[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001136057A - Differential input circuit - Google Patents

Differential input circuit

Info

Publication number
JP2001136057A
JP2001136057A JP31316599A JP31316599A JP2001136057A JP 2001136057 A JP2001136057 A JP 2001136057A JP 31316599 A JP31316599 A JP 31316599A JP 31316599 A JP31316599 A JP 31316599A JP 2001136057 A JP2001136057 A JP 2001136057A
Authority
JP
Japan
Prior art keywords
circuit
signal
differential
phase signal
connection state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31316599A
Other languages
Japanese (ja)
Other versions
JP3433707B2 (en
Inventor
Toshiharu Sofue
敏晴 祖父江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31316599A priority Critical patent/JP3433707B2/en
Publication of JP2001136057A publication Critical patent/JP2001136057A/en
Application granted granted Critical
Publication of JP3433707B2 publication Critical patent/JP3433707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)
  • Dc Digital Transmission (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize an output of a gate G11 even when a transmitter side LSI is not connected to the differential input circuit. SOLUTION: A gate G12 being a detection circuit that detects a connection state of the transmitter side LSI outputs a noninverted signal and an inverted signal corresponding to the result of comparison between an input signal level and a level of a reference voltage Vref, uses the noninverted signal to apply on/off control to an N-channel MOS transistor(TR) T11 and uses the inverted signal to apply on/off control to a P-channel MOS TR T12. This on/off control controls a connecting state of a termination resistor R13 to a point of a power supply voltage V and a connecting state of a termination resistor R12 to the ground. Since the connection states of the termination registers are changed depending on the connection state of the transmitter side LSI, the output of the differential input circuit can be stabilized even when the transmitter side LSI is not connected to the differential input circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は差動入力回路に関
し、特にカード(回路パッケージ)間の信号伝送等に使
用される差動入力回路に関する。
The present invention relates to a differential input circuit, and more particularly to a differential input circuit used for signal transmission between cards (circuit packages).

【0002】[0002]

【従来の技術】図3を参照して従来の差動入力回路につ
いて説明する。同図に示されているように、従来の差動
入力回路は、正相及び逆相入力端子を有する差動回路G
21を含んで構成されている。この差動回路G21は正
相入力端子、逆相入力端子を有しており、これらの端子
に差動信号S11、S12が印加される。差動回路G2
1は、差動信号S11、S12を図示せぬ後段回路に伝
達する動作を行う。
2. Description of the Related Art A conventional differential input circuit will be described with reference to FIG. As shown in the figure, a conventional differential input circuit is a differential circuit G having positive and negative phase input terminals.
21 are included. The differential circuit G21 has a positive-phase input terminal and a negative-phase input terminal, and differential signals S11 and S12 are applied to these terminals. Differential circuit G2
1 performs an operation of transmitting the differential signals S11 and S12 to a subsequent circuit (not shown).

【0003】また、差動信号S11を終端するために、
それを伝達する信号線には、一端が電圧Vに接続された
抵抗R21と、一端がグランドに接続された抵抗R22
とが接続されている。同様に、差動信号S12を終端す
るために、それを伝達する信号線には、一端が電圧Vに
接続された抵抗R23と、一端がグランドに接続された
抵抗R24とが接続されている。つまり、抵抗R21及
び抵抗R22は信号S11の終端回路を構成し、抵抗R
23及び抵抗R24は信号S12の終端回路を構成する
ことになる。
In order to terminate the differential signal S11,
A signal line for transmitting the signal includes a resistor R21 having one end connected to the voltage V and a resistor R22 having one end connected to the ground.
And are connected. Similarly, to terminate the differential signal S12, a signal line transmitting the differential signal S12 is connected to a resistor R23 having one end connected to the voltage V and a resistor R24 having one end connected to the ground. That is, the resistor R21 and the resistor R22 constitute a termination circuit of the signal S11,
23 and the resistor R24 constitute a termination circuit of the signal S12.

【0004】[0004]

【発明が解決しようとする課題】ところで、同図に示さ
れている従来の差動入力回路において、2つの差動信号
S11、S12の終端電位を等しく設定した場合を考え
る。この場合、図示せぬ送信側LSI(Large Scale In
tegrated Circuit)が入力側に接続されていないと、2
つの差動信号が等電位となり差動回路G21の出力が不
安定となるという問題が発生する。
Now, consider the case where the terminal potentials of the two differential signals S11 and S12 are set to be equal in the conventional differential input circuit shown in FIG. In this case, an unillustrated transmitting LSI (Large Scale In)
If the integrated circuit is not connected to the input side, 2
There is a problem that two differential signals become equipotential and the output of the differential circuit G21 becomes unstable.

【0005】すなわち、図4に示されているように、別
々のスロットに挿入される回路パッケージにLSI1、
LSI2がそれぞれ搭載されている場合において、受信
側LSI1の差動入力回路の入力側に送信側LSI2が
接続されている状態であれば問題ない。しかし、回路パ
ッケージがスロットに挿入されていない場合等、送信側
LSI2が接続されていない場合には2つの差動信号が
等電位となり、受信側LSI1の差動入力回路の出力が
不安定となる。この動作が不安定となる場合について図
5及び図6を参照して説明する。
[0005] That is, as shown in FIG. 4, the LSI 1,
When the LSI 2 is mounted, there is no problem as long as the transmission LSI 2 is connected to the input side of the differential input circuit of the reception LSI 1. However, when the transmission-side LSI 2 is not connected, such as when the circuit package is not inserted into the slot, the two differential signals have the same potential, and the output of the differential input circuit of the reception-side LSI 1 becomes unstable. . A case where this operation becomes unstable will be described with reference to FIGS.

【0006】終端回路において抵抗R21と抵抗R22
とで設定される終端電位(VTとする)と、抵抗R23
と抵抗R24とで設定される終端電位(同様にVT)と
が等しい場合は、図5に示されているように、2つの差
動入力信号はどちらも終端電位VTを中心に動作するこ
ととなる。しかし、送信側LSIが未接続の場合には、
2つの差動信号が等電位(VT)となるため、差動回路
(G21)の出力が不安定となるという問題が発生す
る。
In the termination circuit, a resistor R21 and a resistor R22
And the resistance R23
When the terminal potential (similarly, VT) set by the resistor R24 and the resistor R24 is equal, as shown in FIG. 5, both of the two differential input signals operate around the terminal potential VT. Become. However, when the transmitting LSI is not connected,
Since the two differential signals have the same potential (VT), there arises a problem that the output of the differential circuit (G21) becomes unstable.

【0007】この問題を解決するため、2つの差動信号
S11、S12に対する終端電位を異なるものに設定す
る対策が考えられる。つまり、終端電位を変えることに
よって、送信側LSIが未接続の場合に、2つの差動信
号の終端電位に電位差が生じるように設定するのであ
る。2つの差動信号の終端電位に電位差が生じるように
電圧レベルを互いに異なる値VT1及びVT2に設定す
ることによって、動作の不安定を解消するのである。
In order to solve this problem, it is conceivable to take measures to set different termination potentials for the two differential signals S11 and S12. That is, by changing the terminal potential, the setting is made so that a potential difference is generated between the terminal potentials of the two differential signals when the transmission side LSI is not connected. By setting the voltage levels to different values VT1 and VT2 so as to generate a potential difference between the terminal potentials of the two differential signals, operation instability is eliminated.

【0008】しかし、上述したように終端電位を異なる
ものに設定する場合、2つの差動信号の終端電位に電位
差があるため、図6に示されているように、信号レベル
が異なることによるパルス幅の変化、ノイズマージンの
減少等が生じる。このようなパルス幅の変化やノイズマ
ージンの減少は、高速波形においては大きな問題とな
り、許容できなくなるという欠点がある。
However, when the terminal potentials are set to different values as described above, since there is a potential difference between the terminal potentials of the two differential signals, as shown in FIG. Changes in width, reduction in noise margin, and the like occur. Such a change in the pulse width and a decrease in the noise margin are serious problems in a high-speed waveform, and have a disadvantage that they cannot be tolerated.

【0009】本発明は上述した従来技術の欠点を解決す
るためになされたものであり、その目的は送信側LSI
が未接続の場合においても、他の問題が生じることな
く、出力を安定にすることのできる差動入力回路を提供
することである。
The present invention has been made to solve the above-mentioned drawbacks of the prior art, and has as its object the purpose of
It is an object of the present invention to provide a differential input circuit capable of stabilizing the output without causing any other problem even when is not connected.

【0010】[0010]

【課題を解決するための手段】本発明による差動入力回
路は、差動信号を構成する正相信号及び逆相信号をそれ
ぞれ所定電位に終端する終端抵抗と、前記差動信号を送
信する送信側回路が自回路の入力側に接続されていない
とき前記終端抵抗の接続状態を変更して前記正相信号及
び前記逆相信号に対する終端抵抗値を異なる値に設定す
る制御回路とを含むことを特徴とする。前記制御回路
は、前記終端抵抗と前記所定電位との間に設けられたス
イッチング素子と、自回路の入力信号レベルと所定基準
レベルとを比較して前記送信側回路の接続状態を検出す
る検出回路を含み、この接続状態検出結果に応じて前記
スイッチング素子をオンオフ制御するようにしたことを
特徴とする。なお、前記スイッチング素子には、前記検
出回路の出力がゲート端子に印加されるMOSトランジ
スタ等を用いれば良い。
A differential input circuit according to the present invention includes a terminating resistor for terminating a positive-phase signal and a negative-phase signal constituting a differential signal to a predetermined potential, respectively, and a transmission for transmitting the differential signal. A control circuit that changes a connection state of the terminating resistor when the side circuit is not connected to the input side of the own circuit and sets a terminating resistance value for the positive-phase signal and the negative-phase signal to a different value. Features. The control circuit includes a switching element provided between the terminating resistor and the predetermined potential, and a detection circuit that detects a connection state of the transmission side circuit by comparing an input signal level of the own circuit with a predetermined reference level. Wherein the on / off control of the switching element is performed according to the connection state detection result. Note that a MOS transistor or the like in which the output of the detection circuit is applied to a gate terminal may be used as the switching element.

【0011】また、前記検出回路は前記入力信号レベル
と前記基準レベルとの比較結果に対応する正相信号及び
逆相信号を出力し、前記正相信号によってNチャネルM
OSトランジスタをオンオフ制御し、前記逆相信号によ
ってPチャネルMOSトランジスタをオンオフ制御する
ことによって、前記所定電位への前記終端抵抗の接続状
態を制御するようにしたことを特徴とする。また、前記
検出回路は前記入力信号レベルと前記基準レベルとの比
較結果に対応する逆相信号を出力し、この逆相信号によ
ってPチャネルMOSトランジスタをオンオフ制御する
ことによって、前記所定電位への前記終端抵抗の接続状
態を制御するようにしても良い。なお、前記基準レベル
は、前記入力信号レベルのローレベルに対応する値と零
ボルトとの間の値とする。
The detection circuit outputs a positive-phase signal and a negative-phase signal corresponding to a result of the comparison between the input signal level and the reference level.
The connection state of the terminating resistor to the predetermined potential is controlled by turning on / off an OS transistor and turning on / off a P-channel MOS transistor by the negative-phase signal. Further, the detection circuit outputs a reverse-phase signal corresponding to a result of comparison between the input signal level and the reference level, and controls the P-channel MOS transistor to be on / off by the reverse-phase signal. The connection state of the terminating resistor may be controlled. Note that the reference level is a value between a value corresponding to a low level of the input signal level and zero volt.

【0012】要するに本回路は、送信側LSIの接続状
態に応じて終端抵抗の接続状態を変更することにより、
送信側LSIが未接続の場合においても、出力が安定す
るのである。
In short, the present circuit changes the connection state of the terminating resistor according to the connection state of the transmission side LSI,
Even when the transmission side LSI is not connected, the output is stabilized.

【0013】[0013]

【発明の実施の形態】次に、本発明の実施の一形態につ
いて図面を参照して説明する。なお、以下の説明におい
て参照する各図においては、他の図と同等部分には同一
符号が付されている。
Next, an embodiment of the present invention will be described with reference to the drawings. In the drawings referred to in the following description, the same parts as those in the other drawings are denoted by the same reference numerals.

【0014】図1は本発明による差動入力回路の実施の
一形態を示すブロック図である。同図において、信号S
11及び信号S12は差動入力回路に入力される差動信
号である。抵抗R11、抵抗R12及びNチャネルMO
S(Metal Oxide Semiconductor )トランジスタ(以
下、Nチャネルトランジスタと略す)T11は信号S1
1の終端回路を構成し、抵抗R13、抵抗R14及びP
チャネルMOSトランジスタ(以下、Pチャネルトラン
ジスタと略す)T12は信号S12の終端回路を構成し
ている。
FIG. 1 is a block diagram showing an embodiment of a differential input circuit according to the present invention. In FIG.
11 and the signal S12 are differential signals input to the differential input circuit. Resistance R11, resistance R12 and N-channel MO
An S (Metal Oxide Semiconductor) transistor (hereinafter abbreviated as an N-channel transistor) T11 is a signal S1
1 and a resistor R13, a resistor R14 and a resistor R13.
A channel MOS transistor (hereinafter abbreviated as a P-channel transistor) T12 forms a termination circuit of the signal S12.

【0015】ゲートG11は、信号S11及び信号S1
2を入力とする差動回路である。ゲートG12は、信号
S12と基準電圧Vrefとを比較し、Nチャネルトラ
ンジスタT11及びPチャネルトランジスタT12をO
N又はOFFする制御回路として機能する。つまり、こ
のゲートG11は、入力信号レベルと所定基準レベルと
を比較して送信側LSIの接続状態を検出する検出回路
であり、この接続状態検出結果に応じてスイッチング素
子であるトランジスタをオンオフ制御するのである。
The gate G11 is connected to the signal S11 and the signal S1.
This is a differential circuit having 2 as an input. The gate G12 compares the signal S12 with the reference voltage Vref, and turns on the N-channel transistor T11 and the P-channel transistor T12.
It functions as a control circuit that turns N or OFF. That is, the gate G11 is a detection circuit that detects the connection state of the transmission side LSI by comparing the input signal level with the predetermined reference level, and controls on / off of a transistor as a switching element according to the connection state detection result. It is.

【0016】このように構成された本差動入力回路にお
いては、2つの差動信号を等電位(VT)に終端でき
る。また、送信側LSIが未接続の場合においても、2
つの差動信号間に電位差を生じさせることができるので
ある。これにより、先述した従来技術の欠点を解決する
ことができるのである。
In the present differential input circuit configured as described above, two differential signals can be terminated at the same potential (VT). In addition, even when the transmission side LSI is not connected, 2
A potential difference can be generated between the two differential signals. As a result, the above-mentioned disadvantages of the prior art can be solved.

【0017】つまり、終端回路において抵抗R11と抵
抗R12とで設定される終端電位(VTとする)と、抵
抗R13と抵抗R14とで設定される終端電位(同様に
VT)とを等しくすることにより、図5に示されている
ように2つの差動入力信号はどちらも終端電位VTを中
心に動作することとなる。また、送信側LSIが未接続
の場合において発生する2つの差動信号が等電位(V
T)となるため、差動回路であるゲートG11の出力が
不安定となるという問題は解決できる。
That is, in the termination circuit, the termination potential (VT) set by the resistors R11 and R12 is made equal to the termination potential (VT similarly) set by the resistors R13 and R14. As shown in FIG. 5, both of the two differential input signals operate around the terminal potential VT. Further, two differential signals generated when the transmission side LSI is not connected have the same potential (V
T), the problem that the output of the gate G11 as a differential circuit becomes unstable can be solved.

【0018】ここで、信号S21及び信号S22は高速
伝送に採用されるLVPECL(Low Voltag
e Positive Emitter Couple
dLogic)信号とする。LVPECLは、終端電位
は約1.3Vに設定し、終端回路によりHIGHレベル
は約2.4V、LOWレベルは約1.6Vとなる信号レ
ベルである。
Here, the signal S21 and the signal S22 are LVPECL (Low Voltage) used for high-speed transmission.
e Positive Emitter Couple
dLogic) signal. LVPECL is a signal level in which the termination potential is set to about 1.3 V, the HIGH level is about 2.4 V, and the LOW level is about 1.6 V by the termination circuit.

【0019】送信側LSIが接続されていない場合、信
号S12は、抵抗R14により0Vとなる。このため、
基準電位Vrefを0.5Vに設定すると、制御回路で
あるゲートG12によりNチャネルトランジスタT11
及びPチャネルトランジスタT12はOFF状態のまま
となる。すると、信号S12は0V、信号S11は電源
電圧Vとなり、2つの差動信号間に電位差が生じるた
め、差動回路であるG11の出力は安定となる。
When the transmission side LSI is not connected, the signal S12 becomes 0 V by the resistor R14. For this reason,
When the reference potential Vref is set to 0.5 V, the N-channel transistor T11
And the P-channel transistor T12 remains OFF. Then, the signal S12 becomes 0 V, the signal S11 becomes the power supply voltage V, and a potential difference occurs between the two differential signals, so that the output of the differential circuit G11 is stabilized.

【0020】一方、送信側LSIが接続されている場
合、信号S12は、抵抗R14により基準電位Vref
である0.5Vより高くなる。ただし、この場合は、0
Vに抵抗R14で終端されることとなるので、上記のL
OWレベルである1.6Vより下がる可能性があるもの
の、0.5Vに対しては十分に高くなる。このように、
基準電位Vrefは、入力信号レベルのLOWレベルに
対応する値と零ボルトとの間の値に設定されるのであ
る。
On the other hand, when the transmission side LSI is connected, the signal S12 is supplied to the reference potential Vref by the resistor R14.
0.5V. However, in this case, 0
V is terminated by a resistor R14.
Although it may fall below the OW level of 1.6 V, it is sufficiently high for 0.5 V. in this way,
The reference potential Vref is set to a value between the value corresponding to the LOW level of the input signal level and zero volt.

【0021】このため、制御回路であるゲートG12に
よりNチャネルトランジスタT11及びPチャネルトラ
ンジスタT12はON状態となる。Nチャネルトランジ
スタT11及びPチャネルトランジスタT12はON状
態になった場合は、信号S11は抵抗R11とR12に
より、また、信号S12は抵抗R13とR14により、
上記の一般的な終端方法となる。なお、この場合、終端
電位は約1.3Vである。
Therefore, the N-channel transistor T11 and the P-channel transistor T12 are turned on by the gate G12 which is a control circuit. When the N-channel transistor T11 and the P-channel transistor T12 are turned on, the signal S11 is generated by the resistors R11 and R12, and the signal S12 is generated by the resistors R13 and R14.
This is the general termination method described above. In this case, the terminal potential is about 1.3V.

【0022】このように、図1の回路構成を採用するこ
とにより、2つの差動信号は等電位(VT)に終端で
き、また送信側LSIが未接続の場合にも2つの差動信
号間に電位差を生じることができる。このため、送信側
LSIの接続状態にかかわらず、安定した出力を得るこ
とができるのである。
As described above, by adopting the circuit configuration of FIG. 1, two differential signals can be terminated at the same potential (VT). Can cause a potential difference. Therefore, a stable output can be obtained regardless of the connection state of the transmission side LSI.

【0023】図2には、本発明の実施の他の形態が示さ
れている。同図に示されている回路は、図1におけるN
チャネルトランジスタT11をPチャネルトランジスタ
T51に置き換えたものである。そして、ゲート13を
制御回路として、トランジスタT51及びT12をON
状態又はOFF状態に制御するのである。
FIG. 2 shows another embodiment of the present invention. The circuit shown in FIG.
The channel transistor T11 is replaced with a P-channel transistor T51. Then, the transistors T51 and T12 are turned on using the gate 13 as a control circuit.
It is controlled to the state or the OFF state.

【0024】図1の場合、検出回路であるゲートG12
は、入力信号レベルと基準レベルとの比較結果に対応す
る正相信号及び逆相信号を出力し、正相信号によってN
チャネルMOSトランジスタをオンオフ制御し、逆相信
号によってPチャネルMOSトランジスタをオンオフ制
御することによって、電源電圧V又はグランドへの終端
抵抗の接続状態を制御している。これに対し、図2の場
合、検出回路であるゲートG12は、入力信号レベルと
基準レベルとの比較結果に対応する逆相信号を出力し、
この逆相信号によってPチャネルMOSトランジスタを
オンオフ制御することによって、電源電圧V又はグラン
ドへの終端抵抗の接続状態を制御しているのである。
In the case of FIG. 1, a gate G12 serving as a detection circuit
Outputs a positive-phase signal and a negative-phase signal corresponding to the comparison result between the input signal level and the reference level, and outputs N
The on / off control of the channel MOS transistor and the on / off control of the P-channel MOS transistor by the negative-phase signal control the connection state of the terminating resistor to the power supply voltage V or the ground. On the other hand, in the case of FIG. 2, the gate G12, which is a detection circuit, outputs an anti-phase signal corresponding to the comparison result between the input signal level and the reference level,
The connection state of the terminating resistor to the power supply voltage V or the ground is controlled by controlling the ON / OFF of the P-channel MOS transistor by the reverse phase signal.

【0025】このように、制御回路であるゲート13
(図1においてはゲートG12)の出力である制御信号
を用いて、抵抗R51とR52、抵抗R53とR54に
よる終端回路(図1においては抵抗R11とR12、抵
抗R13とR14)をトランジスタでON状態又はOF
F状態に制御するのである。なお、トランジスタに限ら
ず、電気的に接続又は切断が可能なスイッチング素子や
スイッチング回路を用いれば、同様な効果が得られるこ
とは明らかである。
As described above, the gate 13 as the control circuit
Using a control signal output from the gate (G12 in FIG. 1), a termination circuit (R11 and R12, R13 and R14 in FIG. 1) with resistors R51 and R52 and resistors R53 and R54 is turned on by a transistor. Or OF
It is controlled to the F state. It is apparent that similar effects can be obtained by using a switching element or a switching circuit which can be electrically connected or disconnected without being limited to the transistor.

【0026】以上説明したように、従来の差動入力回路
においては、2つの差動信号が等電位の場合には、送信
側LSIが未接続になると2つの差動信号を入力とする
差動回路の出力が不安定となるという問題が発生する。
As described above, in the conventional differential input circuit, when the two differential signals are at the same potential, the differential circuit having the two differential signals as inputs when the transmission side LSI is disconnected. This causes a problem that the output of the circuit becomes unstable.

【0027】このため、終端電位を変えて送信側LSI
の出力が未接続の場合に2つの差動信号の終端電位に電
位差が生じるように設定(VT1及びVT2とする)し
て対策とすることがある。しかし、この場合は2つの差
動信号の終端電位に電位差があるため、図6に示す波形
のように信号レベルが異なることによるパルス幅の変
化、ノイズマージンの減少等が生じる。このパルス幅の
変化、ノイズマージンの減少は、高速波形においては許
容できなくなるという問題がある。
For this reason, by changing the terminal potential, the transmission-side LSI
May be set (VT1 and VT2) so as to take a countermeasure such that a potential difference occurs between the terminal potentials of the two differential signals when the outputs are not connected. However, in this case, since there is a potential difference between the terminal potentials of the two differential signals, a difference in signal level causes a change in pulse width, a reduction in noise margin, and the like as shown in the waveforms of FIG. The change in the pulse width and the decrease in the noise margin are unacceptable in high-speed waveforms.

【0028】これに比べて、本発明においては、2つの
差動信号は等電位(VT)に終端でき、また、送信側L
SIの出力が未接続の場合にも2つの差動信号間に電位
差を生じることができるため、上記の従来の差動入力回
路における問題点を解決することができるのである。
In contrast, in the present invention, the two differential signals can be terminated at the same potential (VT),
Since a potential difference can be generated between the two differential signals even when the output of the SI is not connected, the above-described problem in the conventional differential input circuit can be solved.

【0029】ところで以上は、送信側LSIが入力側に
接続されていない場合について説明したが、これに限ら
ず送信側LSIの電源がオフ状態の場合にも本発明を適
用できる。すなわち、たとえ送信側LSIが接続されて
いても、その電源がオフ状態の場合には同様に先述した
問題が生じるので、本発明を適用することによって、か
かる問題を解決することができるのである。
In the above, the case where the transmitting side LSI is not connected to the input side has been described. However, the present invention is not limited to this, and the present invention can be applied to the case where the power of the transmitting side LSI is off. That is, even if the transmitting-side LSI is connected, the above-described problem similarly occurs when the power is off, and thus the present invention can be solved by applying the present invention.

【0030】[0030]

【発明の効果】以上説明したように本発明は、送信側L
SIの接続状態に応じて終端抵抗の接続状態を変更する
ことにより、送信側LSIが未接続の場合においても、
出力を安定にすることのできる差動入力回路を実現でき
るという効果がある。
As described above, according to the present invention, the transmission side L
By changing the connection state of the terminating resistor according to the connection state of the SI, even when the transmission side LSI is not connected,
This has the effect of realizing a differential input circuit capable of stabilizing the output.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態による差動入力回路の構
成を示す図である。
FIG. 1 is a diagram showing a configuration of a differential input circuit according to an embodiment of the present invention.

【図2】本発明の実施の他の形態による差動入力回路の
構成を示す図である。
FIG. 2 is a diagram showing a configuration of a differential input circuit according to another embodiment of the present invention.

【図3】従来の差動入力回路の構成を示す図である。FIG. 3 is a diagram showing a configuration of a conventional differential input circuit.

【図4】差動入力回路を含むLSIと他のLSIとの接
続関係を示す図である。
FIG. 4 is a diagram illustrating a connection relationship between an LSI including a differential input circuit and another LSI.

【図5】差動入力回路の動作を示す波形図である。FIG. 5 is a waveform chart showing an operation of the differential input circuit.

【図6】送信側LSIが未接続の場合における従来の差
動入力回路の動作を示す波形図である。
FIG. 6 is a waveform diagram showing an operation of a conventional differential input circuit when a transmission side LSI is not connected.

【符号の説明】[Explanation of symbols]

1 受信側LSI 2 送信側LSI G11〜G13 ゲート G21 差動回路 R11〜R14 R21〜R24 R51〜R54 抵抗 T11,T12,T51 トランジスタ DESCRIPTION OF SYMBOLS 1 Receiving side LSI 2 Transmission side LSI G11-G13 Gate G21 Differential circuit R11-R14 R21-R24 R51-R54 Resistance T11, T12, T51 Transistor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 差動信号を構成する正相信号及び逆相信
号をそれぞれ所定電位に終端する終端抵抗と、前記差動
信号を送信する送信側回路が自回路の入力側に接続され
ていないとき前記終端抵抗の接続状態を変更して前記正
相信号及び前記逆相信号に対する終端抵抗値を異なる値
に設定する制御回路とを含むことを特徴とする差動入力
回路。
1. A terminating resistor for terminating a positive-phase signal and a negative-phase signal constituting a differential signal to a predetermined potential, respectively, and a transmitting circuit for transmitting the differential signal is not connected to an input side of the own circuit. A control circuit for changing a connection state of the terminating resistor to set a terminating resistance value for the positive-phase signal and the negative-phase signal to different values.
【請求項2】 前記制御回路は、前記終端抵抗と前記所
定電位との間に設けられたスイッチング素子と、自回路
の入力信号レベルと所定基準レベルとを比較して前記送
信側回路の接続状態を検出する検出回路を含み、この接
続状態検出結果に応じて前記スイッチング素子をオンオ
フ制御するようにしたことを特徴とする請求項1記載の
差動入力回路。
2. The control circuit according to claim 1, wherein the control circuit compares a switching element provided between the terminating resistor and the predetermined potential with an input signal level of its own circuit and a predetermined reference level to determine a connection state of the transmission side circuit. 2. A differential input circuit according to claim 1, further comprising a detection circuit for detecting the connection state, wherein the switching element is controlled to be turned on and off in accordance with the connection state detection result.
【請求項3】 前記スイッチング素子は、前記検出回路
の出力がゲート端子に印加されるMOSトランジスタで
あることを特徴とする請求項2記載の差動入力回路。
3. The differential input circuit according to claim 2, wherein said switching element is a MOS transistor to which an output of said detection circuit is applied to a gate terminal.
【請求項4】 前記検出回路は前記入力信号レベルと前
記基準レベルとの比較結果に対応する正相信号及び逆相
信号を出力し、前記正相信号によってNチャネルMOS
トランジスタをオンオフ制御し、前記逆相信号によって
PチャネルMOSトランジスタをオンオフ制御すること
によって、前記所定電位への前記終端抵抗の接続状態を
制御するようにしたことを特徴とする請求項3記載の差
動入力回路。
4. The detection circuit outputs a positive-phase signal and a negative-phase signal corresponding to a result of comparison between the input signal level and the reference level, and outputs an N-channel MOS signal according to the positive-phase signal.
4. The difference according to claim 3, wherein the on / off control of the transistor and the on / off control of the P-channel MOS transistor by the opposite-phase signal control the connection state of the terminating resistor to the predetermined potential. Dynamic input circuit.
【請求項5】 前記検出回路は前記入力信号レベルと前
記基準レベルとの比較結果に対応する逆相信号を出力
し、この逆相信号によってPチャネルMOSトランジス
タをオンオフ制御することによって、前記所定電位への
前記終端抵抗の接続状態を制御するようにしたことを特
徴とする請求項3記載の差動入力回路。
5. The detection circuit outputs a negative-phase signal corresponding to a result of comparison between the input signal level and the reference level, and controls the P-channel MOS transistor on / off by the negative-phase signal to obtain the predetermined potential. 4. The differential input circuit according to claim 3, wherein a connection state of the terminating resistor to the terminal is controlled.
【請求項6】 前記基準レベルは、前記入力信号レベル
のローレベルに対応する値と零ボルトとの間の値である
ことを特徴とする請求項2〜4のいずれかに記載の差動
入力回路。
6. The differential input according to claim 2, wherein the reference level is a value between a value corresponding to a low level of the input signal level and zero volt. circuit.
JP31316599A 1999-11-04 1999-11-04 Differential input circuit Expired - Fee Related JP3433707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31316599A JP3433707B2 (en) 1999-11-04 1999-11-04 Differential input circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31316599A JP3433707B2 (en) 1999-11-04 1999-11-04 Differential input circuit

Publications (2)

Publication Number Publication Date
JP2001136057A true JP2001136057A (en) 2001-05-18
JP3433707B2 JP3433707B2 (en) 2003-08-04

Family

ID=18037894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31316599A Expired - Fee Related JP3433707B2 (en) 1999-11-04 1999-11-04 Differential input circuit

Country Status (1)

Country Link
JP (1) JP3433707B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1760889A2 (en) * 2004-04-06 2007-03-07 Samsung Electronics Co., Ltd. High speed input circuit
US7259592B2 (en) 2004-04-06 2007-08-21 Samsung Electronics Co., Ltd. Output drivers having adjustable swing widths during test mode operation
JP2007235622A (en) * 2006-03-01 2007-09-13 Nec Corp Differential transmission circuit and signal regeneration method
US7456650B2 (en) 2004-06-14 2008-11-25 Samsung Electronics Co., Ltd. Memory system with stable termination of a pair of differential signals transmitted via a pair of transmission lines
US7647030B2 (en) 2004-10-22 2010-01-12 Parkervision, Inc. Multiple input single output (MISO) amplifier with circuit branch output tracking
US7750733B2 (en) 2006-04-24 2010-07-06 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for extending RF transmission bandwidth
US7885682B2 (en) 2006-04-24 2011-02-08 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including architectural embodiments of same
US7911272B2 (en) 2007-06-19 2011-03-22 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including blended control embodiments
US8013675B2 (en) 2007-06-19 2011-09-06 Parkervision, Inc. Combiner-less multiple input single output (MISO) amplification with blended control
US8031804B2 (en) 2006-04-24 2011-10-04 Parkervision, Inc. Systems and methods of RF tower transmission, modulation, and amplification, including embodiments for compensating for waveform distortion
US8315336B2 (en) 2007-05-18 2012-11-20 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including a switching stage embodiment
US8334722B2 (en) 2007-06-28 2012-12-18 Parkervision, Inc. Systems and methods of RF power transmission, modulation and amplification
US8755454B2 (en) 2011-06-02 2014-06-17 Parkervision, Inc. Antenna control
US9106316B2 (en) 2005-10-24 2015-08-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification
US9608677B2 (en) 2005-10-24 2017-03-28 Parker Vision, Inc Systems and methods of RF power transmission, modulation, and amplification
US10278131B2 (en) 2013-09-17 2019-04-30 Parkervision, Inc. Method, apparatus and system for rendering an information bearing function of time

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1760889A3 (en) * 2004-04-06 2007-03-14 Samsung Electronics Co., Ltd. High speed input circuit
US7259592B2 (en) 2004-04-06 2007-08-21 Samsung Electronics Co., Ltd. Output drivers having adjustable swing widths during test mode operation
EP1760889A2 (en) * 2004-04-06 2007-03-07 Samsung Electronics Co., Ltd. High speed input circuit
US7456650B2 (en) 2004-06-14 2008-11-25 Samsung Electronics Co., Ltd. Memory system with stable termination of a pair of differential signals transmitted via a pair of transmission lines
US8406711B2 (en) 2004-10-22 2013-03-26 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including a Cartesian-Polar-Cartesian-Polar (CPCP) embodiment
US8351870B2 (en) 2004-10-22 2013-01-08 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including cartesian 4-branch embodiments
US8428527B2 (en) 2004-10-22 2013-04-23 Parkervision, Inc. RF power transmission, modulation, and amplification, including direct cartesian 2-branch embodiments
US9768733B2 (en) 2004-10-22 2017-09-19 Parker Vision, Inc. Multiple input single output device with vector signal and bias signal inputs
US7835709B2 (en) 2004-10-22 2010-11-16 Parkervision, Inc. RF power transmission, modulation, and amplification using multiple input single output (MISO) amplifiers to process phase angle and magnitude information
US7844235B2 (en) 2004-10-22 2010-11-30 Parkervision, Inc. RF power transmission, modulation, and amplification, including harmonic control embodiments
US8433264B2 (en) 2004-10-22 2013-04-30 Parkervision, Inc. Multiple input single output (MISO) amplifier having multiple transistors whose output voltages substantially equal the amplifier output voltage
US9197164B2 (en) 2004-10-22 2015-11-24 Parkervision, Inc. RF power transmission, modulation, and amplification, including direct cartesian 2-branch embodiments
US9197163B2 (en) 2004-10-22 2015-11-24 Parkvision, Inc. Systems, and methods of RF power transmission, modulation, and amplification, including embodiments for output stage protection
US7932776B2 (en) 2004-10-22 2011-04-26 Parkervision, Inc. RF power transmission, modulation, and amplification embodiments
US9166528B2 (en) 2004-10-22 2015-10-20 Parkervision, Inc. RF power transmission, modulation, and amplification embodiments
US7945224B2 (en) 2004-10-22 2011-05-17 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including waveform distortion compensation embodiments
US8447248B2 (en) 2004-10-22 2013-05-21 Parkervision, Inc. RF power transmission, modulation, and amplification, including power control of multiple input single output (MISO) amplifiers
US7647030B2 (en) 2004-10-22 2010-01-12 Parkervision, Inc. Multiple input single output (MISO) amplifier with circuit branch output tracking
US8913974B2 (en) 2004-10-22 2014-12-16 Parkervision, Inc. RF power transmission, modulation, and amplification, including direct cartesian 2-branch embodiments
US8781418B2 (en) 2004-10-22 2014-07-15 Parkervision, Inc. Power amplification based on phase angle controlled reference signal and amplitude control signal
US8639196B2 (en) 2004-10-22 2014-01-28 Parkervision, Inc. Control modules
US8626093B2 (en) 2004-10-22 2014-01-07 Parkervision, Inc. RF power transmission, modulation, and amplification embodiments
US8577313B2 (en) 2004-10-22 2013-11-05 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including output stage protection circuitry
US8233858B2 (en) 2004-10-22 2012-07-31 Parkervision, Inc. RF power transmission, modulation, and amplification embodiments, including control circuitry for controlling power amplifier output stages
US8280321B2 (en) 2004-10-22 2012-10-02 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including Cartesian-Polar-Cartesian-Polar (CPCP) embodiments
US9143088B2 (en) 2004-10-22 2015-09-22 Parkervision, Inc. Control modules
US7672650B2 (en) 2004-10-22 2010-03-02 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including multiple input single output (MISO) amplifier embodiments comprising harmonic control circuitry
US9094085B2 (en) 2005-10-24 2015-07-28 Parkervision, Inc. Control of MISO node
US9419692B2 (en) 2005-10-24 2016-08-16 Parkervision, Inc. Antenna control
US9106316B2 (en) 2005-10-24 2015-08-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification
US9705540B2 (en) 2005-10-24 2017-07-11 Parker Vision, Inc. Control of MISO node
US9608677B2 (en) 2005-10-24 2017-03-28 Parker Vision, Inc Systems and methods of RF power transmission, modulation, and amplification
US9614484B2 (en) 2005-10-24 2017-04-04 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including control functions to transition an output of a MISO device
JP2007235622A (en) * 2006-03-01 2007-09-13 Nec Corp Differential transmission circuit and signal regeneration method
US8059749B2 (en) 2006-04-24 2011-11-15 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for compensating for waveform distortion
US7885682B2 (en) 2006-04-24 2011-02-08 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including architectural embodiments of same
US9106500B2 (en) 2006-04-24 2015-08-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for error correction
US8050353B2 (en) 2006-04-24 2011-11-01 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for compensating for waveform distortion
US8036306B2 (en) 2006-04-24 2011-10-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation and amplification, including embodiments for compensating for waveform distortion
US7929989B2 (en) 2006-04-24 2011-04-19 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including architectural embodiments of same
US7937106B2 (en) 2006-04-24 2011-05-03 ParkerVision, Inc, Systems and methods of RF power transmission, modulation, and amplification, including architectural embodiments of same
US8031804B2 (en) 2006-04-24 2011-10-04 Parkervision, Inc. Systems and methods of RF tower transmission, modulation, and amplification, including embodiments for compensating for waveform distortion
US7949365B2 (en) 2006-04-24 2011-05-24 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including architectural embodiments of same
US8026764B2 (en) 2006-04-24 2011-09-27 Parkervision, Inc. Generation and amplification of substantially constant envelope signals, including switching an output among a plurality of nodes
US7750733B2 (en) 2006-04-24 2010-07-06 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for extending RF transmission bandwidth
US8913691B2 (en) 2006-08-24 2014-12-16 Parkervision, Inc. Controlling output power of multiple-input single-output (MISO) device
US8548093B2 (en) 2007-05-18 2013-10-01 Parkervision, Inc. Power amplification based on frequency control signal
US8315336B2 (en) 2007-05-18 2012-11-20 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including a switching stage embodiment
US8013675B2 (en) 2007-06-19 2011-09-06 Parkervision, Inc. Combiner-less multiple input single output (MISO) amplification with blended control
US8766717B2 (en) 2007-06-19 2014-07-01 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including varying weights of control signals
US7911272B2 (en) 2007-06-19 2011-03-22 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including blended control embodiments
US8502600B2 (en) 2007-06-19 2013-08-06 Parkervision, Inc. Combiner-less multiple input single output (MISO) amplification with blended control
US8461924B2 (en) 2007-06-19 2013-06-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for controlling a transimpedance node
US8410849B2 (en) 2007-06-19 2013-04-02 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including blended control embodiments
US8884694B2 (en) 2007-06-28 2014-11-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification
US8334722B2 (en) 2007-06-28 2012-12-18 Parkervision, Inc. Systems and methods of RF power transmission, modulation and amplification
US8755454B2 (en) 2011-06-02 2014-06-17 Parkervision, Inc. Antenna control
US10278131B2 (en) 2013-09-17 2019-04-30 Parkervision, Inc. Method, apparatus and system for rendering an information bearing function of time

Also Published As

Publication number Publication date
JP3433707B2 (en) 2003-08-04

Similar Documents

Publication Publication Date Title
JP2001136057A (en) Differential input circuit
US6307395B1 (en) Termination circuits and methods for bused and networked devices
JP4267655B2 (en) Electronic circuit, differential transmitter configured as electronic circuit, and method of forming self-series terminated transmitter (segmentation and amplitude accuracy and high voltage protection for amplitude control, pre-emphasis control and slew rate control Self-series terminated serial link transmitter with voltage regulation for)
CN105446923B (en) Differential driver with pull-up booster and pull-down booster
US7750666B2 (en) Reduced power differential type termination circuit
US8253445B2 (en) Output circuit having pre-emphasis function
US5550496A (en) High speed I/O circuit having a small voltage swing and low power dissipation for high I/O count applications
EP1239591B1 (en) Input circuit for an integrated circuit
US8643404B1 (en) Self-calibration of output buffer driving strength
US6611157B2 (en) Differential signal output circuit
US8884680B2 (en) Signal electric potential conversion circuit
JP3593120B2 (en) Driver circuit
US6342848B1 (en) System for data dependent voltage bias level
US7157931B2 (en) Termination circuits having pull-down and pull-up circuits and related methods
US8508252B2 (en) Variable resistor voltage driver with self-noise compensation circuit
WO2018020782A1 (en) Ringing suppression circuit
US6774700B1 (en) Current-mode logic differential signal generation circuit employing squelch
JP2008147940A (en) Semiconductor integrated circuit
JP3217079B2 (en) Semiconductor integrated circuit
US6507218B1 (en) Method and apparatus for reducing back-to-back voltage glitch on high speed data bus
US11770151B2 (en) Signal receiver and signal transceiver
JP2998329B2 (en) Semiconductor integrated circuit
JP3024601B2 (en) Complementary transmission line termination circuit
US6541998B2 (en) Active termination circuit with an enable/disable
JP3788181B2 (en) Information transmission circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees