JP2001109024A - Wavelength control method for optical soliton signal - Google Patents
Wavelength control method for optical soliton signalInfo
- Publication number
- JP2001109024A JP2001109024A JP29090399A JP29090399A JP2001109024A JP 2001109024 A JP2001109024 A JP 2001109024A JP 29090399 A JP29090399 A JP 29090399A JP 29090399 A JP29090399 A JP 29090399A JP 2001109024 A JP2001109024 A JP 2001109024A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- optical soliton
- soliton signal
- optical
- raman
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
- Optical Communication System (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は光通信に使用される
光ソリトン伝送方式の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an optical soliton transmission system used for optical communication.
【0002】[0002]
【従来の技術】光ソリトン伝送方式は光ソリトン信号を
光ファイバにより伝送する方式である。光ソリトン信号
は光ファイバ伝搬中に利得の大きい方へ中心波長がずれ
る性質がある。この中心波長のずれ(自己ラマン波長ず
れ)は光ソリトン信号自信が生成する自己ラマン利得に
引きずられて、自らの中心波長が長波長側にシフトする
ものである。ここで、前記中心波長のずれは外部よりも
たらされる利得によっても発生する。2. Description of the Related Art The optical soliton transmission system is a system for transmitting an optical soliton signal through an optical fiber. The optical soliton signal has a property that the center wavelength shifts to a higher gain during propagation of the optical fiber. The shift of the center wavelength (self-Raman wavelength shift) is caused by the self-Raman gain generated by the optical soliton signal itself, and the center wavelength shifts to a longer wavelength side. Here, the shift of the center wavelength is also caused by an external gain.
【0003】近年、光ソリトン伝送方式では伝送容量を
増大させるために、光ソリトン信号の伝送ビットレート
の向上が図られており、そのために時間的に光ソリトン
信号を分割多重する光TDM(Time Division Multiple
xing)方式の実現が試みられている。[0003] In recent years, in the optical soliton transmission system, the transmission bit rate of the optical soliton signal has been improved in order to increase the transmission capacity. For this purpose, an optical TDM (Time Division Division) that divides and multiplexes the optical soliton signal temporally. Multiple
xing) system has been attempted.
【0004】[0004]
【発明が解決しようとする課題】しかし、光ソリトン信
号の伝送ビットレートを高めるに従って、光ソリトン信
号のスペクトル幅が増大し、光ソリトン信号の中心波長
が光ファイバ伝搬中に自己ラマン波長ずれによって伝送
距離に比例して長波長側へシフトしてしまい、伝送可能
な波長帯域から外れてしまうという難点があった。ま
た、光ソリトン信号の中心波長と光増幅器から発生する
自然放出光雑音(ASE雑音)の波長との分離が難し
く、伝送される光ソリトン信号のS/Nが劣化するとい
う難点もあった。さらに、このASE雑音はラマン増幅
器が多段接続されると累積されて、光ソリトン信号のS
/Nが更に劣化するという難点もあった。However, as the transmission bit rate of the optical soliton signal is increased, the spectral width of the optical soliton signal is increased, and the center wavelength of the optical soliton signal is transmitted due to a self-Raman wavelength shift during propagation in the optical fiber. There is a problem that the wavelength shifts to the longer wavelength side in proportion to the distance, and the wavelength shifts out of the wavelength band in which transmission is possible. Further, it is difficult to separate the center wavelength of the optical soliton signal from the wavelength of the spontaneous emission optical noise (ASE noise) generated from the optical amplifier, and the S / N of the transmitted optical soliton signal deteriorates. Further, the ASE noise is accumulated when the Raman amplifiers are connected in multiple stages, and the SASE of the optical soliton signal is accumulated.
/ N was further deteriorated.
【0005】[0005]
【課題を解決するための手段】本件発明はラマン増幅器
のラマン利得ピーク波長を調整することにより、光ファ
イバ伝搬中に自己ラマン波長ずれによって長波長側にシ
フトした光ソリトン信号の中心波長を短波長側にシフト
させて、光ソリトン伝送の伝送ビットレートが高まって
も当該中心波長が伝送可能な所定帯域内に保持可能と
し、また、前記中心波長とASE雑音の波長とを確実に
分離して除去することによって、光ソリトン信号のS/
Nを改善可能な光ソリトン信号の波長制御方法を提供す
ることを目的とする。SUMMARY OF THE INVENTION The present invention adjusts the Raman gain peak wavelength of a Raman amplifier to reduce the center wavelength of an optical soliton signal shifted to a longer wavelength side by a self-Raman wavelength shift during propagation in an optical fiber. Side so that the center wavelength can be maintained within a predetermined band that can be transmitted even when the transmission bit rate of optical soliton transmission increases, and the center wavelength and the wavelength of ASE noise are reliably separated and removed. By doing, the S / S of the optical soliton signal
It is an object of the present invention to provide a wavelength control method of an optical soliton signal capable of improving N.
【0006】本件出願の第1の発明は、光ソリトン信号
を光ファイバにより伝送する光ソリトン伝送において、
ラマン増幅器のラマン利得ピーク波長を、光ソリトン信
号の中心波長よりも短波長側又は長波長側に位置させる
ことにより、光ソリトン信号の中心波長を短波長側又は
長波長側にシフトさせるようにした光ソリトン信号の波
長制御方法である。A first invention of the present application relates to an optical soliton transmission for transmitting an optical soliton signal by an optical fiber,
The center wavelength of the optical soliton signal is shifted to the short wavelength side or the long wavelength side by positioning the Raman gain peak wavelength of the Raman amplifier on the shorter wavelength side or the longer wavelength side than the central wavelength of the optical soliton signal. This is a wavelength control method for an optical soliton signal.
【0007】本件出願の第2の発明は、ラマン増幅器の
ラマン利得ピーク波長を光ソリトン信号の中心波長より
も短波長側に位置させることにより、光ファイバ伝搬中
の光ソリトン信号の中心波長が自己ラマン波長ずれによ
って長波長側にシフトする分だけ短波長側にシフトされ
るようにした光ソリトン信号の波長制御方法である。In the second invention of the present application, the center wavelength of the optical soliton signal propagating in the optical fiber is adjusted by positioning the Raman gain peak wavelength of the Raman amplifier on the shorter wavelength side than the center wavelength of the optical soliton signal. This is a wavelength control method of an optical soliton signal that is shifted to a shorter wavelength side by an amount shifted to a longer wavelength side due to a Raman wavelength shift.
【0008】本件出願の第3の発明は、前記第1又は第
2の光ソリトン信号の波長制御方法により、光ソリトン
信号の中心波長をASE雑音の波長と分離可能な波長に
シフトさせるようにした光ソリトン信号の波長制御方法
である。In a third aspect of the present invention, the center wavelength of the optical soliton signal is shifted to a wavelength separable from the wavelength of the ASE noise by the first or second wavelength control method of the optical soliton signal. This is a wavelength control method for an optical soliton signal.
【0009】[0009]
【発明の実施の形態】(実施形態1)光ソリトン伝送シ
ステムの原理図を図1に示す。この伝送システムは光ソ
リトン信号が伝送用光ファイバ1によりラマン増幅光フ
ァイバ2に伝送され、励起光源(半導体レーザ)3から
の励起光が光カプラ4を通してラマン増幅光ファイバ2
に注入されて、光ソリトン信号がラマン増幅光ファイバ
2において増幅されるようにしたものである。(Embodiment 1) FIG. 1 shows a principle diagram of an optical soliton transmission system. In this transmission system, an optical soliton signal is transmitted to a Raman amplification optical fiber 2 by a transmission optical fiber 1, and excitation light from an excitation light source (semiconductor laser) 3 is transmitted through an optical coupler 4 to the Raman amplification optical fiber 2.
The optical soliton signal is amplified in the Raman amplification optical fiber 2.
【0010】図2に光ソリトン信号のスペクトル、光
ソリトン信号の自己ラマン利得スペクトル、ラマン増
幅光ファイバの利得スペクトル、光ソリトン信号が受
ける全利得スペクトルを示す。ラマン増幅光ファイバ
の利得スペクトルはローレンツ分布を持っており、そ
のピーク利得Xpmax が得られる励起光波長(ラマン利
得ピーク波長λpmax )は励起光源波長λpよりラマン
シフト+Δλだけ長波長側にずれる。このため励起光源
波長λpを変化させてラマン利得ピーク波長λpmax を
調整すれば、ピーク利得Xpmax を光ソリトン信号の中
心波長λsより短波長側又は長波長側に実現することが
できる。FIG. 2 shows the spectrum of the optical soliton signal, the self-Raman gain spectrum of the optical soliton signal, the gain spectrum of the Raman-amplified optical fiber, and the total gain spectrum received by the optical soliton signal. The gain spectrum of the Raman amplification optical fiber has a Lorentz distribution, and the pump light wavelength (Raman gain peak wavelength λpmax) at which the peak gain Xpmax is obtained is shifted to the longer wavelength side by Raman shift + Δλ from the pump light source wavelength λp. Therefore, if the Raman gain peak wavelength λpmax is adjusted by changing the excitation light source wavelength λp, the peak gain Xpmax can be realized on the shorter wavelength side or the longer wavelength side than the center wavelength λs of the optical soliton signal.
【0011】そこで、実施形態1では図1の伝送用光フ
ァイバ1の光分散特性、同光ファイバ1で伝送する光ソ
リトン信号の中心波長λs、ラマン増幅光ファイバ2の
利得スペクトル(図2の)、ラマン利得ピーク波長λ
pmax 等を図2に示すような関係となるように設計し
て、光ソリトン信号が受ける全利得スペクトル(図2の
)が光ソリトン信号の中心波長λsを中心にした帯域
で、自己ラマン利得とラマン増幅器の利得の波長依存性
が互いに打ち消し合って波長に対してフラットになるよ
うにした上で、励起光波長λpと光ソリトン信号の中心
波長λsとの差が、励起光波長λpとラマン利得ピーク
波長λpmax より大きくなるように励起光源波長λpを
調整して、ピーク利得Xpmax を光ソリトン信号の中心
波長λsより短波長側に実現することによって、自己ラ
マン波長ずれに引きずられて長波長側へシフトするか又
はシフトした光ソリトン信号の中心波長λsを短波長側
にシフトさせるようにした。Therefore, in the first embodiment, the optical dispersion characteristics of the transmission optical fiber 1 of FIG. 1, the center wavelength λs of the optical soliton signal transmitted by the optical fiber 1, and the gain spectrum of the Raman amplification optical fiber 2 (FIG. 2) , Raman gain peak wavelength λ
Pmax and the like are designed so as to have the relationship shown in FIG. 2, and the total gain spectrum (FIG. 2) received by the optical soliton signal is a band centered on the center wavelength λs of the optical soliton signal. After the wavelength dependence of the gain of the Raman amplifier cancels each other and becomes flat with respect to the wavelength, the difference between the pumping light wavelength λp and the center wavelength λs of the optical soliton signal becomes the pumping light wavelength λp and the Raman gain. By adjusting the pumping light source wavelength λp so as to be larger than the peak wavelength λpmax and realizing the peak gain Xpmax on the shorter wavelength side than the center wavelength λs of the optical soliton signal, it is shifted to the longer wavelength side by the self-Raman wavelength shift. The center wavelength λs of the shifted or shifted optical soliton signal is shifted to the shorter wavelength side.
【0012】このとき、光ソリトン信号は自己整形効果
を有するため自己のパルス波形形状を保ちながら伝搬す
る。また、図3に示すように1中継スパンの始点と終点
において光ソリトン信号の中心波長λsはほぼ同一とな
る。もっとも、複数の中継スパンにおいて光ソリトン信
号の中心波長λsが所望の波長となるように設計するこ
とも可能である。At this time, since the optical soliton signal has a self-shaping effect, it propagates while maintaining its own pulse waveform shape. As shown in FIG. 3, the center wavelength λs of the optical soliton signal at the start point and the end point of one relay span is substantially the same. However, it is also possible to design so that the center wavelength λs of the optical soliton signal becomes a desired wavelength in a plurality of relay spans.
【0013】(実施の形態2)本発明の光ソリトン信号
の波長制御方法の第2の実施形態を次に示す。この実施
形態に示す波長制御方法は光ソリトン信号の中心波長を
ASE雑音の波長と分離可能な波長に制御し、光ソリト
ン信号と分離したASE雑音を帯域除去フィルタによっ
て除去可能とするものである。ラマン利得/EDFAに
よるASE雑音は中継伝送距離によって図4に斜線で示
すような雑音帯域(図4のλa〜λb)を持っている
が、このASE雑音は光ソリトン信号とは異なり、自己
ラマン波長ずれは生じないので、光ソリトン信号の中心
波長を制御することによって、中継点のある地点(例え
ば図4のZ地点)で光ソリトン信号とASE雑音とを波
長的に分離することができる。(Embodiment 2) A second embodiment of the wavelength control method for an optical soliton signal according to the present invention will be described below. In the wavelength control method shown in this embodiment, the center wavelength of the optical soliton signal is controlled to a wavelength that can be separated from the wavelength of the ASE noise, and the ASE noise separated from the optical soliton signal can be removed by a band-elimination filter. The ASE noise due to Raman gain / EDFA has a noise band (λa to λb in FIG. 4) as shown by hatching in FIG. 4 depending on the relay transmission distance, but this ASE noise is different from the optical soliton signal, Since no shift occurs, by controlling the center wavelength of the optical soliton signal, the optical soliton signal and the ASE noise can be wavelength-separated at a certain point (for example, point Z in FIG. 4) where the relay point exists.
【0014】そこで、実施形態2では前記実施形態1に
示した波長制御方法によって、ラマン増幅光ファイバ2
のラマン利得ピーク波長λpmax を光ソリトン信号の中
心波長λsよりも長波長側に位置させることにより、光
ソリトン信号の中心波長λsを長波長側にシフトさせて
ASE雑音と波長的に分離し、光ソリトン信号の中心波
長λsと分離されたASE雑音を、図5に示すようにラ
マン増幅光ファイバ2の途中に挿入した帯域除去フィル
タ5によって除去して、光ソリトン信号の中心波長λs
の信号のみをその先に伝搬するようにした。図6に示す
様にラマン増幅光ファイバ2が多段中継されている場合
は、夫々のラマン増幅光ファイバ2の全部又は一部に帯
域除去フィルタ5を挿入することによってASE雑音の
累積を防止することもできる。Therefore, in the second embodiment, the Raman amplification optical fiber 2 is applied by the wavelength control method described in the first embodiment.
Is shifted to a longer wavelength side than the center wavelength λs of the optical soliton signal to shift the center wavelength λs of the optical soliton signal to the longer wavelength side to separate the ASE noise from the ASE noise. The ASE noise separated from the center wavelength λs of the soliton signal is removed by the band elimination filter 5 inserted in the Raman amplification optical fiber 2 as shown in FIG.
Only the signal of (1) is made to propagate further. As shown in FIG. 6, when the Raman amplification optical fiber 2 is multi-stage relayed, the accumulation of ASE noise is prevented by inserting the band elimination filter 5 into all or a part of each Raman amplification optical fiber 2. Can also.
【0015】[0015]
【発明の効果】本件出願の第1の発明は、ラマン増幅器
のラマン利得ピーク波長を、光ソリトン信号の中心波長
よりも短波長側又は長波長側に位置させることにより、
光ソリトン信号の中心波長を短波長側又は長波長側にシ
フトさせるので次のような効果を有する。 (1)光ソリトン信号の中心波長を短波長側又は長波長
側に任意にシフトさせることができる。 (2)自己ラマン波長ずれに起因する光ソリトン信号の
伝送ビットレートにおける制限が解消されるので、伝送
ビットレートを向上させて伝送容量を増大させることが
できる。According to the first invention of the present application, the Raman gain peak wavelength of the Raman amplifier is located on the short wavelength side or the long wavelength side with respect to the center wavelength of the optical soliton signal.
Since the center wavelength of the optical soliton signal is shifted to the short wavelength side or the long wavelength side, the following effects are obtained. (1) The center wavelength of the optical soliton signal can be arbitrarily shifted to the short wavelength side or the long wavelength side. (2) Since the limitation on the transmission bit rate of the optical soliton signal due to the self-Raman wavelength shift is eliminated, the transmission bit rate can be improved and the transmission capacity can be increased.
【0016】本件出願の第2の発明は、ラマン増幅器の
ラマン利得ピーク波長を光ソリトン信号の中心波長より
も短波長側に位置させることにより、光ファイバ伝搬中
の光ソリトン信号の中心波長が自己ラマン波長ずれによ
って長波長側にシフトする分だけ短波長側にシフトされ
るようにしたので次のような効果を有する。 (1)自己ラマン波長ずれに起因する光ソリトン信号の
伝送ビットレートにおける制限が解消されるので、伝送
ビットレートを向上させて伝送容量を増大させることが
できる。 (2)伝送路全般にわたって光ソリトン信号の中心波長
を制御することができる。In the second invention of the present application, the center wavelength of the optical soliton signal propagating in the optical fiber is adjusted by positioning the Raman gain peak wavelength of the Raman amplifier on the shorter wavelength side than the center wavelength of the optical soliton signal. Since the wavelength is shifted to the short wavelength side by the shift to the long wavelength side due to the Raman wavelength shift, the following effects are obtained. (1) Since the limitation on the transmission bit rate of the optical soliton signal caused by the self-Raman wavelength shift is eliminated, the transmission bit rate can be improved and the transmission capacity can be increased. (2) The center wavelength of the optical soliton signal can be controlled over the entire transmission path.
【0017】本件出願の第3の発明は、光ソリトン信号
の中心波長をASE雑音の波長と分離可能な波長にシフ
トさせるので次のような効果を有する。 (1)帯域除去フィルタ等を付加するだけでASE雑音
を除去することができるので光ソリトン信号のS/Nの
劣化を容易且つ効果的に防止することができる。 (2)多段中継系におけるASE雑の累積も容易且つ効
果的に防止することができる。The third invention of the present application shifts the center wavelength of the optical soliton signal to a wavelength separable from the wavelength of the ASE noise, and has the following effects. (1) The ASE noise can be removed only by adding a band rejection filter or the like, so that the deterioration of the S / N of the optical soliton signal can be easily and effectively prevented. (2) Accumulation of ASE noise in the multistage relay system can be easily and effectively prevented.
【図1】光ソリトン伝送システムの原理図。FIG. 1 is a principle diagram of an optical soliton transmission system.
【図2】光ソリトン信号、同信号の自己ラマン利得、同
信号が受ける全利得、ラマン増幅光ファイバの利得の各
スペクトルを示す説明図。FIG. 2 is an explanatory diagram showing spectra of an optical soliton signal, a self-Raman gain of the signal, a total gain received by the signal, and a gain of a Raman-amplified optical fiber.
【図3】1中継スパンにおける光ソリトン信号の中心波
長の変化の一例を示す説明図。FIG. 3 is an explanatory diagram showing an example of a change in the center wavelength of an optical soliton signal in one relay span.
【図4】本発明の光ソリトン信号の波長制御方法の第2
の実施形態の原理図。FIG. 4 shows a second method of controlling the wavelength of an optical soliton signal according to the present invention.
FIG.
【図5】本発明の光ソリトン信号の波長制御方法の第2
の実施形態を実現する具体的構成の一例を示す説明図。FIG. 5 shows a second method of controlling the wavelength of an optical soliton signal according to the present invention.
Explanatory drawing which shows an example of a specific structure which implement | achieves embodiment.
【図6】本発明の光ソリトン信号の波長制御方法の第2
の実施形態を実施する具体的構成の他例を示す説明図。FIG. 6 shows a second method of controlling the wavelength of an optical soliton signal according to the present invention.
Explanatory drawing which shows the other example of the specific structure which implements the embodiment.
1 伝送用光ファイバ 2 ラマン増幅光ファイバ 3 励起光源 4 光カプラ 5 帯域除去フィルタ DESCRIPTION OF SYMBOLS 1 Transmission optical fiber 2 Raman amplification optical fiber 3 Pump light source 4 Optical coupler 5 Band elimination filter
フロントページの続き Fターム(参考) 2K002 AA02 AB30 AB32 BA01 CA15 DA10 EB15 HA23 HA25 5F072 AB07 AK06 HH05 KK11 QQ07 QQ20 YY17 5K002 AA06 BA04 BA05 BA13 CA02 CA05 CA13 DA05 DA31 FA01 FA02 Continued on the front page F term (reference) 2K002 AA02 AB30 AB32 BA01 CA15 DA10 EB15 HA23 HA25 5F072 AB07 AK06 HH05 KK11 QQ07 QQ20 YY17 5K002 AA06 BA04 BA05 BA13 CA02 CA05 CA13 DA05 DA31 FA01 FA02
Claims (3)
る光ソリトン伝送において、ラマン増幅器のラマン利得
ピーク波長を、光ソリトン信号の中心波長よりも短波長
側又は長波長側に位置させることにより、光ソリトン信
号の中心波長を短波長側又は長波長側にシフトさせるこ
とを特徴とする光ソリトン信号の波長制御方法。In an optical soliton transmission for transmitting an optical soliton signal through an optical fiber, an optical signal is obtained by positioning a Raman gain peak wavelength of a Raman amplifier on a shorter wavelength side or a longer wavelength side than a center wavelength of the optical soliton signal. A wavelength control method for an optical soliton signal, characterized in that a center wavelength of a soliton signal is shifted to a short wavelength side or a long wavelength side.
方法において、ラマン増幅器のラマン利得ピーク波長を
光ソリトン信号の中心波長よりも短波長側に位置させる
ことにより、光ファイバ伝搬中の光ソリトン信号の中心
波長が自己ラマン波長ずれによって長波長側にシフトす
る分だけ短波長側にシフトされるようにしたことを特徴
とする光ソリトン信号の波長制御方法。2. The method for controlling the wavelength of an optical soliton signal according to claim 1, wherein the Raman gain peak wavelength of the Raman amplifier is positioned on the shorter wavelength side than the center wavelength of the optical soliton signal, so that the light transmitted through the optical fiber is controlled. A method for controlling the wavelength of an optical soliton signal, characterized in that the center wavelength of the soliton signal is shifted to the shorter wavelength side by the shift to the longer wavelength side due to the self-Raman wavelength shift.
号の波長制御方法により、光ソリトン信号の中心波長を
ASE雑音の波長と分離可能な波長にシフトさせること
を特徴とする光ソリトン信号の波長制御方法。3. The optical soliton signal according to claim 1 or 2, wherein the center wavelength of the optical soliton signal is shifted to a wavelength separable from the wavelength of the ASE noise. Wavelength control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29090399A JP4460030B2 (en) | 1999-10-13 | 1999-10-13 | Optical soliton signal wavelength control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29090399A JP4460030B2 (en) | 1999-10-13 | 1999-10-13 | Optical soliton signal wavelength control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001109024A true JP2001109024A (en) | 2001-04-20 |
JP4460030B2 JP4460030B2 (en) | 2010-05-12 |
Family
ID=17762011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29090399A Expired - Fee Related JP4460030B2 (en) | 1999-10-13 | 1999-10-13 | Optical soliton signal wavelength control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4460030B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2003104886A1 (en) * | 2002-06-11 | 2005-10-13 | 古河電気工業株式会社 | Wavelength division multiplexing optical regeneration system and wavelength division multiplexing optical regeneration method |
US7272317B2 (en) | 2002-05-13 | 2007-09-18 | Nippon Telegraph And Telephone Corporation | Optical multiplexing communication system using ultra high speed signal transmission |
WO2009022396A1 (en) * | 2007-08-10 | 2009-02-19 | Fujitsu Limited | Method and device for shaping optical waveform |
CN109039466A (en) * | 2018-08-07 | 2018-12-18 | 吉林大学 | A kind of high stability soliton generator based on erbium doped fiber laser |
-
1999
- 1999-10-13 JP JP29090399A patent/JP4460030B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7272317B2 (en) | 2002-05-13 | 2007-09-18 | Nippon Telegraph And Telephone Corporation | Optical multiplexing communication system using ultra high speed signal transmission |
JPWO2003104886A1 (en) * | 2002-06-11 | 2005-10-13 | 古河電気工業株式会社 | Wavelength division multiplexing optical regeneration system and wavelength division multiplexing optical regeneration method |
WO2009022396A1 (en) * | 2007-08-10 | 2009-02-19 | Fujitsu Limited | Method and device for shaping optical waveform |
JPWO2009022396A1 (en) * | 2007-08-10 | 2010-11-11 | 富士通株式会社 | Optical waveform shaping method and apparatus |
CN109039466A (en) * | 2018-08-07 | 2018-12-18 | 吉林大学 | A kind of high stability soliton generator based on erbium doped fiber laser |
CN109039466B (en) * | 2018-08-07 | 2020-12-01 | 吉林大学 | High-stability optical soliton generator based on erbium-doped fiber laser |
Also Published As
Publication number | Publication date |
---|---|
JP4460030B2 (en) | 2010-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6215581B1 (en) | Performance gain flattened EDFA | |
KR100387072B1 (en) | Bidirectional Optical Amplifier | |
EP1067716A2 (en) | Wide-band optical fiber amplifier and amplifying method thereof | |
JPH09160085A (en) | Optical fiber amplifier | |
US20010019449A1 (en) | Low-noise bidirectional optical amplifier | |
JP6673647B2 (en) | Optical amplifier and related method | |
US6646785B2 (en) | Fiber ring amplifiers and lasers | |
JP2001217491A (en) | Rare earth doped fiber amplifier and multistage fiber amplifier | |
EP1263097A2 (en) | Wide band erbium-doped fiber amplfier (EDFA) | |
US8077382B2 (en) | Gain-clamped optical amplifying apparatus using fiber Raman amplifier having Raman cavity | |
KR100424630B1 (en) | Long-band erbium doped fiber amplifier | |
JPH10294510A (en) | Optical amplifier | |
EP1298766A1 (en) | Raman amplification with multiple pump sources | |
JP3884744B2 (en) | Gain-flattened broadband erbium-doped fiber amplifier | |
KR100498938B1 (en) | Wideband optical fiber amplifier | |
JP2001109024A (en) | Wavelength control method for optical soliton signal | |
EP1347544A1 (en) | Gain flattening optical fiber amplifier | |
JP3901859B2 (en) | Optical amplifier | |
JP2000106544A (en) | Optical amplifier and wavelength multiplex optical transmission system | |
JP2001196670A (en) | Optical amplifier | |
JP2002341390A (en) | Optical repeating system and optical transmission system | |
JP3273911B2 (en) | Optical fiber amplifier, semiconductor laser module for excitation and optical signal transmission system | |
JP2000261078A (en) | Optical amplifier | |
JPH06260710A (en) | Rare earth doped fiber optical amplifier and optical-amplified multiple relay system | |
US20230318249A1 (en) | Systems and methods to reduce the power consumption of an optical fiber amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090908 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100119 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100211 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130219 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140219 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |