2014-07-21 | 2017-03-22 | 西门子能源公司 | Optimization of melt pool shape in a joining process |
CN108406112A (en) * | 2015-02-09 | 2018-08-17 | 司浦爱激光技术英国有限公司 | Laser welded seam |
JP2019129889A (en) * | 2018-01-29 | 2019-08-08 | プリンス工業株式会社 | Container for food product |
-
2000
- 2000-03-09 JP JP2000065067A patent/JP2001252780A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008023550A (en) * | 2006-07-20 | 2008-02-07 | Nuclear Fuel Ind Ltd | Stopper welding equipment |
CN103479240A (en) * | 2012-06-12 | 2014-01-01 | 三恵技研工业株式会社 | Vacuum double container, and method for producing same |
CN103479240B (en) * | 2012-06-12 | 2016-03-30 | 三恵技研工业株式会社 | Vacuum double container and its manufacture method |
WO2013187015A1 (en) * | 2012-06-15 | 2013-12-19 | 三恵技研工業株式会社 | Vacuum double container, and method for producing same |
JP2014000110A (en) * | 2012-06-15 | 2014-01-09 | Sankei Giken Kogyo Co Ltd | Vacuum double container and method for producing the same |
CN106536120A (en) * | 2014-07-21 | 2017-03-22 | 西门子能源公司 | Optimization of melt pool shape in a joining process |
CN108406112A (en) * | 2015-02-09 | 2018-08-17 | 司浦爱激光技术英国有限公司 | Laser welded seam |
CN108406112B (en) * | 2015-02-09 | 2021-07-27 | 通快激光英国有限公司 | laser seam |
JP2016187470A (en) * | 2015-03-30 | 2016-11-04 | 新光産業株式会社 | Vacuum insulated container |
JP2019129889A (en) * | 2018-01-29 | 2019-08-08 | プリンス工業株式会社 | Container for food product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Effect of groove shape on laser welding-brazing Al to steel | |
Katayama | Laser welding of aluminium alloys and dissimilar metals | |
Gao et al. | Parameter optimization and mechanism of laser–arc hybrid welding of dissimilar Al alloy and stainless steel | |
JP5479024B2 (en) | Joining method and joining apparatus | |
Alfieria et al. | Autogenous laser welding of AA 2024 aluminium alloy: process issues and bead features | |
JP5725723B2 (en) | High power laser beam welding and its assembly | |
CN110421223A (en) | Using titanium alloy-stainless steel dissimilar metal laser method for welding of copper base solder | |
CN112620856A (en) | Pretreatment method before dissimilar metal material welding, dissimilar metal material welding product and welding method thereof | |
JP2001252777A (en) | Joining method for different kinds of metals by laser beam | |
Ventrella et al. | Pulsed Nd: YAG laser welding of Ni-alloy Hastelloy C-276 foils | |
CN101733496A (en) | Laser lap brazing process for titanium alloy and alloy steel | |
CN110421261A (en) | Add titanium alloy-stainless steel dissimilar metal laser welding method of composite interlayer | |
JP4131375B2 (en) | Bonding method of dissimilar metal materials | |
Huang et al. | Effect of Swing-Spiral-Trajectory on pulsed fiber laser welding stainless steel/Copper dissimilar metals | |
Dada et al. | Recent advances in joining technologies of aluminum alloys: a review | |
JP2001252780A (en) | Method of joining by laser beam for cylinders of different kinds of metals | |
Zhao et al. | Laser applications in ceramic and metal joining: a review | |
Ventrella et al. | Micro welding of Ni-based alloy Monel 400 thin foil by pulsed Nd: YAG laser | |
Iqbal et al. | Parametric study of pulse arc welding (PAW) and laser beam welding (LBW) techniques for electrical vehicle battery cells | |
Naeem | Developments in laser microwelding technology | |
JP2006224134A (en) | Structure, method, and equipment for joining different kind of metals by high energy beam | |
Klages et al. | Laser beam micro welding of dissimilar metals | |
JP2013154399A (en) | Dissimilar metal joined body | |
JP2013154398A (en) | Butt joining method for dissimilar metal | |
Kumar et al. | Laser Beam Welding: Opportunity and Challenges |