[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001193442A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2001193442A
JP2001193442A JP2000006228A JP2000006228A JP2001193442A JP 2001193442 A JP2001193442 A JP 2001193442A JP 2000006228 A JP2000006228 A JP 2000006228A JP 2000006228 A JP2000006228 A JP 2000006228A JP 2001193442 A JP2001193442 A JP 2001193442A
Authority
JP
Japan
Prior art keywords
discharge
exhaust gas
temperature
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000006228A
Other languages
Japanese (ja)
Inventor
Miyao Arakawa
宮男 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000006228A priority Critical patent/JP2001193442A/en
Publication of JP2001193442A publication Critical patent/JP2001193442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable efficient exhaust emission control by using electric discharge. SOLUTION: Insulating substrate 16, 17 are arranged in parallel with a prescribed space, a flow path 15 for exhaust gas is formed between each insulating substrate 16, 17, also coating of a catalyst is applied to a surface of each insulating substrate 16, 17. Each flow path 15 is provided with by mixing a part (discharge part A generating discharge) counter posing discharge electrodes 18, 19 embedded in the insulating substrates 16, 17 and a nondischarge part B generating no discharge. Since a purifying window of the discharge part A exists in a region of temperature which is lower than that of a purifying window of the nondischarge part B (catalyst), exhaust gas is purified mainly in the discharge part A in a spot of temperature lower than the purifying window of the nondischarge part B, on the contrary, exhaust gas is purified mainly in the nondischarge part B in a spot of temperature higher than the purifying window of the discharge part A. In this way, in whatever way the distribution of temperature may change in this exhaust gas purifier device 11, the exhaust gas can be purified in either one of the discharge part A or the nondischarge part B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放電を利用して排
ガスの浄化反応を促進させる内燃機関の排ガス浄化装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine which uses an electric discharge to promote an exhaust gas purifying reaction.

【0002】[0002]

【従来の技術】近年、放電エネルギを利用して排ガスを
浄化する新たな排ガス浄化技術が研究されている。例え
ば、米国特許第5746051号公報に示すように、放
電式の排ガス浄化装置内に複数の平板電極を所定間隔で
平行に配置し、各放電電極間に交流高電圧を印加して一
様な放電場を形成しながら、排ガスを各放電電極間の流
路に流すことで、排ガスを浄化するようにしたものがあ
る。
2. Description of the Related Art In recent years, a new exhaust gas purifying technology for purifying exhaust gas using discharge energy has been studied. For example, as shown in U.S. Pat. No. 5,746,051, a plurality of flat electrodes are arranged in parallel at predetermined intervals in a discharge type exhaust gas purification apparatus, and an AC high voltage is applied between the discharge electrodes to achieve uniform discharge. There is one in which exhaust gas is purified by flowing exhaust gas into a flow path between discharge electrodes while forming a field.

【0003】[0003]

【発明が解決しようとする課題】このような放電式の排
ガス浄化装置においても、三元触媒等の触媒コンバータ
と同様に、温度によって浄化率が高くなる浄化ウインド
ウと呼ばれる温度範囲が存在し、この浄化ウインドウ内
では高い浄化率が得られるが、浄化ウインドウを外れる
と、急激に浄化率が低下するという特性がある。特に、
浄化ウインドウよりも高温になると、排ガス中の窒素
(N2 )が高熱と放電エネルギによって酸化されて窒素
酸化物(NOx)が生成されてしまい、NOx排出量が
増加してしまうおそれがある。
In such a discharge-type exhaust gas purifying apparatus, there is a temperature range called a purifying window in which the purifying rate is increased by the temperature, similarly to a catalytic converter such as a three-way catalyst. Although a high purification rate can be obtained within the purification window, there is a characteristic that the purification rate sharply drops when the purification window is removed. In particular,
When the temperature is higher than the purification window, nitrogen (N 2 ) in the exhaust gas is oxidized by high heat and discharge energy to generate nitrogen oxides (NOx), and there is a possibility that the NOx emission increases.

【0004】従って、放電式の排ガス浄化装置のみで
は、浄化ウインドウを外れた温度範囲になったときに排
ガスを十分に浄化できない。そこで、特開平6−106
52号公報に示すように、放電式の排ガス浄化装置と触
媒コンバータとを組み合わせて、排ガス温度が設定温度
以下のときに、放電式の排ガス浄化装置を作動させて、
放電により排ガスを浄化し、排ガス温度が設定温度より
高いときには、放電をオフして触媒コンバータで排ガス
を浄化することが提案されている。
Therefore, the discharge type exhaust gas purifying apparatus alone cannot sufficiently purify the exhaust gas when the temperature falls outside the purification window. Therefore, Japanese Patent Application Laid-Open No. 6-106
As disclosed in Japanese Patent Publication No. 52, a discharge-type exhaust gas purification device is combined with a catalytic converter, and when the exhaust gas temperature is equal to or lower than a set temperature, the discharge-type exhaust gas purification device is operated.
It has been proposed to purify exhaust gas by discharging and, when the temperature of the exhaust gas is higher than a set temperature, turn off the discharge and purify the exhaust gas with a catalytic converter.

【0005】しかし、排ガス浄化装置は、全体が一様に
温度変化するのではなく、エンジンに近い上流部の方が
下流部よりも温度が高くなる傾向があり、特に、加速時
には上流部と下流部の温度差が大きくなる傾向がある。
従って、上流部の温度が設定温度を越えても、下流部の
温度は設定温度以下の場合があり、このような場合に、
装置全体の放電をオフすると、却って排ガス浄化率が低
下することがある。かといって、放電オン・オフの設定
温度を高い温度に設定して放電のオフ時期を遅らせる
と、上流部の温度が高温になり過ぎてNOxが生成され
てしまうおそれがあり、却ってNOx排出量が増加して
しまうおそれがある。要するに、排ガス浄化装置内の温
度分布は、エンジン運転状態に応じて変化する排ガス温
度や排ガス流量によって様々に変化し、排ガス浄化装置
内の温度差が大きくなりやすいため、装置全体の放電を
温度によって適正にオン・オフすることは困難である。
しかも、排ガス浄化装置内の温度を検出する温度センサ
が必要になると共に、温度センサの出力に基づいて放電
をオン・オフするように制御系を構成する必要があり、
総じて、コスト高になる欠点がある。
However, the temperature of the exhaust gas purifying device does not change uniformly as a whole, but the temperature of the upstream portion close to the engine tends to be higher than that of the downstream portion. The temperature difference between the parts tends to increase.
Therefore, even if the temperature of the upstream part exceeds the set temperature, the temperature of the downstream part may be lower than the set temperature. In such a case,
When the discharge of the entire apparatus is turned off, the exhaust gas purification rate may be rather lowered. On the other hand, if the set temperature of the discharge on / off is set to a high temperature and the off time of the discharge is delayed, there is a possibility that the temperature of the upstream portion becomes too high and NOx is generated. May increase. In short, the temperature distribution in the exhaust gas purification device changes variously depending on the exhaust gas temperature and the exhaust gas flow rate that change according to the engine operating state, and the temperature difference in the exhaust gas purification device tends to increase. It is difficult to turn on and off properly.
In addition, a temperature sensor for detecting the temperature in the exhaust gas purification device is required, and a control system needs to be configured to turn on / off the discharge based on the output of the temperature sensor.
On the whole, there is a disadvantage that the cost is high.

【0006】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、排ガス浄化装置内の
温度分布にあまり影響されずに常に高い浄化率を得るこ
とができると共に、構成を簡単化して低コスト化の要求
も満たすことができる内燃機関の排ガス浄化装置を提供
することにある。
[0006] The present invention has been made in view of such circumstances, and an object of the present invention is to achieve a high purification rate without being affected by the temperature distribution in the exhaust gas purification apparatus. To provide an exhaust gas purifying apparatus for an internal combustion engine that can satisfy the demand for cost reduction by simplifying the above.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1は、排ガス浄化装置内の流路に放
電が生じる部分(以下「放電部」という)と放電が生じ
ない部分(以下「非放電部」という)とを混在させるよ
うに放電電極を構成し、少なくとも非放電部に触媒を設
けた構成としたものである。このようにすれば、排ガス
浄化装置内の流路を流れる排ガスは、放電部と非放電部
を通過し、放電部を通過する過程で、放電によって浄化
反応が促進され(放電部に触媒が存在する場合は放電と
触媒との両方によって浄化反応が促進され)、非放電部
を通過する過程で、触媒によって浄化反応が促進され
る。
In order to achieve the above object, a first aspect of the present invention relates to a portion in which discharge occurs in a flow path in an exhaust gas purifying apparatus (hereinafter referred to as a "discharge portion") and no discharge. The discharge electrode is configured so as to mix a portion (hereinafter, referred to as a “non-discharge portion”), and a catalyst is provided at least in the non-discharge portion. In this way, the exhaust gas flowing through the flow path in the exhaust gas purification device passes through the discharge part and the non-discharge part, and in the process of passing through the discharge part, the purification reaction is promoted by the discharge (the catalyst exists in the discharge part. In this case, the purification reaction is promoted by both the discharge and the catalyst), and the purification reaction is promoted by the catalyst in the process of passing through the non-discharge portion.

【0008】一般に、図6に示すように、放電部の浄化
ウインドウは、非放電部の浄化ウインドウよりも低い温
度域に存在するため、非放電部の浄化ウインドウよりも
低い温度の場所では、主として放電部で排ガスが浄化さ
れ、反対に、放電部の浄化ウインドウよりも高い温度の
場所では、主として非放電部で排ガスが浄化される。従
って、放電部と非放電部とを混在させれば、排ガス浄化
装置内の温度分布がどの様に変化したとしても、放電部
と非放電部のいずれかで排ガスを浄化することができ、
排ガス浄化装置内の温度分布にあまり影響されずに常に
高い浄化率を得ることができる。しかも、温度に応じて
放電をオン・オフする必要がないため、温度センサが不
要で、構成が簡単であり、低コスト化の要求も満たすこ
とができる。
In general, as shown in FIG. 6, the purifying window of the discharge section is located in a lower temperature range than the purifying window of the non-discharging section. Exhaust gas is purified in the discharge part, and conversely, in places where the temperature is higher than the purification window of the discharge part, the exhaust gas is mainly purified in the non-discharge part. Therefore, if the discharge section and the non-discharge section are mixed, the exhaust gas can be purified by any of the discharge section and the non-discharge section, no matter how the temperature distribution in the exhaust gas purification device changes,
A high purification rate can always be obtained without being greatly affected by the temperature distribution in the exhaust gas purification device. Moreover, since there is no need to turn on / off the discharge in accordance with the temperature, a temperature sensor is not required, the configuration is simple, and the demand for cost reduction can be satisfied.

【0009】この場合、触媒はペレット状のものを流路
内に充填しても良いが、請求項2のように、流路の内壁
面に触媒をコーティングするようにしても良い。このよ
うにすれば、流路内の排気抵抗(圧力損失)を少なくす
ることができ、エンジン出力を低下させずに済む。
In this case, the catalyst may be filled in the form of pellets in the flow channel. Alternatively, the catalyst may be coated on the inner wall surface of the flow channel. By doing so, the exhaust resistance (pressure loss) in the flow path can be reduced, and the engine output does not need to be reduced.

【0010】また、請求項3のように、排ガス浄化装置
内の温度分布に応じて放電部と非放電部との比率を変化
させるようにしても良い。例えば、排ガス浄化装置内の
温度が高くなる傾向の場所では、放電部よりも浄化ウイ
ンドウの温度が高い非放電部の比率を多くし、反対に、
温度が低くなる傾向の場所では、非放電部よりも浄化ウ
インドウの温度が低い放電部の比率を多くすると良い。
このようにすれば、排ガス浄化装置内の温度分布に応じ
て放電部と非放電部とを効率良く使用して排ガスを浄化
することができ、排ガス浄化率を高めることができる。
Further, the ratio between the discharge part and the non-discharge part may be changed according to the temperature distribution in the exhaust gas purifying apparatus. For example, in a place where the temperature in the exhaust gas purification device tends to be higher, the ratio of the non-discharge portion where the temperature of the purification window is higher than the discharge portion is increased, and conversely,
In a place where the temperature tends to be low, it is preferable to increase the ratio of the discharge part whose temperature of the purification window is lower than that of the non-discharge part.
With this configuration, the exhaust gas can be purified by efficiently using the discharge portion and the non-discharge portion according to the temperature distribution in the exhaust gas purification device, and the exhaust gas purification rate can be increased.

【0011】この場合、請求項4のように、排ガス浄化
装置内の上流部の方が下流部よりも放電部が少なくなる
ように構成しても良い。つまり、排ガス浄化装置は、全
体が一様に温度変化するのではなく、内燃機関に近い上
流部の方が下流部よりも温度が高くなる傾向があるた
め、上流部の方が下流部よりも放電部が少なくなるよう
に構成すれば、放電部と非放電部との比率を排ガス流れ
方向の温度分布に対応させることができる。
[0011] In this case, as in the fourth aspect, the upstream portion in the exhaust gas purifying apparatus may be configured such that the discharge portion is smaller than the downstream portion. In other words, the exhaust gas purifying device does not uniformly change the temperature as a whole, but the temperature of the upstream portion closer to the internal combustion engine tends to be higher than that of the downstream portion. If the discharge section is configured to be reduced, the ratio of the discharge section to the non-discharge section can correspond to the temperature distribution in the exhaust gas flow direction.

【0012】一般に、排ガス浄化装置内の排ガス流量
は、一様ではなく、中央部で多く、周辺部で少なくな
り、排ガス流量が多い中央部は、排ガス流量が少ない周
辺部よりも温度が高くなる傾向がある。
In general, the flow rate of exhaust gas in an exhaust gas purifying apparatus is not uniform, but is large at a central portion and decreases at peripheral portions. The temperature of a central portion having a high exhaust gas flow rate is higher than that of a peripheral portion having a low exhaust gas flow rate. Tend.

【0013】この点を考慮して、請求項5のように、排
ガス浄化装置内の中央部の方が周辺部よりも放電部が少
なくなるように構成しても良い。このようにすれば、放
電部と非放電部との比率を、排ガス流量分布により生じ
る温度分布に対応させることができる。
In view of this point, the exhaust gas purifying apparatus may be configured such that the central portion in the exhaust gas purifying apparatus has fewer discharge portions than the peripheral portion. With this configuration, the ratio between the discharge part and the non-discharge part can be made to correspond to the temperature distribution generated by the exhaust gas flow distribution.

【0014】また、請求項6のように、流路内を流れる
全ての排ガスが少なくとも1回は放電部を通過するよう
に放電部と非放電部とを配置すると良い。このようにす
れば、流路内を流れる全ての排ガスを確実に放電場にさ
らすことができ、放電による排ガス浄化効果を高めるこ
とができる。
It is preferable that the discharge section and the non-discharge section are arranged so that all the exhaust gas flowing in the flow path passes through the discharge section at least once. In this way, all the exhaust gas flowing in the flow path can be reliably exposed to the discharge field, and the exhaust gas purification effect by the discharge can be enhanced.

【0015】[0015]

【発明の実施の形態】[実施形態(1)]以下、本発明
の実施形態(1)を図1乃至図6に基づいて説明する。
図5に示すように、排ガス浄化装置11は、内燃機関で
あるエンジン12の排気管13の途中に設けられてい
る。この排ガス浄化装置11の浄化ハウジング14は、
多くの流路15を形成するために、排気管13よりも太
く形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [Embodiment (1)] An embodiment (1) of the present invention will be described below with reference to FIGS.
As shown in FIG. 5, the exhaust gas purifying device 11 is provided in the middle of an exhaust pipe 13 of an engine 12, which is an internal combustion engine. The purification housing 14 of the exhaust gas purification device 11
In order to form many flow paths 15, it is formed thicker than the exhaust pipe 13.

【0016】図1に示すように、浄化ハウジング14内
には、2種類の絶縁基板16,17が所定間隔で交互に
平行に配置され、各絶縁基板16,17間に排ガスが通
過する偏平な流路15が形成されている。各絶縁基板1
6,17は、放電の生じやすい誘電性のある耐熱性絶縁
体(例えばアルミナ等のセラミック、ガラス等)で形成
され、各絶縁基板16,17の表面(流路16の内壁
面)には、排ガスの浄化反応を促進させる触媒(図示せ
ず)がコーティングされている。
As shown in FIG. 1, two types of insulating substrates 16 and 17 are alternately arranged in parallel at a predetermined interval in a purification housing 14, and a flat gas through which exhaust gas passes between the insulating substrates 16 and 17 is provided. A channel 15 is formed. Each insulating substrate 1
Reference numerals 6 and 17 are made of a dielectric heat-resistant insulator (for example, ceramics such as alumina, glass, or the like) which easily generates electric discharge, and the surfaces of the insulating substrates 16 and 17 (the inner wall surface of the flow path 16) A catalyst (not shown) for promoting a purification reaction of the exhaust gas is coated.

【0017】各絶縁基板16,17の内部には、図2及
び図3に示すように、複数の放電電極18,19が印刷
導体又は導電板によって形成されている。各流路15の
上面又は下面の絶縁基板16は、図2に示すように、複
数の帯状の放電電極18が排ガス流れ方向と直角に延び
るように形成され、各放電電極18が該絶縁基板16の
左端部に形成された接続端子部20に接続されている。
この絶縁基板16と対向する絶縁基板17は、図3に示
すように、複数の帯状の放電電極19が排ガス流れ方向
と平行に延びるように形成され、各放電電極19の一端
がこれと一体に形成された接続導体21によって接続さ
れ、この接続導体21が絶縁基板17の右端部に形成さ
れた接続端子部22に接続されている。
As shown in FIGS. 2 and 3, a plurality of discharge electrodes 18 and 19 are formed by printed conductors or conductive plates inside the insulating substrates 16 and 17, respectively. As shown in FIG. 2, the insulating substrate 16 on the upper surface or the lower surface of each flow path 15 is formed such that a plurality of strip-shaped discharge electrodes 18 extend at right angles to the exhaust gas flow direction. Is connected to a connection terminal 20 formed at the left end of the.
As shown in FIG. 3, the insulating substrate 17 facing the insulating substrate 16 is formed such that a plurality of strip-shaped discharge electrodes 19 extend in parallel with the exhaust gas flow direction, and one end of each discharge electrode 19 is integrally formed with the discharge electrode 19. The connection conductor 21 is connected by the formed connection conductor 21, and the connection conductor 21 is connected to the connection terminal 22 formed on the right end of the insulating substrate 17.

【0018】図1に示すように、各流路15の片面側の
絶縁基板16の接続端子部20はグランド側に接続さ
れ、この絶縁基板16と対向する絶縁基板17の接続端
子部22は、例えば高周波の交流高電圧を発生する高電
圧発生装置23の出力端子に接続されている。これによ
り、高電圧発生装置23の動作時には、各流路15を挟
んで対向する複数の帯状の放電電極18,19間に高周
波の交流高電圧が印加され、各流路15内で放電が発生
する。
As shown in FIG. 1, the connection terminal 20 of the insulating substrate 16 on one side of each flow path 15 is connected to the ground side, and the connection terminal 22 of the insulating substrate 17 facing the insulating substrate 16 is For example, it is connected to an output terminal of a high voltage generator 23 that generates a high frequency AC high voltage. As a result, when the high-voltage generator 23 operates, a high-frequency AC high voltage is applied between the plurality of strip-shaped discharge electrodes 18 and 19 facing each other across the flow path 15, and a discharge is generated in each flow path 15. I do.

【0019】この場合、各流路15を挟んで対向する上
下の放電電極18,19は、上方から見て直交するよう
に並んでいるため、上下の放電電極18,19が対向す
る部分(上方から見て重なり合った部分)のみで放電が
発生し、それ以外の部分では放電が発生しない。これに
より、各流路15には、放電が発生する放電部Aと、放
電が発生しない非放電部Bとが混在している。本実施形
態(1)では、図4に示すように、流路15内に多数の
放電部Aが縦横に所定間隔で配列され、各放電部Aの周
囲を取り巻くように非放電部Bが形成されている。
In this case, since the upper and lower discharge electrodes 18 and 19 opposed to each other across the flow path 15 are arranged so as to be orthogonal to each other when viewed from above, the portion where the upper and lower discharge electrodes 18 and 19 are opposed to each other (upper part). The discharge occurs only in the overlapping portions as viewed from above, and no discharge occurs in other portions. As a result, in each flow path 15, a discharge portion A where discharge occurs and a non-discharge portion B where discharge does not occur are mixed. In the present embodiment (1), as shown in FIG. 4, a large number of discharge portions A are arranged in the channel 15 at predetermined intervals in the vertical and horizontal directions, and the non-discharge portions B are formed so as to surround the periphery of each discharge portion A. Have been.

【0020】以上説明した本実施形態(1)では、排ガ
ス浄化装置11内の各流路15に放電部Aと非放電部B
とが混在しているため、各流路15を流れる排ガスは、
放電部Aと非放電部Bを通過し、放電部Aを通過する過
程で、放電と流路15内壁の触媒の両方によって浄化反
応が促進され、非放電部Bを通過する過程で、触媒によ
って浄化反応が促進される。
In the embodiment (1) described above, the discharge section A and the non-discharge section B
Exhaust gas flowing through each flow path 15
In the process of passing through the discharge portion A and the non-discharge portion B and passing through the discharge portion A, the purification reaction is promoted by both the discharge and the catalyst on the inner wall of the flow path 15. Purification reaction is promoted.

【0021】一般に、図6に示すように、放電部Aの浄
化ウインドウは、非放電部Bの浄化ウインドウよりも低
い温度域に存在するため、非放電部Bの浄化ウインドウ
よりも低い温度の場所では、主として放電部Aで排ガス
が浄化され、反対に、放電部Aの浄化ウインドウよりも
高い温度の場所では、主として非放電部Bで排ガスが浄
化される。従って、各流路15に放電部Aと非放電部B
とを混在させれば、排ガス浄化装置11内の温度分布が
どの様に変化したとしても、放電部Aと非放電部Bのい
ずれかで排ガスを浄化することができ、排ガス浄化装置
11内の温度分布にあまり影響されずに常に高い浄化率
を得ることができる。しかも、温度に応じて放電をオン
・オフする必要がないため、温度センサが不要で、構成
が簡単であり、低コスト化の要求も満たすことができ
る。
In general, as shown in FIG. 6, since the purification window of the discharge section A exists in a lower temperature range than the purification window of the non-discharge section B, the temperature of the purification window is lower than the purification window of the non-discharge section B. Then, the exhaust gas is mainly purified in the discharge section A, and conversely, in places where the temperature is higher than the purification window of the discharge section A, the exhaust gas is mainly purified in the non-discharge section B. Therefore, the discharge part A and the non-discharge part B
Is mixed, exhaust gas can be purified in either the discharge part A or the non-discharge part B, regardless of how the temperature distribution in the exhaust gas purification device 11 changes. A high purification rate can always be obtained without being greatly affected by the temperature distribution. Moreover, since there is no need to turn on / off the discharge in accordance with the temperature, a temperature sensor is not required, the configuration is simple, and the demand for cost reduction can be satisfied.

【0022】[実施形態(2)]上記実施形態(1)で
は、図4に示すように、非放電部Bが排ガス流れ方向に
沿って流路15の両端まで延びているため、排ガス浄化
装置11内に流入した排ガスの一部が非放電部Bのみを
通って排ガス浄化装置11から流出してしまうおそれが
ある。
[Embodiment (2)] In the embodiment (1), as shown in FIG. 4, the non-discharge portion B extends to both ends of the flow path 15 along the exhaust gas flow direction. There is a possibility that part of the exhaust gas flowing into the exhaust gas 11 may flow out of the exhaust gas purification device 11 through only the non-discharge portion B.

【0023】そこで、本発明の実施形態(2)では、図
2の絶縁基板16を所定間隔で複数枚平行に配置し、各
流路15の上下の放電電極18を対向させることで、図
7に示すように、流路15に複数の帯状の放電部Aを所
定間隔で排ガス流れ方向と直角に延びるように形成し、
各放電部A間に非放電部Bを形成している。
In the embodiment (2) of the present invention, a plurality of the insulating substrates 16 of FIG. 2 are arranged in parallel at a predetermined interval, and the upper and lower discharge electrodes 18 of each flow path 15 are opposed to each other. As shown in the figure, a plurality of strip-shaped discharge portions A are formed in the flow channel 15 so as to extend at a predetermined interval at right angles to the exhaust gas flow direction,
A non-discharge portion B is formed between each discharge portion A.

【0024】この構成では、放電部Aと非放電部Bが流
路15を直角に横切ってその左右両端まで延びているの
で、流路15内を流れる全ての排ガスが放電部Aと非放
電部Bとの両方を必ず通過するようになり、より高い浄
化率を得ることができる。
In this configuration, since the discharge part A and the non-discharge part B extend at right and left ends across the flow path 15 at right angles, all exhaust gas flowing in the flow path 15 is discharged from the discharge part A and the non-discharge part. B and B are always passed, and a higher purification rate can be obtained.

【0025】[実施形態(3)]図8及び図9に示す本
発明の実施形態(3)では、絶縁基板31に放電電極3
2を千鳥状に連続して形成し、この絶縁基板31を所定
間隔で複数枚平行に配置し、各流路15の上下の放電電
極32を対向させることで、図9に示すように、流路1
5に放電部Aと非放電部Bとを千鳥状に形成している。
本実施形態(3)でも、前記実施形態(2)と同じく、
流路15内を流れる全ての排ガスが放電部Aと非放電部
Bとの両方を必ず通過するようになり、より高い浄化率
を得ることができる。
[Embodiment (3)] In the embodiment (3) of the present invention shown in FIG. 8 and FIG.
2 are formed in a staggered manner, a plurality of the insulating substrates 31 are arranged in parallel at a predetermined interval, and the upper and lower discharge electrodes 32 of each flow path 15 are opposed to each other, as shown in FIG. Road 1
5, a discharge portion A and a non-discharge portion B are formed in a staggered manner.
Also in the embodiment (3), as in the embodiment (2),
All the exhaust gas flowing in the flow path 15 always passes through both the discharge part A and the non-discharge part B, so that a higher purification rate can be obtained.

【0026】[実施形態(4)]排ガス浄化装置は、全
体が一様に温度変化するのではなく、エンジンに近い上
流部の方が下流部よりも温度が高くなる傾向がある。そ
こで、本発明の実施形態(4)では、図10に示すよう
に、流路15に複数の帯状の放電部Aと非放電部Bとを
交互に排ガス流れ方向と直角に延びるように形成すると
共に、放電部Aの幅を上流部の方が下流部よりも狭くな
るように形成することで、上流部の方が下流部よりも放
電部Aが少なくなるように構成している。このようにす
れば、排ガス浄化装置内の温度分布に応じて放電部Aと
非放電部Bとを効率良く使用して排ガスを浄化すること
ができ、排ガス浄化率を高めることができる。
[Embodiment (4)] In the exhaust gas purifying apparatus, the temperature does not change uniformly as a whole, but the temperature in the upstream portion closer to the engine tends to be higher than that in the downstream portion. Therefore, in the embodiment (4) of the present invention, as shown in FIG. 10, a plurality of strip-shaped discharge portions A and non-discharge portions B are formed in the flow path 15 so as to extend alternately at right angles to the exhaust gas flow direction. At the same time, by forming the width of the discharge portion A such that the upstream portion is narrower than the downstream portion, the discharge portion A is configured to be smaller in the upstream portion than in the downstream portion. With this configuration, the exhaust gas can be purified by efficiently using the discharge portion A and the non-discharge portion B according to the temperature distribution in the exhaust gas purification device, and the exhaust gas purification rate can be increased.

【0027】[実施形態(5)]排ガス浄化装置内の排
ガス流量は、一様ではなく、中央部で多く、周辺部で少
なくなり、排ガス流量が多い中央部は、排ガス流量が少
ない周辺部よりも温度が高くなる傾向がある。
[Embodiment (5)] The flow rate of the exhaust gas in the exhaust gas purifying apparatus is not uniform, but is large at the central portion and reduced at the peripheral portion. Also tend to be hot.

【0028】この点を考慮して、本発明の実施形態
(5)では、図11に示すように、流路15に複数の帯
状の放電部Aと非放電部Bとを交互に排ガス流れ方向と
直角に延びるように形成すると共に、放電部Aの幅を中
央部の方が周辺部よりも狭くなるように形成すること
で、中央部の方が周辺部よりも放電部Aが少なくなるよ
うに構成している。このようにすれば、放電部Aと非放
電部Bとの比率を、排ガス流量分布により生じる温度分
布に対応させることができ、放電部Aと非放電部Bとを
効率良く使用して排ガスを浄化することができる。
Considering this point, in the embodiment (5) of the present invention, as shown in FIG. 11, a plurality of strip-shaped discharge portions A and non-discharge portions B are alternately formed in the flow path 15 in the exhaust gas flow direction. And the width of the discharge portion A is formed to be narrower at the central portion than at the peripheral portion, so that the central portion has a smaller discharge portion A than the peripheral portion. It is composed. In this way, the ratio between the discharge part A and the non-discharge part B can be made to correspond to the temperature distribution generated by the exhaust gas flow distribution, and the discharge part A and the non-discharge part B can be used efficiently to reduce the exhaust gas. Can be purified.

【0029】尚、本実施形態(5)においても、前記実
施形態(4)と同じく、各放電部Aの幅を上流部の方が
下流部よりも狭くなるように形成して、上流部の方が下
流部よりも放電部Aが少なくなるように構成しても良
い。
In the present embodiment (5), similarly to the above embodiment (4), the width of each discharge portion A is formed so that the width of the upstream portion is smaller than that of the downstream portion. You may comprise so that the discharge part A may become fewer in a downstream part than a downstream part.

【0030】その他、本発明は、上記各実施形態に限定
されず、放電電極や放電部A(非放電部B)の形状・配
置パターンを適宜変更したり、排ガスの流路をハニカム
状に形成しても良い。
In addition, the present invention is not limited to the above embodiments, and the shape and arrangement pattern of the discharge electrode and the discharge portion A (non-discharge portion B) may be appropriately changed, and the exhaust gas flow path may be formed in a honeycomb shape. You may.

【0031】また、上記各実施形態では、放電部Aと非
放電部Bの両方に触媒がコーティングされているが、非
放電部Bのみに触媒をコーティングしても良い。また、
触媒のペレットを流路内に充填するようにしても良い。
In each of the above embodiments, both the discharge portion A and the non-discharge portion B are coated with the catalyst. However, the catalyst may be coated only on the non-discharge portion B. Also,
The pellets of the catalyst may be filled in the channel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態(1)の排ガス浄化装置の縦断正面図FIG. 1 is a longitudinal sectional front view of an exhaust gas purifying apparatus according to an embodiment (1).

【図2】絶縁基板の横断面図FIG. 2 is a cross-sectional view of an insulating substrate.

【図3】図2の絶縁基板と対向させる他の絶縁基板の横
断面図
FIG. 3 is a cross-sectional view of another insulating substrate facing the insulating substrate of FIG. 2;

【図4】実施形態(1)の放電部Aと非放電部Bとの配
置パターンを示す平面図
FIG. 4 is a plan view showing an arrangement pattern of a discharge part A and a non-discharge part B according to the embodiment (1).

【図5】排ガス浄化システム全体の概略構成図FIG. 5 is a schematic configuration diagram of the entire exhaust gas purification system.

【図6】放電部Aの浄化ウインドウと非放電部Bの浄化
ウインドウとの関係を説明する浄化特性図
FIG. 6 is a purification characteristic diagram for explaining a relationship between a purification window of a discharge part A and a purification window of a non-discharge part B;

【図7】実施形態(2)の放電部Aと非放電部Bとの配
置パターンを示す平面図
FIG. 7 is a plan view showing an arrangement pattern of a discharge portion A and a non-discharge portion B according to the embodiment (2).

【図8】実施形態(3)の絶縁基板の横断面図FIG. 8 is a cross-sectional view of the insulating substrate of the embodiment (3).

【図9】実施形態(3)の放電部Aと非放電部Bとの配
置パターンを示す平面図
FIG. 9 is a plan view showing an arrangement pattern of a discharge part A and a non-discharge part B according to the embodiment (3).

【図10】実施形態(4)の放電部Aと非放電部Bとの
配置パターンを示す平面図
FIG. 10 is a plan view showing an arrangement pattern of a discharge part A and a non-discharge part B according to the embodiment (4).

【図11】実施形態(5)の放電部Aと非放電部Bとの
配置パターンを示す平面図
FIG. 11 is a plan view showing an arrangement pattern of a discharge part A and a non-discharge part B according to the embodiment (5).

【符号の説明】[Explanation of symbols]

11…排ガス浄化装置、12…エンジン(内燃機関)、
13…排気管、14…浄化ハウジング、15…流路、1
6,17…絶縁基板、18,19…放電電極、23…高
電圧発生装置、A…放電部、B…非放電部。
11 ... exhaust gas purification device, 12 ... engine (internal combustion engine),
13 ... exhaust pipe, 14 ... purification housing, 15 ... flow path, 1
6, 17: insulating substrate, 18, 19: discharge electrode, 23: high voltage generator, A: discharge part, B: non-discharge part.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/28 301 B01D 53/36 101A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/28 301 B01D 53/36 101A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排ガスが流れる流路を挟んで
複数の放電電極を対向させ、該流路内で放電を発生させ
ることで、排ガスを浄化する内燃機関の排ガス浄化装置
において、 前記流路に放電が生じる部分(以下「放電部」という)
と放電が生じない部分(以下「非放電部」という)とを
混在させるように前記放電電極を構成し、少なくとも非
放電部には触媒を設けたことを特徴とする内燃機関の排
ガス浄化装置。
1. An exhaust gas purifying apparatus for an internal combustion engine for purifying exhaust gas by causing a plurality of discharge electrodes to face each other across a flow path through which exhaust gas of the internal combustion engine flows and generating discharge in the flow path. Part where discharge occurs in the road (hereinafter referred to as “discharge part”)
An exhaust gas purifying apparatus for an internal combustion engine, wherein the discharge electrode is configured so as to mix a discharge-free portion (hereinafter referred to as a “non-discharge portion”) and a catalyst is provided at least in the non-discharge portion.
【請求項2】 前記触媒は、前記流路の内壁面にコーテ
ィングされていることを特徴とする請求項1に記載の内
燃機関の排ガス浄化装置。
2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the catalyst is coated on an inner wall surface of the flow channel.
【請求項3】 排ガス浄化装置内の温度分布に応じて前
記放電部と前記非放電部との比率を変化させたことを特
徴とする請求項1又は2に記載の内燃機関の排ガス浄化
装置。
3. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein a ratio between the discharge section and the non-discharge section is changed according to a temperature distribution in the exhaust gas purifying apparatus.
【請求項4】 排ガス浄化装置内の上流部の方が下流部
よりも前記放電部が少なくなるように構成したことを特
徴とする請求項1乃至3のいずれかに記載の内燃機関の
排ガス浄化装置。
4. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the discharge portion is configured to be smaller in an upstream portion of the exhaust gas purifying device than in a downstream portion. apparatus.
【請求項5】 排ガス浄化装置内の中央部の方が周辺部
よりも前記放電部が少なくなるように構成したことを特
徴とする請求項1乃至4のいずれかに記載の内燃機関の
排ガス浄化装置。
5. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the central portion of the exhaust gas purifying apparatus is configured such that the number of the discharge portions is smaller in a central portion than in a peripheral portion. apparatus.
【請求項6】 前記流路内を流れる全ての排ガスが少な
くとも1回は放電部を通過するように前記放電部と前記
非放電部とを配置したことを特徴とする請求項1乃至5
のいずれかに記載の内燃機関の排ガス浄化装置。
6. The discharge section and the non-discharge section are arranged so that all exhaust gas flowing in the flow path passes through the discharge section at least once.
An exhaust gas purifying apparatus for an internal combustion engine according to any one of the above.
JP2000006228A 2000-01-12 2000-01-12 Exhaust emission control device for internal combustion engine Pending JP2001193442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000006228A JP2001193442A (en) 2000-01-12 2000-01-12 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000006228A JP2001193442A (en) 2000-01-12 2000-01-12 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2001193442A true JP2001193442A (en) 2001-07-17

Family

ID=18534787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000006228A Pending JP2001193442A (en) 2000-01-12 2000-01-12 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2001193442A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103398A (en) * 2003-09-29 2005-04-21 Casio Comput Co Ltd Reactor and production method thereof
EP1638377A4 (en) * 2003-06-20 2008-04-02 Ngk Insulators Ltd Plasma generating electrode, plasma generation device, and exhaust gas purifying apparatus
WO2008123357A1 (en) * 2007-03-30 2008-10-16 Kyocera Corporation Plasma generating body and reaction apparatus
US7444805B2 (en) * 2005-12-30 2008-11-04 Geo2 Technologies, Inc. Substantially fibrous refractory device for cleaning a fluid
CN108404657A (en) * 2018-05-11 2018-08-17 章旭明 A kind of electric discharge basic unit, catalytic converter and waste gas cleaning system
JP2020118125A (en) * 2019-01-25 2020-08-06 ダイハツ工業株式会社 Plasma reactor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1638377A4 (en) * 2003-06-20 2008-04-02 Ngk Insulators Ltd Plasma generating electrode, plasma generation device, and exhaust gas purifying apparatus
US7638103B2 (en) 2003-06-20 2009-12-29 Ngk Insulators, Ltd. Plasma generating electrode, plasma generation device, and exhaust gas purifying device
JP2005103398A (en) * 2003-09-29 2005-04-21 Casio Comput Co Ltd Reactor and production method thereof
US7444805B2 (en) * 2005-12-30 2008-11-04 Geo2 Technologies, Inc. Substantially fibrous refractory device for cleaning a fluid
WO2008123357A1 (en) * 2007-03-30 2008-10-16 Kyocera Corporation Plasma generating body and reaction apparatus
JPWO2008123357A1 (en) * 2007-03-30 2010-07-15 京セラ株式会社 Plasma generator and reactor
KR101117144B1 (en) * 2007-03-30 2012-05-31 쿄세라 코포레이션 Plasma generating body and reaction apparatus
US8349266B2 (en) 2007-03-30 2013-01-08 Kyocera Corporation Plasma generator and reaction apparatus
CN108404657A (en) * 2018-05-11 2018-08-17 章旭明 A kind of electric discharge basic unit, catalytic converter and waste gas cleaning system
JP2020118125A (en) * 2019-01-25 2020-08-06 ダイハツ工業株式会社 Plasma reactor
JP7258577B2 (en) 2019-01-25 2023-04-17 ダイハツ工業株式会社 plasma reactor

Similar Documents

Publication Publication Date Title
US6464945B1 (en) Non-thermal plasma exhaust NOx reactor
JP3636471B2 (en) Honeycomb body with a plurality of flow paths having different flow resistances flowed through by a fluid
US6835358B2 (en) Non-thermal plasma reactor for lower power consumption
JPH06509266A (en) Exhaust treatment systems and methods
US20060176045A1 (en) Plasma reactor and method of determining abnormality in plasma reactor
JP2001193441A (en) Exhaust emission control device for internal combustion engine
JP2001193442A (en) Exhaust emission control device for internal combustion engine
US20050079112A1 (en) Surface discharge non-thermal plasma reactor and method
JP4299019B2 (en) Plasma reactor
EP3318735B1 (en) Plasma generating electrode, electrode panel, and plasma reactor
JP4522854B2 (en) Plasma carbon particulate filter
US6887440B2 (en) Edge-connected non-thermal plasma exhaust after-treatment device
US6800256B2 (en) Scaleable inter-digitized tine non-thermal plasma reactor
US6821493B2 (en) Non-thermal plasma reactor substrate design-E-shape with low loss electrode pattern
JP2002129947A (en) Exhaust emission purifying device for internal combustion engine
US6946793B1 (en) Plasma reactor design for treating auto emissions—durable and low cost
JP3858771B2 (en) Discharge device for exhaust purification
JP2009107883A (en) Plasma generator and plasma generator
JP2004340049A (en) Exhaust emission control device
KR200374504Y1 (en) Automobile gas scrubber of the dry discharge filter deposited with catalytic thin films
KR20040006402A (en) Apparatus and method for cleaning of exahust gas with low temperature plasma
JP7307023B2 (en) Plasma reactor for exhaust gas purification
JP2000265822A (en) Exhaust mission control device for internal combustion engine
JP7055669B2 (en) Plasma reactor
KR100488691B1 (en) Plasma reactor