JP2001248938A - Separate air conditioner - Google Patents
Separate air conditionerInfo
- Publication number
- JP2001248938A JP2001248938A JP2000060930A JP2000060930A JP2001248938A JP 2001248938 A JP2001248938 A JP 2001248938A JP 2000060930 A JP2000060930 A JP 2000060930A JP 2000060930 A JP2000060930 A JP 2000060930A JP 2001248938 A JP2001248938 A JP 2001248938A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- heat
- air conditioner
- refrigerant
- volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は室内の湿度及び温度
を所望の状態に調節可能な分離型空調機に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separation type air conditioner capable of adjusting indoor humidity and temperature to desired conditions.
【0002】[0002]
【従来の技術】室内の除湿をしたり、温度調節をしたり
するエアコンや除湿専用機は従来からあり、一般住宅、
ビル、工場その他で使用されている。2. Description of the Related Art There have been air conditioners and dehumidifiers for indoor dehumidification and temperature control.
Used in buildings, factories and others.
【0003】[0003]
【発明が解決しようとする課題】従来のエアコンには除
湿機能を備えたものもあるが、これはあくまでも室内の
空気温度を所定温度に維持することを主目的とするもの
であり、十分な湿度調節はできない。このためエアコン
を作動させているにも拘わらず結露が生じてしまうこと
がある。特に、最近の省エネ化に対応したエアコンは冷
媒圧縮用の圧縮機(コンプレッサ)の吸入圧が上昇して
いるため、室内機における熱交換器の装置露点温度が上
昇し、除湿能力が低下し、必要な除湿が充分におこなわ
れず、室内が多湿、低温となって梅雨時と同じ状態とな
り、不快な室内環境となる。Some conventional air conditioners are provided with a dehumidifying function, but these are mainly intended to maintain the indoor air temperature at a predetermined temperature, and have a sufficient humidity. It cannot be adjusted. For this reason, dew condensation may occur despite the operation of the air conditioner. In particular, since the suction pressure of a compressor (compressor) for refrigerant compression has increased in air conditioners that have responded to recent energy savings, the dew point temperature of the heat exchanger in indoor units has increased, and the dehumidification capacity has decreased. Necessary dehumidification is not sufficiently performed, and the room becomes humid and low temperature, and becomes the same state as during the rainy season, resulting in an uncomfortable indoor environment.
【0004】空気温度だけでなく湿度も十分に調整する
ためには専用設計の除湿機が必要になり、高価なものと
なる。また、従来の除湿専用機は一体型であり、それは
図2に示す様に除湿機本体A内に圧縮機B、放熱用熱交
換器C、減圧装置D、除湿用熱交換器Eが内蔵され、そ
れらが配管Fによって直列環状に接続されて冷媒が循環
するようにし、冷媒の気化熱によって冷却された除湿用
熱交換器Eに空気を当てて同空気を冷却除湿する構造で
ある。In order to sufficiently control not only the air temperature but also the humidity, a specially designed dehumidifier is required, which is expensive. In addition, the conventional dehumidifier is an integral type, and as shown in FIG. 2, a compressor B, a heat-dissipating heat exchanger C, a decompression device D, and a dehumidifying heat exchanger E are built in a dehumidifier body A. They are connected in series and annular by a pipe F so that the refrigerant circulates, and the air is applied to the dehumidifying heat exchanger E cooled by the heat of vaporization of the refrigerant to cool and dehumidify the air.
【0005】従来の除湿専用機は家庭用、床置き型、直
吹き型、一体型であるため次のような課題があった。 1.圧縮機等から発生する熱によって室内温度が上昇し
てしまう。特に冷房時にはこの熱のために冷房に多くの
エネルギーが必要になる。 2.家庭用であるため除湿能力が小さく、ビルとか大規
模空調に使用するには不向きである。 3.床置き型であるため建物の設計時に除湿器の設置ま
で配慮されることはなく、建築後に室内に設置すること
になり、場所をとり、邪魔にもなり易い。 4.直吹き型であるため空調室内に設置しなければなら
ず、設置場所に制約がある。 5.室内設置用の一体型であるため、除湿時に発生する
熱が室内に排出されて室内温度が上昇する。[0005] Conventional dehumidifiers are of the household type, floor-standing type, direct-blown type, and integrated type, and therefore have the following problems. 1. The room temperature rises due to the heat generated from the compressor and the like. Especially during cooling, this heat requires a lot of energy for cooling. 2. Since it is for home use, its dehumidification capacity is small, making it unsuitable for use in buildings and large-scale air conditioning. 3. Since it is a floor-standing type, there is no need to consider the installation of a dehumidifier when designing a building, and it will be installed indoors after construction, taking up space and easily becoming an obstacle. 4. Since it is a direct blow type, it must be installed in an air-conditioned room, and there are restrictions on the installation location. 5. Since it is an integrated type for indoor installation, heat generated at the time of dehumidification is exhausted indoors, and the indoor temperature rises.
【0006】[0006]
【課題を解決するための手段】本発明の目的は室外機と
室内機に分離された分離型空調機であって、少ないエネ
ルギーで室内の温度調整と湿度調整とを過不足なく行う
ことができる分離型空調機を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a separated type air conditioner which is separated into an outdoor unit and an indoor unit. It is to provide a separation type air conditioner.
【0007】本件出願の第1の分離型空調機は、室外機
1と室内機2とに分離された分離空調機において、室外
機1は圧縮機3と放熱用熱交換器4を備え、室内機2は
放熱用熱交換器5と冷媒タンク6と減圧装置7と除湿用
熱交換器8を備え、前記室外機1における放熱用熱交換
器4と室内機2における放熱用熱交換器5とが配管9に
より接続され、前記圧縮機3と除湿用熱交換器8とが他
の配管10により接続されて室外機1と室内機2との間
を冷媒が循環し、室内空気は前記除湿用熱交換器8を通
過して除湿された後に放熱用熱交換器5を通過するよう
にしたものである。A first separation type air conditioner of the present application is a separation air conditioner separated into an outdoor unit 1 and an indoor unit 2, wherein the outdoor unit 1 includes a compressor 3 and a heat exchanger 4 for heat radiation. The unit 2 includes a heat-radiating heat exchanger 5, a refrigerant tank 6, a decompression device 7, and a dehumidifying heat exchanger 8, and includes a heat-radiating heat exchanger 4 in the outdoor unit 1 and a heat-radiating heat exchanger 5 in the indoor unit 2. Are connected by a pipe 9, the compressor 3 and the dehumidifying heat exchanger 8 are connected by another pipe 10, and a refrigerant circulates between the outdoor unit 1 and the indoor unit 2. After passing through the heat exchanger 8 and being dehumidified, it passes through the heat exchanger 5 for heat radiation.
【0008】本件出願の第2の分離型空調機は、請求項
1記載の分離型空調機において、室外機1に、冷媒が放
熱用熱交換器4を迂回するためのバイパス11と、同バ
イパス11への冷媒の流入・停止を制御する制御弁12
が設けられ、制御弁12は設定室内温度と実際の室内温
度との差に基づいて自動的に開閉されるものである。[0008] A second separation type air conditioner according to the present invention is the separation type air conditioner according to the first aspect, wherein the outdoor unit 1 has a bypass 11 for refrigerant to bypass the heat exchanger 4 for heat radiation, and a bypass 11 for the refrigerant. Control valve 12 for controlling the inflow / stop of refrigerant to 11
Is provided, and the control valve 12 is automatically opened and closed based on the difference between the set room temperature and the actual room temperature.
【0009】本件出願の第3の分離型空調機は、請求項
1又は請求項2記載の分離型空調機において、室外機1
に送風機13が設けられ、送風機13は設定室内温度と
実際の室内温度との差に基づいて運転・停止が制御され
るものである。[0009] The third separation type air conditioner according to the present application is the separation type air conditioner according to claim 1 or 2, wherein
The blower 13 is provided, and the operation and stop of the blower 13 are controlled based on the difference between the set room temperature and the actual room temperature.
【0010】本件出願の第4の分離型空調機は、請求項
1乃至請求項3のいずれかに記載の分離型空調機におい
て、冷媒タンク6の容積Aが、室外機1における放熱用
熱交換器4の容積Bと、同放熱用熱交換機4の出口から
室内機2における放熱用熱交換器5の入口までの容積C
と、同放熱用熱交換器5の容積Dとが次の関係にあるこ
とを特徴とする分離型空調機。容積A=(容積B×0.
5+容積C+容積D×0.2)×(1±0.1)[0010] A fourth separation type air conditioner of the present application is the separation type air conditioner according to any one of claims 1 to 3, wherein the capacity A of the refrigerant tank 6 is such that the heat exchange for heat radiation in the outdoor unit 1 is performed. And the volume C from the outlet of the heat-radiating heat exchanger 4 to the inlet of the heat-radiating heat exchanger 5 in the indoor unit 2.
And the volume D of the heat-radiating heat exchanger 5 has the following relationship. Volume A = (Volume B × 0.
5 + volume C + volume D × 0.2) × (1 ± 0.1)
【0011】[0011]
【発明の実施の形態】(実施形態1)本発明の分離型空
調機の第1の実施形態を図1に示す。この分離型空調機
は別体に分離された室外機1と室内機2とから構成され
ている。室外機1は圧縮機(コンプレッサ)3と、放熱
用熱交換器(コンデンサ)4と、室外用送風機(電動フ
ァン)13を備え、放熱用熱交換器4の入口側と出口側
との間にバイパス11を設け、そのバイパス11に制御
弁12が設けられている。室内機2は放熱用熱交換器
(コンデンサ)5と、冷媒タンク6と、減圧装置7と、
除湿用熱交換器(コンデンサ)8と、室内用送風機20
を備え、更に、温度センサ21と湿度センサ22を備え
てある。室外機1における放熱用熱交換器4と室内機2
における放熱用熱交換器5の間は配管9が、室外機1に
おける圧縮機3と室内機2における除湿用熱交換器8の
間は配管10が夫々配置されて、これらが直列環状に接
続され、室外機1と室内機2の間で冷媒が循環できるよ
うにし、温度センサ21と室外用送風機13及び制御弁
12との間に温度設定器23が、湿度センサ22と圧縮
器3をON・OFFするスイッチ24との間に湿度設定
器25が接続されている。(Embodiment 1) FIG. 1 shows a first embodiment of a separation type air conditioner according to the present invention. This separation type air conditioner includes an outdoor unit 1 and an indoor unit 2 which are separated from each other. The outdoor unit 1 includes a compressor (compressor) 3, a heat-radiating heat exchanger (condenser) 4, and an outdoor blower (electric fan) 13, between the inlet side and the outlet side of the heat-radiating heat exchanger 4. A bypass 11 is provided, and a control valve 12 is provided in the bypass 11. The indoor unit 2 includes a heat-radiating heat exchanger (condenser) 5, a refrigerant tank 6, a pressure reducing device 7,
Dehumidifying heat exchanger (condenser) 8 and indoor blower 20
And a temperature sensor 21 and a humidity sensor 22. Heat radiating heat exchanger 4 and indoor unit 2 in outdoor unit 1
A pipe 9 is arranged between the heat-radiating heat exchangers 5 and a pipe 10 is arranged between the compressor 3 in the outdoor unit 1 and the dehumidifying heat exchanger 8 in the indoor unit 2. The refrigerant can be circulated between the outdoor unit 1 and the indoor unit 2, the temperature setting unit 23 between the temperature sensor 21 and the outdoor blower 13 and the control valve 12 turns on the humidity sensor 22 and the compressor 3. A humidity setting device 25 is connected to the switch 24 that is turned off.
【0012】図1の室外機1の圧縮機3は除湿用熱交換
器8からの低圧冷媒(気体)を配管10を通して吸入
し、これを圧縮して高圧冷媒(気体)として送り出すも
のである。室外機1の放熱用熱交換器4は圧縮機3から
送り出された高圧冷媒(気体)を放熱させて液化させる
ものである。放熱用熱交換器4の近くに設けられた室外
用送風機13は放熱用熱交換器4を強制冷却(空冷)し
て冷媒の放熱を促進するものである。The compressor 3 of the outdoor unit 1 shown in FIG. 1 sucks a low-pressure refrigerant (gas) from a dehumidifying heat exchanger 8 through a pipe 10, compresses the same, and sends it out as a high-pressure refrigerant (gas). The heat radiating heat exchanger 4 of the outdoor unit 1 radiates and liquefies the high-pressure refrigerant (gas) sent from the compressor 3. The outdoor blower 13 provided near the heat-radiating heat exchanger 4 forcibly cools (air-cools) the heat-radiating heat exchanger 4 to promote the heat radiation of the refrigerant.
【0013】図1のバイパス11は圧縮機3から送り出
された高圧冷媒(気体)を室外機1における放熱用熱交
換器4を迂回させるためのものであり、制御弁12を開
くと圧縮機3から送り出された高圧冷媒(気体)の殆ど
がバイパス11に流入して、放熱用熱交換器4を迂回し
てそのまま配管9へ送り込まれ、閉じると圧縮機3から
送り出された高圧冷媒(気体)が放熱用熱交換器4を経
由して放熱され、液化して配管9へ送り込まれるように
してある。The bypass 11 shown in FIG. 1 is for bypassing the high-pressure refrigerant (gas) sent from the compressor 3 to the heat exchanger 4 for radiating heat in the outdoor unit 1. When the control valve 12 is opened, the compressor 3 is opened. Most of the high-pressure refrigerant (gas) sent out of the compressor flows into the bypass 11, bypasses the heat-radiating heat exchanger 4 and is sent to the pipe 9 as it is, and when closed, the high-pressure refrigerant (gas) sent from the compressor 3. Is radiated through the radiating heat exchanger 4, liquefied and sent to the pipe 9.
【0014】図1に示す室内機2の放熱用熱交換器5は
配管9から送り込まれた高圧冷媒(気体又は液体)を放
熱させるものであり、特に前記バイパス11を経由して
送り込まれる気体の冷媒を放熱させて液化させるための
ものである。図1の冷媒タンク6は前記放熱用熱交換器
5から減圧装置7に送り込まれる冷媒(液体)のうち余
剰冷媒を貯えて冷媒が過剰圧にならないようにするため
のものである。A heat-radiating heat exchanger 5 of the indoor unit 2 shown in FIG. 1 is for radiating high-pressure refrigerant (gas or liquid) sent from a pipe 9. This is for liquefying the refrigerant by releasing heat. The refrigerant tank 6 in FIG. 1 is for storing excess refrigerant among the refrigerants (liquids) sent from the heat-radiating heat exchanger 5 to the pressure reducing device 7 so that the refrigerant does not have an excessive pressure.
【0015】図1に示す減圧装置7は冷媒タンク6から
送り込まれる高圧冷媒(液体)を減圧するためのもので
あり、当該減圧装置7に送り込まれた高圧冷媒(液体)
はここで減圧されて気液二相の状態となって除湿用熱交
換器8に送り込まれる。除湿用熱交換器8は送り込まれ
た気液二相の冷媒中の冷媒液体が気化することによって
冷却され、ここを通過する空気を冷却除湿するものであ
る。除湿用熱交換器8を通過した低圧冷媒(気体)は配
管10を通って室外機の圧縮機3に戻り、そこで再び圧
縮される。The decompression device 7 shown in FIG. 1 is for decompressing the high-pressure refrigerant (liquid) sent from the refrigerant tank 6, and the high-pressure refrigerant (liquid) sent to the decompression device 7 is used.
Here, the pressure is reduced to a gas-liquid two-phase state and sent to the dehumidifying heat exchanger 8. The dehumidifying heat exchanger 8 is cooled by vaporizing the refrigerant liquid in the gas-liquid two-phase refrigerant that has been sent, and cools and dehumidifies the air passing therethrough. The low-pressure refrigerant (gas) that has passed through the dehumidifying heat exchanger 8 returns to the outdoor unit compressor 3 through the pipe 10 and is compressed again there.
【0016】図1に示す様に室内機2の筐体の対向する
二面には吸入口30と吐出口31が設けられ、吐出口3
1の内側に配置された室内用送風機20を作動させると
吸入口30から室内の空気が吸入され、吸入された空気
は吸入口30の内側に配置された除湿用熱交換器8、そ
れよりも吐出口31寄りに配置された放熱用熱交換器5
の順でこれらを通過して吐出口31から吐出されて室内
に戻されるようにしてある。As shown in FIG. 1, a suction port 30 and a discharge port 31 are provided on two opposing surfaces of the housing of the indoor unit 2.
When the indoor blower 20 disposed inside the air conditioner 1 is operated, indoor air is sucked from the suction port 30, and the sucked air is dehumidified by the heat exchanger 8 disposed inside the suction port 30. Heat exchanger 5 for heat radiation arranged near discharge port 31
, And is discharged from the discharge port 31 and returned to the room.
【0017】図1では吸入口30の近傍に設けた湿度セ
ンサ22により吸入口30から吸入される室内空気の湿
度(実際の室内湿度)が検出され、検出された室内湿度
と湿度設定器25により設定された設定湿度とが比較さ
れ、両湿度差に基づいて電源回路のスイッチ24が開閉
され、圧縮機3が作動(ON)、停止(OFF)するよ
うにしてある。具体的には検出された実際の室内湿度が
設定湿度よりも高い時はスイッチ24が閉じ、圧縮機3
へ電源が供給されて同圧縮機3が作動し、低い場合はス
イッチ24が開いて圧縮機3への電源供給が解除され、
同圧縮機3が停止する。In FIG. 1, the humidity (actual room humidity) of the room air sucked from the suction port 30 is detected by the humidity sensor 22 provided near the suction port 30, and the detected room humidity and the humidity setting unit 25 detect the humidity. The set humidity is compared with the set humidity, and the switch 24 of the power supply circuit is opened and closed based on the difference between the two humidity, and the compressor 3 is operated (ON) and stopped (OFF). Specifically, when the detected actual indoor humidity is higher than the set humidity, the switch 24 is closed and the compressor 3
When the power is supplied to the compressor 3 and the compressor 3 operates, the switch 24 is opened and the power supply to the compressor 3 is released when the power is low,
The compressor 3 stops.
【0018】また、図1では吸入口30の近くに設けた
温度センサ21により吸入口30から吸入される空気の
温度(実際の室内温度)が検出され、検出された室内温
度と温度設定器23により設定された設定温度とが比較
され、両温度差に基づいて室外機1の室外用送風機13
がON/OFFされ、且つ制御弁12が開/閉されるよ
うにしてある。具体的には前記圧縮機3の作動中に温度
設定器23において前記両温度が比較され、検出された
室内温度が設定値よりも高い場合は図示されていない制
御装置によって送風機13がONされ、且つ制御弁12
が閉じられて除湿冷房運転となり、低い場合には同制御
装置によって送風機13がOFFされ、且つ制御弁弁1
2が開となって除湿暖房運転となるようにしてある。In FIG. 1, the temperature (actual room temperature) of the air taken in from the suction port 30 is detected by a temperature sensor 21 provided near the suction port 30, and the detected room temperature and the temperature setting unit 23 are detected. Is compared with the set temperature set by the external air blower 13 of the outdoor unit 1 based on the temperature difference.
Are turned ON / OFF, and the control valve 12 is opened / closed. Specifically, the two temperatures are compared in the temperature setting device 23 during the operation of the compressor 3, and when the detected room temperature is higher than the set value, the blower 13 is turned on by a control device (not shown), And control valve 12
Is closed to operate the dehumidifying / cooling operation, and when it is low, the blower 13 is turned off by the control device and the control valve 1
2 is opened to perform the dehumidifying and heating operation.
【0019】図1の冷媒タンク6の容積(そこに溜めら
れる冷媒の最大量)Aは、冷媒飽和液35℃の状態で、
室外機1の放熱用熱交換器4の容積B、同放熱用熱交換
機4の出口から室内機2の放熱用熱交換器5の入口まで
の容積C、同放熱用熱交換器5の容積Dと次の関係を満
たすように設定されている。これら数値は運転状態の冷
媒量の分布から算出したものである。 容積A=(容積B×0.5+容積C+容積D×0.2)
×(1±0.1)The volume A of the refrigerant tank 6 (maximum amount of refrigerant stored therein) A in FIG.
The volume B of the heat exchanger 4 for heat radiation of the outdoor unit 1, the volume C from the outlet of the heat exchanger 4 for heat radiation to the inlet of the heat exchanger 5 for heat radiation of the indoor unit 2, and the volume D of the heat exchanger 5 for heat radiation. Is set so as to satisfy the following relationship. These numerical values are calculated from the distribution of the refrigerant amount in the operating state. Volume A = (Volume B × 0.5 + Volume C + Volume D × 0.2)
× (1 ± 0.1)
【0020】図1に示す本発明の分離型空調機の動作を
除湿冷房運転時と除湿暖房運転時に分けて以下に説明す
る。The operation of the separation type air conditioner of the present invention shown in FIG. 1 will be described below for the dehumidifying cooling operation and the dehumidifying heating operation separately.
【0021】(除湿冷房運転時) 1.図1の制御弁12を閉じた状態で圧縮機3を作動さ
せて高圧冷媒(気体)を放熱用熱交換器4に送り込む
と、その冷媒は送風機13によって冷却されている放熱
用熱交換器4において放熱し液化する。 2.液化した冷媒は配管9を通過して室内機2の放熱用
熱交換器5に流入し、ここで若干放熱する。 3.放熱用熱交換器5を通過した冷媒(液体)はその先
の冷媒タンク6に流入するが、当該冷媒タンク6には殆
ど溜まることなくその先の減圧装置7に流入して減圧さ
れ、気液二相の状態となる。 4.気液二相の状態となった冷媒はその先の除湿用熱交
換器8に流入し、当該熱交換器8の管内で気化すること
によって周囲の熱を奪って同熱交換器8を冷却する。こ
のとき室内機2の送風機20によって吸入口30から吸
入されて除湿用熱交換器8を通過する室内空気が冷却除
湿される。除湿された空気は当該除湿用熱交換器8の後
方の放熱用熱交換器5を通過するが、同熱交換器5では
前記した様に冷媒の放熱が殆ど無いため、除湿済みの空
気は僅かに加温されるだけで吐出口31から吐き出され
る。従って、熱的には外部からの電気エネルギーと冷却
除湿のエネルギーの大部分は室外機1の放熱用熱交換器
4から外気中に放熱され、室内では除湿及び冷房が行わ
れる。(During dehumidifying cooling operation) When the compressor 3 is operated and the high-pressure refrigerant (gas) is sent to the heat-radiating heat exchanger 4 with the control valve 12 shown in FIG. 1 closed, the refrigerant is cooled by the blower 13. And liquefaction. 2. The liquefied refrigerant passes through the pipe 9 and flows into the heat-radiating heat exchanger 5 of the indoor unit 2, where the refrigerant radiates slightly. 3. The refrigerant (liquid) that has passed through the heat exchanger 5 for heat radiation flows into the refrigerant tank 6 ahead of it, but flows into the decompression device 7 ahead of the refrigerant tank 6 without being accumulated in the refrigerant tank 6, and is decompressed. It becomes a two-phase state. 4. The refrigerant in a gas-liquid two-phase state flows into the dehumidifying heat exchanger 8 and vaporizes in the tubes of the heat exchanger 8, thereby removing surrounding heat and cooling the heat exchanger 8. . At this time, the indoor air sucked from the inlet 30 by the blower 20 of the indoor unit 2 and passing through the dehumidifying heat exchanger 8 is cooled and dehumidified. The dehumidified air passes through the heat exchanger 5 for heat radiation behind the heat exchanger 8 for dehumidification, but the heat exchanger 5 has almost no heat radiation of the refrigerant as described above. Is discharged from the discharge port 31 only by heating. Therefore, most of the electrical energy from the outside and the energy for cooling and dehumidifying heat are radiated to the outside air from the heat radiating heat exchanger 4 of the outdoor unit 1, and dehumidifying and cooling are performed indoors.
【0022】(除湿暖房運転時) 1.図1の制御弁12を開いた状態で圧縮機3を作動さ
せて高圧冷媒(気体)をバイパス11を介して直接配管
9に送り込むと、若干の冷媒は放熱用熱交換器4に流入
するが、送風機13は作動していないため殆ど放熱せず
に気体の状態のまま配管9において前記パイパス11か
らの冷媒と合流する。 2.冷媒(気体)は配管9を通過して室内機2の放熱用
熱交換器5に流入し、ここで放熱して液化する。 3.放熱用熱交換器5を通過した冷媒(液体)はその先
の冷媒タンク6に流入するが、当該冷媒タンク6には殆
ど溜まることなくその先の減圧装置7に流入して減圧さ
れ、気液二相の状態となる。 4.気液二相の状態となった冷媒はその先の除湿用熱交
換器8に流入し、当該熱交換器8の管内で気化すること
によって周囲の熱を奪って同熱交換器8を冷却する。こ
れによって、室内機2の送風機20の作用によって吸入
口30から吸入されて除湿用熱交換器8を通過する室内
空気が冷却除湿される。除湿された空気は当該除湿用熱
交換器8の後方の放熱用熱交換器5を通過するときに、
同熱交換器5から放出される熱によって加温されて吐出
口31から吐き出される。従って、熱的には外部からの
電気エネルギーと冷却除湿のエネルギーの大部分は室内
機2の放熱用熱交換器5において除湿済みの空気に戻さ
れるので室内では除湿及び暖房が行われる。(During dehumidifying and heating operation) When the compressor 3 is operated and the high-pressure refrigerant (gas) is sent directly to the pipe 9 via the bypass 11 with the control valve 12 shown in FIG. 1 open, some refrigerant flows into the heat exchanger 4 for heat radiation. Since the blower 13 is not operated, the blower 13 hardly dissipates heat and merges with the refrigerant from the bypass 11 in the pipe 9 in a gaseous state. 2. The refrigerant (gas) passes through the pipe 9 and flows into the heat-radiating heat exchanger 5 of the indoor unit 2, where it radiates heat and is liquefied. 3. The refrigerant (liquid) that has passed through the heat exchanger 5 for heat radiation flows into the refrigerant tank 6 ahead of it, but flows into the decompression device 7 ahead of the refrigerant tank 6 without being accumulated in the refrigerant tank 6, and is decompressed. It becomes a two-phase state. 4. The refrigerant in a gas-liquid two-phase state flows into the dehumidifying heat exchanger 8 and vaporizes in the tubes of the heat exchanger 8, thereby removing surrounding heat and cooling the heat exchanger 8. . This cools and dehumidifies the indoor air sucked from the suction port 30 and passing through the dehumidifying heat exchanger 8 by the action of the blower 20 of the indoor unit 2. When the dehumidified air passes through the heat radiation heat exchanger 5 behind the heat exchanger 8 for dehumidification,
It is heated by the heat released from the heat exchanger 5 and is discharged from the discharge port 31. Therefore, most of the electrical energy from the outside and the energy of the cooling and dehumidifying heat are returned to the dehumidified air in the heat-radiating heat exchanger 5 of the indoor unit 2, so that the dehumidifying and heating are performed indoors.
【0023】除湿冷房運転と除湿暖房運転は、前記温度
センサ21及び温度設定器23によって検出される室内
温度と設定温度との差に基づいて送風機13をON/O
FF、制御弁12を開/閉することによって自動切替さ
れて室内温度が設定温度に維持されるようにしてある。
また、除湿冷房運転時も除湿暖房運転時も前記湿度セン
サ22及び湿度設定器25によって検出される室内湿度
と設定湿度との差に基づいて圧縮機3を適宜ON/OF
Fする(スイッチ24を開閉する)ことで除湿機能を作
動・停止して室内湿度が設定湿度に維持されるようにし
てある。なお、任意に除湿冷房運転か、除湿暖房運転か
のいずれかに固定することもできる。In the dehumidifying cooling operation and the dehumidifying heating operation, the blower 13 is turned on / off based on the difference between the room temperature detected by the temperature sensor 21 and the temperature setting unit 23 and the set temperature.
The automatic switching is performed by opening / closing the FF and the control valve 12, so that the room temperature is maintained at the set temperature.
Further, in both the dehumidifying cooling operation and the dehumidifying heating operation, the compressor 3 is appropriately turned ON / OF based on the difference between the indoor humidity detected by the humidity sensor 22 and the humidity setting device 25 and the set humidity.
By performing F (opening / closing the switch 24), the dehumidification function is activated / stopped so that the room humidity is maintained at the set humidity. In addition, it can also be arbitrarily fixed to either the dehumidifying cooling operation or the dehumidifying heating operation.
【0024】(実施形態2)前記冷媒タンク6の容積A
に関する数値は一例であり、必ずしも前記数値に限定さ
れるものではない。但し、容積が小さすぎると冷媒の過
剰圧を防止するという当該冷媒タンク6の機能が十分に
発揮されず、大きすぎると必要な冷媒量が多くなった
り、コストが高くなったりするので、これらのバランス
を考慮して好適な容積とすることが必要である。(Embodiment 2) Volume A of the refrigerant tank 6
The numerical value regarding is an example, and is not necessarily limited to the above numerical value. However, if the volume is too small, the function of the refrigerant tank 6 to prevent the excess pressure of the refrigerant is not sufficiently exhibited, and if the volume is too large, the required amount of the refrigerant increases or the cost increases. It is necessary to set a suitable volume in consideration of balance.
【0025】[0025]
【発明の効果】本件出願の第1の分離型空調機には次の
ような効果がある。 1.室内機における熱交換器の装置露点温度が上昇する
ことがないので、従来のエアコンのように除湿能力が低
下することがない。 2.室外機と室内機が分離しているので、従来の一体型
の除湿専用機のように発生する熱によって室内を暖房し
てしまうこともない。 3.冷房気味の除湿と暖房気味の除湿の双方を行うこと
が可能なので、潜熱負荷が多く顕熱負荷が少ない厨房や
そのバックヤードの空調、温度を上げることなく湿度を
下げる必要がある室内の空調、除湿能力の低い分離型空
調機を使用している場合の潜熱負荷専用除湿機として極
めて有用である。The first separation type air conditioner of the present application has the following effects. 1. Since the device dew point temperature of the heat exchanger in the indoor unit does not increase, the dehumidifying ability does not decrease unlike a conventional air conditioner. 2. Since the outdoor unit and the indoor unit are separated from each other, the room is not heated by the heat generated as in the conventional integrated-type dehumidifier. 3. Since it is possible to perform both dehumidification of cooling and dehumidification of heating, air conditioning of kitchens and their backyards with large latent heat load and small sensible heat load, indoor air conditioning that needs to reduce humidity without raising temperature, This is extremely useful as a dehumidifier exclusively for latent heat load when a separation type air conditioner having a low dehumidifying capacity is used.
【0026】本件出願の第2の分離型空調機は、室外機
に冷媒が放熱用熱交換器を迂回するためのバイパスと、
同バイパスへの冷媒の流入・停止を制御する制御弁が設
けられ、制御弁は設定室内温度と実際の室内温度との差
に基づいて自動的に開閉されるので、自動的に除湿冷房
運転と除湿暖房運転が切り替えられ、室内が常に所望の
湿度及び温度に維持される。[0026] The second separation type air conditioner of the present application includes a bypass for allowing the refrigerant to bypass the heat radiating heat exchanger to the outdoor unit;
A control valve is provided to control the flow of refrigerant into and out of the bypass, and the control valve is automatically opened and closed based on the difference between the set room temperature and the actual room temperature. The dehumidifying and heating operation is switched, and the room is always maintained at the desired humidity and temperature.
【0027】本件出願の第3の分離型空調機は、室外機
に放熱用熱交換器を強制冷却する送風機が設けられてい
るので、前記放熱用熱交換器における冷媒の放熱が高効
率で、且つ安定して行われるので、除湿機能及び冷暖房
機能が向上し、且つ安定する。さらに前記送風機が設定
室内温度と実際の室内温度との差に基づいて制御される
ので、前記効果を特別な操作をすることなく得ることが
できる。In the third separation type air conditioner of the present application, since the outdoor unit is provided with a blower for forcibly cooling the heat radiating heat exchanger, the heat radiation of the refrigerant in the heat radiating heat exchanger is highly efficient. And since it is performed stably, the dehumidifying function and the cooling / heating function are improved and stabilized. Further, since the blower is controlled based on the difference between the set room temperature and the actual room temperature, the effect can be obtained without any special operation.
【0028】本件出願の第4の分離型空調機は、冷媒タ
ンクの容積Aが、放熱用熱交換器の容積Bと、放熱用熱
交換機の出口から放熱用熱交換器の入口までの容積C
と、放熱用熱交換器の容積Dと 容積A=(容積B×0.5+容積C+容積D×0.2)
×(1±0.1) の関係にあるので、冷媒の過剰圧を防止するという当該
冷媒タンクの機能が十分に発揮され、冷媒量が多くなっ
たり、コストが高くなったりするといった問題も発生し
ない。In the fourth separation type air conditioner of the present application, the volume A of the refrigerant tank is equal to the volume B of the heat exchanger for heat radiation, and the volume C from the outlet of the heat exchanger for heat radiation to the inlet of the heat exchanger for heat radiation.
And the volume D of the heat exchanger for heat dissipation and the volume A = (volume B × 0.5 + volume C + volume D × 0.2)
× (1 ± 0.1), the function of the refrigerant tank to prevent the excess pressure of the refrigerant is sufficiently exhibited, and problems such as an increase in the amount of refrigerant and an increase in cost occur. do not do.
【図1】本発明の分離型空調機の構造を示す概略図。FIG. 1 is a schematic diagram showing the structure of a separation type air conditioner of the present invention.
【図2】従来の除湿機の一例を示す概略図。FIG. 2 is a schematic view showing an example of a conventional dehumidifier.
1 室外機 2 室内機 3 圧縮機 4 室外機の放熱用熱交換器 5 室内機の放熱用熱交換器 6 冷媒タンク 7 減圧装置 8 除湿用熱交換器 9 配管 10 配管 11 バイパス 12 制御弁 13 送風機 DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Indoor unit 3 Compressor 4 Heat radiator for outdoor unit 5 Heat radiator for indoor unit 6 Refrigerant tank 7 Decompression device 8 Dehumidification heat exchanger 9 Pipe 10 Pipe 11 Bypass 12 Control valve 13 Blower
Claims (4)
た分離空調機において、室外機(1)は圧縮機(3)と
放熱用熱交換器(4)を備え、室内機(2)は放熱用熱
交換器(5)と冷媒タンク(6)と減圧装置(7)と除
湿用熱交換器(8)を備え、前記室外機(1)における
放熱用熱交換器(4)と室内機(2)における放熱用熱
交換器(5)とが配管(9)により接続され、前記圧縮
機(3)と除湿用熱交換器(8)とが他の配管(10)
により接続されて室外機(1)と室内機(2)との間を
冷媒が循環し、室内空気は前記除湿用熱交換器(8)を
通過して除湿された後に放熱用熱交換器(5)を通過す
るようにしたことを特徴とする分離型空調機。In a separate air conditioner separated into an outdoor unit (1) and an indoor unit (2), the outdoor unit (1) includes a compressor (3) and a heat exchanger for heat dissipation (4). The unit (2) includes a heat exchanger for radiation (5), a refrigerant tank (6), a decompression device (7), and a heat exchanger for dehumidification (8), and the heat exchanger for radiation in the outdoor unit (1). 4) and a heat-radiating heat exchanger (5) in the indoor unit (2) are connected by a pipe (9), and the compressor (3) and the dehumidifying heat exchanger (8) are connected to another pipe (10).
And the refrigerant circulates between the outdoor unit (1) and the indoor unit (2), and the indoor air passes through the dehumidification heat exchanger (8) and is dehumidified, and then the heat radiation heat exchanger ( 5) A separation type air conditioner characterized by passing through.
外機(1)に、冷媒が放熱用熱交換器(4)を迂回する
ためのバイパス(11)と、同バイパス(11)への冷
媒の流入・停止を制御する制御弁(12)が設けられ、
制御弁(12)は設定室内温度と実際の室内温度との差
に基づいて自動的に開閉されることを特徴とする分離型
空調機。2. The separation type air conditioner according to claim 1, wherein the outdoor unit (1) includes a bypass (11) through which the refrigerant bypasses the heat-exchanging heat exchanger (4) and a bypass (11). A control valve (12) for controlling the inflow / stop of the refrigerant is provided,
The separation type air conditioner, wherein the control valve (12) is automatically opened and closed based on a difference between a set room temperature and an actual room temperature.
において、室外機(1)に送風機(13)が設けられ、
送風機(13)は設定室内温度と実際の室内温度との差
に基づいて運転・停止が制御されることを特徴とする分
離型空調機。3. An air conditioner according to claim 1, wherein the outdoor unit (1) is provided with a blower (13),
The separation type air conditioner is characterized in that operation and stop of the blower (13) is controlled based on a difference between a set indoor temperature and an actual indoor temperature.
分離型空調機において、冷媒タンク(6)の容積Aが、
室外機(1)における放熱用熱交換器(4)の容積B
と、同放熱用熱交換機(4)の出口から室内機(2)に
おける放熱用熱交換器(5)の入口までの容積Cと、同
放熱用熱交換器(5)の容積Dと次の関係にあることを
特徴とする分離型空調機。容積A=(容積B×0.5+
容積C+容積D×0.2)×(1±0.1)4. A separation type air conditioner according to claim 1, wherein the volume A of the refrigerant tank (6) is:
Volume B of heat exchanger (4) for heat radiation in outdoor unit (1)
And the volume C from the outlet of the heat-radiating heat exchanger (4) to the inlet of the heat-radiating heat exchanger (5) in the indoor unit (2), the volume D of the heat-radiating heat exchanger (5), and the following: A separation type air conditioner characterized by having a relationship. Volume A = (Volume B × 0.5 +
Volume C + Volume D × 0.2) × (1 ± 0.1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000060930A JP2001248938A (en) | 2000-03-06 | 2000-03-06 | Separate air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000060930A JP2001248938A (en) | 2000-03-06 | 2000-03-06 | Separate air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001248938A true JP2001248938A (en) | 2001-09-14 |
Family
ID=18581165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000060930A Pending JP2001248938A (en) | 2000-03-06 | 2000-03-06 | Separate air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001248938A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080289352A1 (en) * | 2005-11-29 | 2008-11-27 | Marc Hugues Parent | Machine for Producing Water form Wind Energy |
WO2013089179A1 (en) * | 2011-12-13 | 2013-06-20 | ダイキン工業株式会社 | Refrigeration device |
-
2000
- 2000-03-06 JP JP2000060930A patent/JP2001248938A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080289352A1 (en) * | 2005-11-29 | 2008-11-27 | Marc Hugues Parent | Machine for Producing Water form Wind Energy |
US8820107B2 (en) * | 2005-11-29 | 2014-09-02 | Marc Hugues Parent | Machine for producing water for wind energy |
WO2013089179A1 (en) * | 2011-12-13 | 2013-06-20 | ダイキン工業株式会社 | Refrigeration device |
JP2013124791A (en) * | 2011-12-13 | 2013-06-24 | Daikin Industries Ltd | Refrigerating device |
AU2012353397A1 (en) * | 2011-12-13 | 2014-08-07 | Daikin Industries, Ltd. | Refrigeration Apparatus |
AU2012353397B2 (en) * | 2011-12-13 | 2014-09-25 | Daikin Industries, Ltd. | Refrigeration Apparatus |
US9464830B2 (en) | 2011-12-13 | 2016-10-11 | Daikin Industries, Ltd. | Refrigeration apparatus for executing a pump down |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5068235B2 (en) | Refrigeration air conditioner | |
JP6494765B2 (en) | Air conditioning system | |
JP4864109B2 (en) | Air conditioning apparatus and control method thereof | |
JP7113659B2 (en) | air conditioner | |
CN111189131A (en) | Low-ring-temperature air temperature and humidity adjusting device | |
JP2004020085A (en) | Hot water supply/air conditioner | |
JP2022052743A (en) | Multi-air conditioner for heating, cooling and ventilation | |
US11333416B2 (en) | Vapor compression system with compressor control based on temperature and humidity feedback | |
KR20090006334U (en) | Air conditioner | |
KR100667517B1 (en) | Air conditioners with variable displacement compressors | |
JP2003139436A (en) | Air conditioner | |
JP2001248938A (en) | Separate air conditioner | |
JP2001090990A (en) | Dehumidifier | |
CN114198808A (en) | Reheating type passive environmental control integrated machine set | |
JP2010281502A (en) | Humidifier | |
JP3488763B2 (en) | Air conditioner | |
JP2004177064A (en) | Air conditioner | |
JP2001227841A (en) | Multi-room type air conditioner | |
JP2006194525A (en) | Multi-chamber type air conditioner | |
JP7491334B2 (en) | Air conditioners | |
JP7587471B2 (en) | Air conditioner indoor unit | |
JP7633925B2 (en) | Air Conditioning Equipment | |
WO2024023916A1 (en) | Air conditioner | |
JP4572470B2 (en) | Operation control method of air conditioner | |
CN1826498A (en) | Humidity control utilizing heat pump concept |