[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001138085A - Laser welding method - Google Patents

Laser welding method

Info

Publication number
JP2001138085A
JP2001138085A JP32040999A JP32040999A JP2001138085A JP 2001138085 A JP2001138085 A JP 2001138085A JP 32040999 A JP32040999 A JP 32040999A JP 32040999 A JP32040999 A JP 32040999A JP 2001138085 A JP2001138085 A JP 2001138085A
Authority
JP
Japan
Prior art keywords
gas
laser welding
welding
laser
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32040999A
Other languages
Japanese (ja)
Other versions
JP4036588B2 (en
Inventor
Akira Sotodate
明 外舘
Makoto Katsuki
誠 勝木
Akira Matsunawa
朗 松縄
Seiji Katayama
聖二 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kokan Koji KK
Original Assignee
Nippon Kokan Koji KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Koji KK filed Critical Nippon Kokan Koji KK
Priority to JP32040999A priority Critical patent/JP4036588B2/en
Publication of JP2001138085A publication Critical patent/JP2001138085A/en
Application granted granted Critical
Publication of JP4036588B2 publication Critical patent/JP4036588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a good quality weld zone by making the penetration deeper and by preventing generation of blow holes. SOLUTION: In a laser welding, a gas in which carbon dioxide is mixed with an inert gas at a ratio of 80-95 vol.% is used as shielding gases, and the generation of blow holes in the weld zone 9 of a material 7 to be welded or the lowering of toughness are prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、鋼材等を接合す
るレーザ溶接方法、特に溶接金属内の気孔発生の防止に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser welding method for joining steel materials and the like, and more particularly to the prevention of generation of pores in a weld metal.

【0002】[0002]

【従来の技術】高速溶接や深溶込み溶接として一般的に
用いられているレーザ溶接方法は、レーザ発振装置によ
って発生したレーザビームを溶接トーチに導き、溶接ト
ーチ内の集光レンズで集光して被溶接材に照射し、照射
したビームエネルギで被溶接材7を加熱,溶融して接合
する方法である。この被溶接材に照射されるレーザビー
ムは集光レンズで細く絞られているため、アーク溶接の
1000倍以上の高エネルギ密度を有し、被溶接材にレ
ーザビームを照射すると表面で激しい蒸発が生じ、その
蒸気反力として被溶接材の表面に穴ができる。この穴に
入ったレーザビームの反射損失は小さくなり、穴は次第
に深くなり、深溶込みの溶接ができる。このレーザ溶接
を行なうときに、溶接部の酸化防止や集光レンズ等にス
パッタなどの飛散物が付着することを防止するために、
溶接トーチの先端のノズルからシールドガスを噴出して
いる。このシールドガスとしては不活性ガスであるアル
ゴンガスやヘリウムガスが一般的に使用されている。
2. Description of the Related Art A laser welding method generally used as high-speed welding or deep penetration welding is to guide a laser beam generated by a laser oscillation device to a welding torch, and to condense the laser beam in a welding torch. In this method, the material to be welded is irradiated, and the material to be welded 7 is heated, melted, and joined by the irradiated beam energy. The laser beam applied to the material to be welded is narrowed down by a condensing lens, so it has a high energy density 1000 times or more that of arc welding. As a result, a hole is formed on the surface of the material to be welded as a vapor reaction force. The reflection loss of the laser beam entering this hole becomes smaller, the hole becomes gradually deeper, and deep penetration welding can be performed. When performing this laser welding, in order to prevent oxidation of the welded part and to prevent scattered matters such as spatter from attaching to the condenser lens, etc.
The shield gas is jetted from the nozzle at the tip of the welding torch. As the shielding gas, an inert gas such as an argon gas or a helium gas is generally used.

【0003】[0003]

【発明が解決しようとする課題】通常、レーザ溶接法で
はアルゴンガスやヘリウムガスをシールドガスに使用
し、添加材などは使用せず被溶接材のみを溶融する。ま
た、レーザ溶接方法は電子ビーム溶接方法と同様に非常
にエネルギ密度が高い溶接方法であり、溶込み幅が狭
く、溶込み深さも深い。しかし、溶込みが深いことや凝
固速度が速いなどの原因から溶接金属中に気孔を発生す
る。例えば不活性ガスとしてアルゴンガス100%をシ
ールドガスに使用し、板厚12mmの軟鋼板にレーザ溶
接を行なった結果、図5に示すように、溶接部9に複数
の気孔10が生じた。
Normally, in the laser welding method, argon gas or helium gas is used as a shielding gas, and only the material to be welded is melted without using any additional material. Further, the laser welding method is a welding method having a very high energy density like the electron beam welding method, and has a narrow penetration width and a deep penetration depth. However, pores are generated in the weld metal due to deep penetration and a high solidification rate. For example, laser welding was performed on a mild steel plate having a thickness of 12 mm using 100% argon gas as an inert gas as a shielding gas. As a result, a plurality of pores 10 were formed in a welded portion 9 as shown in FIG.

【0004】この発明はかかる短所を改善し、溶込みが
深くなるとともに気孔の発生を防止し、良質な溶接部を
得ることができるレーザ溶接法を提供することを目的と
するものである。
An object of the present invention is to provide a laser welding method capable of improving such disadvantages, deepening the penetration, preventing generation of pores, and obtaining a high-quality weld.

【0005】[0005]

【課題を解決するための手段】この発明に係るレーザ溶
接方法は、シールドガスとして不活性ガスに炭酸ガスを
容積比で80%〜95%混合したガスを用いることを特
徴とする。
A laser welding method according to the present invention is characterized in that a gas obtained by mixing an inert gas with a carbon dioxide gas in a volume ratio of 80% to 95% is used as a shielding gas.

【0006】[0006]

【発明の実施の形態】この発明のレーザ溶接方法はシー
ルドガスとして不活性ガスに炭酸ガスを容積比で90%
混合したガスを使用してレーザ溶接を行ない、溶融金属
のレーザビームの吸収率を向上させて溶融金属の流動性
を増し、気孔の発生を大幅に減少させるとともに溶込み
を深くする。
BEST MODE FOR CARRYING OUT THE INVENTION In the laser welding method of the present invention, carbon dioxide gas is used as a shielding gas in an inert gas at a volume ratio of 90%.
Laser welding is performed using a mixed gas to improve the absorptivity of the molten metal to a laser beam, increase the flowability of the molten metal, greatly reduce the generation of pores, and deepen the penetration.

【0007】[0007]

【実施例】図1はこの発明の一実施例のレーザ溶接装置
の構成図である。図に示すように、レーザ溶接装置は、
レーザ発振装置1によって発生したレーザビーム2をレ
ンズ3やミラー4で溶接トーチ5に導き、溶接トーチ5
内の集光レンズ6で集光して被溶接材7に照射し、照射
したビームエネルギで被溶接材7を加熱,溶融して接合
する。このレーザ溶接を行なうときに、不活性ガスに炭
酸ガスを容積比で80%〜95%混合したガスをシール
ドガスとして溶接トーチ6の先端のノズル8から噴出さ
せる。
FIG. 1 is a block diagram of a laser welding apparatus according to an embodiment of the present invention. As shown in the figure, the laser welding device
The laser beam 2 generated by the laser oscillation device 1 is guided to the welding torch 5 by the lens 3 and the mirror 4,
The light is condensed by the converging lens 6 in the inside and is irradiated on the material 7 to be welded. When performing the laser welding, a gas obtained by mixing an inert gas with a carbon dioxide gas at a volume ratio of 80% to 95% is ejected from a nozzle 8 at the tip of the welding torch 6 as a shielding gas.

【0008】このレーザ溶接にシールドガスとして不活
性ガスに炭酸ガスを容積比で80%〜95%混合したガ
スを使用する理由について説明する。各種シールドガス
を使用してレーザ溶接中における溶融金属内の気孔生成
挙動をリアルタイムX線透過観察装置により観察した結
果、不活性ガスをシールドガスに用いた場合には多くの
気泡が発生し、溶接金属中に凝固され気孔(欠陥)とな
っているのに対し、100%の炭酸ガスをシールドガス
に用いた場合、溶融金属内には気泡及び気孔の発生はほ
とんど見られないことが確認できた。このように不活性
ガスをシールドガスとして使用した場合に溶融金属内に
気泡が発生するのは、被溶接材7が溶融して形成された
キーホール先端でのレーザビーム吸収率に乱れが生じ、
これにより溶融金属の流動が不規則となり気孔が発生し
たり、溶込み深さが不安定になると考えらる。そこでア
ルゴンガス中に炭酸ガスを種々の割合で混合したシール
ドガスを使用してレーザ溶接を行なった結果、アルゴン
ガスに炭酸ガスを80%未満混合したシールドガスを用
いると、やはり溶接金属内に気孔が発生し良好な溶接部
が得られなかった。一方、炭酸ガスを95%を超えて混
合したシールドガスを使用した場合には、溶接金属中に
固溶した酸素により溶接部の靭性が低下した。そしてア
ルゴンガスに炭酸ガスを80%〜95%混合した場合
は、溶接金属内に気孔は発生せず、溶接部の靭性も低下
せずに良質な溶接部を得ることができた。また不活性ガ
スとしてヘリウムガスを使用した場合も同様な結果が得
られた。
The reason why a gas obtained by mixing 80% to 95% by volume of an inert gas with a carbon dioxide gas as a shielding gas in the laser welding will be described. As a result of observing the pore generation behavior in the molten metal during laser welding using various shield gases with a real-time X-ray transmission observation device, many bubbles are generated when an inert gas is used as the shield gas, and welding is performed. While pores (defects) were solidified in the metal, it was confirmed that when 100% carbon dioxide gas was used as the shielding gas, almost no bubbles and pores were generated in the molten metal. . When the inert gas is used as the shielding gas as described above, bubbles are generated in the molten metal because the laser beam absorption at the tip of the keyhole formed by melting the material to be welded 7 is disturbed,
As a result, it is considered that the flow of the molten metal becomes irregular, and pores are generated, and the penetration depth becomes unstable. Therefore, laser welding was performed using a shielding gas in which carbon dioxide was mixed at various ratios with argon gas. As a result, when a shielding gas in which argon gas was mixed with carbon dioxide at less than 80% was used, pores were also formed in the weld metal. And a good weld was not obtained. On the other hand, when a shielding gas containing more than 95% of carbon dioxide gas was used, the toughness of the welded portion was reduced due to oxygen dissolved in the weld metal. When the carbon dioxide gas was mixed with the argon gas at 80% to 95%, no porosity was generated in the weld metal, and a high quality weld was obtained without reducing the toughness of the weld. Similar results were obtained when helium gas was used as the inert gas.

【0009】〔具体例1〕 被溶接材7として板厚12
mmの軟鋼板を使用し、レーザ発振装置1としてYAG
レーザ発振器を使用し、出力3.5kWのレーザを用
い、被溶接材7を移動する方法で、下向姿勢,ビートオ
ンプレート溶接を実施した。被溶接材7の移動速度は5
mm/secで行い、アルゴンガスに炭酸ガスを95%
混合したシールドガスを流量30L/minで噴出させ
た。この溶接後、X線検査で気孔を観察した結果、溶接
部には気孔の発生が見られなかった。また、溶込みを断
面マクロ試験片により観察した結果、図2に示すよう
に、気孔の発生がない良質な溶接部9を得ることができ
た。
[Specific Example 1] As the material 7 to be welded, a plate thickness of 12
mm soft steel plate, and YAG
Using a laser oscillator and a laser having an output of 3.5 kW, a method of moving the workpiece 7 to perform the downward posture, beat-on-plate welding. The moving speed of the workpiece 7 is 5
mm / sec, 95% carbon dioxide gas in argon gas
The mixed shield gas was jetted at a flow rate of 30 L / min. After the welding, pores were observed by X-ray inspection. As a result, no pores were found in the welded portion. In addition, as a result of observing the penetration with a macro test piece of cross section, as shown in FIG. 2, a high-quality welded portion 9 free of pores was obtained.

【0010】〔具体例2〕 被溶接材7として板厚9m
mの軟鋼板を使用し、具体例1と同じ条件でアルゴンガ
スに炭酸ガスを80%混合したシールドガスを使用して
レーザ溶接を行なった結果、図3に示すように、被溶接
材7の裏面まで溶融する貫通溶接となった。また、貫通
溶接となったことにも起因するが、X線検査により気孔
はほとんど見られないことも確認できた。
[Specific Example 2] As the material 7 to be welded, a sheet thickness of 9 m
As shown in FIG. 3, laser welding was performed using a mild steel plate having a thickness of 80% and a shielding gas obtained by mixing 80% of carbon dioxide gas with argon gas under the same conditions as in Example 1. As a result, as shown in FIG. This resulted in penetration welding that melted to the back surface. In addition, it was confirmed by X-ray inspection that almost no pores were observed, although this was due to penetration welding.

【0011】〔比較例〕また、被溶接材7として板厚9
mmの軟鋼板を使用し、具体例2と同じ条件でシールド
ガスとしてアルゴンガス100%を使用してレーザ溶接
を行なった結果、図4に示すように、部分溶込み溶接と
なり、溶接部9に気孔10が発生した。この結果、アル
ゴンガス100%のシールドガスを使用した場合より
も、アルゴンガス中に炭酸ガスを80%〜95%を混入
することにより溶込みが深くなることが確認できた。こ
れはアルゴンガス中に炭酸ガスを容積比で80%〜95
%混合したガスをシールドガスとして使用することによ
り、溶融金属のレーザビームの吸収率が向上し、溶融金
属の流動性が増して気孔の発生を大幅に減少させるとと
もに溶込みが深くなるものと考えられる。
[Comparative Example] As the material 7 to be welded,
As a result of performing laser welding using a mild steel plate having a thickness of 100 mm and using 100% argon gas as a shielding gas under the same conditions as in Example 2, partial penetration welding was performed as shown in FIG. Pores 10 were generated. As a result, it was confirmed that the penetration was deepened by mixing 80% to 95% of the carbon dioxide gas into the argon gas as compared with the case where the shielding gas of 100% argon gas was used. This means that the volume ratio of carbon dioxide gas in argon gas is 80% to 95%.
By using the mixed gas as a shielding gas, the absorption rate of the laser beam of the molten metal is improved, the fluidity of the molten metal is increased, the generation of pores is greatly reduced, and the penetration is thought to be deeper. Can be

【0012】[0012]

【発明の効果】この発明は以上説明したように、レーザ
溶接を行なうときにシールドガスとして不活性ガスに炭
酸ガスを容積比で80%〜95%混合したガスを使用す
ることにより、気孔が発生せず靭性も低下しない良質な
溶接部を得ることができる。
According to the present invention, as described above, pores are generated by using a gas obtained by mixing 80% to 95% by volume of carbon dioxide gas with an inert gas as a shielding gas when performing laser welding. It is possible to obtain a high-quality welded part without lowering the toughness.

【0013】また、溶接部の溶込みを深くすることがで
きるから、レーザ溶接の適用可能範囲を拡大するととも
にその構造物の品質を向上することができる。
In addition, since the penetration of the weld can be deepened, the applicable range of laser welding can be expanded and the quality of the structure can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例のレーザ溶接装置の構成図で
ある。
FIG. 1 is a configuration diagram of a laser welding apparatus according to an embodiment of the present invention.

【図2】実施例で板厚12mmの軟鋼板をレーザ溶接し
た溶接部の断面図である。
FIG. 2 is a sectional view of a welded portion obtained by laser-welding a mild steel plate having a thickness of 12 mm in an example.

【図3】実施例で板厚9mmの軟鋼板をレーザ溶接した
溶接部の断面図である。
FIG. 3 is a sectional view of a welded portion obtained by laser welding a mild steel plate having a thickness of 9 mm in an example.

【図4】アルゴンガス100%のシールドガスを使用し
て板厚9mmの軟鋼板をレーザ溶接した溶接部の断面図
である。
FIG. 4 is a sectional view of a welded portion obtained by laser welding a mild steel plate having a thickness of 9 mm using a shielding gas of 100% argon gas.

【図5】アルゴンガス100%のシールドガスを使用し
て板厚12mmの軟鋼板をレーザ溶接した溶接部の断面
図である。
FIG. 5 is a sectional view of a welded portion obtained by laser-welding a mild steel plate having a thickness of 12 mm using a shielding gas of 100% argon gas.

【符号の説明】[Explanation of symbols]

1 レーザ発振装置 2 レーザビーム 5 溶接トーチ 6 集光レンズ 7 被溶接材 9 溶接部 10 気孔 DESCRIPTION OF SYMBOLS 1 Laser oscillation apparatus 2 Laser beam 5 Welding torch 6 Condensing lens 7 Material to be welded 9 Welded part 10 Pore

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片山 聖二 大阪府吹田市山田西2−9 A2−402 Fターム(参考) 4E001 AA03 CA01 DD02 DD04 DD09 4E068 BA00 CH08 CJ01 CJ06 DA14 DB01  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Seiji Katayama 2-9, A2-402, Yamada Nishi, Suita-shi, Osaka F-term (reference) 4E001 AA03 CA01 DD02 DD04 DD09 4E068 BA00 CH08 CJ01 CJ06 DA14 DB01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シールドガスとして不活性ガスに炭酸ガ
スを容積比で80%〜95%混合したガスを用いること
を特徴とするレーザ溶接方法。
1. A laser welding method using a gas obtained by mixing an inert gas with a carbon dioxide gas in a volume ratio of 80% to 95% as a shielding gas.
JP32040999A 1999-11-11 1999-11-11 Laser welding method Expired - Fee Related JP4036588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32040999A JP4036588B2 (en) 1999-11-11 1999-11-11 Laser welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32040999A JP4036588B2 (en) 1999-11-11 1999-11-11 Laser welding method

Publications (2)

Publication Number Publication Date
JP2001138085A true JP2001138085A (en) 2001-05-22
JP4036588B2 JP4036588B2 (en) 2008-01-23

Family

ID=18121144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32040999A Expired - Fee Related JP4036588B2 (en) 1999-11-11 1999-11-11 Laser welding method

Country Status (1)

Country Link
JP (1) JP4036588B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094442A1 (en) 2006-02-17 2007-08-23 Taiyo Nippon Sanso Corporation Shield gas for hybrid welding and method of hybrid welding using the gas
EP3034227A1 (en) * 2014-12-17 2016-06-22 Vlassenroot Polska sp. z o.o. Method of butt joints laser welding with fixed power density, heat input and gas mixture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072432A (en) 2005-08-08 2007-03-22 Konica Minolta Opto Inc Optical element and illuminator provided therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094442A1 (en) 2006-02-17 2007-08-23 Taiyo Nippon Sanso Corporation Shield gas for hybrid welding and method of hybrid welding using the gas
EP3034227A1 (en) * 2014-12-17 2016-06-22 Vlassenroot Polska sp. z o.o. Method of butt joints laser welding with fixed power density, heat input and gas mixture

Also Published As

Publication number Publication date
JP4036588B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JP2008126315A (en) Laser welding process with improved penetration
JP2004223543A (en) Compound welding method of laser beam and arc, and groove shape of welded joint used for the same
Wang et al. Stabilization mechanism and weld morphological features of fiber laser-arc hybrid welding of pure copper
JP2005501737A (en) Hybrid laser-arc welding method with gas flow control
US20050263500A1 (en) Laser or laser/arc hybrid welding process with formation of a plasma on the backside
Naito et al. Effect of oxygen in ambient atmosphere on penetration characteristics in single yttrium–aluminum–garnet laser and hybrid welding
JP2009166080A (en) Laser beam welding method
JP4876260B2 (en) Welding method and welding apparatus
Naito et al. Observation of keyhole behavior and melt flows during laser-arc hybrid welding
JP4026452B2 (en) Laser and arc combined welding method and groove shape of welded joint used therefor
JP5061670B2 (en) Laser welding method
Kinoshita et al. Phenomena of welding with high-power fiber laser
Uchiumi et al. Penetration and welding phenomena in YAG laser-MIG hybrid welding of aluminum alloy
JP4036588B2 (en) Laser welding method
JP2002273588A (en) Laser cutting processing method
JPH0919778A (en) Laser welding method for aluminum alloy without exposing molten metal on the rear surface
JPH06198472A (en) High-speed laser beam welding method
JPH02263585A (en) Combined heat source welding equipment
Seto et al. Relationship between plasma and keyhole behavior during CO2 laser welding
JPH09103892A (en) Laser welding method
JP2003154476A (en) Gas shield method for laser welding
JPH06315771A (en) Plasma arc welding method
JPH0819886A (en) Laser beam welding nozzle
Zhang et al. Development of ultra deep penetration welding with 10 kW fiber laser
JPH08168892A (en) Production of welded steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees