[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001102599A - Variable capacitance semiconductor device - Google Patents

Variable capacitance semiconductor device

Info

Publication number
JP2001102599A
JP2001102599A JP27708299A JP27708299A JP2001102599A JP 2001102599 A JP2001102599 A JP 2001102599A JP 27708299 A JP27708299 A JP 27708299A JP 27708299 A JP27708299 A JP 27708299A JP 2001102599 A JP2001102599 A JP 2001102599A
Authority
JP
Japan
Prior art keywords
variable capacitance
epitaxial layer
semiconductor device
trench
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27708299A
Other languages
Japanese (ja)
Inventor
Shunsuke Kobayashi
俊介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27708299A priority Critical patent/JP2001102599A/en
Publication of JP2001102599A publication Critical patent/JP2001102599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a variable capacitance semiconductor device in which the size of a chip is reduced while sustaining the capacitance by forming an anode region while enlarging the area of PN junction in the depth direction, and to provide a chip part of smaller size by fabricating a plurality of variable capacitance semiconductor devices, in which the area of PN junction is reduced while sustaining the capacitance, in the same chip. SOLUTION: The variable capacitance semiconductor device has a large number of trenches 3 made in the upper surface of an epitaxial layer 2 grown on a semiconductor substrate 1 of the same conductivity, and a lightly doped anode region 4 of the opposite conductivity type formed on the upper surface of the epitaxial layer 2 and the side and bottom faces of the trenches 3. The area of a PN junction defined by the anode region 4 and the epitaxial layer 2 is increased in the depth direction along the inner wall of the trench in order to sustain the capacitance thus reducing the chip size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は可変容量半導体装
置、特に容量値を維持しながらチップサイズを小型化で
きる可変容量半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a variable capacitance semiconductor device, and more particularly to a variable capacitance semiconductor device capable of reducing a chip size while maintaining a capacitance value.

【0002】[0002]

【従来の技術】可変容量半導体装置は通称バラクターダ
イオードとも呼ばれ、ラジオ受信機やテレビジョン受像
機等のチュナー部に同調用可変容量として多くを用いら
れている。バラクターダイオードはこれらの機器の軽薄
短小化や組立の容易性からチップ部品として組み立てら
れ、さらに小型化が時代の要請となっている。
2. Description of the Related Art A variable capacitance semiconductor device is also called a varactor diode, and is widely used as a tuning variable capacitance in a tuner section of a radio receiver, a television receiver, or the like. The varactor diode is assembled as a chip component because of the simplicity and miniaturization of these devices and the ease of assembling.

【0003】図5は従来の可変容量半導体装置を説明す
る断面図であり、N+型の半導体基板21上にN―型の
エピタキシャル層22を積層し、このエピタキシャル層
22の上面にP型のアノード領域23とアノード領域2
3を取り囲むようにP+型のコンタクト領域24を形成
し、酸化膜25に設けたコンタクト孔26を介して両領
域23、24に接触するアノード電極27を設けたもの
である。なお図示されないが、カソード電極は半導体基
板21の裏面に形成されている。このような可変容量半
導体装置ではアノード領域23とエピタキシャル層22
で形成される平面上のPN接合領域が超階段接合として
アノード電極27とカソード電極間に印加される電圧に
従って可変容量となる。従来の可変容量半導体装置では
アノード領域とエピタキシャル層とで形成されるPN接
合領域は図6に斜線30で示すように、平面的に形成さ
れるので、チップの面積を増大しない限り大きくするこ
とはできない。
FIG. 5 is a cross-sectional view illustrating a conventional variable capacitance semiconductor device. An N− type epitaxial layer 22 is laminated on an N + type semiconductor substrate 21, and a P type anode is formed on the upper surface of the epitaxial layer 22. Region 23 and anode region 2
3, a P + type contact region 24 is formed so as to surround the region 3, and an anode electrode 27 which is in contact with both regions 23 and 24 via a contact hole 26 provided in an oxide film 25 is provided. Although not shown, the cathode electrode is formed on the back surface of the semiconductor substrate 21. In such a variable capacitance semiconductor device, the anode region 23 and the epitaxial layer 22
The PN junction region on the plane formed by the above becomes a variable capacitance according to the voltage applied between the anode electrode 27 and the cathode electrode as a super step junction. In the conventional variable capacitance semiconductor device, the PN junction region formed by the anode region and the epitaxial layer is formed in a plane as shown by the oblique line 30 in FIG. 6, so that it is not possible to increase the size unless the chip area is increased. Can not.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、斯かる
従来の可変容量半導体装置ではPN接合領域の面積が容
量値を決定するので、容量値に比例したチップサイズが
必要となる。このために容量値を維持してチップを小型
化することが不可能である課題があった。また同一チッ
プに複数の可変容量半導体装置を組み込んでさらに小型
のチップ部品として供給される要望も強いが、複数個を
組み込めばチップ部品は比例して大きくなる課題もあっ
た。
However, in such a conventional variable capacitance semiconductor device, since the area of the PN junction region determines the capacitance value, a chip size proportional to the capacitance value is required. For this reason, there has been a problem that it is impossible to maintain the capacitance value and reduce the size of the chip. In addition, there is a strong demand that a plurality of variable capacitance semiconductor devices be incorporated into the same chip to be supplied as smaller chip components. However, if a plurality of variable capacitance semiconductor devices are incorporated, there is a problem that the chip components become proportionally larger.

【0005】[0005]

【課題を解決するための手段】本発明は上述した種々の
課題に鑑みてなされたものであり、エピタキシャル層表
面にトレンチを多数個離間して形成し、PN接合領域を
トレンチの側壁面まで拡大してその面積を大幅に増加さ
せることによりこれまでの課題を解決したものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned various problems, and has a structure in which a plurality of trenches are formed on the surface of an epitaxial layer while being separated from each other, and a PN junction region is extended to a side wall surface of the trench. This has solved the problems so far by greatly increasing the area.

【0006】[0006]

【発明の実施の形態】図1に本発明の一つの実施例を示
す。N+型の半導体基板1上に約15乃至25μmの厚
みにN―型のエピタキシャル層2を積層する。このエピ
タキシャル層2の上面に行列状に離間した多数個のトレ
ンチ3を設け、エピタキシャル層2上面とトレンチ3の
内面にはP型で低不純物濃度のアノード領域4を形成す
る。従ってアノード領域4はエピタキシャル層2上面と
トレンチ3の側面および底面に形成されるので、図1の
ようにエピタキシャル層2の深さ方向に凹凸な形状にな
る。さらにアノード領域4を取り囲むようにP+型のコ
ンタクト領域5を形成し、酸化膜に設けたコンタクト孔
6を介して両領域4、5に接触するアノード電極7を形
成する。カソード電極8は半導体基板1の裏面に形成さ
れている。
FIG. 1 shows one embodiment of the present invention. An N− type epitaxial layer 2 is laminated on an N + type semiconductor substrate 1 to a thickness of about 15 to 25 μm. A large number of trenches 3 are provided on the upper surface of the epitaxial layer 2 and are spaced apart in a matrix, and a P-type anode region 4 of low impurity concentration is formed on the upper surface of the epitaxial layer 2 and the inner surface of the trench 3. Therefore, since the anode region 4 is formed on the upper surface of the epitaxial layer 2 and on the side and bottom surfaces of the trench 3, the shape becomes uneven in the depth direction of the epitaxial layer 2 as shown in FIG. Further, a P + type contact region 5 is formed so as to surround the anode region 4, and an anode electrode 7 which is in contact with both regions 4 and 5 via a contact hole 6 provided in an oxide film is formed. The cathode electrode 8 is formed on the back surface of the semiconductor substrate 1.

【0007】図2および図3はPN接合領域の配置を説
明する平面図である。PN接合領域はエピタキシャル層
2とトレンチ3表面に沿って凹凸したアノード領域4と
が接する領域をいい、可変容量を形成する部分である。
図2では同一チップ内に4つのPN接合領域を田の字状
に配置したものであり、各PN接合領域にはそれぞれ多
数個のトレンチ3を行列状に形成している。図3では各
PN接合領域をストライプ状に4つ配置したものであ
り、各PN接合領域には同様に多数個のトレンチ3を同
様に行列状に形成している。従って、図2に示す配置で
は偶数個の可変容量半導体装置が配置でき、図3に示す
配置では偶数個でも奇数個でも可変容量半導体装置が配
置可能である。 ここで具体的にPN接合領域の面積の
大きさを計算する。従来の平坦なPN接合領域の大きさ
が676μm×321μmであるので、面積は216,
996平方μmである。
FIGS. 2 and 3 are plan views illustrating the arrangement of the PN junction region. The PN junction region is a region where the epitaxial layer 2 and the anode region 4 which is uneven along the surface of the trench 3 are in contact with each other, and is a portion where a variable capacitance is formed.
In FIG. 2, four PN junction regions are arranged in a cross in the same chip, and a large number of trenches 3 are formed in each PN junction region in a matrix. In FIG. 3, four PN junction regions are arranged in a stripe shape, and a plurality of trenches 3 are similarly formed in a matrix in each PN junction region. Therefore, in the arrangement shown in FIG. 2, an even number of variable capacitance semiconductor devices can be arranged, and in the arrangement shown in FIG. 3, even or odd number of variable capacitance semiconductor devices can be arranged. Here, the size of the area of the PN junction region is specifically calculated. Since the size of the conventional flat PN junction region is 676 μm × 321 μm, the area is 216,
996 square μm.

【0008】ここに50μm×50μmの断面積のトレ
ンチを形成するとトレンチ間のスペースを約40μm以
上取る必要であるので、3列で6行の18個のトレンチ
が形成できる。トレンチの深さを10μmとした場合
は、トレンチの側面で形成されるPN接合領域の面積は
50μm×10μm×4面×18個=36,000平方
μm増加して、総面積は252,996平方μmとな
り、16.5%ほど増加する。トレンチの深さを20μ
mとした場合は、同様に計算して2倍の72,000平
方μm増加し、総面積は288,996平方μmとな
り、33.1%ほど増加する。さらに40μm×40μ
mの断面積のトレンチを形成すると、4列で8行の32
個のトレンチが形成できる。トレンチの深さを10μm
とした場合は、トレンチの側面で形成されるPN接合領
域の面積は40μm×10μm×4面×32個=51,
200平方μm増加して、総面積は268,196平方
μmとなり、23.6%ほど増加する。トレンチの深さ
を20μmとした場合は、同様に計算して2倍の72,
000平方μm増加し、総面積は319,396平方μ
mとなり、47.2%ほど増加する。従って、従来のP
N接合領域より16%から47%まで小さくしても、今
までの容量値を維持できるのでチップ面積を縮小できあ
るいは同一チップ面積で2から3個の組み込みが可能と
なる。次に、図4を参照して具体的にトレンチを形成す
る方法を説明する。図4(a)では、N+型半導体基板
1上に積層されたN―型エピタキシャル層2にすでに選
択拡散法でP+型のコンタクト領域5が形成されてお
り、エピタキシャル層2上のシリコン酸化膜11とホト
レジスト膜12で予定のトレンチ3となる領域を除いて
被覆している。続いてこのホトレジスト膜12をマスク
としてシリコン酸化膜11をドライエッチングしてエピ
タキシャル層2表面を露出する。図4(b)ではホトレ
ジスト膜12をマスクとしてエピタキシャル層2を異方
性プラズマエッチングで約10μmから20μmの深さ
までエッチングしてトレンチ3を形成する。たとえば、
AMJ社のドライエッチング装置P−5000を用い
て、エッチングガスとしてはHBr,NF3,He+O2
を使用してエッチングする。図4(c)ではトレンチ3
内部およびエピタキシャル層2表面に高濃度に燐をドー
プされたPSG膜13を付着し、熱拡散でエピタキシャ
ル層2表面およびトレンチ3の内側面と底面にアノード
領域4を形成する。その後PSG膜13を除去して、図
1に示すようにアルミニウムを付着し、所定の形状にエ
ッチングしてアノード電極7を形成する。
If a trench having a cross section of 50 μm × 50 μm is formed here, it is necessary to take a space between the trenches of about 40 μm or more, so that 18 trenches in 3 columns and 6 rows can be formed. When the depth of the trench is 10 μm, the area of the PN junction region formed on the side surface of the trench is increased by 50 μm × 10 μm × 4 planes × 18 = 36,000 square μm, and the total area is 252,996 square. μm, which is increased by about 16.5%. 20μ trench depth
In the case of m, the calculation is performed in the same manner and the number is increased by a factor of 72,000 square μm, and the total area is 288,996 square μm, which is increased by about 33.1%. 40μm × 40μ
When a trench having a cross section of m is formed, 4 columns and 8 rows of 32
Individual trenches can be formed. 10 μm trench depth
In this case, the area of the PN junction region formed on the side surface of the trench is 40 μm × 10 μm × 4 planes × 32 = 51,
With an increase of 200 square μm, the total area becomes 268,196 square μm, an increase of about 23.6%. When the depth of the trench is set to 20 μm, the calculation is performed in the same manner and the value is doubled to 72,
2,000 square µm, for a total area of 319,396 square µ
m, which is increased by about 47.2%. Therefore, the conventional P
Even if the N-junction region is reduced from 16% to 47%, the conventional capacitance value can be maintained, so that the chip area can be reduced or two or three chips can be incorporated in the same chip area. Next, a method of forming a trench will be specifically described with reference to FIG. In FIG. 4A, a P + type contact region 5 is already formed in the N− type epitaxial layer 2 laminated on the N + type semiconductor substrate 1 by the selective diffusion method, and the silicon oxide film 11 on the epitaxial layer 2 is formed. And a photoresist film 12 except for a region to be the trench 3 to be formed. Subsequently, the silicon oxide film 11 is dry-etched using the photoresist film 12 as a mask to expose the surface of the epitaxial layer 2. In FIG. 4B, the trench 3 is formed by etching the epitaxial layer 2 to a depth of about 10 μm to 20 μm by anisotropic plasma etching using the photoresist film 12 as a mask. For example,
HBr, NF3, He + O2 was used as an etching gas using a dry etching apparatus P-5000 of AMJ.
Etch using. In FIG. 4C, the trench 3
A PSG film 13 heavily doped with phosphorus is adhered to the inside and the surface of the epitaxial layer 2, and an anode region 4 is formed on the surface of the epitaxial layer 2 and the inner side surface and the bottom surface of the trench 3 by thermal diffusion. After that, the PSG film 13 is removed, aluminum is adhered as shown in FIG. 1 and the anode electrode 7 is formed by etching into a predetermined shape.

【0009】[0009]

【発明の効果】本発明に依れば、アノード領域4とエピ
タキシャル層2とが接するPN接合領域にトレンチ3を
多数個形成するので、アノード領域4がトレンチ3の内
側面にも形成され、PN接合領域の面積が16%から4
7%まで増大できる。従って容量値を維持するのであれ
ば、PN接合領域の面積を容量値の増大分だけチップ面
積を小さくできる利点がある。また容量値を維持してP
N接合領域の面積を小さくできるので、たとえば33%
の容量値の増大ができれば、同一チップ面積で従来では
2個のバラクターダイオードを組み込んでいたのが、3
個の組み込みが可能となり、より小型のチップ部品を供
給できる利点がある。
According to the present invention, a large number of trenches 3 are formed in the PN junction region where the anode region 4 and the epitaxial layer 2 are in contact with each other. The area of the bonding area is from 16% to 4
It can be increased up to 7%. Therefore, if the capacitance value is maintained, there is an advantage that the area of the PN junction region can be reduced by an amount corresponding to the increase in the capacitance value. Also, while maintaining the capacitance value, P
Since the area of the N junction region can be reduced, for example, 33%
If the capacitance value can be increased, two varactor diodes have conventionally been incorporated in the same chip area.
There is an advantage that a smaller number of chip components can be supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に依る可変容量半導体装置を説明する断
面図である。
FIG. 1 is a sectional view illustrating a variable capacitance semiconductor device according to the present invention.

【図2】本発明に依る可変容量半導体装置の配置を説明
する平面図である。
FIG. 2 is a plan view illustrating an arrangement of a variable capacitance semiconductor device according to the present invention.

【図3】本発明に依る可変容量半導体装置の他の配置を
説明する平面図である。
FIG. 3 is a plan view illustrating another arrangement of the variable capacitance semiconductor device according to the present invention.

【図4】(a)(b)(c)は本発明に用いたトレンチ
の製造方法を説明する断面図である。
FIGS. 4A, 4B, and 4C are cross-sectional views illustrating a method of manufacturing a trench used in the present invention.

【図5】従来の可変容量半導体装置を説明する断面図で
ある。
FIG. 5 is a cross-sectional view illustrating a conventional variable capacitance semiconductor device.

【図6】従来の可変容量半導体装置の配置を説明する平
面図である。
FIG. 6 is a plan view illustrating an arrangement of a conventional variable capacitance semiconductor device.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 エピタキシャル層 3 トレンチ 4 アノード領域 5 コンタクト領域 6 コンタクト孔 7 アノード電極 8 カソード電極 11 シリコン酸化膜 12 ホトレジスト膜 13 PSG膜 Reference Signs List 1 semiconductor substrate 2 epitaxial layer 3 trench 4 anode region 5 contact region 6 contact hole 7 anode electrode 8 cathode electrode 11 silicon oxide film 12 photoresist film 13 PSG film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一導電型で高不純物濃度の半導体基板
と、該半導体基板上に成長された同導電型のエピタキシ
ャル層と、該エピタキシャル層上面に設けた多数のトレ
ンチと、前記エピタキシャル層上面と前記トレンチの側
面および底面に形成された逆導電型で低不純物濃度のア
ノード領域とを備え、該アノード領域と前記エピタキシ
ャル層で形成されるPN接合領域の面積を前記トレンチ
内壁に沿って深さ方向に増大させたことを特徴とする可
変容量半導体装置。
1. A semiconductor substrate of one conductivity type having a high impurity concentration, an epitaxial layer of the same conductivity type grown on the semiconductor substrate, a number of trenches provided on an upper surface of the epitaxial layer, and an upper surface of the epitaxial layer. An anode region of opposite conductivity type and low impurity concentration formed on the side and bottom surfaces of the trench, wherein the area of the PN junction region formed by the anode region and the epitaxial layer is increased in the depth direction along the inner wall of the trench. A variable capacitance semiconductor device characterized by having been increased in number.
【請求項2】 同一チップ内に前記PN接合領域を複数
個に区分して配置したことを特徴とする請求項1記載の
可変容量半導体装置。
2. The variable capacitance semiconductor device according to claim 1, wherein said PN junction region is divided into a plurality of parts in the same chip.
【請求項3】 同一チップ内に前記PN接合領域を田の
字形状に四個に区分して配置したことを特徴とする請求
項2記載の可変容量半導体装置。
3. The variable capacitance semiconductor device according to claim 2, wherein the PN junction region is divided into four in a cross shape in the same chip.
【請求項4】 同一チップ内に前記PN接合領域をスト
ライプ状に複数個に区分して配置したことを特徴とする
請求項1記載の可変容量半導体装置。
4. The variable capacitance semiconductor device according to claim 1, wherein the PN junction region is divided into a plurality of stripes in the same chip.
JP27708299A 1999-09-29 1999-09-29 Variable capacitance semiconductor device Pending JP2001102599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27708299A JP2001102599A (en) 1999-09-29 1999-09-29 Variable capacitance semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27708299A JP2001102599A (en) 1999-09-29 1999-09-29 Variable capacitance semiconductor device

Publications (1)

Publication Number Publication Date
JP2001102599A true JP2001102599A (en) 2001-04-13

Family

ID=17578537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27708299A Pending JP2001102599A (en) 1999-09-29 1999-09-29 Variable capacitance semiconductor device

Country Status (1)

Country Link
JP (1) JP2001102599A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206012A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Semiconductor device
CN102569426A (en) * 2010-12-21 2012-07-11 上海华虹Nec电子有限公司 PN junction voltage-controlled varactor and preparation method thereof
CN102610659A (en) * 2011-01-19 2012-07-25 上海华虹Nec电子有限公司 Voltage control variodenser and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206012A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Semiconductor device
CN102569426A (en) * 2010-12-21 2012-07-11 上海华虹Nec电子有限公司 PN junction voltage-controlled varactor and preparation method thereof
CN102610659A (en) * 2011-01-19 2012-07-25 上海华虹Nec电子有限公司 Voltage control variodenser and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2894820B2 (en) Semiconductor device
TW202038473A (en) Diode structure and manufacturing method thereof
JP2715581B2 (en) Semiconductor device and manufacturing method thereof
CN112397521B (en) Semiconductor device and manufacturing method thereof
JP2001102599A (en) Variable capacitance semiconductor device
JP3161515B2 (en) Method for manufacturing semiconductor device
JP2002368231A (en) Semiconductor device and manufacturing method therefor
JPH08172206A (en) Variable capacitance diode and diode array
JPH03234042A (en) Semiconductor device and its manufacture
JP4657614B2 (en) Semiconductor device and manufacturing method of semiconductor device
JPS5928368A (en) Semiconductor capacitor
US7094658B2 (en) 3-stage method for forming deep trench structure and deep trench capacitor
WO2014185305A1 (en) Semiconductor device, and production method therefor
JPH08195436A (en) Contact hole formation of semiconductor element
JPS60751A (en) Manufacture of substrate for semiconductor integrated circuit
JP3157245B2 (en) Semiconductor device and method of manufacturing the same
JP2006156989A (en) Semiconductor device and method of manufacturing the same
CN116666366A (en) Semiconductor structure and manufacturing method thereof
CN109119459B (en) Manufacturing method of groove type super junction
US8378382B2 (en) High aspect-ratio PN-junction and method for manufacturing the same
JP2000156403A (en) Insulation wall and its creation method
JPH03253026A (en) Semiconductor device
JP2010003987A (en) Variable capacitance diode
JPS60244036A (en) Semiconductor device and manufacture thereof
JPH06350111A (en) Varactor diode