[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001123183A - Method for gasifying fuel consisting essentially of carbon and solar gasifying furnace - Google Patents

Method for gasifying fuel consisting essentially of carbon and solar gasifying furnace

Info

Publication number
JP2001123183A
JP2001123183A JP30521399A JP30521399A JP2001123183A JP 2001123183 A JP2001123183 A JP 2001123183A JP 30521399 A JP30521399 A JP 30521399A JP 30521399 A JP30521399 A JP 30521399A JP 2001123183 A JP2001123183 A JP 2001123183A
Authority
JP
Japan
Prior art keywords
fuel
solar
gasification reaction
fluidized
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30521399A
Other languages
Japanese (ja)
Other versions
JP4324828B2 (en
Inventor
Toru Ishii
徹 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP30521399A priority Critical patent/JP4324828B2/en
Publication of JP2001123183A publication Critical patent/JP2001123183A/en
Application granted granted Critical
Publication of JP4324828B2 publication Critical patent/JP4324828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide both a method for gasifying a fuel and a solar gasifying furnace by which the fuel such as a fossil fuel can efficiently be reduced by utilizing sunlight, particles can efficiently be irradiated with the sunlight and the reactional efficiency of the particles can thereby be raised to compact a reactional furnace without circulating a, large amount of magnetite. SOLUTION: This solar gasifying furnace is equipped with a solar light heating chamber 12 having a fluid medium 8 in the interior and irradiated with the condensed sunlight 4 and a gasifying reactional chamber 14 having the fluid medium 8 in the interior, fed with steam 7 and the fuel 6 and mutually reacting both and capable of circulating the fluid medium 8 between the solar light heating chamber 12 and the gasifying reactional chamber 14. The sunlight 4 is condensed and the fuel consisting essentially of carbon is irradiated therewith. Steam is then reacted with the fuel heated thereby to produce a synthesis gas containing hydrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽エネルギーを
用いて石炭等の燃料をガス化する炭素を主成分とする燃
料のガス化方法とソーラーガス化炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for gasifying a fuel containing carbon as a main component, which gasifies a fuel such as coal using solar energy, and a solar gasifier.

【0002】[0002]

【従来の技術】CO2 による地球温暖化を回避するため
に、砂漠地帯で豊富に得られる太陽エネルギーを効率的
に利用できる太陽エネルギーの化学燃料化技術が求めら
れている。この太陽エネルギーの化学燃料化技術は、
(1)太陽エネルギーの高効率化学エネルギー転換を可
能とする、(2)得られた化学エネルギーはグローバル
輸送及び貯蔵を容易にする、(3)プロセス中で硫黄等
の環境汚染物質を除去できる、(4)輸送コストとイン
フラ整備の面で導入の経済的障壁が小さい、等の優れた
特徴を有している。
2. Description of the Related Art In order to avoid global warming due to CO2, there is a demand for a technology for converting solar energy into a chemical fuel that can efficiently utilize solar energy abundantly obtained in desert areas. This technology for converting solar energy into chemical fuel is
(1) enabling high-efficiency chemical energy conversion of solar energy, (2) the resulting chemical energy facilitates global transport and storage, and (3) removing environmental pollutants such as sulfur in the process. (4) It has excellent features such as small economic barriers to introduction in terms of transportation costs and infrastructure development.

【0003】かかる技術を確立するために、IEA(国
際エネルギー機構)の中で、オーストラリア、ドイツ、
イスラエル、ロシア、スペイン、スイス、米国等が参加
した国際共同研究として、太陽エネルギーの化学エネル
ギー変換の研究が現在進められている。
In order to establish such technology, Australia, Germany, and the IEA (International Energy Agency)
Research on chemical conversion of solar energy is currently under way as an international collaborative research involving Israel, Russia, Spain, Switzerland and the United States.

【0004】この研究の一環として、スイスでは、マグ
ネタイトを2000℃付近の高温でウスタイトに分解す
る太陽/化学エネルギー変換系の研究が進められ、20
00℃付近での反応を実現するために、集光ビームをギ
ャビィティの大きい反応炉に導入し、そこにマグネタイ
ト粒子を雲のごとく噴霧する流動床技術が開発・研究さ
れている。また、アメリカとドイツの共同により、10
0kWの大口径集光太陽炉を用いて、メタンのCO2 リ
フォーミングによる研究で太陽/化学エネルギー変換技
術が研究されている。
[0004] As part of this research, a study on a solar / chemical energy conversion system which decomposes magnetite into wustite at a high temperature of around 2000 ° C has been promoted in Switzerland.
In order to realize a reaction at around 00 ° C., a fluidized bed technology in which a focused beam is introduced into a reactor having a high gravitational activity and magnetite particles are sprayed like a cloud therein has been developed and studied. In addition, the United States and Germany jointly
The solar / chemical energy conversion technology has been studied by a CO2 reforming study of methane using a large-diameter concentrating solar furnace of 0 kW.

【0005】図4は、太陽エネルギーを用いた石炭ガス
化装置用の還元反応炉(以下、太陽光利用還元反応器)
の模式図であり、(A)は粒子を垂直方向に落下させ、
水平方向から太陽光を照射する還元反応炉、(B)は粒
子でベッドを形成させそこに太陽光を照射する還元反応
炉である。これらは、いずれもASMEレポートに報告
されている("DEVELOPMENT OF SOLAR COAL GASIFICATIO
N TECHNOLOGY", 1996.9.01, ASME REPORT)。
FIG. 4 shows a reduction reactor for a coal gasifier using solar energy (hereinafter referred to as a reduction reactor utilizing sunlight).
It is a schematic diagram of (A), particles are dropped in the vertical direction,
The reduction reactor for irradiating sunlight from the horizontal direction, (B) is a reduction reactor for forming a bed with particles and irradiating the bed with sunlight. These are all reported in the ASME report ("DEVELOPMENT OF SOLAR COAL GASIFICATIO
N TECHNOLOGY ", 1996.9.01, ASME REPORT).

【0006】[0006]

【発明が解決しようとする課題】図4に示した従来の太
陽光利用還元反応器では、太陽光が当たるのは粒子の1
列目或いは1層目のみであるため、2列目以降には十分
に光が当たらず、広い照射面積が必要となるか、より多
くの未反応粒子を循環させる必要がある問題点があっ
た。すなわち、太陽光を利用して化石燃料等を金属酸化
物で還元する場合に、酸化・還元反応を十分に促進させ
るためには、各々の粒子に効率よく太陽光を照射させる
必要があるが、従来の太陽光利用還元反応器では、各々
の粒子自体によって太陽光が遮られてしまいその影に位
置する粒子が反応せず、その結果、全体の粒子を効率的
に反応させるためには大面積を必要としたり粒子循環を
繰り返す必要があり、結果として反応効率が低く反応器
が大型化する問題点があった。
In the conventional reduction reactor utilizing sunlight shown in FIG. 4, sunlight is applied to only one of the particles.
Since there is only the first row or the first layer, the second and subsequent rows are not sufficiently irradiated with light, so that a large irradiation area is required or more unreacted particles need to be circulated. . In other words, when reducing fossil fuels and the like with metal oxides using sunlight, it is necessary to efficiently irradiate each particle with sunlight in order to sufficiently promote the oxidation and reduction reactions. In a conventional solar reduction reactor, the sunlight is blocked by each particle itself, and the particles located in the shadow do not react. As a result, a large area is required to make all the particles react efficiently. And the circulation of particles must be repeated. As a result, there is a problem that the reaction efficiency is low and the reactor becomes large.

【0007】この問題点を解決するために、本願出願人
は、先に、石炭と酸化物の混合粒子に光を照射して石炭
の還元反応を起こさせる光化学反応炉と、前記石炭の還
元反応で生じた還元物を水蒸気との反応により酸化物に
戻し同時に水素を発生させる水素発生反応炉と、を備え
た光利用還元反応器を創案し出願した(特開平10−2
79955号)。この発明は、石炭とマグネタイトの混
合粒子に太陽光を照射して石炭の還元反応を起こさせる
太陽熱化学反応炉と、前記石炭の還元反応で生じたウス
タイトを水蒸気との反応によりマグネタイトに戻し同時
に水素を発生させる水素発生反応炉とを備えたものであ
る。
[0007] In order to solve this problem, the applicant of the present application has previously disclosed a photochemical reactor for irradiating mixed particles of coal and oxide with light to cause a reduction reaction of coal, and a reduction reaction of the coal. (2) a photoreduction reactor equipped with a hydrogen generation reactor for returning the reduced product produced in the above to oxide by reaction with water vapor and simultaneously generating hydrogen.
No. 79955). The present invention provides a solar thermochemical reactor for irradiating mixed particles of coal and magnetite with sunlight to cause a reduction reaction of the coal, and simultaneously converts wustite generated by the reduction reaction of the coal into magnetite by reacting with steam to produce hydrogen. And a hydrogen generation reactor for generating hydrogen.

【0008】上述した特開平10−279955号の光
利用還元反応器により、粒子に効率よく太陽光を照射で
き、これにより粒子の反応効率を高めて化石燃料等を効
率的に還元することができる。
The light-reducing reactor described in Japanese Patent Application Laid-Open No. Hei 10-279955 can efficiently irradiate particles with sunlight, thereby increasing the reaction efficiency of particles and efficiently reducing fossil fuels and the like. .

【0009】しかし、特開平10−279955号の光
利用還元反応器は、マグネタイト(Fe34)を媒体と
して石炭と水(H2O)を間接的に反応させ、合成ガス
(CO,H2の混合ガス)を製造するため、マグネタイ
トを大量に循環させる必要があり、装置が大型になる問
題点があった。
However, the photoreduction reactor disclosed in Japanese Patent Application Laid-Open No. 10-279955 indirectly reacts coal with water (H 2 O) using magnetite (Fe 3 O 4 ) as a medium to produce synthesis gas (CO, H 2 ), it was necessary to circulate a large amount of magnetite, and there was a problem that the apparatus became large.

【0010】本発明は、上述した問題点を解決するため
に創案されたものである。すなわち本発明の目的は、太
陽光を利用して化石燃料等を効率的に還元することがで
き、粒子に効率よく太陽光を照射でき、これにより粒子
の反応効率を高め、かつマグネタイトを大量に循環させ
ずに反応炉をコンパクト化できる燃料のガス化方法とソ
ーラーガス化炉を提供することにある。
The present invention has been made to solve the above-mentioned problems. That is, an object of the present invention is to efficiently reduce fossil fuels and the like using sunlight, efficiently irradiate the particles with sunlight, thereby increasing the reaction efficiency of the particles, and producing a large amount of magnetite. An object of the present invention is to provide a fuel gasification method and a solar gasification furnace which can make the reactor compact without circulation.

【0011】[0011]

【課題を解決するための手段】本発明によれば、炭素を
主成分とする燃料に太陽光を集光して照射し、これによ
り加熱された燃料に水蒸気を作用させて、水素を含む合
成ガスを生成することを特徴とする燃料のガス化方法が
提供される。本発明の方法により、集光した太陽光で燃
料を高温(例えば700〜1000℃)に加熱し、その
加熱状態で水蒸気を作用させて、C+H2O→CO+H2
の反応により、水素を含む合成ガスを生成することがで
きる。
According to the present invention, a fuel containing carbon as a main component is condensed with sunlight to irradiate the fuel, thereby causing a steam to act on the heated fuel to produce a synthetic fuel containing hydrogen. There is provided a method for gasifying a fuel, the method comprising producing a gas. According to the method of the present invention, the fuel is heated to a high temperature (for example, 700 to 1000 ° C.) by the condensed sunlight, and steam is acted in the heated state, so that C + H 2 O → CO + H 2.
, A synthesis gas containing hydrogen can be generated.

【0012】本発明の好ましい実施形態によれば、更
に、水蒸気と共に酸素を含むガスを供給して燃料の一部
を酸化させる。この部分酸化による発熱により、吸熱反
応による温度低下を抑制し、安定して合成ガスを生成す
ることができる。
According to a preferred embodiment of the present invention, a gas containing oxygen together with steam is supplied to oxidize a part of the fuel. Due to the heat generated by the partial oxidation, a decrease in temperature due to an endothermic reaction is suppressed, and a synthesis gas can be generated stably.

【0013】また、本発明によれば、内部に流動媒体を
有し集光した太陽光(4)が照射される太陽光加熱室
(12)と、内部に流動媒体(8)を有し水蒸気(7)
と燃料(6)が供給されて互いに反応するガス化反応室
(14)とを備え、太陽光加熱室とガス化反応室の間を
流動媒体が循環する、ことを特徴とする燃料のソーラー
ガス化炉が提供される。本発明の構成によれば、太陽光
加熱室(12)とガス化反応室(14)の間を流動媒体
(8)が循環するので、太陽光(4)が照射される太陽
光加熱室で太陽光により流動媒体を加熱し、次いで加熱
された流動媒体の熱により水蒸気(7)と燃料(6)が
ガス化反応室で反応して合成ガスを生成することができ
る。また、燃料(6)は、ガス化反応室(14)に供給
されるので、加熱初期に発生するタールやボラタイルマ
ターの太陽光加熱室(12)への流入を抑えることがで
き、太陽光加熱室(12)内をクリーンに保持すること
ができる。
Further, according to the present invention, a solar heating chamber (12) having a flowing medium therein and irradiated with condensed sunlight (4), and a steam having a flowing medium (8) therein and having a steam therein. (7)
And a gasification reaction chamber (14), which is supplied with a fuel (6) and reacts with each other, wherein a fluid medium circulates between the solar heating chamber and the gasification reaction chamber. A furnace is provided. According to the configuration of the present invention, the flowing medium (8) circulates between the solar heating chamber (12) and the gasification reaction chamber (14), so that the solar heating chamber is irradiated with the sunlight (4). The flowing medium is heated by sunlight, and then the steam (7) and the fuel (6) react in the gasification reaction chamber by the heat of the heated flowing medium to produce synthesis gas. Further, since the fuel (6) is supplied to the gasification reaction chamber (14), it is possible to suppress the inflow of tar and volatile matter generated in the early stage of heating into the solar heating chamber (12), and The inside of the chamber (12) can be kept clean.

【0014】本発明の好ましい実施形態によれば、前記
太陽光加熱室(12)は、反射鏡等によって集光された
太陽光を炉内へ導くと共に太陽光の密度を更に高める複
合放物面鏡(13)を頂部に備える。この複合放物面鏡
(13)により、太陽光を多数のヘリオスタットで反射
し、次いで反射ミラーで反射して複合放物面鏡(CP
C)の焦点に集光して、太陽光加熱室(12)の内部に
下向きに照射することができる。
According to a preferred embodiment of the present invention, the solar heating chamber (12) guides sunlight collected by a reflector or the like into the furnace and further increases the density of the sunlight. A mirror (13) is provided on the top. With this compound parabolic mirror (13), sunlight is reflected by a large number of heliostats and then reflected by a reflecting mirror to form a compound parabolic mirror (CP).
The light can be condensed at the focal point of C) and radiated downward into the solar heating chamber (12).

【0015】前記複合放物面鏡(13)の頂部に、太陽
光を下向きに通すように上面に気密に設けられた透過窓
(13a)を備え、かつ複合放物面鏡の内部はパージガ
スがパージされ、かつ外周部は冷却水で冷却される。こ
の透過窓(13a)により太陽光を効率よく下向きに照
射し、かつ熱損失を防ぐことができる。また、パージガ
スのパージにより、太陽光加熱室(12)で発生する異
物(タール、ボラタイルマター、粉塵等)による複合放
物面鏡(13)及び透過窓(13a)の汚染を防ぐこと
ができる。更に、複合放物面鏡の外周部を冷却水で冷却
することにより、複合放物面鏡(CPC)の過熱を防
ぎ、その性能低下を防止できる。
At the top of the compound parabolic mirror (13), there is provided a transmission window (13a) provided on the upper surface so as to allow sunlight to pass downward, and a purge gas is provided inside the compound parabolic mirror. It is purged and the outer periphery is cooled with cooling water. The transmission window (13a) can efficiently radiate sunlight downward and prevent heat loss. Further, the purge of the purge gas can prevent contamination of the compound parabolic mirror (13) and the transmission window (13a) by foreign substances (tar, volatile matter, dust, etc.) generated in the solar heating chamber (12). Further, by cooling the outer peripheral portion of the composite parabolic mirror with cooling water, it is possible to prevent overheating of the composite parabolic mirror (CPC) and to prevent its performance from deteriorating.

【0016】前記太陽光加熱室(12)の流動層は、燃
料を含む流動媒体を水蒸気を含まない流動化ガスで流動
化させた下降流動層であり、前記ガス化反応室(14)
の流動層は、燃料を含む流動媒体を水蒸気を含む流動化
ガスで流動化させた上昇流動層であり、下降流動層の下
部から上昇流動層に加熱された流動媒体が流入し、上昇
流動層の上部から下降流動層に反応後の流動媒体が流入
して循環する。太陽光加熱室(12)の流動層は、水蒸
気を含まない流動化ガスで空塔速度を低く抑え、ガス化
反応室(14)の流動層は、水蒸気を含む流動化ガスで
相対的に早い空塔速度とする。これにより、太陽光加熱
室(12)の流動層を下降流動層、ガス化反応室(1
4)の流動層を上昇流動層とし、下降流動層の下部から
上昇流動層に加熱された流動媒体が流入し、上昇流動層
の上部から下降流動層に反応後の流動媒体が流入して循
環させることができる。
The fluidized bed of the solar heating chamber (12) is a descending fluidized bed obtained by fluidizing a fluid medium containing fuel with a fluidizing gas containing no water vapor, and the gasification reaction chamber (14).
Is an ascending fluidized bed in which a fluidized medium containing fuel is fluidized with a fluidizing gas containing steam, and the heated fluidized medium flows into the ascending fluidized bed from the lower part of the descending fluidized bed, After the reaction, the fluidized medium flows into the descending fluidized bed from above and circulates. The fluidized bed of the solar heating chamber (12) keeps the superficial velocity low with a fluidized gas containing no steam, and the fluidized bed of the gasification reaction chamber (14) is relatively fast with the fluidized gas containing steam. The superficial velocity is assumed. As a result, the fluidized bed of the solar heating chamber (12) is moved downward, and the gasification reaction chamber (1) is moved downward.
The fluidized bed of 4) is an ascending fluidized bed, the heated fluidized medium flows into the ascending fluidized bed from the lower part of the descending fluidized bed, and the fluidized medium after the reaction flows into the descending fluidized bed from the upper part of the ascending fluidized bed and circulates. Can be done.

【0017】前記太陽光加熱室(12)とガス化反応室
(14)の下部に互いに仕切られた風箱(15a,15
b)を有し、太陽光加熱室とガス化反応室が各々独立し
て流動化できる。この構成により、太陽光加熱室(1
2)の風箱(15a)から水蒸気を含まない流動化ガス
を空塔速度を低く抑えて供給でき、ガス化反応室(1
4)の風箱(15b)から水蒸気を含む流動化ガスを相
対的に早い空塔速度で供給することができ、太陽光加熱
室とガス化反応室の間の流動媒体の循環を形成すること
ができる。
A wind box (15a, 15) partitioned from the lower part of the solar heating chamber (12) and the gasification reaction chamber (14).
b), wherein the solar heating chamber and the gasification reaction chamber can be fluidized independently of each other. With this configuration, the solar heating room (1
A fluidizing gas containing no steam can be supplied from the wind box (15a) of 2) at a low superficial velocity, and the gasification reaction chamber (1) can be supplied.
4) The fluidizing gas containing water vapor can be supplied from the wind box (15b) at a relatively high superficial velocity to form a circulation of a fluid medium between the solar heating chamber and the gasification reaction chamber. Can be.

【0018】前記ガス化反応室(14)から反応後の生
成ガスとともに飛散する燃料と流動媒体の混合物を生成
ガスから分離するサイクロンセパレータ(22)と、分
離された混合物をガス化反応室へ戻す循環配管(23)
とを設ける。このサイクロンセパレータ(22)によ
り、生成ガスに同伴される微粒子(燃料と流動媒体の混
合物)を生成ガスから分離し、循環配管(23)を介し
てガス化反応室(14)に戻すことができ、生成ガス中
の微粒子を低減し、かつガス化反応室での反応効率を高
めることができる。
A cyclone separator (22) for separating a mixture of the fuel and the fluidized medium scattered with the product gas after the reaction from the gasification reaction chamber (14) from the product gas, and returning the separated mixture to the gasification reaction chamber. Circulation piping (23)
Are provided. By the cyclone separator (22), fine particles (mixture of fuel and fluidized medium) entrained in the product gas can be separated from the product gas and returned to the gasification reaction chamber (14) via the circulation pipe (23). In addition, it is possible to reduce fine particles in the generated gas and to increase the reaction efficiency in the gasification reaction chamber.

【0019】流動媒体に蓄熱機能に優れた固体粒子を用
いることにより、ガス化反応室での吸熱反応での温度低
下を抑制し、ガス化反応を促進する。例えば、熱の吸収
率が高い黒色に近い珪砂等を流動媒体として用いること
により、流動媒体の蓄熱量を高め、ガス化効率を高める
ことができる。
By using solid particles having an excellent heat storage function as the fluid medium, a temperature decrease in the endothermic reaction in the gasification reaction chamber is suppressed, and the gasification reaction is promoted. For example, by using black sand or the like having a high heat absorption rate as a fluid medium, the heat storage amount of the fluid medium can be increased, and the gasification efficiency can be enhanced.

【0020】流動媒体に硫黄分を吸収する成分を添加
し、燃料のガス化反応の際に副生する硫黄化合物をガス
化反応室内で吸収し、硫黄分の少ない合成ガスを生成す
る。例えば、炉内で熱分解してCaOとなるCaCO3
を流動媒体に添加することにより、ガス化反応の際に副
生されるH2SとCaOが反応して、H2S+CaO→C
aS+H2Oの反応により、硫黄化合物をCaSの固体
で回収し、合成ガス中の硫黄分を脱硫することができ
る。なお、蓄熱機能に優れた固体粒子(例えば黒色に近
い珪砂等)と、硫黄分を吸収する成分(例えばCaCO
3)を混合して併用してもよい。
A component that absorbs sulfur is added to the fluidized medium, and a sulfur compound produced as a by-product during the gasification reaction of the fuel is absorbed in the gasification reaction chamber to produce a synthesis gas having a low sulfur content. For example, CaCO 3 which is pyrolyzed into CaO in a furnace
Is added to the fluidized medium, H 2 S by-produced during the gasification reaction reacts with CaO, and H 2 S + CaO → C
By the reaction of aS + H 2 O, a sulfur compound can be recovered as a solid of CaS, and the sulfur content in the synthesis gas can be desulfurized. It should be noted that solid particles having excellent heat storage function (for example, silica sand close to black) and a component that absorbs sulfur (for example, CaCO 3)
3 ) may be mixed and used together.

【0021】ガス化反応室の流動化ガスに酸素を含むガ
スを添加し、ガス化反応室で部分酸化反応を行い、ガス
化反応に必要な熱の一部を燃料の発熱で供給する。この
構成により、集光した太陽光(4)の熱量が不足する場
合でも、不足分を燃料の発熱で供給し、合成ガスを安定
に生成することができる。
A gas containing oxygen is added to the fluidizing gas in the gasification reaction chamber, a partial oxidation reaction is performed in the gasification reaction chamber, and a part of the heat required for the gasification reaction is supplied by the heat generated by the fuel. With this configuration, even when the amount of heat of the collected sunlight (4) is insufficient, the shortage can be supplied by the heat generation of the fuel, and the synthesis gas can be stably generated.

【0022】[0022]

【発明の実施の形態】以下に本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において、共通
する部分には同一の符号を付し重複した説明を省略す
る。
Preferred embodiments of the present invention will be described below with reference to the drawings. In each of the drawings, common portions are denoted by the same reference numerals, and redundant description will be omitted.

【0023】図1は、本発明のソーラーガス化炉を備え
たガス化設備の構成図である。この図は、反射タワー方
式の集光システムを示しており、1はヘリオスタット、
2はタワーに設けられた反射ミラー、10はソーラーガ
ス化炉である。太陽光4は、多数のヘリオスタット1で
反射し、次いで反射ミラー2で反射してソーラーガス化
炉10に向けて集光され、その内部に下向きに照射され
ようになっている。この構成により、ソーラーガス化炉
10の内部を1200℃以上の高温に加熱することがで
きる。なお、本発明はかかる集光システムに限定され
ず、例えばフレネルレンズを用いた集光システムであっ
てもよい。
FIG. 1 is a configuration diagram of a gasification facility provided with the solar gasification furnace of the present invention. This figure shows a light collection system of the reflection tower type, 1 is a heliostat,
2 is a reflection mirror provided in the tower, and 10 is a solar gasification furnace. The sunlight 4 is reflected by a large number of heliostats 1 and then reflected by a reflection mirror 2 so as to be condensed toward a solar gasification furnace 10 and to be radiated downward therein. With this configuration, the inside of the solar gasifier 10 can be heated to a high temperature of 1200 ° C. or higher. The present invention is not limited to such a light-collecting system, and may be, for example, a light-collecting system using a Fresnel lens.

【0024】図2は、本発明のソーラーガス化炉の全体
構成図であり、図3は、本発明のソーラーガス化炉の内
部構成図である。図2及び図3に示すように、本発明の
ソーラーガス化炉10は、太陽光加熱室12とガス化反
応室14とを備え、太陽光加熱室12とガス化反応室1
4の間を流動媒体8が循環する。流動媒体8(又は流動
助剤)は、例えば流動層燃焼と同様の流動媒体、例えば
珪砂を用いる。
FIG. 2 is an overall configuration diagram of the solar gasifier of the present invention, and FIG. 3 is an internal configuration diagram of the solar gasifier of the present invention. As shown in FIGS. 2 and 3, the solar gasification furnace 10 of the present invention includes a solar heating chamber 12 and a gasification reaction chamber 14, and includes a solar heating chamber 12 and a gasification reaction chamber 1.
4 circulates a fluid medium 8. As the fluidizing medium 8 (or fluidizing aid), for example, a fluidizing medium similar to fluidized bed combustion, for example, silica sand is used.

【0025】太陽光加熱室12は、複合放物面鏡13を
頂部に備える。この複合放物面鏡13は、図1の反射鏡
等1,2によって集光された太陽光4を放物面鏡の焦点
に集光し、更に炉内へ導くと共に太陽光の密度を更に高
めるようになっている。また、複合放物面鏡13の頂部
に、太陽光を下向きに通すように上面に気密に設けられ
た透過窓13a(例えば石英ガラス)を備え、太陽光を
効率よく下向きに照射し、かつ熱損失を防いでいる。更
に、複合放物面鏡13の内部はパージガスがパージさ
れ、このパージガスの下方流れにより、太陽光加熱室1
2で発生する異物(タール、ボラタイルマター、粉塵
等)による複合放物面鏡13及び透過窓13aの汚染を
防いでいる。また、複合放物面鏡13の外周部は冷却水
で冷却され、複合放物面鏡(CPC)の過熱を防ぎ、そ
の性能低下を防止している。
The solar heating chamber 12 has a compound parabolic mirror 13 at the top. The compound parabolic mirror 13 condenses the sunlight 4 condensed by the reflectors 1 and 2 shown in FIG. 1 at the focal point of the parabolic mirror, guides the sunlight 4 further into the furnace, and further increases the density of the sunlight. It is designed to increase. In addition, a transmission window 13a (for example, quartz glass) airtightly provided on the upper surface so as to allow sunlight to pass downward is provided at the top of the composite parabolic mirror 13, and the sunlight is efficiently radiated downward and heat is emitted. Loss is prevented. Furthermore, the inside of the compound parabolic mirror 13 is purged with a purge gas, and the downward flow of the purge gas causes the solar heating chamber 1 to flow.
2 prevents contamination of the compound parabolic mirror 13 and the transmission window 13a by foreign substances (tar, volatile matter, dust, and the like) generated in Step 2. Further, the outer peripheral portion of the compound parabolic mirror 13 is cooled by the cooling water to prevent overheating of the compound parabolic mirror (CPC) and prevent its performance from deteriorating.

【0026】太陽光加熱室12とガス化反応室14の下
部には、互いに仕切られた風箱15a,15bが設けら
れる。図2に示すように、ガス化反応室14を出た合成
ガスは、サイクロンセパレータ22を介してガス精製設
備等に供給される。また、合成ガスの一部は、フィルタ
ー24で粉塵を除去した後、フアン25により太陽光加
熱室12の風箱15aに供給される。このガスを一般に
「循環ガス」と呼ぶ。循環ガスの主成分は、水素
(H2)と一酸化炭素(CO)である。また、循環ガス
に水蒸気を添加した混合ガスが、ガス化反応室14の風
箱15bに供給される。
Below the solar heating chamber 12 and the gasification reaction chamber 14, there are provided wind boxes 15a and 15b which are separated from each other. As shown in FIG. 2, the synthesis gas exiting the gasification reaction chamber 14 is supplied to a gas purification facility or the like via a cyclone separator 22. A part of the synthesis gas is supplied to the wind box 15 a of the solar heating chamber 12 by the fan 25 after dust is removed by the filter 24. This gas is generally called "circulating gas". The main components of the circulating gas are hydrogen (H 2 ) and carbon monoxide (CO). Further, a mixed gas obtained by adding steam to the circulating gas is supplied to the wind box 15 b of the gasification reaction chamber 14.

【0027】太陽光加熱室12の内部には流動媒体8が
充填され、風箱15aと太陽光加熱室12を仕切る隔壁
には、ガスを通す分散板17aが設けられ、下方から流
入する循環ガスにより、内部の流動媒体8を流動化さ
せ、穏やかな流動層を形成する。
The inside of the solar heating chamber 12 is filled with the flowing medium 8, and a partition plate 17a for passing gas is provided in a partition separating the wind box 15a and the solar heating chamber 12, and a circulating gas flowing from below. As a result, the fluidizing medium 8 inside is fluidized to form a gentle fluidized bed.

【0028】同様に、ガス化反応室14の内部にも流動
媒体8が充填され、風箱15bとガス化反応室14を仕
切る隔壁には、ガスを通す分散板17bが設けられ、下
方から流入する混合ガスにより、内部の流動媒体8を流
動化させ、相対的に激しい流動層を形成する。なお、図
2において、26は流動媒体ホッパ、27は燃料ホッパ
であり、それぞれ、太陽光加熱室12とガス化反応室1
4に流動媒体と燃料を供給するようになっている。
Similarly, the inside of the gasification reaction chamber 14 is also filled with the fluidized medium 8, and a partition plate 17b through which gas flows is provided in a partition separating the wind box 15b and the gasification reaction chamber 14, so that the gas flows from below. The fluid mixture 8 fluidizes the internal fluid medium 8 to form a relatively intense fluidized bed. In FIG. 2, reference numeral 26 denotes a fluid medium hopper, and 27 denotes a fuel hopper.
4 is supplied with a fluid medium and fuel.

【0029】図3に示すように、太陽光加熱室12とガ
ス化反応室14は、耐熱隔壁16により仕切られてい
る。また、その上部と下部に互いに連通する上部連通口
16a(オーバーフロー口)と下部連通口16bが設け
られている。上述のように、太陽光加熱室12の流動層
は穏やかであり、ガス化反応室14の流動層は相対的に
激しいため、上部連通口16aから太陽光加熱室12に
流動媒体8がオーバーフローし、下部連通口16bから
ガス化反応室14に流体と同様の圧力差により流動媒体
が流入する。従って、太陽光加熱室12の流動層は、燃
料を含む流動媒体8を水蒸気を含まない流動化ガス(循
環ガス)で流動化させた下降流動層であり、ガス化反応
室14の流動層は、燃料を含む流動媒体を水蒸気を含む
流動化ガスで流動化させた上昇流動層となり、下降流動
層の下部から上昇流動層に加熱された流動媒体が流入
し、上昇流動層の上部から下降流動層に反応後の流動媒
体が流入して循環する。燃料6には、主として石炭、コ
ークス、等の炭素を主成分とする固体燃料を使用する
が、廃棄物等についても炭素を主成分とする可燃物は使
用できる。
As shown in FIG. 3, the solar heating chamber 12 and the gasification reaction chamber 14 are separated by a heat-resistant partition 16. An upper communication port 16a (overflow port) and a lower communication port 16b communicating with each other are provided at the upper and lower portions. As described above, since the fluidized bed of the solar heating chamber 12 is gentle and the fluidized bed of the gasification reaction chamber 14 is relatively intense, the fluidized medium 8 overflows from the upper communication port 16a to the solar heating chamber 12. The fluid medium flows into the gasification reaction chamber 14 from the lower communication port 16b due to the same pressure difference as the fluid. Therefore, the fluidized bed of the solar heating chamber 12 is a descending fluidized bed obtained by fluidizing the fluidized medium 8 containing fuel with a fluidizing gas (circulating gas) containing no water vapor. A fluidized medium containing fuel is fluidized with a fluidized gas containing water vapor to form an ascending fluidized bed, and the heated fluidized medium flows into the ascending fluidized bed from the lower part of the descending fluidized bed and flows downward from the upper part of the ascending fluidized bed. The fluidized medium after the reaction flows into the bed and circulates. As the fuel 6, a solid fuel mainly containing carbon, such as coal and coke, is mainly used, but combustibles mainly containing carbon can be used for wastes and the like.

【0030】図3に示すように、燃料6はガス化反応室
14に供給され、流動媒体8は必要に応じて太陽光加熱
室12に供給される。太陽光加熱室12内の流動媒体8
は、複合放物面鏡13で集光され、その内部に下向きに
照射された太陽光によって、1000℃以上の高温に加
熱される。この場合、太陽光加熱室12内の流動媒体8
は、未反応の燃料6を含まず、かつ循環ガスにも水蒸気
を含まないため、太陽光加熱室12内では、流動媒体8
が単に加熱されるだけで、反応はほとんど生じない。従
って、タール、ボラタイルマター、粉塵等の発生を最小
限に抑え、複合放物面鏡13及び透過窓13aの汚染を
防止できる。
As shown in FIG. 3, the fuel 6 is supplied to the gasification reaction chamber 14, and the fluid medium 8 is supplied to the solar heating chamber 12 as required. Fluid medium 8 in solar heating room 12
Is heated to a high temperature of 1000 ° C. or more by sunlight condensed by the compound parabolic mirror 13 and radiated downward into the inside thereof. In this case, the flowing medium 8 in the solar heating chamber 12
Does not contain unreacted fuel 6 and does not contain water vapor in the circulating gas.
Is merely heated and little reaction occurs. Therefore, the generation of tar, volatile matter, dust and the like can be minimized, and contamination of the compound parabolic mirror 13 and the transmission window 13a can be prevented.

【0031】一方、ガス化反応室14に供給さた燃料6
は、内部で加熱されてタール、ボラタイルマター等を発
生するが、これらは短時間に熱分解してガス化し、生成
ガスと共に排出される。この熱分解で残ったカーボンC
は、太陽光加熱室12に供給されて、流動媒体8と共に
高温に加熱され、ガス化反応室14の下部に供給され
る。ガス化反応室14の流動化ガスには、上述のように
水蒸気を含んでいるので、ガス化反応室14で、C+H
2O→CO+H2の反応により、水素を含む合成ガスを生
成する。
On the other hand, the fuel 6 supplied to the gasification reaction chamber 14
Is heated inside to generate tar, volatile matter, etc., which are thermally decomposed and gasified in a short time and discharged together with the generated gas. Carbon C remaining from this pyrolysis
Is supplied to the solar heating chamber 12, is heated to a high temperature together with the flowing medium 8, and is supplied to the lower part of the gasification reaction chamber 14. Since the fluidizing gas in the gasification reaction chamber 14 contains water vapor as described above, the gasification reaction chamber 14 has C + H
By the reaction of 2 O → CO + H 2 , a synthesis gas containing hydrogen is generated.

【0032】上述した流動媒体8に蓄熱機能に優れた固
体粒子(例えば黒色に近い珪砂)を用いることにより、
ガス化反応室での吸熱反応での温度低下を抑制し、ガス
化反応を促進することができる。また、流動媒体8に硫
黄分を吸収する成分(例えばCaCO3)を添加し、燃
料のガス化反応の際に副生する硫黄化合物(H2S)
を、ガス化反応室内でH2S+CaO→CaS+H2Oの
反応により、硫黄化合物をCaSの固体で回収し、硫黄
分の少ない合成ガスを生成することができる。更に、ガ
ス化反応室の流動化ガスに酸素を含むガス(空気、酸素
富化空気、純酸素等)を添加し、ガス化反応室で部分酸
化反応を行い、ガス化反応に必要な熱の一部を燃料の発
熱で供給することもできる。
By using solid particles (for example, silica sand close to black) excellent in heat storage function for the fluid medium 8 described above,
It is possible to suppress a temperature decrease in the endothermic reaction in the gasification reaction chamber and promote the gasification reaction. Further, a component (for example, CaCO 3 ) that absorbs a sulfur component is added to the fluid medium 8, and a sulfur compound (H 2 S) by-produced during the gasification reaction of the fuel is added.
Can be recovered as a solid CaS by a reaction of H 2 S + CaO → CaS + H 2 O in a gasification reaction chamber, and a synthesis gas with a low sulfur content can be generated. Further, a gas containing oxygen (air, oxygen-enriched air, pure oxygen, etc.) is added to the fluidizing gas in the gasification reaction chamber, and a partial oxidation reaction is performed in the gasification reaction chamber to generate heat necessary for the gasification reaction. Some can be supplied by the heat generated by the fuel.

【0033】また、図2に示すように、この実施形態で
は、ガス化反応室14から反応後の生成ガスとともに飛
散する燃料及び熱分解で残ったカーボンC、ならびに流
動媒体の混合物を生成ガスから分離するサイクロンセパ
レータ22と、分離された混合物をガス化反応室へ戻す
循環配管23とを備えており、サイクロンセパレータ2
2で生成ガスに同伴される微粒子(燃料及び熱分解で残
ったカーボンC、ならびに流動媒体の混合物)を生成ガ
スから分離し、循環配管23を介してガス化反応室14
に戻すことにより、生成ガス中の微粒子を低減し、かつ
ガス化反応室での反応効率を高めるようになっている。
Further, as shown in FIG. 2, in this embodiment, a mixture of the fuel scattered from the gasification reaction chamber 14 together with the product gas after the reaction and the carbon C remaining by the pyrolysis and the flowing medium is produced from the product gas. A cyclone separator 22 for separation, and a circulation pipe 23 for returning the separated mixture to the gasification reaction chamber.
In step 2, fine particles (mixture of fuel and carbon C remaining in the pyrolysis and a fluidized medium) entrained in the product gas are separated from the product gas, and the gasification reaction chamber 14
By returning to, the fine particles in the produced gas are reduced, and the reaction efficiency in the gasification reaction chamber is increased.

【0034】上述したように、本発明のソーラーガス化
炉は、太陽光を集光し、ガス化炉上部より炉内へ取り込
み、その太陽光の熱によりカーボンのガス化(すなわち
水蒸気改質反応)を行うことを特徴とする。また、太陽
光の熱を効率よく石炭に伝えるための熱媒体を炉内に保
有し、これを流動化ならびに炉内部での循環を行わせる
ための流動化ガス分散ノズル(分散板17a,17
b)、隔壁16、燃料および流動媒体の供給ノズル、燃
料の灰や未燃分および流動媒体の混合物、ならびに太陽
光を流動層内部に供給する構造を有する。
As described above, the solar gasifier of the present invention collects sunlight, takes it into the furnace from the upper part of the gasifier, and gasifies carbon (ie, steam reforming reaction) by the heat of the sunlight. ) Is performed. In addition, a heating medium for efficiently transferring the heat of sunlight to the coal is held in the furnace, and fluidized gas dispersion nozzles (dispersion plates 17a, 17) for fluidizing and circulating the heat in the furnace.
b), a partition 16, a fuel and fluid medium supply nozzle, a structure for supplying fuel ash, a mixture of unburned matter and the fluid medium, and sunlight to the inside of the fluidized bed.

【0035】本発明は、マグネタイト等の酸化還元反応
の媒体となる副原料を使用しないことを特徴とする。た
だし、燃料(石炭等)のガス化反応を流動層で行うた
め、流動の安定化と太陽熱の伝熱を促進するため珪砂等
の流動層燃焼等で一般的に使用される流動媒体(ベッド
剤)を使用する。一方、太陽光を効率よく反応物に照射
するため、流動層内に仕切りを設け、燃料とベッド剤の
混合物の流れを制御している。太陽光が入る中央の加熱
ゾーンでは燃料とベッド剤の混合物が下降流となり、太
陽光より効率よく熱を吸収させることができる。
The present invention is characterized in that no auxiliary material serving as a medium for the redox reaction such as magnetite is used. However, since the gasification reaction of fuel (coal, etc.) is performed in a fluidized bed, a fluidized medium (bed material) generally used in fluidized bed combustion of silica sand etc. to stabilize the flow and promote the transfer of solar heat ). On the other hand, in order to efficiently irradiate the reaction product with sunlight, a partition is provided in the fluidized bed to control the flow of the mixture of the fuel and the bed material. In the central heating zone where the sunlight enters, the mixture of the fuel and the bed agent flows downward, so that heat can be absorbed more efficiently than the sunlight.

【0036】特開平10−279955号と同様の集光
設備でガス化炉へ太陽光を導き、集光された太陽光はガ
ス化炉の頂部よりCPCを介して炉内太陽光加熱室へ導
かれる。太陽光加熱室では、太陽光によって燃料とベッ
ド剤の混合物が加熱され、燃料の水蒸気改質反応に必要
な温度(1000℃程度以上)となり、隔壁下部の開口
部よりガス化反応室へ移動する。ガス化反応室へはガス
分散ノズルより水蒸気を含んだガスが噴射され、石炭と
水蒸気が反応して合成ガスが生成する。未反応の石炭と
ベッド剤は流動によって再び加熱ゾーンへ移動し、灰分
は合成ガスとともに炉外へ排出され回収される。
The sunlight is guided to the gasification furnace with the same condensing equipment as in Japanese Patent Application Laid-Open No. 10-279955, and the condensed sunlight is guided from the top of the gasification furnace to the solar heating chamber in the furnace via the CPC. I will In the solar heating chamber, the mixture of the fuel and the bed agent is heated by the sunlight, reaches a temperature (about 1000 ° C. or higher) required for the steam reforming reaction of the fuel, and moves to the gasification reaction chamber from the opening at the lower part of the partition wall. . A gas containing water vapor is injected into the gasification reaction chamber from a gas dispersion nozzle, and the coal reacts with the water vapor to produce synthesis gas. The unreacted coal and bed agent move to the heating zone again by the flow, and the ash is discharged out of the furnace together with the synthesis gas and collected.

【0037】以下、本発明のソーラーガス化炉を更に詳
細に説明する。 (炉の構造)ソーラーガス化炉10は、耐火物内張り構
造であり、下部に水蒸気や循環ガスを吹き込むための風
箱15a,15bを有する。風箱15aは、内側に太陽
光加熱室流動化用の循環ガスのみ吹き込む部屋であり、
風箱15bは、その外側にガス化反応室流動化件改質反
応用の水蒸気と循環ガスの混合ガスを吹き込む部屋であ
る。風箱15a,15bとその上のガス化反応室14ま
たは太陽光加熱室12の間には分散板17a,17bを
設け、その上側を燃料および流動媒体8が流動する。分
散板17a,17bは、流動層内に流すが燃料や流動媒
体が風箱へ落ちないような構造となっている。流動層の
空塔速度は、太陽光加熱室12では小さく、ガス化反応
室14では比較的大きくし、太陽光加熱室12では、流
動化助剤等が静かに流動化しながら少しずつ下向きに流
れる。また、ガス化反応室14では、比較的早い空塔速
度で燃料と流動媒体の混合物が水蒸気を含むガスと接触
し、流動媒体に吸収された熱を消費しながらガス化(改
質反応)が進行する。
Hereinafter, the solar gasifier of the present invention will be described in more detail. (Structure of Furnace) The solar gasification furnace 10 has a refractory lining structure, and has wind boxes 15a and 15b for blowing steam and circulating gas at its lower part. The wind box 15a is a room into which only the circulating gas for fluidizing the solar heating chamber is blown inward.
The wind box 15b is a room into which a mixed gas of steam and a circulating gas for a gasification reaction chamber fluidization reaction reforming reaction is blown outside. Dispersion plates 17a, 17b are provided between the wind boxes 15a, 15b and the gasification reaction chamber 14 or the solar heating chamber 12 thereon, and the fuel and the fluid medium 8 flow above the dispersion plates 17a, 17b. The dispersing plates 17a and 17b have a structure in which the fuel and the flowing medium do not fall into the wind box but flow into the fluidized bed. The superficial velocity of the fluidized bed is small in the solar heating chamber 12 and relatively high in the gasification reaction chamber 14, and in the solar heating chamber 12, the fluidization aid and the like slowly flow downward while gently fluidizing. . In the gasification reaction chamber 14, the mixture of the fuel and the fluidized medium comes into contact with the gas containing water vapor at a relatively high superficial velocity, and gasification (reforming reaction) is performed while consuming the heat absorbed by the fluidized medium. proceed.

【0038】(炉内外での燃料および流動媒体の挙動)
燃料は、ガス化反応室へ供給され、ここで比較的早い空
塔速度で流動化され、反応により微粒子化した燃料は、
生成ガスに同伴して炉外へ持ち出され、外部に設けたサ
イクロンで粒径の大きいものはここで分離され炉へ戻さ
れる。細かい粒子は、サイクロンでは分離されず、更に
下流に設けた高性能サイクロンまたはセラミックフィル
タ等で分離され、灰として回収される。1段目のサイク
ロンの性能を適当に設定することで、灰として回収され
る微粒子中の未反応炭素分の割合を調整できる。太陽光
加熱室へ燃料を供給しない理由は、燃料が加熱されたと
きに発生するタールやボラタイルマターが複合放物面
(CPC)の反射面を曇らせ、太陽光の反射率が低下す
ることを防止する意味がある。燃料を流動媒体より細か
い粒径として供給し、ガス化反応室を比較的早い空塔速
度で流動化することにより、燃料の大部分は生成ガスに
同伴して炉外へ排出され、太陽光加熱室へオーバーフロ
ーで流れ込むのは、主として粒径の大きい流動媒体とな
るため、ここでの揮発分の発生は抑えられる。なお、流
動媒体、特に脱硫のため加えるCaCO3(炉内では熱
分解してCaOとなっている)もCPCを曇る原因とな
るため、CPC保護の観点からCPCへは常時パージガ
スを供給し、粉体が内部に侵入するのを防止する。
(Behavior of fuel and fluid medium inside and outside the furnace)
The fuel is supplied to the gasification reaction chamber, where it is fluidized at a relatively high superficial velocity, and the fuel atomized by the reaction is
It is taken out of the furnace together with the generated gas, and a cyclone having a large particle diameter provided outside is separated here and returned to the furnace. The fine particles are not separated by a cyclone, but are separated by a high-performance cyclone or a ceramic filter provided downstream, and collected as ash. By appropriately setting the performance of the first-stage cyclone, the ratio of the unreacted carbon content in the fine particles collected as ash can be adjusted. The reason why fuel is not supplied to the solar heating chamber is that tar and volatile matter generated when the fuel is heated prevent the reflecting surface of the compound parabolic surface (CPC) from fogging, thereby preventing the solar reflectance from decreasing. It makes sense. By supplying the fuel as a finer particle size than the fluidized medium and fluidizing the gasification reaction chamber at a relatively high superficial velocity, most of the fuel is discharged out of the furnace along with the produced gas and heated by sunlight. The flow into the chamber by overflow is mainly a fluid medium having a large particle size, and thus the generation of volatile components is suppressed. The fluid medium, especially CaCO 3 added for desulfurization (which is thermally decomposed into CaO in the furnace) also causes clouding of the CPC. Therefore, from the viewpoint of CPC protection, a purge gas is always supplied to the CPC, Prevents the body from getting inside.

【0039】(流動媒体)通常、流動層燃焼等では流動
媒体として珪砂等の不活性無機物を使用する。本発明に
おいても同様であるが、特に太陽光から熱を効率よく吸
収する機能を持たせるため、色が黒いものが好ましい。
(Fluidized Medium) Usually, in a fluidized bed combustion or the like, an inert inorganic substance such as silica sand is used as a fluidized medium. The same applies to the present invention. However, a black color is preferable in order to have a function of efficiently absorbing heat from sunlight.

【0040】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々変更できる
ことは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.

【0041】[0041]

【発明の効果】上述したように、本発明の燃料のガス化
方法とソーラーガス化炉によれば、太陽光を利用して化
石燃料等を効率的に還元することができ、粒子に効率よ
く太陽光を照射でき、これにより粒子の反応効率を高
め、かつマグネタイトを大量に循環させずに反応炉をコ
ンパクト化できる、等の優れた効果を有する。
As described above, according to the fuel gasification method and the solar gasification furnace of the present invention, fossil fuels and the like can be efficiently reduced using sunlight, and particles can be efficiently reduced. It has excellent effects such as being able to irradiate sunlight, thereby increasing the reaction efficiency of the particles and making the reactor compact without circulating a large amount of magnetite.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のソーラーガス化炉を備えたガス化設備
の構成図である。
FIG. 1 is a configuration diagram of a gasification facility provided with a solar gasification furnace of the present invention.

【図2】本発明のソーラーガス化炉の全体構成図であ
る。
FIG. 2 is an overall configuration diagram of a solar gasification furnace of the present invention.

【図3】本発明のソーラーガス化炉の内部構成図であ
る。
FIG. 3 is an internal configuration diagram of the solar gasification furnace of the present invention.

【図4】従来の太陽光利用還元反応器の構成図である。FIG. 4 is a configuration diagram of a conventional solar reduction reactor.

【符号の説明】[Explanation of symbols]

1 ヘリオスタット 2 タワーに設けられた反射ミラー 4 太陽光 6 燃料 7 水蒸気 8 流動媒体(流動化助剤、珪砂) 10 ソーラーガス化炉 12 太陽光加熱室 13 複合放物面鏡(CPC) 13a 透過窓(石英ガラス) 14 ガス化反応室 15a,15b 風箱 16 耐熱隔壁 16a 上部連通口(オーバーフロー口) 16b 下部連通口 17a,17b 分散板 22 サイクロンセパレータ 23 循環配管 24 フィルター 25 フアン 26 流動媒体ホッパ 27 燃料ホッパ DESCRIPTION OF SYMBOLS 1 Heliostat 2 Reflection mirror provided in tower 4 Sunlight 6 Fuel 7 Water vapor 8 Fluid medium (fluidization aid, silica sand) 10 Solar gasification furnace 12 Solar heating room 13 Compound parabolic mirror (CPC) 13a Transmission Window (quartz glass) 14 Gasification reaction chamber 15a, 15b Wind box 16 Heat-resistant partition wall 16a Upper communication port (overflow port) 16b Lower communication port 17a, 17b Dispersion plate 22 Cyclone separator 23 Circulation pipe 24 Filter 25 Fan 26 Fluid medium hopper 27 Fuel hopper

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 炭素を主成分とする燃料に太陽光を集光
して照射し、これにより加熱された燃料に水蒸気を作用
させて、水素を含む合成ガスを生成することを特徴とす
る燃料のガス化方法。
1. A fuel characterized by condensing and irradiating sunlight to a fuel containing carbon as a main component, thereby causing steam to act on the heated fuel to generate a synthesis gas containing hydrogen. Gasification method.
【請求項2】 更に、水蒸気と共に酸素を含むガスを供
給して燃料の一部を酸化させる、ことを特徴とする請求
項1に記載のガス化方法。
2. The gasification method according to claim 1, further comprising supplying a gas containing oxygen together with water vapor to oxidize a part of the fuel.
【請求項3】 内部に流動媒体を有し集光した太陽光
(4)が照射される太陽光加熱室(12)と、内部に流
動媒体(8)を有し水蒸気(7)と燃料(6)が供給さ
れて互いに反応するガス化反応室(14)とを備え、太
陽光加熱室とガス化反応室の間を流動媒体が循環する、
ことを特徴とする燃料のソーラーガス化炉。
3. A solar heating chamber (12) having a flowing medium therein and irradiated with condensed sunlight (4), and a steam (7) and a fuel (7) having a flowing medium (8) inside. A gasification reaction chamber (14) to which 6) is supplied and react with each other, wherein a fluid medium circulates between the solar heating chamber and the gasification reaction chamber;
A solar gasifier for fuel, characterized in that:
【請求項4】 前記太陽光加熱室(12)は、反射鏡等
によって集光された太陽光を炉内へ導くと共に太陽光の
密度を更に高める複合放物面鏡(13)を頂部に備え
る、ことを特徴とする請求項3記載のソーラーガス化
炉。
4. The solar heating chamber (12) is provided with a compound parabolic mirror (13) at the top for guiding sunlight collected by a reflecting mirror or the like into a furnace and further increasing the density of sunlight. The solar gasifier according to claim 3, characterized in that:
【請求項5】 前記複合放物面鏡(13)の頂部に、太
陽光を下向きに通すように上面に気密に設けられた透過
窓(13a)を備え、かつ複合放物面鏡の内部はパージ
ガスがパージされ、かつ外周部は冷却水で冷却される、
ことを特徴とする請求項3に記載のソーラーガス化炉。
5. A compound parabolic mirror (13) is provided at its top with a transmission window (13a) airtightly provided on the upper surface so as to allow sunlight to pass downward, and the inside of the compound parabolic mirror is The purge gas is purged, and the outer periphery is cooled with cooling water,
The solar gasifier according to claim 3, characterized in that:
【請求項6】 前記太陽光加熱室(12)の流動層は、
燃料を含む流動媒体を水蒸気を含まない流動化ガスで流
動化させた下降流動層であり、前記ガス化反応室(1
4)の流動層は、燃料を含む流動媒体を水蒸気を含む流
動化ガスで流動化させた上昇流動層であり、下降流動層
の下部から上昇流動層に加熱された流動媒体が流入し、
上昇流動層の上部から下降流動層に反応後の流動媒体が
流入して循環する、ことを特徴とする請求項3記載のソ
ーラーガス化炉。
6. The fluidized bed of the solar heating chamber (12)
It is a descending fluidized bed in which a fluidized medium containing fuel is fluidized with a fluidized gas containing no steam, and the gasification reaction chamber (1)
The fluidized bed 4) is an ascending fluidized bed obtained by fluidizing a fluidized medium containing fuel with a fluidized gas containing steam, and the heated fluidized medium flows into the ascending fluidized bed from the lower part of the descending fluidized bed,
4. The solar gasifier according to claim 3, wherein the fluidized medium after the reaction flows into the descending fluidized bed from above the ascending fluidized bed and circulates.
【請求項7】 前記太陽光加熱室(12)とガス化反応
室(14)の下部に互いに仕切られた風箱(15a,1
5b)を有し、太陽光加熱室とガス化反応室が各々独立
して流動化できる、ことを特徴とする請求項3記載のソ
ーラーガス化炉。
7. A wind box (15a, 1) partitioned from the lower part of the solar heating chamber (12) and the gasification reaction chamber (14).
The solar gasification furnace according to claim 3, wherein 5b) is provided, and the solar heating chamber and the gasification reaction chamber can be fluidized independently of each other.
【請求項8】 前記ガス化反応室(14)から反応後の
生成ガスとともに飛散する燃料と流動媒体の混合物を生
成ガスから分離するサイクロンセパレータ(22)と、
分離された混合物をガス化反応室へ戻す循環配管(2
3)とを設けた、ことを特徴とする請求項3記載のソー
ラーガス化炉。
8. A cyclone separator (22) for separating a mixture of a fuel and a fluid medium scattered with the product gas after the reaction from the gasification reaction chamber (14) from the product gas;
A circulation pipe (2) for returning the separated mixture to the gasification reaction chamber
3. The solar gasifier according to claim 3, wherein 3) is provided.
【請求項9】 流動媒体に蓄熱機能に優れた固体粒子を
用いることにより、ガス化反応室での吸熱反応での温度
低下を抑制し、ガス化反応を促進する、ことを特徴とす
る請求項3記載のソーラーガス化炉。
9. The method according to claim 1, wherein the use of solid particles having an excellent heat storage function as the fluid medium suppresses a temperature decrease in an endothermic reaction in the gasification reaction chamber and promotes the gasification reaction. 3. The solar gasifier according to 3.
【請求項10】 流動媒体に硫黄分を吸収する成分を添
加し、燃料のガス化反応の際に副生する硫黄化合物をガ
ス化反応室内で吸収し、硫黄分の少ない合成ガスを生成
する、ことを特徴とする請求項3記載のソーラーガス化
炉。
10. A sulfur-absorbing component is added to a fluidized medium to absorb a by-product sulfur compound in a gasification reaction of a fuel in a gasification reaction chamber to produce a synthesis gas having a low sulfur content. The solar gasifier according to claim 3, characterized in that:
【請求項11】 ガス化反応室の流動化ガスに酸素を含
むガスを添加し、ガス化反応室で部分酸化反応を行い、
ガス化反応に必要な熱の一部を燃料の発熱で供給する、
ことを特徴とする請求項3記載のソーラーガス化炉。
11. A gas containing oxygen is added to a fluidization gas in a gasification reaction chamber, and a partial oxidation reaction is performed in the gasification reaction chamber.
Part of the heat required for the gasification reaction is supplied by the heat generated by the fuel,
The solar gasifier according to claim 3, characterized in that:
JP30521399A 1999-10-27 1999-10-27 Solar gasifier Expired - Fee Related JP4324828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30521399A JP4324828B2 (en) 1999-10-27 1999-10-27 Solar gasifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30521399A JP4324828B2 (en) 1999-10-27 1999-10-27 Solar gasifier

Publications (2)

Publication Number Publication Date
JP2001123183A true JP2001123183A (en) 2001-05-08
JP4324828B2 JP4324828B2 (en) 2009-09-02

Family

ID=17942418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30521399A Expired - Fee Related JP4324828B2 (en) 1999-10-27 1999-10-27 Solar gasifier

Country Status (1)

Country Link
JP (1) JP4324828B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503317A (en) * 2007-11-16 2011-01-27 ユゴラン、ニコラ Method for producing liquid fuel or hydrogen from biomass or chemical coal using solar energy, microwave and plasma
JP2012171978A (en) * 2011-02-17 2012-09-10 Ihi Corp Reactor
JP2012171808A (en) * 2011-02-17 2012-09-10 Ihi Corp Reaction furnace
JP2013227404A (en) * 2012-04-25 2013-11-07 Ihi Corp Circulating fluidized bed gasification system
JP2015086232A (en) * 2013-10-28 2015-05-07 国立大学法人 新潟大学 Coal-coke gasification apparatus and method by using internally circulating fluidized layer
JP5739818B2 (en) * 2009-12-03 2015-06-24 国立大学法人 新潟大学 Hydrogen production method by hydrothermal decomposition and hydrogen production equipment
JPWO2015174236A1 (en) * 2014-05-13 2017-04-20 国立大学法人 新潟大学 Concentrated sunlight heat receiving device, reaction device, and heating device
KR20220018903A (en) * 2020-08-07 2022-02-15 전북대학교산학협력단 Solar energy production device using fluidized bed process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503317A (en) * 2007-11-16 2011-01-27 ユゴラン、ニコラ Method for producing liquid fuel or hydrogen from biomass or chemical coal using solar energy, microwave and plasma
JP5739818B2 (en) * 2009-12-03 2015-06-24 国立大学法人 新潟大学 Hydrogen production method by hydrothermal decomposition and hydrogen production equipment
JP2012171978A (en) * 2011-02-17 2012-09-10 Ihi Corp Reactor
JP2012171808A (en) * 2011-02-17 2012-09-10 Ihi Corp Reaction furnace
JP2013227404A (en) * 2012-04-25 2013-11-07 Ihi Corp Circulating fluidized bed gasification system
JP2015086232A (en) * 2013-10-28 2015-05-07 国立大学法人 新潟大学 Coal-coke gasification apparatus and method by using internally circulating fluidized layer
JPWO2015174236A1 (en) * 2014-05-13 2017-04-20 国立大学法人 新潟大学 Concentrated sunlight heat receiving device, reaction device, and heating device
KR20220018903A (en) * 2020-08-07 2022-02-15 전북대학교산학협력단 Solar energy production device using fluidized bed process
KR102462124B1 (en) * 2020-08-07 2022-11-03 전북대학교산학협력단 Solar energy production device using fluidized bed process

Also Published As

Publication number Publication date
JP4324828B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
US5620488A (en) Method of fluidized-bed gasification and melt combustion
AU2003220733B2 (en) Power generation system based on gasification of combustible material
US8673035B2 (en) Solar-thermal reaction processing
WO2007004342A1 (en) Method of solid fuel gasification including gas purification and gasifier employing the method
WO2006123018A1 (en) A method of and an apparatus for gasifying carbonaceous material
JP2003176486A (en) Integrated circulating fluidized bed gasifying furnace
ES2397447B1 (en) DUAL GASIFICATION-PIRÓISIS REACTOR DEVICE.
JP4324828B2 (en) Solar gasifier
US20060137579A1 (en) Gasification system
JPS59136390A (en) Indirect heat type fluidized bed gasifier
JP2002012877A (en) Method for gasifying fuel and solar gasifying furnace
JP3839709B2 (en) Gas supply device, gas supply utilization system, gasification and melting system, and gas supply method
JP2001247880A (en) Method for operating solar coal steam improving oven
JPH10279955A (en) Reducing reactor utilizing solar light
JP2002069462A (en) Method and apparatus for producing raw materials using solar energy
KR100482887B1 (en) Fluidized Bed Gasification and Melting Combustion Method and Apparatus
JP5682364B2 (en) Reactor
JP3270447B2 (en) Waste treatment method and gasification and melting equipment
JP3576330B2 (en) CaS oxidation / char combustion device
CN116478734A (en) Microwave heating material returning device, reaction device and method using same
JP3270454B1 (en) Waste treatment method and gasification and melting equipment
CA1047767A (en) Apparatus for gasifying coal, etc.
CN117660061A (en) Material returning unit and double fluidized bed reaction device using same
JP3270453B1 (en) Waste treatment method and gasification and melting equipment
JPS5817795B2 (en) Coal gasification method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140619

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees