[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001110414A - Material for activating positive electrode of lithium secondary battery and the lithium secondary battery - Google Patents

Material for activating positive electrode of lithium secondary battery and the lithium secondary battery

Info

Publication number
JP2001110414A
JP2001110414A JP28244599A JP28244599A JP2001110414A JP 2001110414 A JP2001110414 A JP 2001110414A JP 28244599 A JP28244599 A JP 28244599A JP 28244599 A JP28244599 A JP 28244599A JP 2001110414 A JP2001110414 A JP 2001110414A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
secondary battery
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28244599A
Other languages
Japanese (ja)
Inventor
Masaya Takahashi
雅也 高橋
Shinichi Tobishima
真一 鳶島
Koji Takei
弘次 武井
Yoji Sakurai
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28244599A priority Critical patent/JP2001110414A/en
Publication of JP2001110414A publication Critical patent/JP2001110414A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance charging and discharging capacity of a lithium secondary battery during a large-current charging and discharging, where the lithium secondary battery uses a low-price material of iron phosphate lithium as a positive electrode. SOLUTION: A powder 2 is carried on powder 1, where a powder 1 is formed of iron phosphate lithium series material having an olivine structure, which is indicated by the general expression LizFe1-yXyPO4 (0<=y<=0.3, 0<z<=1, X is at least one selected from among magnesium, cobalt, nickel and zinc), while a powder 2 is formed of a material such that it has conductivity and whose oxidation-reduction potential is higher than that of a material for activating a positive electrode of a lithium secondary battery made of iron phosphate lithium series material. Therefore, a battery can be obtained which has larger charging and discharging capacity compared with others using an iron phosphate lithium series material that does not carry powders thereon, where charging and discharging capacity of the battery in relation to the invention is little decreased, even if charging and discharging current increases.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池正極活
物質およびリチウム二次電池に関し、特に正極活物質の
導電性向上に関わり、電池の大電流での放電特性あるい
は充電特性の改善を目指すものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a lithium secondary battery and a lithium secondary battery, and more particularly to an improvement in the conductivity of the positive electrode active material, with the aim of improving the discharge characteristics or charge characteristics of a battery at a large current. Things.

【0002】[0002]

【従来の技術】リチウム金属、リチウム合金あるいはリ
チウムイオンを吸蔵、放出可能な物質を負極活物質とす
るリチウム二次電池は高い電圧と優れた可逆性を特徴と
している。
2. Description of the Related Art A lithium secondary battery using a lithium metal, a lithium alloy or a material capable of absorbing and releasing lithium ions as a negative electrode active material is characterized by high voltage and excellent reversibility.

【0003】特に正極活物質としてリチウムと遷移金属
との複合酸化物を用い、負極活物質として炭素系材料を
用いたリチウムイオン二次電池は、従来の鉛二次電池や
ニッケル−カドミウム二次電池などに比べ軽量で放電容
量も大きいことから、携帯電話やノート型パーソナルコ
ンピューターなどの電子機器に広く使用されている。
In particular, a lithium ion secondary battery using a composite oxide of lithium and a transition metal as a positive electrode active material and a carbon-based material as a negative electrode active material is a conventional lead secondary battery or nickel-cadmium secondary battery. Because of their light weight and large discharge capacity, they are widely used in electronic devices such as mobile phones and notebook personal computers.

【0004】現在一般に用いられているリチウムイオン
二次電池の正極活物質としては、主にLiCoO2が用
いられているが、LiCoO2の原料であるコバルトは
埋蔵量が少なく、しかも限られた地域でしか産出しない
ため、今後、より一層の需要増加が見込まれるリチウム
イオン二次電池の正極活物質としては、価格の面からも
原料の安定供給の面からも好ましくない。
[0004] LiCoO 2 is mainly used as a positive electrode active material of a lithium ion secondary battery generally used at present, but cobalt, which is a raw material of LiCoO 2 , has a small reserve and is limited in a limited area. As a positive electrode active material for a lithium ion secondary battery, for which further demand is expected to increase in the future, it is not preferable in terms of price and stable supply of raw materials.

【0005】これに対して、産出量が多く安価な鉄を原
料に用いたLiFePO4あるいはLiFePO4の鉄の
一部を他元素で置換した材料がリチウム二次電池の正極
活物質として動作することが特開平9−134724
号、特開平9−134725号、特願平11−2613
94号などにより明らかにされている。
On the other hand, LiFePO 4, which uses inexpensive iron as a raw material and has a large amount of output, or a material obtained by substituting part of iron of LiFePO 4 with another element, operates as a positive electrode active material of a lithium secondary battery. Is disclosed in JP-A-9-134724.
, Japanese Patent Application Laid-Open No. 9-134725, Japanese Patent Application No. 11-2613.
No. 94 and the like.

【0006】[0006]

【発明が解決しようとする課題】しかし、これらのリン
酸鉄リチウム系材料は電池充放電時のリチウムの挿入脱
離反応が遅く、しかも従来用いられてきたLiCoO2
などのリチウム金属酸化物に比べて電気抵抗が大きいた
め、大きな電流で充放電を行った場合に抵抗過電圧や活
性化過電圧が増大し、電池の電圧が低下してしまうた
め、十分な充放電容量が得られないという問題がある。
However, these lithium iron phosphate materials have a slow lithium insertion / desorption reaction during charge / discharge of a battery, and the LiCoO 2 which has been used in the past has been used.
Since the electrical resistance is higher than that of lithium metal oxides, etc., when charging and discharging with a large current, the resistance overvoltage and activation overvoltage increase, and the voltage of the battery decreases. There is a problem that can not be obtained.

【0007】この様な問題を解決する方法として、リン
酸鉄リチウム系材料の粒子を微細化し、反応が進行する
面積を増やすと共に、電流がリン酸鉄リチウム系材料粒
子内部を流れる距離を短くすることが考えられる。
As a method for solving such a problem, the particles of the lithium iron phosphate material are made finer to increase the area in which the reaction proceeds, and to shorten the distance that the current flows inside the lithium iron phosphate material particles. It is possible.

【0008】しかし、リン酸鉄リチウム系材料の微細な
粒子は電極作製時に導電材と混合する際に二次凝集を起
こしやすい。凝集粒内部ではリン酸鉄リチウム系材料粒
子同士が小さな点で接触しているために電気抵抗が非常
に大きくなることから、凝集粒中央部の活物質では電池
の充放電を行っても反応が起こらず、充放電容量が低下
してしまう。
However, fine particles of the lithium iron phosphate-based material tend to cause secondary aggregation when mixed with a conductive material at the time of manufacturing an electrode. Since the lithium iron phosphate-based material particles contact each other at small points inside the agglomerates, the electrical resistance becomes extremely large. This does not occur, and the charge / discharge capacity decreases.

【0009】従って、本発明は前述した従来の課題を解
決するためになされたものであり、その目的は、安価な
リン酸鉄リチウム系材料を正極に用いたリチウム二次電
池の、大電流充放電時の充放電容量を高めることにあ
る。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a lithium secondary battery using an inexpensive lithium iron phosphate-based material for a positive electrode in a large current charging. It is to increase the charge / discharge capacity at the time of discharge.

【0010】[0010]

【課題を解決するための手段】この様な目的を達成する
ために、本発明によるリチウム二次電池正極活物質は、
一般式LizFe1-yyPO4(0≦y≦0.3、0<z
≦1、X:マグネシウム、コバルト、ニッケル、亜鉛の
少なくとも1種類)で与えられるオリビン構造のリン酸
鉄リチウム系材料粉末上に、導電性でなおかつ酸化還元
電位がリン酸鉄リチウム系材料のリチウム二次電池正極
活物質としての酸化還元電位よりも貴な物質の粉末を担
持することを特徴とするものである。
In order to achieve such an object, a positive electrode active material for a lithium secondary battery according to the present invention comprises:
General formula Li z Fe 1-y X y PO 4 (0 ≦ y ≦ 0.3, 0 <z
≦ 1, X: at least one of magnesium, cobalt, nickel and zinc) on a lithium iron phosphate-based material powder having an olivine structure, which is conductive and has a redox potential of lithium iron phosphate-based material. The present invention is characterized in that a powder of a substance nobler than the oxidation-reduction potential as a positive electrode active material for a secondary battery is supported.

【0011】また、本発明によるリチウム二次電池正極
活物質は、前記の導電性でなおかつ酸化還元電位がリン
酸鉄リチウム系材料のリチウム二次電池正極活物質とし
ての酸化還元電位よりも貴な物質が、銀、炭素、白金、
パラジウム、金、イリジウム、アルミニウム、チタン、
タンタルの少なくとも1種類であることを特徴とするも
のである。
Further, the positive electrode active material for a lithium secondary battery according to the present invention has the above-mentioned conductivity and a redox potential which is more noble than the redox potential as a positive electrode active material for a lithium secondary battery of a lithium iron phosphate-based material. If the substance is silver, carbon, platinum,
Palladium, gold, iridium, aluminum, titanium,
It is characterized by being at least one kind of tantalum.

【0012】さらに、本発明によるリチウム二次電池
は、上述したリチウム二次電池正極活物質を含み、さら
にリチウム金属、リチウム合金またはリチウムイオンを
吸蔵、放出可能な物質を負極活物質として、またリチウ
ムイオンが前記正極活物質や前記負極活物質と電気化学
反応をするための移動を行いうる物質を電解質として含
むことを特徴とするものである。
Further, a lithium secondary battery according to the present invention comprises the above-mentioned positive electrode active material for a lithium secondary battery, further comprises a material capable of occluding and releasing lithium metal, a lithium alloy or lithium ions as a negative electrode active material, It is characterized in that the electrolyte contains, as an electrolyte, a substance in which ions can move to cause an electrochemical reaction with the positive electrode active material and the negative electrode active material.

【0013】図1は、本発明によるリチウム二次電池に
用いられる正極活物質と導電材を混合して作製した正極
の一部を拡大した断面の模式図である。この図より明ら
かなように、リン酸鉄リチウム系材料粉末1の表面に導
電性微粒子2を担持することにより、リン酸鉄リチウム
系材料粉末同士が直接接触する部分がほとんど無くな
り、リン酸鉄リチウム系材料粉末1の粒径を小さくして
も電極作製時に導電材3と混合した際の凝集が起こりに
くくなる。
FIG. 1 is a schematic enlarged cross-sectional view of a part of a positive electrode produced by mixing a positive electrode active material and a conductive material used in a lithium secondary battery according to the present invention. As is clear from this figure, by supporting the conductive fine particles 2 on the surface of the lithium iron phosphate-based material powder 1, there is almost no portion where the lithium iron phosphate-based material powders are in direct contact with each other. Even if the particle diameter of the system material powder 1 is reduced, aggregation when mixed with the conductive material 3 at the time of manufacturing an electrode is less likely to occur.

【0014】さらにリン酸鉄リチウム系材料粉末1が凝
集した場合にも凝集粒内部に導電性微粒子2による電流
の経路が形成されるため、凝集粒内部の電気抵抗が大幅
に低減され、電池を大電流で充放電した際にも凝集粒内
部の活物質が十分に利用されるようになることから、リ
ン酸鉄リチウム系材料粉末1の凝集による充放電容量の
低下が抑止される。
Further, even when the lithium iron phosphate-based material powder 1 is agglomerated, a current path is formed by the conductive fine particles 2 inside the agglomerated particles. Since the active material inside the agglomerated particles is sufficiently utilized even when charged and discharged with a large current, a decrease in the charge and discharge capacity due to the aggregation of the lithium iron phosphate-based material powder 1 is suppressed.

【0015】また、従来のリチウム二次電池正極におい
ては、電気抵抗の大きな活物質粒子同士あるいは活物質
粒子と導電材粒子が直接接触していたため、接触面積の
小さな部分では大きな抵抗が生じてしまっていたが、本
発明の正極活物質では導電性微粒子2同士あるいは導電
性微粒子2と導電材3が接触しているため、活物質と導
電材3の接触面における抵抗が小さくなるとともに、電
池の充放電を繰り返した際の活物質の膨張収縮により、
接触面積が変化した場合の抵抗の変化も小さくなり、大
電流で充放電を行った場合のエネルギーロスが小さくな
るとともに充放電に伴う容量劣化も少なくなる。これら
の効果が複合することにより、本発明の正極活物質を用
いることによりリン酸鉄リチウム系材料を正極活物質に
用いたリチウム二次電池の大電流での充放電時の充放電
容量が増加すると考えられる。
In the conventional lithium secondary battery positive electrode, the active material particles having a large electric resistance or the active material particles and the conductive material particles are in direct contact with each other, so that a large resistance occurs in a portion having a small contact area. However, in the positive electrode active material of the present invention, since the conductive fine particles 2 are in contact with each other or the conductive fine particles 2 and the conductive material 3, the resistance at the contact surface between the active material and the conductive material 3 is reduced, and Due to the expansion and contraction of the active material when charging and discharging are repeated,
The change in resistance when the contact area changes is also small, the energy loss when charging and discharging with a large current is reduced, and the capacity deterioration due to charging and discharging is also reduced. By combining these effects, the use of the positive electrode active material of the present invention increases the charge / discharge capacity of a lithium secondary battery using a lithium iron phosphate-based material as the positive electrode active material at the time of large current charge / discharge. It is thought that.

【0016】本発明によるリチウム二次電池正極活物質
のリン酸鉄リチウム系材料は、一般式LizFe1-yy
PO4(0<z≦1、0<y≦0.3)で与えられるオ
リビン構造のリン酸化合物で、元素Xは該リン酸化合物
を構成している状態では、リチウム金属の標準電位に対
して3Vから4Vの電位領域で電気化学的に安定な物質
である。すなわち、Xはマグネシウム、コバルト、ニッ
ケル、亜鉛の少なくとも1種類である。図2にLiFe
PO4のオリビン構造を示す。黒丸がリチウム原子を、
八面体は6個の酸素で囲まれた鉄を、四面体は4個の酸
素で囲まれたリンをそれぞれ示している。
The lithium iron phosphate-based material of the positive electrode active material of the lithium secondary battery according to the present invention has a general formula Li z Fe 1-y X y
A phosphate compound having an olivine structure given by PO 4 (0 <z ≦ 1, 0 <y ≦ 0.3). In a state where the phosphate compound is formed, the element X is based on the standard potential of lithium metal. It is an electrochemically stable substance in the potential range of 3 V to 4 V. That is, X is at least one of magnesium, cobalt, nickel, and zinc. FIG.
2 shows the olivine structure of PO 4 . Black circles represent lithium atoms,
The octahedron indicates iron surrounded by six oxygen atoms, and the tetrahedron indicates phosphorus surrounded by four oxygen atoms.

【0017】上述の様な一般的にリン酸鉄リチウムと呼
ばれている物質はLiFePO4(z=1、y=0)で
表され、構造を保ったままでリチウムをこれ以上挿入す
ることはできない。このリン酸鉄リチウム系材料を電池
の正極として用いた場合、充電を行うとリチウムが正極
から抜けて行き、組成はFePO4に近づき(zが小さ
くなる)、充電した電池を放電すると、電解液中のリチ
ウムが正極中に挿入され、組成がLiFePO4(z=
1)に戻っていく。電池の放電容量や作製を考えるとz
=1の材料が最も好ましいが、この様にzの値は連続的
に変化するため、不定比な組成であるz=0.9などの
組成の物質でも、一般的な定比の組成であるz=1のリ
ン酸鉄リチウムと同等の機構で動作する電池が作成可能
である。このため、上記式中、zは 0<z≦1で示さ
れる。
The above-mentioned substance generally called lithium iron phosphate is represented by LiFePO 4 (z = 1, y = 0), and lithium cannot be inserted any more while maintaining the structure. . When this lithium iron phosphate-based material is used as the positive electrode of a battery, when the battery is charged, lithium escapes from the positive electrode, the composition approaches FePO 4 (z becomes small), and when the charged battery is discharged, the electrolytic solution The lithium therein is inserted into the positive electrode, and the composition is LiFePO 4 (z =
Go back to 1). Considering the discharge capacity and fabrication of the battery, z
= 1 is most preferable, but since the value of z changes continuously in this way, even a substance having a non-stoichiometric composition such as z = 0.9 has a general constant-stoichiometric composition. A battery that operates by a mechanism equivalent to lithium iron phosphate with z = 1 can be manufactured. Therefore, in the above formula, z is represented by 0 <z ≦ 1.

【0018】LiFePO4は、その充電の際にリチウ
ムが脱離するとともに鉄イオンが2価から3価に変化す
る。リチウムが脱離した結果、その部分の結晶構造(オ
リビン構造 )が不安定になり部分的にリチウムの移動
経路が塞がれてしまい、更に内部にあるリチウムが脱離
しにくくなる。リン酸化合物を構成している状態でリチ
ウム金属の標準電位に対して3Vから4Vの電位領域で
電気化学的に安定な亜鉛等の元素で一部の鉄を置き換え
ると、充電を行っても亜鉛等の置換した元素は2価のま
まで酸化されず、置換した元素に隣接するリチウムも脱
離せずに結晶内に残る。このため、充電を行っても置換
を行った部分は結晶構造が変化しにくく、リチウムの移
動経路が確保されるために容量が増大すると共にサイク
ル安定性を向上させるものと考えられる。しかし、脱離
しないリチウムは充放電に関与しないため、この様な置
換をあまり多く行うと電池の容量が減少してしまう。こ
のため、鉄元素を置換する場合には、容量増加の効果が
見られる鉄元素の置換量は30%(0≦y≦0.3 )
以下、好ましくは10%〜30%(0.1≦y≦0.3
)、さらに好ましくは10〜20%(0.1≦y≦
0.2) であるのがよい。
In LiFePO 4 , lithium is desorbed during charging, and iron ions change from divalent to trivalent. As a result of the elimination of lithium, the crystal structure (olivine structure) at that portion becomes unstable, and the movement path of lithium is partially blocked, and further, the lithium inside becomes difficult to be eliminated. When a part of iron is replaced by an element such as zinc which is electrochemically stable in a potential region of 3 V to 4 V with respect to the standard potential of lithium metal in a state where the phosphate compound is formed, the zinc is charged even if charging is performed. The substituted element such as is not oxidized as it is divalent, and lithium adjacent to the substituted element remains in the crystal without being eliminated. For this reason, it is considered that the crystal structure of the replaced portion is unlikely to change even after charging, and the lithium migration path is secured, thereby increasing the capacity and improving the cycle stability. However, lithium that does not desorb does not participate in charge and discharge, so that if such replacement is performed too much, the capacity of the battery will decrease. For this reason, when replacing the iron element, the replacement amount of the iron element, which has the effect of increasing the capacity, is 30% (0 ≦ y ≦ 0.3).
Hereinafter, preferably 10% to 30% (0.1 ≦ y ≦ 0.3
), More preferably 10 to 20% (0.1 ≦ y ≦
0.2).

【0019】本発明においては、リン酸鉄リチウム系材
料の表面に前記の導電性でなおかつ酸化還元電位がリン
酸鉄リチウム系材料のリチウム二次電池正極活物質とし
ての酸化還元電位よりも貴な(高い)導電性微粒子を付
着せしめるものである。これはリチウム二次電子内にお
いて導電性微粒子の電気化学反応が起こる電位がリン酸
鉄リチウム系材料の酸化還元電位(約3.4V)より低
いと、前記導電性微粒子が先に電気化学反応を生じてし
まい、酸化による溶解か導電性の低下が起こり、導電性
微粒子担持の効果が失われてしまうからである。
In the present invention, the surface of the lithium iron phosphate-based material is electrically conductive and the oxidation-reduction potential is more noble than the oxidation-reduction potential of the lithium iron phosphate-based material as a positive electrode active material for a lithium secondary battery. (High) conductive fine particles are adhered. This is because when the potential at which the electrochemical reaction of the conductive fine particles occurs in the lithium secondary electrons is lower than the oxidation-reduction potential (about 3.4 V) of the lithium iron phosphate-based material, the conductive fine particles first perform the electrochemical reaction. This is because of the occurrence of dissolution or reduction in conductivity due to oxidation, and the effect of supporting the conductive fine particles is lost.

【0020】この様な導電性微粒子としては、たとえば
銀、炭素、白金、パラジウム、金、イリジウム、アルミ
ニウム、チタン、タンタルの少なくとも1種類であるの
が好ましい。後述の実施例においては前記導電性微粒子
として、金属材料としては銀、パラジウム、白金を、ま
た炭素材料としてはアセチレンブラックを用いたが、こ
の他に金属材料としては金、イリジウム、アルミニウ
ム、チタン、タンタルなどでもよい。また、炭素材料と
してはグラファイトやケッチェンブラックでも構わな
い。
Such conductive fine particles are preferably at least one of silver, carbon, platinum, palladium, gold, iridium, aluminum, titanium and tantalum, for example. In the examples described below, silver, palladium, and platinum were used as the metal material as the conductive fine particles, and acetylene black was used as the carbon material.In addition, as the metal material, gold, iridium, aluminum, titanium, Tantalum may be used. In addition, graphite or Ketjen black may be used as the carbon material.

【0021】さらに導電性微粒子の添加量としては、こ
の物質自体が充放電反応に関与しないことから、添加量
を増やしすぎるとリン酸鉄リチウム系材料と導電性微粒
子を併せた正極活物質全体としての単位重量あるいは単
位体積当りの放電容量が減少するため、10%以下が好
まレく、特に2%〜6%が好ましい。
Further, as the amount of the conductive fine particles added, since this substance itself does not participate in the charge / discharge reaction, if the added amount is excessively increased, the entire positive electrode active material including the lithium iron phosphate-based material and the conductive fine particles is added. Since the discharge capacity per unit weight or unit volume is reduced, 10% or less is preferable, and 2% to 6% is particularly preferable.

【0022】また導電性微粒子の粒径としては、リン酸
鉄リチウム系材料粉末の粒径の1/10以下が好まし
く、特に1/100以上1/10以下が好ましい。導電
性微粒子は電池反応に関与しないため、リン酸鉄リチウ
ム系材料粉末表面に、なるべく少ない重量で、まんべん
なく付着せしめるのが好ましい。このため導電性粒子の
粒径が大きくなると、前記リン酸鉄リチウム系材料粉末
表面に、まんべんなく付着させると、導電性粒子の量が
多くなりすぎて、エネルギー密度の低下を招く恐れがあ
るからである。
The particle size of the conductive fine particles is preferably 1/10 or less, more preferably 1/100 or more and 1/10 or less of the particle size of the lithium iron phosphate-based material powder. Since the conductive fine particles do not participate in the battery reaction, it is preferable that the conductive fine particles be evenly attached to the surface of the lithium iron phosphate-based material powder with as little weight as possible. For this reason, when the particle size of the conductive particles is large, evenly adhered to the surface of the lithium iron phosphate-based material powder, the amount of the conductive particles becomes too large, which may cause a decrease in energy density. is there.

【0023】さらに後述の実施例において、正極として
はペレット状に成型したものを用いたが、N−メチル−
2一ピロリドンの様な溶媒に正極活物質とポリフッ化ビ
ニリデンの様なバインダを加えてスラリーを作製し、そ
れを金属箔上に薄く塗布乾燥した塗布電極の様な形状で
も構わない。
Further, in Examples described later, a positive electrode molded in a pellet shape was used.
The slurry may be prepared by adding a positive electrode active material and a binder such as polyvinylidene fluoride to a solvent such as 21-pyrrolidone, and the slurry may be thinly coated on a metal foil and dried to form a coated electrode.

【0024】また、負極材料としてはリチウム金属を用
いたが、他にリチウム合金、黒鉛やコークスなどの炭素
系材料、タングステン酸化物、ニオブ酸化物、バナジウ
ム酸化物、スズ酸化物などの金属酸化物、リチウムマン
ガン窒化物やリチウムコバルト窒化物、リチウム鉄窒化
物などのリチウム遷移金属複合窒化物、硫化鉄や硫化モ
リブデン等の金属カルコゲナイトなどでも構わない。
Although lithium metal was used as the negative electrode material, other materials such as lithium alloys, carbon-based materials such as graphite and coke, and metal oxides such as tungsten oxide, niobium oxide, vanadium oxide, and tin oxide were also used. Alternatively, lithium transition metal composite nitrides such as lithium manganese nitride, lithium cobalt nitride, and lithium iron nitride, and metal chalcogenites such as iron sulfide and molybdenum sulfide may be used.

【0025】さらに電解液としてはエチレンカーボネー
トとジメチルカーボネートの等積混合溶媒にLiPF6
を1mol/dm3濃度に溶解した電解液を用いたが、
従来の非水系リチウム二次電池と同様なものも使用可能
である。
As an electrolytic solution, LiPF 6 is used in a mixed solvent of equal volume of ethylene carbonate and dimethyl carbonate.
Was dissolved in a concentration of 1 mol / dm 3 ,
A battery similar to a conventional non-aqueous lithium secondary battery can also be used.

【0026】例えば溶媒としてはジメトキシエタン、2
−メチルテトラヒドロフラン、エチレンカーボネート、
メチルホルメート、ジメチルスルホキシド、プロピレン
カーボネート、アセトニトリル、ジメチルカーボネー
ト、ジエチルカーボネート、メチルエチルカーボネート
などを単独で、あるいは2種類以上を混合して使用する
ことが可能である。
For example, dimethoxyethane, 2
-Methyltetrahydrofuran, ethylene carbonate,
Methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate and the like can be used alone or in combination of two or more.

【0027】また、溶質としては実施例において用いた
LiPF6以外にも、例えば、LiClO4、LiB
4、LiAsF6、LiCF3SO3等でも構わない。更
に、ポリマー電解質、固体電解質、常温溶融塩等も使用
可能である。
As the solute, other than LiPF 6 used in Examples, for example, LiClO 4 , LiB
P 4 , LiAsF 6 , LiCF 3 SO 3 or the like may be used. Further, a polymer electrolyte, a solid electrolyte, a room temperature molten salt and the like can be used.

【0028】また、セパレータや電池ケース等の構造材
料等の他の要素についても従来公知の各種材料が使用可
能である。さらに電池形状についても実施例においては
コイン型としたが、特に制限されるものではなく、円筒
型、角型等の形状でもかまわない。
As for other elements such as a structural material such as a separator and a battery case, various conventionally known materials can be used. Further, the shape of the battery is also a coin type in the embodiment, but is not particularly limited, and may be a cylindrical shape, a square shape, or the like.

【0029】[0029]

【実施例】以下に、図面を参照して本発明の実施例をよ
り詳細に説明する。なお、本発明は以下の実施例のみに
限定されるものではない。
Embodiments of the present invention will be described below in detail with reference to the drawings. The present invention is not limited only to the following examples.

【0030】[0030]

【実施例1】図3は本発明によるリチウム二次電池の一
実施例による構成を示した電池断面図である。図3にお
いて、4は正極ペレット、5は金属リチウム負極、6は
セパレータ、7は正極ケース、8は封口板、9はガスケ
ットである。正極ペレット4に含まれる正極活物質は下
記の方法で作製した。
Embodiment 1 FIG. 3 is a sectional view showing a structure of a lithium secondary battery according to an embodiment of the present invention. In FIG. 3, 4 is a positive electrode pellet, 5 is a metal lithium negative electrode, 6 is a separator, 7 is a positive electrode case, 8 is a sealing plate, and 9 is a gasket. The positive electrode active material contained in the positive electrode pellet 4 was produced by the following method.

【0031】まずLiFePO4を原料である炭酸リチ
ウム(Li2CO3)と、シュウ酸鉄2水和物(FeC2
4・2H2O)と、リン酸水素二アンモニウム((NH
42HPO4)をモル比で0.5:1:1となるように
混合して坩堝に入れ、アルゴン雰囲気下で800℃で2
4時間焼成することにより合成した。
First, lithium carbonate (Li 2 CO 3 ) which is a raw material of LiFePO 4 and iron oxalate dihydrate (FeC 2
O 4 · 2H and 2 O), diammonium hydrogen phosphate ((NH
4 ) 2 HPO 4 ) is mixed in a molar ratio of 0.5: 1: 1, put into a crucible, and heated at 800 ° C. in an argon atmosphere.
It was synthesized by firing for 4 hours.

【0032】次いで、水とエタノールを体積比で1:1
に混合した溶液中に合成したLiFePO4粉末を入れ
十分に攪拌し、攪拌を続けながら硝酸銀(AgNO3
を、含まれる銀イオンの重量がLiFePO4の重量の
5%となるよう秤量して加えた。
Then, water and ethanol were mixed at a volume ratio of 1: 1.
The synthesized LiFePO 4 powder is placed in the solution mixed with the above, and the mixture is sufficiently stirred, and while stirring is continued, silver nitrate (AgNO 3 )
Was weighed so that the weight of silver ions contained therein was 5% of the weight of LiFePO 4 .

【0033】更に攪拌を続けながらアセトアルデヒド
を、AgNO3 1g当たり20ml加えてLiFeP
4粉末上に銀を析出させた。これをろ過、乾燥するこ
とにより正極活物質を作製した。
While continuing stirring, acetaldehyde was added to LiFeP by adding 20 ml per 1 g of AgNO 3.
Silver was deposited on the O 4 powder. This was filtered and dried to produce a positive electrode active material.

【0034】得られた正極活物質のX線回折チャートを
図4に示す。LiFePO4のピークに加え、図4中に
*で示した金属状態の銀のピークが観察された。また電
子顕微鏡観察とEPMA測定により、LiFePO4
末上にLiFePO4粉末の粒径の約1/20の粒径の
銀の微粒子が分散担持していることを確認した。
FIG. 4 shows an X-ray diffraction chart of the obtained positive electrode active material. In addition to the LiFePO 4 peak, a silver peak in a metal state indicated by * in FIG. 4 was observed. The electron microscopic observation and EPMA measurement, silver fine particle size of about 1/20 of the particle size of LiFePO 4 powder LiFePO 4 on powder was confirmed that they are dispersed and carried.

【0035】この正極活物質70重量%と導電材である
アセチレンブラック25重量%及び結着剤であるポリテ
トラフルオロエチレン5重量%を混練し、粘土状の塊と
したものを2軸ローラーで厚さ0.6mm程度に圧延し
てからポンチで直径15mmの円板状に打ち抜いて正極
ペレット4を作製した。
[0035] 70% by weight of this positive electrode active material, 25% by weight of acetylene black as a conductive material and 5% by weight of polytetrafluoroethylene as a binder were kneaded to obtain a clay-like mass, which was then thickened with a biaxial roller. After being rolled to a thickness of about 0.6 mm, a positive electrode pellet 4 was prepared by punching out a disk having a diameter of 15 mm with a punch.

【0036】次にステンレス製の封口板8上に金属リチ
ウム負極5を加圧配置したものをポリプロピレン製ガス
ケット9の凹部に挿入し、負極の上にポリプロピレン製
で微孔性のセパレータ図6、正極ペレット4をこの順序
に配置し、電解液として、エチレンカーボネートとジメ
チルカーボネートの等積混合溶媒にLiPF6を1mo
l/dm3の濃度に溶解した電解液を適量注入して含浸
させた後に、ステンレス製の正極ケース7を被せてかし
めることにより、厚さ2mm、直径23mmのコイン型
リチウム二次電池を作製した。
Next, a metal lithium negative electrode 5 placed under pressure on a stainless steel sealing plate 8 is inserted into the concave portion of the polypropylene gasket 9, and a polypropylene microporous separator is placed on the negative electrode. The pellets 4 are arranged in this order, and 1 mol of LiPF 6 is used as an electrolytic solution in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate.
After injecting and impregnating an appropriate amount of an electrolytic solution dissolved in a concentration of l / dm 3 , a stainless-steel positive electrode case 7 is covered and swaged to produce a coin-type lithium secondary battery having a thickness of 2 mm and a diameter of 23 mm. did.

【0037】作製した電池の充放電特性を充電終止電圧
4.0V、放電終止電圧3.0V、1mA及び電流の大
きな5mAの定電流という条件で充放電を行うことによ
り評価した。
The charge / discharge characteristics of the produced battery were evaluated by charging / discharging under the conditions of a charge end voltage of 4.0 V, a discharge end voltage of 3.0 V, 1 mA, and a constant current of 5 mA, which is a large current.

【0038】5mAの電流で放電した際の電圧曲線を図
5に示す。電圧曲線は、既に知られている導電性の微粒
子を担持していないリン酸鉄リチウムを正極に、リチウ
ム金属を負極に用いた電池を小さな電流で充放電した際
の電圧とほぼ同一であり、鉄イオンの酸化還元により充
放電が行われ、担持した導電性材料の酸化還元は起こっ
ていないことが確認された。
FIG. 5 shows a voltage curve when discharging at a current of 5 mA. The voltage curve is almost the same as the voltage when charging and discharging a battery using lithium iron phosphate not supporting already known conductive fine particles as a positive electrode and lithium metal as a negative electrode with a small current, Charge / discharge was performed by oxidation / reduction of iron ions, and it was confirmed that oxidation / reduction of the carried conductive material did not occur.

【0039】放電容量は、電流1mAの場合が5.6m
Ah、電流5mAの場合が4.3mAhであった。それ
ぞれの電流値で充放電試験を行った際の放電容量を表1
に示す。
The discharge capacity is 5.6 m when the current is 1 mA.
Ah, when the current was 5 mA, it was 4.3 mAh. Table 1 shows the discharge capacity when the charge / discharge test was performed at each current value.
Shown in

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【比較例1】導電性物質の担持処理を行わない正極活物
質であるLiFePO4を下記の方法で作製した。
Comparative Example 1 LiFePO 4 , which is a positive electrode active material which was not subjected to a conductive material supporting treatment, was prepared by the following method.

【0042】まず原料である炭酸リチウム(Li2
3)と、シュウ酸鉄2水和物(FeC 24・2H2O)
と、リン酸水素二アンモニウム((NH42HPO4
をモル比で0.5:1:1となるように混合して坩堝に
入れ、アルゴン雰囲気下で800℃で24時間焼成する
ことにより作製した。
First, the raw material lithium carbonate (Li)TwoC
OThree) And iron oxalate dihydrate (FeC TwoOFour・ 2HTwoO)
And diammonium hydrogen phosphate ((NHFour)TwoHPOFour)
Into a crucible in a molar ratio of 0.5: 1: 1
And baked at 800 ° C for 24 hours under argon atmosphere
In this way, it was produced.

【0043】得られた正極活物質を用いて実施例1と同
一の方法により正極ペレット及びコイン型電池を作製し
た。
Using the obtained positive electrode active material, a positive electrode pellet and a coin-type battery were produced in the same manner as in Example 1.

【0044】実施例1と同一の条件で充放電特性を評価
したところ、放電容量は、電流1mAの場合が5.2m
Ah、電流5mAの場合が3.6mAhであり、いずれ
の場合も実施例1より小さな放電容量しか得られず、特
に5mAの定電流で試験した場合の容量の低下が大きか
った。
When the charge and discharge characteristics were evaluated under the same conditions as in Example 1, the discharge capacity was 5.2 m when the current was 1 mA.
In the case of Ah and a current of 5 mA, 3.6 mAh was obtained. In each case, a smaller discharge capacity than that of Example 1 was obtained. In particular, when the test was performed at a constant current of 5 mA, the capacity was significantly reduced.

【0045】5mAの電流で放電した際の電圧曲線を実
施例1の曲線と併せて図4に示す。また、それぞれの電
流値で充放電試験を行った際の放電容量を実施例1の値
と併せて表1に示す。
FIG. 4 shows a voltage curve when discharging at a current of 5 mA together with the curve of Example 1. Table 1 shows the discharge capacity when the charge / discharge test was performed at each current value together with the value of Example 1.

【0046】[0046]

【実施例2】正極ペレットに含まれる正極活物質を下記
の方法で作製した。
Example 2 A positive electrode active material contained in a positive electrode pellet was prepared by the following method.

【0047】まず原料である炭酸リチウム(Li2
3)と、シュウ酸鉄2水和物(FeC 24・2H2O)
と、リン酸水素二アンモニウム((NH42HPO4
をモル比で0.5:1:1となるように混合して坩堝に
入れ、アルゴン雰囲気下で350℃で5時間焼成した。
First, lithium carbonate (Li) as a raw material is used.TwoC
OThree) And iron oxalate dihydrate (FeC TwoOFour・ 2HTwoO)
And diammonium hydrogen phosphate ((NHFour)TwoHPOFour)
Into a crucible in a molar ratio of 0.5: 1: 1
And baked at 350 ° C. for 5 hours in an argon atmosphere.

【0048】次いで、アセチレンブラック(電気化学工
業製)を原料1kg当たり10g加え、十分に混合した
後、アルゴン雰囲気下で800℃で24時間焼成するこ
とにより作製した。
Then, 10 g of acetylene black (manufactured by Denki Kagaku Kogyo) was added per 1 kg of the raw material, mixed well, and fired at 800 ° C. for 24 hours in an argon atmosphere.

【0049】得られた正極活物質を用いて実施例1と同
一の方法により正極ペレット及びコイン型電池を作製し
た。
Using the obtained positive electrode active material, a positive electrode pellet and a coin-type battery were produced in the same manner as in Example 1.

【0050】実施例1と同一の条件で充放電特性を評価
したところ、放電容量は、電流1mAの場合が5.7m
Ah、電流5mAの場合が4.4mAhであり、いずれ
の場合も比較例1より大きな放電容量が得られた。
When the charge and discharge characteristics were evaluated under the same conditions as in Example 1, the discharge capacity was 5.7 m when the current was 1 mA.
In the case of Ah and the current of 5 mA, it was 4.4 mAh. In each case, a larger discharge capacity than that of Comparative Example 1 was obtained.

【0051】それぞれの電流値で充放電試験を行った際
の放電容量を実施例1及び比較例1の値と併せて表1に
示す。
Table 1 shows the discharge capacity when the charge / discharge test was performed at each current value, together with the values of Example 1 and Comparative Example 1.

【0052】[0052]

【実施例3】正極ペレットに含まれる正極活物質を下記
の方法で作製した。
Example 3 A positive electrode active material contained in a positive electrode pellet was prepared by the following method.

【0053】まずLiFePO4を原料である炭酸リチ
ウム(Li2CO3)と、シュウ酸鉄2水和物(FeC2
4・2H2O)とリン酸水素二アンモニウム((N
42HPO4)をモル比で0.5:1:1となるよう
に混合して坩堝に入れ、アルゴン雰囲気下で800℃で
24時間焼成することにより合成した。
First, lithium carbonate (Li 2 CO 3 ), which is a raw material of LiFePO 4 , and iron oxalate dihydrate (FeC 2
O 4 · 2H 2 O) and diammonium hydrogenphosphate ((N
H 4 ) 2 HPO 4 ) was mixed in a molar ratio of 0.5: 1: 1, put in a crucible, and baked at 800 ° C. for 24 hours in an argon atmosphere.

【0054】次いで、酢酸パラジウム(Pd(OCOC
32)のアセトニトリル溶液中に合成したLiFeP
4を粉砕した後に加えて十分に攪拌した後、ろ過、乾
燥し、LiFePO4粉末上にPd(OCOCH32
付着させた。
Next, palladium acetate (Pd (OCOC)
LiFeP synthesized in acetonitrile solution of H 3 ) 2 )
After O 4 was pulverized and added, the mixture was sufficiently stirred, filtered, dried, and Pd (OCOCH 3 ) 2 was adhered on the LiFePO 4 powder.

【0055】これをアルゴン雰囲気下で250℃で5時
間焼成し、Pd(OCOCH32を熱分解することでL
iFePO4粉末上にパラジウムを担持することにより
正極活物質を作製した。
This was calcined at 250 ° C. for 5 hours in an argon atmosphere, and Pd (OCOCH 3 ) 2 was thermally decomposed to obtain Ld.
A positive electrode active material was prepared by supporting palladium on iFePO 4 powder.

【0056】得られた正極活物質を用いて実施例1と同
一の方法によりコイン型電池を作製した。
Using the obtained positive electrode active material, a coin battery was manufactured in the same manner as in Example 1.

【0057】実施例1と同一の条件で充放電特性を評価
したところ、放電容量は、電流1mAの場合が5.4m
Ah、電流5mAの場合が4.0mAhであり、いずれ
の場合も比較例1より大きな放電容量が得られた。
When the charge and discharge characteristics were evaluated under the same conditions as in Example 1, the discharge capacity was 5.4 m when the current was 1 mA.
In the case of Ah and the current of 5 mA, it was 4.0 mAh. In each case, a larger discharge capacity than that of Comparative Example 1 was obtained.

【0058】それぞれの電流値で充放電試験を行った際
の放電容量を実施例1、2及び比較例1の値と併せて表
1に示す。
Table 1 shows the discharge capacity when the charge / discharge test was performed at each current value, together with the values of Examples 1 and 2 and Comparative Example 1.

【0059】[0059]

【実施例4】正極ペレットに含まれる正極活物質を下記
の方法で作製した。
Example 4 A positive electrode active material contained in a positive electrode pellet was produced by the following method.

【0060】まず原料である水酸化リチウム1水和物
(LiOH・H2O)と、シュウ酸鉄2水和物(FeC2
4・2H2O)と、リン酸水素二アンモニウム((NH
42HPO4)をモル比で1:1:1となるように混合
して坩堝に入れ、アルゴン雰囲気下で800℃で24時
間焼成しLiFePO4を合成した。
First, lithium hydroxide monohydrate (LiOH.H 2 O) as a raw material and iron oxalate dihydrate (FeC 2
O 4 · 2H and 2 O), diammonium hydrogen phosphate ((NH
4 ) 2 HPO 4 ) was mixed at a molar ratio of 1: 1: 1, put in a crucible, and fired at 800 ° C. for 24 hours in an argon atmosphere to synthesize LiFePO 4 .

【0061】次いで、得られたLiFePO4粉末にL
iFePO4 100g当たり6gの白金粉末(300
メッシュ)を加え、乳鉢で混合した後に瑪瑙製遊星ボー
ルミルに入れ、20分間粉砕混合してLiFePO4
末上に白金の微粒子を分散担持した。
Next, L was added to the obtained LiFePO 4 powder.
6 g of platinum powder (300 g per 100 g of iFePO 4)
The resulting mixture was mixed in a mortar, placed in a planetary ball mill made of agate, crushed and mixed for 20 minutes, and platinum fine particles were dispersed and supported on the LiFePO 4 powder.

【0062】得られた正極活物質を用いて実施例1と同
一の方法によりコイン型電池を作製した。
Using the obtained positive electrode active material, a coin battery was manufactured in the same manner as in Example 1.

【0063】実施例1と同一の条件で充放電特性を評価
したところ、放電容量は、電流1mAの場合が5.5m
Ah、電流5mAの場合が4.1mAhであった。それ
ぞれの電流値で充放電試験を行った際の放電容量を実施
例1から3及び比較例1の値と併せて表1に示す。
When the charge and discharge characteristics were evaluated under the same conditions as in Example 1, the discharge capacity was 5.5 m when the current was 1 mA.
Ah, when the current was 5 mA, it was 4.1 mAh. Table 1 shows the discharge capacity when the charge / discharge test was performed at each current value, together with the values of Examples 1 to 3 and Comparative Example 1.

【0064】[0064]

【発明の効果】以上説明したように、本発明によるリチ
ウム二次電池によれば、正極活物質として、リン酸鉄リ
チウム系材料粉末上に導電性を有する微粒子を担持した
物質を用いることにより、担持を行わないリン酸鉄リチ
ウム系材料を用いた電池に比べて、充放電容量が大きく
なおかつ充放電電流を増大させても充放電容量の減少が
少ない電池が得られることを見いだした。
As described above, according to the lithium secondary battery of the present invention, by using a material in which conductive fine particles are supported on a lithium iron phosphate-based material powder as a positive electrode active material, It has been found that a battery having a larger charge / discharge capacity and a smaller decrease in the charge / discharge capacity even when the charge / discharge current is increased can be obtained, as compared with a battery using a lithium iron phosphate-based material that is not supported.

【0065】従って経済的に優れて、なおかつ電池特性
の良好なリチウム二次電池の実現が可能となった。
Accordingly, it has become possible to realize a lithium secondary battery which is economically excellent and has good battery characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるリチウム二次電池正極活物質と導
電材を混合して作製した正極の一部を拡大した断面模式
図。
FIG. 1 is a schematic cross-sectional view in which a part of a positive electrode manufactured by mixing a lithium secondary battery positive electrode active material and a conductive material according to the present invention is enlarged.

【図2】オリビン構造を示す模式図。FIG. 2 is a schematic view showing an olivine structure.

【図3】本発明によるリチウム二次電池の一実施例によ
る構成を示した断面図。
FIG. 3 is a cross-sectional view showing a configuration of an embodiment of a lithium secondary battery according to the present invention.

【図4】本発明のリチウム二次電池の実施例1において
正極活物質として用いた、銀微粒子を表面に担持したL
iFePO4のX線回折パターンを示す図。
FIG. 4 is a diagram illustrating an example of a lithium secondary battery according to a first embodiment of the present invention.
shows the X-ray diffraction pattern of LiFePO 4.

【図5】本発明のリチウム二次電池の実施例1及び比較
例1における電池の放電曲線を示す図。
FIG. 5 is a diagram showing discharge curves of the lithium secondary battery of Example 1 and Comparative Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1 リン酸鉄リチウム系材料粉末 2 導電性微粒子 3 導電材 4 正極ペレット 5 金属リチウム負極 6 セパレータ 7 正極ケース 8 封口板 9 ガスケット REFERENCE SIGNS LIST 1 lithium iron phosphate-based material powder 2 conductive fine particles 3 conductive material 4 positive electrode pellet 5 metallic lithium negative electrode 6 separator 7 positive electrode case 8 sealing plate 9 gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武井 弘次 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 (72)発明者 櫻井 庸司 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 5H003 AA01 AA02 BB02 BB04 BB05 BB06 BB14 BB15 BC01 BC05 BD00 BD03 5H029 AJ02 AJ03 AK03 AL01 AL02 AL03 AL06 AL07 AL12 AM02 AM03 AM07 BJ02 BJ03 CJ22 DJ08 DJ16 EJ01 EJ04 HJ02 HJ18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Takei, Inventor 2-3-1 Otemachi, Chiyoda-ku, Tokyo Within Nippon Telegraph and Telephone Corporation (72) Yoji Sakurai 2-chome, Otemachi 2-chome, Chiyoda-ku, Tokyo No. 1 F-term in Nippon Telegraph and Telephone Corporation (reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式LizFe1-yyPO4(0≦y≦
0.3、0<z≦1、X:マグネシウム、コバルト、ニ
ッケル、亜鉛の少なくとも1種類)で与えられるオリビ
ン構造のリン酸鉄リチウム系材料粉末上に、導電性で、
なおかつ酸化還元電位が、リン酸鉄リチウム系材料のリ
チウム二次電池正極活物質としての酸化還元電位よりも
貴な導電性微粒子を担持したことを特徴とするリチウム
二次電池正極活物質。
1. A method according to claim 1, wherein Li z Fe 1-y X y PO 4 (0 ≦ y ≦
0.3, 0 <z ≦ 1, X: at least one of magnesium, cobalt, nickel, and zinc) on a lithium iron phosphate-based material powder having an olivine structure,
A positive electrode active material for a lithium secondary battery, wherein the positive electrode active material carries conductive fine particles having a redox potential higher than the redox potential of a lithium iron phosphate-based material as a positive electrode active material for a lithium secondary battery.
【請求項2】 前記導電性微粒子が、銀、炭素、白金、
パラジウム、金、イリジウム、アルミニウム、チタン、
タンタルの少なくとも1種類であることを特徴とする請
求項1記載のリチウム二次電池正極活物質。
2. The method according to claim 1, wherein the conductive fine particles are silver, carbon, platinum,
Palladium, gold, iridium, aluminum, titanium,
The lithium secondary battery positive electrode active material according to claim 1, wherein the positive electrode active material is at least one kind of tantalum.
【請求項3】 請求項1あるいは2記載のリチウム二次
電池正極活物質を正極活物質とし、さらにリチウム金
属、リチウム合金またはリチウムイオンを吸蔵、放出可
能な物質を負極活物質とし、またリチウムイオンが前記
リチウム二次電池正極活物質や前記負極活物質と電気化
学反応をするための移動を行いうる物質を電解質として
含むことを特徴とするリチウム二次電池。
3. The lithium secondary battery positive electrode active material according to claim 1 or 2 as a positive electrode active material, a lithium metal, a lithium alloy or a material capable of occluding and releasing lithium ions as a negative electrode active material. Contains, as an electrolyte, a substance which can move to perform an electrochemical reaction with the positive electrode active material or the negative electrode active material of the lithium secondary battery.
JP28244599A 1999-10-04 1999-10-04 Material for activating positive electrode of lithium secondary battery and the lithium secondary battery Pending JP2001110414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28244599A JP2001110414A (en) 1999-10-04 1999-10-04 Material for activating positive electrode of lithium secondary battery and the lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28244599A JP2001110414A (en) 1999-10-04 1999-10-04 Material for activating positive electrode of lithium secondary battery and the lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2001110414A true JP2001110414A (en) 2001-04-20

Family

ID=17652524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28244599A Pending JP2001110414A (en) 1999-10-04 1999-10-04 Material for activating positive electrode of lithium secondary battery and the lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2001110414A (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117833A (en) * 2000-10-06 2002-04-19 Sony Corp Nonaqueous electrolyte secondary battery
JP2002117837A (en) * 2000-10-04 2002-04-19 Sony Corp Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte battery
EP1261050A1 (en) * 2001-05-23 2002-11-27 n.v. Umicore s.a. Lithium transition-metal phosphate powder for rechargeable batteries
US6528033B1 (en) 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
US6645452B1 (en) 2000-11-28 2003-11-11 Valence Technology, Inc. Methods of making lithium metal cathode active materials
US6706445B2 (en) 2001-10-02 2004-03-16 Valence Technology, Inc. Synthesis of lithiated transition metal titanates for lithium cells
US6720112B2 (en) 2001-10-02 2004-04-13 Valence Technology, Inc. Lithium cell based on lithiated transition metal titanates
US6723470B2 (en) 2000-01-18 2004-04-20 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6815122B2 (en) 2002-03-06 2004-11-09 Valence Technology, Inc. Alkali transition metal phosphates and related electrode active materials
WO2005041327A1 (en) * 2003-10-27 2005-05-06 Mitsui Engineering & Shipbuilding Co.,Ltd. Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery
JP2005522009A (en) * 2002-04-03 2005-07-21 ヴァレンス テクノロジー インコーポレーテッド Batteries comprising alkali-transition metal phosphates and preferred electrolytes
JP2006092808A (en) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd Battery structure
US7025907B2 (en) * 2001-05-15 2006-04-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon-containing lithium-iron composite phosphorus oxide for lithium secondary battery positive electrode active material and process for producing the same
JP2007035358A (en) * 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc Positive electrode active substance, its manufacturing method and lithium ion secondary battery
KR100762799B1 (en) 2006-09-28 2007-10-04 한국전기연구원 Carbon-coated composite material, manufacturing method thereof, positive active material, and lithium secondary battery comprising the same
JP2008140638A (en) * 2006-11-30 2008-06-19 Nissan Motor Co Ltd Bipolar battery
WO2008088180A1 (en) * 2007-01-18 2008-07-24 Lg Chem, Ltd. Cathode active material and secondary battery comprising the same
WO2008091074A1 (en) * 2007-01-24 2008-07-31 Lg Chem, Ltd. A secondary battery with improved safety
US7422823B2 (en) 2002-04-03 2008-09-09 Valence Technology, Inc. Alkali-iron-cobalt phosphates and related electrode active materials
JP2008235252A (en) * 2007-02-23 2008-10-02 Tdk Corp Active substance particles for electrode, electrode, electrochemical device, and manufacturing method of electrode
EP1986254A2 (en) 2007-04-27 2008-10-29 TDK Corporation Composite particles for an electrode, production process thereof and electrochemical device
JP2008300339A (en) * 2007-06-04 2008-12-11 Toda Kogyo Corp Manufacturing method of composite cathode active material for nonaqueous electrolyte secondary battery
US7632317B2 (en) 2002-11-04 2009-12-15 Quallion Llc Method for making a battery
WO2010047525A2 (en) 2008-10-22 2010-04-29 주식회사 엘지화학 Lithium iron phosphate having an olivine structure and analysis method thereof
WO2010047334A1 (en) 2008-10-20 2010-04-29 古河電池株式会社 Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
WO2010047524A2 (en) 2008-10-22 2010-04-29 주식회사 엘지화학 Lithium iron phosphate having an olivine structure, and preparation method thereof
EP2192640A1 (en) 2007-11-30 2010-06-02 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte secondary battery
JP2010521797A (en) * 2007-03-19 2010-06-24 ユミコア ソシエテ アノニム Room temperature single phase Li insertion / extraction material for use in Li-based batteries
JP2010218830A (en) * 2009-03-16 2010-09-30 Tdk Corp Active material, electrode containing the active material, lithium-ion secondary battery including the electrode, and method for manufacturing the active material
WO2010150889A1 (en) 2009-06-26 2010-12-29 旭硝子株式会社 Process for production of positive electrode material for secondary batteries, and positive electrode material for secondary batteries
EP2012379A3 (en) * 2007-04-27 2011-03-30 TDK Corporation Active material, electrode, battery, and method of manufacturing active material
WO2011132965A2 (en) 2010-04-21 2011-10-27 주식회사 엘지화학 Lithium iron phosphate including sulfur compounds with sulfide bond and lithium secondary battery using the same
WO2011132961A2 (en) 2010-04-21 2011-10-27 주식회사 엘지화학 Lithium iron phosphate of olivine crystal structure and lithium secondary battery using same
WO2011132930A2 (en) 2010-04-21 2011-10-27 주식회사 엘지화학 Anode active material for secondary battery, and lithium secondary battery comprising same
WO2011132931A2 (en) 2010-04-21 2011-10-27 주식회사 엘지화학 Lithium iron phosphate with carbon-coated olivine crystal structure and lithium secondary battery using the same
WO2011132959A2 (en) 2010-04-21 2011-10-27 주식회사 엘지화학 Carbon-coated lithium iron phosphate with olivine crystal structure and lithium secondary battery using the same
JP2012059722A (en) * 2011-12-26 2012-03-22 Nissan Motor Co Ltd Manufacturing method of battery electrode
JP2012114076A (en) * 2010-11-25 2012-06-14 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery containing the same
WO2012111951A2 (en) 2011-02-15 2012-08-23 주식회사 엘지화학 Cathode mixture for secondary battery and secondary battery comprising same
JP2012531726A (en) * 2010-09-30 2012-12-10 エルジー・ケム・リミテッド Positive electrode for lithium secondary battery and lithium secondary battery including the same
EP2565968A1 (en) 2011-08-29 2013-03-06 Sony Corporation Active material, electrode, secondary battery, battery pack, electric vehicle, electric energy storage system, electric power tool, and electronic unit
US8492031B2 (en) * 2007-04-27 2013-07-23 Tdk Corporation Composite particles for an electrode, production process thereof and electrochemical device
US8524397B1 (en) 2004-11-08 2013-09-03 Quallion Llc Battery having high rate and high capacity capabilities
JP2014207238A (en) * 2014-05-26 2014-10-30 株式会社東芝 Nonaqueous electrolyte battery and battery pack
US8940440B2 (en) 2011-05-09 2015-01-27 Sony Corporation Lithium ion secondary battery active material, lithium ion secondary battery electrode, lithium ion secondary battery, electronic device, electric power tool, electric vehicle, and power storage system
US9112222B2 (en) 2012-07-13 2015-08-18 Sony Corporation Lithium ion secondary battery active material, lithium ion secondary battery electrode, lithium ion secondary battery, electronic device, electronic power tool, electric vehicle, and power storage system
JP2015185276A (en) * 2014-03-20 2015-10-22 Dowaホールディングス株式会社 Method of manufacturing metal-coated electrode active material, metal-coated electrode active material and electrode
US9263743B2 (en) 2012-06-07 2016-02-16 Sony Corporation Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
KR20160136809A (en) 2015-05-21 2016-11-30 한국과학기술연구원 Olivine sodium iron phosphate with polymer coating, sodium iron battery comprising the same as cathode material, and process thereof
US9825296B2 (en) 2013-03-12 2017-11-21 Sony Corporation Secondary battery-use active material, secondary battery-use electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
US9893357B2 (en) 2007-06-21 2018-02-13 Murata Manufacturing Co., Ltd. Cathode mix and nonaqueous electrolyte battery
US9954247B2 (en) 2006-12-29 2018-04-24 Murata Manufacturing Co., Ltd. Cathode mixture, non-aqueous electrolyte secondary battery, and its manufacturing method
CN114772572A (en) * 2022-02-28 2022-07-22 山东精工电子科技有限公司 Nano metal ion coated lithium iron phosphate cathode material and preparation method thereof
CN115072691A (en) * 2022-06-09 2022-09-20 蜂巢能源科技股份有限公司 Lithium iron phosphate material, preparation and application thereof
EP4258384A1 (en) * 2022-04-08 2023-10-11 II-VI Delaware, Inc. Silver-doped sulfur cathode material for rechargeable lithium battery
WO2024077636A1 (en) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 Composite lithium manganese iron phosphate material, preparation method therefor, secondary battery and electrical device

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884544B2 (en) 2000-01-18 2005-04-26 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US7276218B2 (en) 2000-01-18 2007-10-02 Valence Technology, Inc. Methods of making transition metal compounds useful as cathode active materials
US6723470B2 (en) 2000-01-18 2004-04-20 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6528033B1 (en) 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
US6716372B2 (en) 2000-01-18 2004-04-06 Valence Technology, Inc. Lithium-containing materials
US7060206B2 (en) 2000-01-18 2006-06-13 Valence Technology, Inc. Synthesis of metal compounds under carbothermal conditions
US7438992B2 (en) 2000-01-18 2008-10-21 Valence Technology, Inc. Lithium-based active materials and preparation thereof
JP4491947B2 (en) * 2000-10-04 2010-06-30 ソニー株式会社 Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP2002117837A (en) * 2000-10-04 2002-04-19 Sony Corp Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte battery
JP2002117833A (en) * 2000-10-06 2002-04-19 Sony Corp Nonaqueous electrolyte secondary battery
US6645452B1 (en) 2000-11-28 2003-11-11 Valence Technology, Inc. Methods of making lithium metal cathode active materials
US7025907B2 (en) * 2001-05-15 2006-04-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Carbon-containing lithium-iron composite phosphorus oxide for lithium secondary battery positive electrode active material and process for producing the same
JP4660812B2 (en) * 2001-05-23 2011-03-30 エヌ ヴェ ユミコア ソシエテ アノニム Lithium transition metal phosphate powder for storage battery
WO2002099913A1 (en) * 2001-05-23 2002-12-12 N.V. Umicore S.A. Lithium transition-metal phosphate powder for rechargeable batteries
EP1261050A1 (en) * 2001-05-23 2002-11-27 n.v. Umicore s.a. Lithium transition-metal phosphate powder for rechargeable batteries
US7670721B2 (en) 2001-05-23 2010-03-02 Le Centre National de la Rocherche Scientifique Process for making lithium transition metal phosphate powder for battery electrode
US7371482B2 (en) * 2001-05-23 2008-05-13 Le Centre National De La Recherche Scientifique Lithium transition-metal phosphate powder for rechargeable batteries
JP2004529059A (en) * 2001-05-23 2004-09-24 エヌ ヴェ ユミコア ソシエテ アノニム Lithium transition metal phosphate powder for storage batteries
US6720112B2 (en) 2001-10-02 2004-04-13 Valence Technology, Inc. Lithium cell based on lithiated transition metal titanates
US6706445B2 (en) 2001-10-02 2004-03-16 Valence Technology, Inc. Synthesis of lithiated transition metal titanates for lithium cells
US7767332B2 (en) 2002-03-06 2010-08-03 Valence Technology, Inc. Alkali/transition metal phosphates and related electrode active materials
US6815122B2 (en) 2002-03-06 2004-11-09 Valence Technology, Inc. Alkali transition metal phosphates and related electrode active materials
JP4758610B2 (en) * 2002-04-03 2011-08-31 ヴァレンス テクノロジー インコーポレーテッド Batteries comprising alkali-transition metal phosphates and preferred electrolytes
JP2005522009A (en) * 2002-04-03 2005-07-21 ヴァレンス テクノロジー インコーポレーテッド Batteries comprising alkali-transition metal phosphates and preferred electrolytes
US8318352B2 (en) 2002-04-03 2012-11-27 Valence Technology, Inc. Batteries comprising alkali-transition metal phosphates and preferred electrolytes
US7422823B2 (en) 2002-04-03 2008-09-09 Valence Technology, Inc. Alkali-iron-cobalt phosphates and related electrode active materials
US7632317B2 (en) 2002-11-04 2009-12-15 Quallion Llc Method for making a battery
WO2005041327A1 (en) * 2003-10-27 2005-05-06 Mitsui Engineering & Shipbuilding Co.,Ltd. Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery
JPWO2005041327A1 (en) * 2003-10-27 2007-04-26 三井造船株式会社 Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery
JP4656653B2 (en) * 2003-10-27 2011-03-23 三井造船株式会社 Positive electrode material for secondary battery, method for producing positive electrode material for secondary battery, and secondary battery
JP2006092808A (en) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd Battery structure
US8524397B1 (en) 2004-11-08 2013-09-03 Quallion Llc Battery having high rate and high capacity capabilities
JP2007035358A (en) * 2005-07-25 2007-02-08 Toyota Central Res & Dev Lab Inc Positive electrode active substance, its manufacturing method and lithium ion secondary battery
KR100762799B1 (en) 2006-09-28 2007-10-04 한국전기연구원 Carbon-coated composite material, manufacturing method thereof, positive active material, and lithium secondary battery comprising the same
JP2008140638A (en) * 2006-11-30 2008-06-19 Nissan Motor Co Ltd Bipolar battery
US9954247B2 (en) 2006-12-29 2018-04-24 Murata Manufacturing Co., Ltd. Cathode mixture, non-aqueous electrolyte secondary battery, and its manufacturing method
US8084159B2 (en) 2007-01-18 2011-12-27 Lg Chem, Ltd. Cathode active material and secondary battery comprising the same
US8304111B2 (en) 2007-01-18 2012-11-06 Lg Chem, Ltd. Cathode active material and secondary battery comprising the same
WO2008088180A1 (en) * 2007-01-18 2008-07-24 Lg Chem, Ltd. Cathode active material and secondary battery comprising the same
WO2008091074A1 (en) * 2007-01-24 2008-07-31 Lg Chem, Ltd. A secondary battery with improved safety
JP2008235252A (en) * 2007-02-23 2008-10-02 Tdk Corp Active substance particles for electrode, electrode, electrochemical device, and manufacturing method of electrode
JP2010521797A (en) * 2007-03-19 2010-06-24 ユミコア ソシエテ アノニム Room temperature single phase Li insertion / extraction material for use in Li-based batteries
EP1986254A2 (en) 2007-04-27 2008-10-29 TDK Corporation Composite particles for an electrode, production process thereof and electrochemical device
EP2012379A3 (en) * 2007-04-27 2011-03-30 TDK Corporation Active material, electrode, battery, and method of manufacturing active material
US8492031B2 (en) * 2007-04-27 2013-07-23 Tdk Corporation Composite particles for an electrode, production process thereof and electrochemical device
US8449980B2 (en) 2007-04-27 2013-05-28 Tdk Corporation Composite particles for an electrode comprising lithium vanadyl phosphate (LiVOPO4), production process thereof and electrochemical device
EP1986254A3 (en) * 2007-04-27 2010-07-21 TDK Corporation Composite particles for an electrode, production process thereof and electrochemical device
JP2008300339A (en) * 2007-06-04 2008-12-11 Toda Kogyo Corp Manufacturing method of composite cathode active material for nonaqueous electrolyte secondary battery
US9893357B2 (en) 2007-06-21 2018-02-13 Murata Manufacturing Co., Ltd. Cathode mix and nonaqueous electrolyte battery
EP2472654A1 (en) 2007-11-30 2012-07-04 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte secondary battery
EP2192640A1 (en) 2007-11-30 2010-06-02 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte secondary battery
US9017875B2 (en) 2007-11-30 2015-04-28 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte secondary battery
WO2010047334A1 (en) 2008-10-20 2010-04-29 古河電池株式会社 Multi-element lithium phosphate compound particles having olivine structure, method for producing same, and lithium secondary battery using same in positive electrode material
US8841023B2 (en) 2008-10-20 2014-09-23 The Furukawa Battery Co., Ltd. Multi-component-system lithium phosphate compound particle having an olivine structure and lithium secondary battery employing the lithium phosphate compound particle as a positive electrode material
US9337488B2 (en) 2008-10-20 2016-05-10 The Furukawa Battery Co., Ltd. Method of manufacturing a multicomponent system lithium phosphate compound particle having an olivine structure
US10249877B2 (en) 2008-10-22 2019-04-02 Lg Chem, Ltd. Lithium iron phosphate having olivine structure and method for analyzing the same
US9458016B2 (en) 2008-10-22 2016-10-04 Lg Chem, Ltd. Lithium iron phosphate having olivine structure and method for preparing the same
WO2010047524A2 (en) 2008-10-22 2010-04-29 주식회사 엘지화학 Lithium iron phosphate having an olivine structure, and preparation method thereof
WO2010047525A2 (en) 2008-10-22 2010-04-29 주식회사 엘지화학 Lithium iron phosphate having an olivine structure and analysis method thereof
JP2010218830A (en) * 2009-03-16 2010-09-30 Tdk Corp Active material, electrode containing the active material, lithium-ion secondary battery including the electrode, and method for manufacturing the active material
WO2010150889A1 (en) 2009-06-26 2010-12-29 旭硝子株式会社 Process for production of positive electrode material for secondary batteries, and positive electrode material for secondary batteries
WO2011132930A2 (en) 2010-04-21 2011-10-27 주식회사 엘지화학 Anode active material for secondary battery, and lithium secondary battery comprising same
JP2013525975A (en) * 2010-04-21 2013-06-20 エルジー・ケム・リミテッド Lithium iron phosphate having olivine crystal structure coated with carbon and lithium secondary battery using the same
WO2011132965A2 (en) 2010-04-21 2011-10-27 주식회사 엘지화학 Lithium iron phosphate including sulfur compounds with sulfide bond and lithium secondary battery using the same
US9331329B2 (en) 2010-04-21 2016-05-03 Lg Chem, Ltd. Carbon-coated lithium iron phosphate of olivine crystal structure and lithium secondary battery using the same
US9812707B2 (en) 2010-04-21 2017-11-07 Lg Chem, Ltd. Carbon-coated lithium iron phosphate of olivine crystal structure and lithium secondary battery using the same
US8734676B2 (en) 2010-04-21 2014-05-27 Lg Chem, Ltd. Carbon-coated lithium iron phosphate of olivine crystal structure and lithium secondary battery using the same
WO2011132931A2 (en) 2010-04-21 2011-10-27 주식회사 엘지화학 Lithium iron phosphate with carbon-coated olivine crystal structure and lithium secondary battery using the same
WO2011132961A2 (en) 2010-04-21 2011-10-27 주식회사 엘지화학 Lithium iron phosphate of olivine crystal structure and lithium secondary battery using same
US8906552B2 (en) 2010-04-21 2014-12-09 Lg Chem, Ltd. Lithium iron phosphate of olivine crystal structure and lithium secondary battery using the same
WO2011132959A2 (en) 2010-04-21 2011-10-27 주식회사 엘지화학 Carbon-coated lithium iron phosphate with olivine crystal structure and lithium secondary battery using the same
US9065135B2 (en) 2010-04-21 2015-06-23 Lg Chem, Ltd. Cathode active material for secondary battery and lithium secondary battery including the same
US9178209B2 (en) 2010-09-30 2015-11-03 Lg Chem, Ltd. Cathode for lithium secondary battery and lithium secondary battery comprising the same
JP2013543221A (en) * 2010-09-30 2013-11-28 エルジー・ケム・リミテッド Positive electrode for lithium secondary battery and lithium secondary battery including the same
JP2012531726A (en) * 2010-09-30 2012-12-10 エルジー・ケム・リミテッド Positive electrode for lithium secondary battery and lithium secondary battery including the same
US9379377B2 (en) 2010-09-30 2016-06-28 Lg Chem, Ltd. Cathode for lithium secondary battery and lithium secondary battery comprising the same
JP2012114076A (en) * 2010-11-25 2012-06-14 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery containing the same
US10218001B2 (en) 2010-11-25 2019-02-26 Samsung Sdi Co., Ltd. Olivine oxide-containing positive active material for rechargeable lithium battery with improved electro-conductivity, rate characteristics and capacity characteristics, method for manufacturing the same, and rechargeable lithium battery including the same
US9705132B2 (en) 2010-11-25 2017-07-11 Samsung Sdi Co., Ltd. Olivine oxide-containing positive active material for rechargeable lithium battery with improved electro-conductivity, rate characteristics and capacity characteristics, method for manufacturing the same, and rechargeable lithium battery including the same
WO2012111951A2 (en) 2011-02-15 2012-08-23 주식회사 엘지화학 Cathode mixture for secondary battery and secondary battery comprising same
US8940440B2 (en) 2011-05-09 2015-01-27 Sony Corporation Lithium ion secondary battery active material, lithium ion secondary battery electrode, lithium ion secondary battery, electronic device, electric power tool, electric vehicle, and power storage system
EP2565968A1 (en) 2011-08-29 2013-03-06 Sony Corporation Active material, electrode, secondary battery, battery pack, electric vehicle, electric energy storage system, electric power tool, and electronic unit
JP2012059722A (en) * 2011-12-26 2012-03-22 Nissan Motor Co Ltd Manufacturing method of battery electrode
US9263743B2 (en) 2012-06-07 2016-02-16 Sony Corporation Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
US9112222B2 (en) 2012-07-13 2015-08-18 Sony Corporation Lithium ion secondary battery active material, lithium ion secondary battery electrode, lithium ion secondary battery, electronic device, electronic power tool, electric vehicle, and power storage system
US9825296B2 (en) 2013-03-12 2017-11-21 Sony Corporation Secondary battery-use active material, secondary battery-use electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2015185276A (en) * 2014-03-20 2015-10-22 Dowaホールディングス株式会社 Method of manufacturing metal-coated electrode active material, metal-coated electrode active material and electrode
JP2014207238A (en) * 2014-05-26 2014-10-30 株式会社東芝 Nonaqueous electrolyte battery and battery pack
KR20160136809A (en) 2015-05-21 2016-11-30 한국과학기술연구원 Olivine sodium iron phosphate with polymer coating, sodium iron battery comprising the same as cathode material, and process thereof
CN114772572A (en) * 2022-02-28 2022-07-22 山东精工电子科技有限公司 Nano metal ion coated lithium iron phosphate cathode material and preparation method thereof
EP4258384A1 (en) * 2022-04-08 2023-10-11 II-VI Delaware, Inc. Silver-doped sulfur cathode material for rechargeable lithium battery
CN115072691A (en) * 2022-06-09 2022-09-20 蜂巢能源科技股份有限公司 Lithium iron phosphate material, preparation and application thereof
CN115072691B (en) * 2022-06-09 2023-10-31 蜂巢能源科技股份有限公司 Lithium iron phosphate material, preparation and application thereof
WO2024077636A1 (en) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 Composite lithium manganese iron phosphate material, preparation method therefor, secondary battery and electrical device

Similar Documents

Publication Publication Date Title
JP2001110414A (en) Material for activating positive electrode of lithium secondary battery and the lithium secondary battery
JP3504195B2 (en) Lithium secondary battery positive electrode active material and lithium secondary battery
JP4388135B2 (en) Particles containing compound having olivine structure, method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
JP4082214B2 (en) Nonaqueous electrolyte secondary battery and its positive electrode active material
KR100809854B1 (en) Positive electrode active material and non-aqueous electrolyte cell
JP2012190786A (en) Positive electrode active material, and positive electrode and lithium battery adopting the same
JPH09134724A (en) Non-aqueous electrolyte secondary battery
JP2006155941A (en) Method of manufacture for electrode active material
KR20120117526A (en) Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using the same
JP2002373648A (en) Negative electrode, nonaqueous electrolyte secondary battery, and method for producing the negative electrode
JP3771846B2 (en) Non-aqueous secondary battery and charging method thereof
JP3062304B2 (en) Non-aqueous solvent secondary battery
KR20100131736A (en) Positive active material for rechargeable, method of preparing same, and rechargeable lithium battery including same
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2004014341A (en) Manufacturing method of electrode material and lithium ion battery
JP2001351624A (en) Non-aqueous secondary battery and method for using it
JP4694721B2 (en) Anode material for non-aqueous electrolyte secondary battery and method for producing the same
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2005067924A (en) Method for manufacturing polyanion type lithium iron multiple oxide and battery using the same
JP2000200603A (en) Negative-electrode material, its manufacture, and battery using same
JP3144832B2 (en) Non-aqueous solvent secondary battery
JP3144833B2 (en) Non-aqueous solvent secondary battery
JPH10324522A (en) Production of lithium cobalt oxide particulate powder
JPH09171829A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP3130531B2 (en) Non-aqueous solvent secondary battery