[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001139960A - Conversion of heavy oil to light oil and its unit - Google Patents

Conversion of heavy oil to light oil and its unit

Info

Publication number
JP2001139960A
JP2001139960A JP32165699A JP32165699A JP2001139960A JP 2001139960 A JP2001139960 A JP 2001139960A JP 32165699 A JP32165699 A JP 32165699A JP 32165699 A JP32165699 A JP 32165699A JP 2001139960 A JP2001139960 A JP 2001139960A
Authority
JP
Japan
Prior art keywords
gas
oil
water
heavy oil
light oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32165699A
Other languages
Japanese (ja)
Other versions
JP3900764B2 (en
Inventor
Takeyoshi Den
建順 傳
Ko Hatakeyama
耕 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP32165699A priority Critical patent/JP3900764B2/en
Publication of JP2001139960A publication Critical patent/JP2001139960A/en
Application granted granted Critical
Publication of JP3900764B2 publication Critical patent/JP3900764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the conversion efficiency to light oil, simultaneously perform processes of a desulfurization and light oil formation and suppress the yield of cokes. SOLUTION: This method for forming the light oil comprises a process of reacting a heavy oil containing sulfur with water in a reactor 14 to which carbon monoxide is supplied under pressure at 380-450 deg.C and 25-35 MPa for converting the heavy oil to the light oil to produce the light oil, a process of separating the obtained product mixture to the light oil, a gas and water, and a process of desulfurizing the sulfur content contained in the gas by adding a sulfur-absorbing agent to the gas. The unit is equipped with a mixer 10 for forming an emulsion of the heavy oil containing sulfur with water, a reactor for converting the heavy oil contained in the heavy oil emulsion to the light oil for yielding the light oil, a pump 19 for supplying pressurized carbon monoxide at 25-35 MPa, a gas, oil and water separator 23 for separating the light oil, the gas and water from the produced mixture, and a desulfurizing vessel 36 for desulfurizing the sulfur content contained in the gas by adding the sulfur- absorbing agent to the separated gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超臨界水中で重質油
を軽質化する方法及びその装置に関する。
The present invention relates to a method and an apparatus for lightening heavy oil in supercritical water.

【0002】[0002]

【従来の技術】石油成分のうち硫黄を多く含む重質油は
その用途が少なく余剰となりつつある。このため重質油
を用途の多いクリーンな軽質油に転換する技術が近年注
目されている。従来の重質油を軽質化する方法では、高
温高圧の水素ガス雰囲気下で、重質油を高価な貴金属や
Ni、Mo等の金属触媒に接触させて重質油を熱分解す
るとともに水素化することにより軽質油に転換し、更に
脱硫することによりクリーンな軽質油にしている。しか
し上記従来の方法は、重質油の熱分解と水素化工程で多
量の水素を必要とするため、第一に水素製造装置が不可
欠であること、第二に水素ガスと一緒に供給された水な
どの水素以外の物質が金属触媒表面に吸着又は反応する
被毒現象によって金属触媒の寿命が短いなどの問題点が
あった。
2. Description of the Related Art Heavy oils containing a large amount of sulfur among petroleum components are becoming less useful because of their limited use. For this reason, a technique for converting heavy oil into clean light oil with many uses has been attracting attention in recent years. In the conventional method for lightening heavy oil, heavy oil is brought into contact with expensive noble metals or metal catalysts such as Ni and Mo under a high-temperature and high-pressure hydrogen gas atmosphere to thermally decompose the heavy oil and hydrogenate it. By doing so, it is converted to light oil and further desulfurized to make clean light oil. However, the above-mentioned conventional method requires a large amount of hydrogen in the thermal cracking and hydrogenation steps of heavy oil, so that hydrogen production equipment is indispensable first, and hydrogen is supplied together with hydrogen gas. There is a problem that the life of the metal catalyst is short due to a poisoning phenomenon in which a substance other than hydrogen such as water is adsorbed or reacted on the metal catalyst surface.

【0003】一方、本出願人は重質油を軽質化して可燃
性ガスを生成するために、超臨界水中で水と重質油を反
応させることにより重質油を軽質化するガス化方法を提
案した(特開平11−246876号公報)。この方法
は超臨界水が重質油の重合を抑制する作用があり、コー
クスの生成量が従来と比較して少ないなどの利点を有し
ていることから有望な方法である。このガス化方法では
超臨界水中で重質油を軽質化するときに重質油の熱分解
反応や一次生成物に水素が添加する反応などが起きる。
前者の熱分解反応では重質油が熱分解して低分子化さ
れ、軽質油及び可燃性ガスが生成する。後者の水素添加
反応では、上記熱分解反応中に生成した一次生成物のラ
ジカルに水素原子が付加し、これにより熱分解種が安定
化する。また熱分解しない安定な分子と活性な水素との
反応も生じる。これらの反応は個別的に行われず、互い
に併発して複合的に行われ、軽質化が進行する。
On the other hand, the present applicant has proposed a gasification method for lightening heavy oil by reacting water and heavy oil in supercritical water in order to lighten heavy oil and generate flammable gas. It has been proposed (JP-A-11-246876). This method is a promising method because supercritical water has the effect of suppressing the polymerization of heavy oil and has the advantage that the amount of produced coke is smaller than before. In this gasification method, when lightening heavy oil in supercritical water, a thermal decomposition reaction of the heavy oil or a reaction of adding hydrogen to the primary product occurs.
In the former thermal decomposition reaction, heavy oil is thermally decomposed and depolymerized to generate light oil and flammable gas. In the latter hydrogenation reaction, a hydrogen atom is added to the radical of the primary product generated during the thermal decomposition reaction, whereby the thermal decomposition species is stabilized. In addition, a reaction occurs between a stable molecule that does not thermally decompose and active hydrogen. These reactions are not performed individually, but are performed concurrently and in a complex manner, and lightening proceeds.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開平
11−246876号公報に示される方法は可燃性ガス
を生成することを主目的とし、重質油から軽質油に効率
よく転換することができなかった。またこの方法では、
超臨界水中での熱分解反応により生成した一次生成物の
水素添加反応に必要な水素量が少なく、重質油の軽質化
を必ずしも十分に行うことができない問題点があった。
本発明の目的は、軽質油への転換効率が高い重質油の軽
質化方法及びその装置を提供することにある。本発明の
別の発明は、脱硫と軽質化のプロセスを同時に行う重質
油の軽質化方法及びその装置を提供することにある。本
発明の更に別の発明は、コークスの生成量を更に抑える
重質油の軽質化方法及びその装置を提供することにあ
る。
However, the method disclosed in Japanese Patent Application Laid-Open No. H11-246876 has a main object of producing a flammable gas, and cannot efficiently convert heavy oil to light oil. Was. Also in this method,
The amount of hydrogen required for the hydrogenation reaction of the primary product generated by the thermal decomposition reaction in supercritical water was small, and there was a problem that the lightening of heavy oil could not always be performed sufficiently.
An object of the present invention is to provide a method for lightening heavy oil having a high conversion efficiency to light oil and an apparatus therefor. Another object of the present invention is to provide a heavy oil lightening method and apparatus for simultaneously performing desulfurization and lightening processes. Still another aspect of the present invention is to provide a method and a device for lightening heavy oil, which further suppresses the amount of coke produced.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
硫黄分を含む重質油と水とを380〜450℃、25〜
35MPaに維持された反応器で反応させて重質油を軽
質化して軽質油を生成する工程と、軽質油とガスと水を
含む混合物から軽質油とガスと水とにそれぞれ分離する
工程とを含む重質油の軽質化方法において、反応器に一
酸化炭素を25〜35MPaの圧力で供給することを特
徴とする重質油の軽質化方法である。請求項1に係る発
明では、反応器内に一酸化炭素を圧力供給することによ
り水性ガスシフト反応を促進させ、十分な転換軽質化を
行う。
The invention according to claim 1 is
Heavy oil containing sulfur and water at 380-450 ° C, 25-
Reacting in a reactor maintained at 35 MPa to lighten heavy oil to produce light oil, and separating the light oil, gas and water from a mixture containing light oil, gas and water, respectively. A method for lightening heavy oils, comprising supplying carbon monoxide to a reactor at a pressure of 25 to 35 MPa. In the invention according to claim 1, the water gas shift reaction is promoted by pressure-supplying carbon monoxide into the reactor, and sufficient conversion and lightening are performed.

【0006】請求項2に係る発明は、請求項1に係る発
明であって、分離したガスに硫黄吸収剤を添加してガス
に含まれる硫黄分を脱硫する工程を更に含む重質油の軽
質化方法である。請求項2に係る発明では、分離したガ
スに硫黄吸収剤を加えることにより硫黄分を含まない排
ガスを回収することができる。
A second aspect of the present invention is the invention of the first aspect, further comprising a step of adding a sulfur absorbent to the separated gas to desulfurize the sulfur contained in the gas. Method. In the invention according to claim 2, by adding the sulfur absorbent to the separated gas, it is possible to recover the exhaust gas containing no sulfur.

【0007】請求項3に係る発明は、図1に示すよう
に、硫黄分を含む重質油と水のエマルジョンを生成する
ミキサー10と、ミキサー10で生成された重質油エマ
ルジョンに含まれる重質油を380〜450℃、25〜
35MPaで軽質化して軽質油を生成する反応器14
と、反応器14に一酸化炭素を25〜35MPaの圧力
で供給するポンプ19と、反応器14で生成した軽質油
とガスと水を含む混合物から軽質油とガスと水とに分離
する気油水分離器23とを備えた重質油の軽質化装置で
ある。請求項3に係る発明では、この装置では重質油よ
り生成した混合物をそれぞれ軽質油とガスと水とに分離
して、軽質油及びガスをそれぞれ回収する。
As shown in FIG. 1, the invention according to claim 3 is a mixer 10 for producing an emulsion of heavy oil containing sulfur and water, and a heavy oil contained in the heavy oil emulsion produced by the mixer 10. Quality oil at 380-450 ° C, 25-
Reactor 14 for lightening at 35 MPa to produce light oil
A pump 19 for supplying carbon monoxide to the reactor 14 at a pressure of 25 to 35 MPa; and a gas-oil water for separating light oil, gas and water from a mixture containing light oil, gas and water generated in the reactor 14. This is a heavy oil lightening device provided with a separator 23. According to the third aspect of the present invention, the apparatus separates a mixture generated from heavy oil into light oil, gas and water, respectively, and recovers light oil and gas, respectively.

【0008】請求項4に係る発明は、請求項3に係る発
明であって、図1に示すように、気油水分離器23で分
離した水をポンプ42を介して反応器14とミキサー1
0にそれぞれ供給するように構成された重質油の軽質化
装置である。請求項4に係る発明では、分離した水には
2Sが溶解しており、このH2Sが溶解している水は反
応器14、ミキサー10にそれぞれ送込まれ、水は反応
溶媒として、H2Sは触媒として再利用される。
The invention according to claim 4 is the invention according to claim 3, wherein the water separated by the gas oil / water separator 23 is connected to the reactor 14 and the mixer 1 through a pump 42 as shown in FIG.
0 is a heavy oil lightening device configured to supply each of the fuel oils. In the invention according to claim 4, the separated water and dissolved H 2 S, water which the H 2 S is dissolved is incorporated sent respectively to the reactor 14, a mixer 10, water as the reaction solvent , H 2 S are recycled as catalyst.

【0009】請求項5に係る発明は、請求項3に係る発
明であって、図1に示すように、分離したガスに硫黄吸
収剤を添加してガスに含まれる硫黄分を脱硫する脱硫器
36を更に含む重質油の軽質化装置である。請求項5に
係る発明では、分離したガスを硫黄吸収剤により脱硫し
て回収する。
The invention according to claim 5 is the invention according to claim 3, as shown in FIG. 1, in which a sulfur absorbent is added to the separated gas to desulfurize the sulfur contained in the gas. 36 is a heavy oil lightening apparatus further comprising: In the invention according to claim 5, the separated gas is desulfurized and recovered by the sulfur absorbent.

【0010】[0010]

【発明の実施の形態】本実施の形態を図面に基づいて詳
しく説明する。重質油の軽質化装置は、図1に示すよう
に、水と重質油を混合するミキサー10を有する。ミキ
サー10により混合された水と重質油はエマルジョンに
なる。このエマルジョンは重質油100重量%に対して
30〜60重量%の水を添加して調製される。このミキ
サー10は管路11、ポンプ12及び管路13を介して
反応器14下部に設けられた被処理液供給口16に接続
される。ミキサー10の外周にはヒーター10aが、ま
たその内部には撹拌器10bが設けられる。反応器14
は耐熱耐圧製であり両端が封止され少なくとも600℃
の温度と40MPaの圧力に耐え得る円筒体に形成され
る。反応器14の外周部には保温又は加熱のための図示
しないヒータが設けられる。
Embodiments of the present invention will be described in detail with reference to the drawings. The heavy oil lightening apparatus has a mixer 10 for mixing water and heavy oil, as shown in FIG. The water and heavy oil mixed by the mixer 10 become an emulsion. This emulsion is prepared by adding 30 to 60% by weight of water to 100% by weight of heavy oil. The mixer 10 is connected via a pipe 11, a pump 12 and a pipe 13 to a liquid supply port 16 provided below the reactor 14. A heater 10a is provided on the outer periphery of the mixer 10, and a stirrer 10b is provided inside the heater 10a. Reactor 14
Is heat-resistant and pressure-resistant, both ends are sealed and at least 600 ° C
And a pressure of 40 MPa. A heater (not shown) for keeping heat or heating is provided on the outer peripheral portion of the reactor 14.

【0011】本発明の反応器14内の条件は380〜4
50℃の温度でかつ25〜35MPaの圧力である。好
ましくは380〜420℃、25〜30MPaである。
380℃未満、25MPa未満では軽質化が不十分であ
り、450℃を越えるとコークスが多量に生成する不具
合が生じる。また35MPaを越えると反応器14に負
担がかかり過ぎるようになる。本発明の特徴ある構成は
反応器14下部にCO供給口17が設けられ、この供給
口17に管路18を介してブースターポンプ19が接続
されたことにある。COは反応器14内と同圧で供給さ
れる。供給するCOの量は被処理液中に含まれる炭素に
対するモル比率(以下、CO/Cという。)が0.1〜
0.4であることが好ましい。
The conditions in the reactor 14 of the present invention are 380-4
At a temperature of 50 ° C. and a pressure of 25-35 MPa. Preferably it is 380-420 degreeC and 25-30 MPa.
If the temperature is lower than 380 ° C. or less than 25 MPa, lightening is insufficient, and if the temperature is higher than 450 ° C., a problem that a large amount of coke is generated occurs. On the other hand, if it exceeds 35 MPa, the reactor 14 will be overloaded. A characteristic configuration of the present invention is that a CO supply port 17 is provided below the reactor 14, and a booster pump 19 is connected to the supply port 17 via a pipe 18. CO is supplied at the same pressure as in the reactor 14. The amount of CO to be supplied is such that the molar ratio to carbon contained in the liquid to be treated (hereinafter referred to as CO / C) is 0.1 to 0.1.
Preferably it is 0.4.

【0012】反応器14頂部には生成混合物取出口21
が、底部には水供給口22が設けられる。取出口21に
は気油水分離器23が管路24を介して接続される。管
路24の途中には冷却器26が設けられる。気油水分離
器23は縦長の密閉したチャンバーであり、上段、中段
及び下段にそれぞれガス取出口23a、軽質油取出口2
3b、水取出口23cが設けられる。分離器23の外壁
には、ガス取出口23aと軽質油取出口23bの間に第
1パイプ27が接続される。パイプ27の途中には第1
レベルゲージ28が設けられ、第1レベルゲージ28は
制御装置29の制御入力に接続される。また軽質油取出
口23bと水取出口23cの間に第2パイプ31が接続
される。パイプ31の途中には第2レベルゲージ32が
設けられ、レベルゲージ32は制御装置29の制御入力
に接続される。制御装置29の制御出力は後述する電磁
弁34、37、39にそれぞれ接続される。また第1パ
イプ27は分離器23の上段と中段を連通するように、
また第2パイプ31は分離器23の中段と下段を連通す
るようにそれぞれ設けられる。
At the top of the reactor 14 is a product mixture outlet 21.
However, a water supply port 22 is provided at the bottom. A gas-oil separator 23 is connected to the outlet 21 via a pipe 24. A cooler 26 is provided in the middle of the pipe 24. The gas-oil-water separator 23 is a vertically long, closed chamber, and includes a gas outlet 23a, a light oil outlet 2 in the upper, middle, and lower stages, respectively.
3b, a water outlet 23c is provided. A first pipe 27 is connected to an outer wall of the separator 23 between a gas outlet 23a and a light oil outlet 23b. In the middle of the pipe 27, the first
A level gauge 28 is provided, and the first level gauge 28 is connected to a control input of a control device 29. A second pipe 31 is connected between the light oil outlet 23b and the water outlet 23c. A second level gauge 32 is provided in the middle of the pipe 31, and the level gauge 32 is connected to a control input of the control device 29. The control output of the control device 29 is connected to solenoid valves 34, 37, and 39 to be described later. Also, the first pipe 27 communicates between the upper stage and the middle stage of the separator 23,
Further, the second pipes 31 are respectively provided so as to communicate the middle stage and the lower stage of the separator 23.

【0013】ガス取出口23aは管路33、電磁弁34
を介して脱硫器36下部に接続される。軽質油取出口2
3bは電磁弁37に接続される。分離器23の底部に設
けられた水取出口23cは、管路38、電磁弁39、管
路41を介してポンプ42に接続され、ポンプ42は管
路43、分配弁45、予熱器44を介して反応器14の
底部に設けられた水供給口22に接続される。分配弁4
5とミキサー10との間には管路46が接続される。脱
硫器36の底部には硫黄吸収剤を供給するための供給口
46が設けられ、脱硫器36上部には排出管47が設け
られ、この排出管47には減圧弁48が接続される。硫
黄吸収剤はNaOHやKOH、Ca(OH)2、Ba(O
H)2等を代表とするアルカリ水酸化物が含まれる水溶
液、メチルエチルアミン、ジエチルアミン、ジイソプロ
ピルアミン等のアルキルアミン類が含まれる水溶液等が
挙げられる。
The gas outlet 23a has a pipe 33, a solenoid valve 34,
Is connected to the lower part of the desulfurizer 36 via the. Light oil outlet 2
3b is connected to the solenoid valve 37. The water outlet 23c provided at the bottom of the separator 23 is connected to a pump 42 via a pipe 38, a solenoid valve 39, and a pipe 41. The pump 42 connects a pipe 43, a distribution valve 45, and a preheater 44. Through a water supply port 22 provided at the bottom of the reactor 14. Distributing valve 4
A conduit 46 is connected between the mixer 5 and the mixer 10. A supply port 46 for supplying a sulfur absorbent is provided at the bottom of the desulfurizer 36, and a discharge pipe 47 is provided above the desulfurizer 36, and a pressure reducing valve 48 is connected to the discharge pipe 47. Sulfur absorbents include NaOH, KOH, Ca (OH) 2 , Ba (O
H) An aqueous solution containing an alkali hydroxide represented by 2 and the like, and an aqueous solution containing an alkylamine such as methylethylamine, diethylamine, diisopropylamine and the like are included.

【0014】このように構成された装置では、重質油と
水とを100℃未満(例えば80℃)、0.1〜1MP
a(例えば0.5MPa)に維持されたミキサー10で
混合し、エマルジョン状の被処理液を調製する。この被
処理液をミキサー10から管路11、ポンプ12及び管
路13を介して被処理液供給口16より反応器14内に
供給する。またCOはブースターポンプ19を介して反
応器内の圧力と同圧でCO供給口17より反応器14内
に供給する。反応器14内の温度を380〜450℃
(例えば400℃)、圧力を25〜35MPa(例えば
25MPa)の水の超臨界状態に保つと、被処理液中の
重質油は軽質化するとともにCO、H2、CH4、CO2
等のガスが発生する。即ち、被処理液中の重質油は熱分
解するとともにこの分解により生成した一次生成物に水
素が付加される。これにより被処理液から軽質油と水と
ガスとからなる混合物が生成される。
In the apparatus configured as described above, heavy oil and water are cooled to less than 100.degree.
a (for example, 0.5 MPa) to prepare a liquid to be treated in the form of an emulsion. The liquid to be treated is supplied from the mixer 10 into the reactor 14 through the liquid supply port 16 through the pipe 11, the pump 12, and the pipe 13. CO is supplied into the reactor 14 from the CO supply port 17 at the same pressure as the pressure in the reactor via the booster pump 19. The temperature in the reactor 14 is 380-450 ° C
When the pressure is kept in a supercritical state of water at 25 to 35 MPa (for example, 25 MPa), the heavy oil in the liquid to be treated is lightened and CO, H 2 , CH 4 , CO 2
Gas is generated. That is, the heavy oil in the liquid to be treated is thermally decomposed, and hydrogen is added to the primary product generated by the decomposition. As a result, a mixture of light oil, water, and gas is generated from the liquid to be treated.

【0015】この生成反応は下記に示す水性ガスシフト
反応である。 CO + H2O → H2 + CO2 …… (1) 水性ガスシフト反応は、硫化水素を触媒として反応が進
行する。即ち、被処理液中の重質油が超臨界水中で熱分
解反応によって硫黄及び不安定な低分子を生成する。こ
の硫黄は下記式(2)に示すように、不安定な低分子中
の水素と反応して硫化水素を生成する。 S + H2 → H2S …… (2) 硫化水素は下記式(3)に示すように一酸化炭素と反応
して活性な水素を発生させ、重質油を軽質油に転換する
効率を向上する。また生成した硫黄化合物(COS)は
下記式(4)に示すように水と反応して硫化水素に戻
り、触媒としてリサイクルされる。
This production reaction is a water gas shift reaction described below. CO + H 2 O → H 2 + CO 2 ...... (1) water-gas shift reaction, the reaction proceeds a hydrogen sulfide as a catalyst. That is, the heavy oil in the liquid to be treated generates sulfur and unstable small molecules by a thermal decomposition reaction in supercritical water. This sulfur reacts with hydrogen in an unstable low molecule to generate hydrogen sulfide as shown in the following formula (2). S + H 2 → H 2 S (2) Hydrogen sulfide reacts with carbon monoxide to generate active hydrogen as shown in the following formula (3), and increases the efficiency of converting heavy oil to light oil. improves. The generated sulfur compound (COS) reacts with water to return to hydrogen sulfide as shown in the following formula (4), and is recycled as a catalyst.

【0016】 CO + H2S → COS + H2 …… (3) COS +H2O → H2S + CO2 …… (4) 軽質化した生成混合物は生成混合物取出口21から取出
され、冷却器26で100℃未満(例えば60℃)に冷
却されて気油水分離器23に送られる。分離器23では
混合物から軽質油、水、ガスとにそれぞれ分離される。
分離器23の内部で生成混合物を静置すると、比重の大
きさの順に分離器23の下段に水相、中段に軽質油相、
上段にガス相がそれぞれ形成される。ガス−軽質油、軽
質油−水の界面の高さを常に一定に維持するために、制
御装置29は分離器23外部に設けられた第1、第2レ
ベルゲージ28、32をセンサーとして電磁弁34、3
7、39を制御する。即ち、ガス量が水又は軽質油の量
と比較して増え、ガス−軽質油の界面が上がるときには
電磁弁34を開放する。また、反対にガス量が減少し、
ガス−軽質油の界面が下がるときには電磁弁37又は3
9を開放する。分離されたガスは脱硫器36に送られ硫
黄吸収剤によってガスに含まれる硫黄分を取除き燃料ガ
スとして回収される。脱硫器36の底部にはガスと硫黄
吸収剤によって生成した硫酸塩が沈降する。この硫酸塩
は定期的に脱硫器36から除去される。分離された水に
はH2Sが溶解しており、このH2Sが溶解している水は
ポンプ42から分配弁45を介して反応器14及びミキ
サー10にそれぞれ送り込まれ、水は反応溶媒として、
2Sは触媒として再利用される。
CO + H 2 S → COS + H 2 (3) COS + H 2 O → H 2 S + CO 2 (4) The lightened product mixture is taken out from the product mixture outlet 21 and cooled. The gas is cooled to less than 100 ° C. (for example, 60 ° C.) by the device 26 and sent to the gas oil water separator 23. In the separator 23, the mixture is separated into light oil, water, and gas.
When the resulting mixture is allowed to stand inside the separator 23, the lower portion of the separator 23 in the order of the specific gravity has an aqueous phase, a light oil phase in the middle stage,
A gas phase is formed in each upper stage. In order to always keep the height of the gas-light oil and light oil-water interfaces constant, the control device 29 uses first and second level gauges 28 and 32 provided outside the separator 23 as sensors and electromagnetic valves. 34, 3
7 and 39 are controlled. That is, when the gas amount increases as compared with the amount of water or light oil, and the gas-light oil interface rises, the solenoid valve 34 is opened. Conversely, the amount of gas decreases,
When the gas-light oil interface goes down, solenoid valve 37 or 3
Release 9 The separated gas is sent to a desulfurizer 36, and the sulfur contained in the gas is removed by a sulfur absorbent to be recovered as a fuel gas. At the bottom of the desulfurizer 36, sulfate generated by the gas and the sulfur absorbent settles. This sulfate is periodically removed from the desulfurizer 36. The separated water has dissolved H 2 S, water which the H 2 S is dissolved is fed respectively to the reactor 14 and the mixer 10 from the pump 42 via the distribution valve 45, the water is the reaction solvent As
H 2 S is reused as a catalyst.

【0017】[0017]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例1>原油を精製して得られた残油の重質油を試
料とした。図1と同様の構造を有する装置を用いて、こ
の重質油を水と混合して重質油エマルジョンの被処理液
を調製し、この被処理液を反応器内に供給した後、反応
器内にCO/Cモル比率が0.1になるようにCOを供
給した。反応器は380℃、25MPaに保つことによ
り被処理液を軽質化した。軽質化により生成した軽質油
及びガスを反応器内に5分間滞留させた。なお、実施例
2〜4及び比較例1〜2も図1と同様の構造を有する装
置を用いて軽質化させた。
Next, examples of the present invention will be described together with comparative examples. <Example 1> A heavy oil of residual oil obtained by refining crude oil was used as a sample. Using a device having a structure similar to that of FIG. 1, the heavy oil is mixed with water to prepare a liquid to be treated as a heavy oil emulsion, and the liquid to be treated is supplied into the reactor. CO was supplied so that the CO / C molar ratio became 0.1. The reactor was kept at 380 ° C. and 25 MPa to lighten the liquid to be treated. Light oil and gas generated by the lightening were retained in the reactor for 5 minutes. Examples 2 to 4 and Comparative Examples 1 and 2 were also lightened by using an apparatus having a structure similar to that of FIG.

【0018】<実施例2>CO/Cモル比率が0.3と
なるようにCOを供給した以外は、実施例1と同一の反
応条件で被処理液を軽質化し、軽質化により生成した軽
質油を反応器内に5分間滞留させた。 <実施例3>反応器の圧力を35MPaにした以外は、
実施例1と同様にCOを供給し、実施例1と同一の温度
条件で被処理液を軽質化した。軽質化により生成した軽
質油を反応器内に5分間滞留させた。 <実施例4>実施例1と同様にCOを供給し、実施例1
と同一の反応条件で被処理液を軽質化した。軽質化によ
り生成した軽質油を反応器内に30分間滞留させた。
<Example 2> The liquid to be treated was lightened under the same reaction conditions as in Example 1 except that CO was supplied so that the CO / C molar ratio became 0.3, and the light produced by the lightening was used. The oil was kept in the reactor for 5 minutes. <Example 3> Except that the pressure of the reactor was 35 MPa,
CO was supplied in the same manner as in Example 1, and the liquid to be treated was lightened under the same temperature conditions as in Example 1. The light oil produced by the lightening was retained in the reactor for 5 minutes. <Example 4> CO was supplied in the same manner as in Example 1,
The liquid to be treated was lightened under the same reaction conditions as described above. The light oil produced by the lightening was retained in the reactor for 30 minutes.

【0019】<比較例1>COを供給しない以外は、実
施例1と同一の反応条件で被処理液を軽質化した。軽質
化により生成した軽質油を反応器内に5分間滞留させ
た。 <比較例2>反応器の温度を480℃にした以外は、実
施例1と同様にCOを供給し、実施例1と同一の圧力条
件で被処理液を軽質化した。軽質化により生成した軽質
油を反応器内に5分間滞留させた。
Comparative Example 1 The liquid to be treated was lightened under the same reaction conditions as in Example 1 except that CO was not supplied. The light oil produced by the lightening was retained in the reactor for 5 minutes. <Comparative Example 2> CO was supplied in the same manner as in Example 1 except that the temperature of the reactor was set to 480 ° C, and the liquid to be treated was lightened under the same pressure conditions as in Example 1. The light oil produced by the lightening was retained in the reactor for 5 minutes.

【0020】<比較評価>生成した軽質油の脱硫率、コ
ークスの生成率及び軽質油の炭素一個当たりの水素付着
率(以下、H/Cという。)を測定した。実施例1〜4
及び比較例1、2の結果を表1に示す。なお、重質油試
料として用いた残油のH/Cは1.47であり、硫黄の
含有率は5.6重量%である。
<Comparative Evaluation> The desulfurization rate of the produced light oil, the formation rate of coke, and the hydrogen deposition rate per carbon of the light oil (hereinafter referred to as H / C) were measured. Examples 1-4
Table 1 shows the results of Comparative Examples 1 and 2. The H / C of the residual oil used as the heavy oil sample was 1.47, and the sulfur content was 5.6% by weight.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例1〜4及び比較例2では一酸化炭素
添加のない比較例1と比べると生成した軽質油のH/C
は高くなっており反応器内への一酸化炭素添加が軽質化
を促進させることが判る。しかしながら比較例2は反応
器内温度を軽質化に最適な温度範囲より高い480℃に
設定したために熱分解反応が過剰に起こりコークスを含
む残渣が多量に発生した。
In Examples 1 to 4 and Comparative Example 2, the H / C of the light oil produced was lower than that of Comparative Example 1 in which no carbon monoxide was added.
Is high, indicating that the addition of carbon monoxide into the reactor promotes lightening. However, in Comparative Example 2, since the temperature in the reactor was set to 480 ° C., which was higher than the optimum temperature range for lightening, excessive thermal decomposition reaction occurred and a large amount of coke-containing residue was generated.

【0023】[0023]

【発明の効果】以上述べたように、重質油に含まれる硫
黄を水性ガスシフト反応の触媒として用い、反応器に特
別に一酸化炭素を供給することにより、水性ガスシフト
反応を進行させ軽質油への転換効率を高め、更に脱硫と
軽質化のプロセスを同時に行うことができる。
As described above, the sulfur contained in the heavy oil is used as a catalyst for the water gas shift reaction, and the carbon monoxide is specially supplied to the reactor, so that the water gas shift reaction proceeds to produce light oil. The conversion efficiency can be increased, and the desulfurization and lightening processes can be performed simultaneously.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の重質油の軽質化する装置の構成図。FIG. 1 is a configuration diagram of an apparatus for lightening heavy oil according to the present invention.

【符号の説明】[Explanation of symbols]

10 ミキサー 14 反応器 19 ポンプ 23 気油水分離器 36 脱硫器 Reference Signs List 10 mixer 14 reactor 19 pump 23 gas-oil-water separator 36 desulfurizer

フロントページの続き Fターム(参考) 4D020 AA04 BA01 BA08 BA16 BB03 CB03 CC05 DA01 DB15 DB20 4H029 AA11 AB06 AB10 AB11 AB12 AC03 AC04 AC12 AD01 AE01 DA01 DA02 DA06 Continued on the front page F term (reference) 4D020 AA04 BA01 BA08 BA16 BB03 CB03 CC05 DA01 DB15 DB20 4H029 AA11 AB06 AB10 AB11 AB12 AC03 AC04 AC12 AD01 AE01 DA01 DA02 DA06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 硫黄分を含む重質油と水とを380〜4
50℃、25〜35MPaに維持された反応器(14)で反
応させて前記重質油を軽質化して軽質油を生成する工程
と、 前記軽質油とガスと水を含む混合物から軽質油とガスと
水とにそれぞれ分離する工程とを含む重質油の軽質化方
法において、 前記反応器(14)に一酸化炭素を25〜35MPaの圧力
で供給することを特徴とする重質油の軽質化方法。
1. A method according to claim 1, wherein said heavy oil containing sulfur is mixed with water at 380-4.
Reacting in a reactor (14) maintained at 50 ° C. and 25 to 35 MPa to lighten the heavy oil to produce light oil; and light oil and gas from a mixture containing the light oil, gas and water. A heavy oil comprising the steps of: separating carbon monoxide into the reactor (14) at a pressure of 25 to 35 MPa. Method.
【請求項2】 分離したガスに硫黄吸収剤を添加して前
記ガスに含まれる硫黄分を脱硫する工程を更に含む請求
項1記載の重質油の軽質化方法。
2. The method for lightening heavy oil according to claim 1, further comprising a step of adding a sulfur absorbent to the separated gas to desulfurize sulfur contained in the gas.
【請求項3】 硫黄分を含む重質油と水のエマルジョン
を生成するミキサー(10)と、 前記ミキサー(10)で生成された重質油エマルジョンに含
まれる重質油を380〜450℃、25〜35MPaで
軽質化して軽質油を生成する反応器(14)と、 前記反応器(14)に一酸化炭素を25〜35MPaの圧力
で供給するポンプ(19)と、 前記反応器(14)で生成した軽質油とガスと水を含む混合
物から軽質油とガスと水とに分離する気油水分離器(23)
とを備えた重質油の軽質化装置。
3. A mixer (10) for producing an emulsion of heavy oil and water containing sulfur, and a heavy oil contained in the heavy oil emulsion produced by the mixer (10) at 380-450 ° C. A reactor (14) for lightening at 25 to 35 MPa to produce light oil, a pump (19) for supplying carbon monoxide to the reactor (14) at a pressure of 25 to 35 MPa, and a reactor (14) Gas oil water separator (23) for separating light oil, gas and water from the mixture containing light oil, gas and water generated in step (23)
A heavy oil lightening device comprising:
【請求項4】 気油水分離器(23)で分離した水をポンプ
(42)を介して反応器(14)とミキサー(10)にそれぞれ供給
するように構成された請求項3記載の重質油の軽質化装
置。
4. A pump for pumping water separated by the gas oil / water separator (23).
The heavy oil lightening apparatus according to claim 3, wherein the apparatus is configured to supply the heavy oil to the reactor (14) and the mixer (10) via the (42).
【請求項5】 分離したガスに硫黄吸収剤を添加して前
記ガスに含まれる硫黄分を脱硫する脱硫器(36)を更に含
む請求項3記載の重質油の軽質化装置。
5. The heavy oil lightening device according to claim 3, further comprising a desulfurizer (36) for adding a sulfur absorbent to the separated gas to desulfurize sulfur contained in the gas.
JP32165699A 1999-11-11 1999-11-11 Method and apparatus for lightening heavy oil Expired - Fee Related JP3900764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32165699A JP3900764B2 (en) 1999-11-11 1999-11-11 Method and apparatus for lightening heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32165699A JP3900764B2 (en) 1999-11-11 1999-11-11 Method and apparatus for lightening heavy oil

Publications (2)

Publication Number Publication Date
JP2001139960A true JP2001139960A (en) 2001-05-22
JP3900764B2 JP3900764B2 (en) 2007-04-04

Family

ID=18134953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32165699A Expired - Fee Related JP3900764B2 (en) 1999-11-11 1999-11-11 Method and apparatus for lightening heavy oil

Country Status (1)

Country Link
JP (1) JP3900764B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008107960A1 (en) * 2007-03-02 2008-09-12 Yugen Kaisha Agei Method of desulfurization and lightening of treatment object oil and apparatus therefor
JP2011504962A (en) * 2007-11-28 2011-02-17 サウジ アラビアン オイル カンパニー Method to improve the quality of whole crude oil with hot pressurized water and recovered fluid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008107960A1 (en) * 2007-03-02 2008-09-12 Yugen Kaisha Agei Method of desulfurization and lightening of treatment object oil and apparatus therefor
JP2011504962A (en) * 2007-11-28 2011-02-17 サウジ アラビアン オイル カンパニー Method to improve the quality of whole crude oil with hot pressurized water and recovered fluid
JP2011505464A (en) * 2007-11-28 2011-02-24 サウジ アラビアン オイル カンパニー A method to improve the quality of heavy oils with hot pressurized water and ultrasonic generation premixers.

Also Published As

Publication number Publication date
JP3900764B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
JP5346036B2 (en) Upgrade method for heavy and high waxy crude oil without hydrogen supply
US20090266717A1 (en) Hydrogen Production Using Electrochemical Reforming and Electrolyte Regeneration
MX2010006452A (en) Hydroconversion process for heavy and extra heavy oils and residuals.
CN101845319B (en) Process for producing wax and clean fuel oil by using biomass as raw material
EA019078B1 (en) Method of refining ft synthetic oil, and mixed crude oil
CN101372627A (en) Method for producing clean fuel oil and high-purity chemical products from oven gas
JP5501366B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis reaction method
CN102165045B (en) Method for starting naphtha fraction hydrotreating reactor
US8569386B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesizing method
CN103582610B (en) Method for suppressing metal contamination in synthesis gas production apparatus
CN101372628B (en) Method for producing clean fuel oil and high-purity chemical products by taking calcium carbide tail gas as raw material
JP2001139960A (en) Conversion of heavy oil to light oil and its unit
US9376352B2 (en) Start-up method of bubble column slurry bed reactor
JP3947894B2 (en) Method and apparatus for producing hydrogen gas, etc.
JP2008290927A (en) Method and apparatus for refining hydrogen by using organic hydride
GB1579070A (en) Process for recovering the soot formed during the production of synthesis gas by partial oxidation of hydrocarbonaceous materials
US9688917B2 (en) Hydrocarbon-producing apparatus and hydrocarbon-producing method
JP3440990B2 (en) How to convert hydrocarbon resources
US8586640B2 (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesizing method
JP6623147B2 (en) Method for producing hydrocracked oil
JP5156296B2 (en) Startup method for hydrogen production equipment
CA2751540A1 (en) A method for recovering hydrocarbon compounds and a hydrocarbon recovery apparatus from a gaseous by-product
EA046195B1 (en) METHOD FOR HYDROCONVERSION OF PETROLEUM RAW MATERIALS
JP2007051223A (en) Method and apparatus for modifying heavy oil
JP2005206498A (en) Method for producing ether

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061225

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees