JP2001190960A - Catalyst for exhaust gas cleaning - Google Patents
Catalyst for exhaust gas cleaningInfo
- Publication number
- JP2001190960A JP2001190960A JP2000006077A JP2000006077A JP2001190960A JP 2001190960 A JP2001190960 A JP 2001190960A JP 2000006077 A JP2000006077 A JP 2000006077A JP 2000006077 A JP2000006077 A JP 2000006077A JP 2001190960 A JP2001190960 A JP 2001190960A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- catalyst
- way catalyst
- adsorbent
- upstream side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 177
- 238000004140 cleaning Methods 0.000 title abstract 2
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 67
- 239000003463 adsorbent Substances 0.000 claims abstract description 64
- 230000003647 oxidation Effects 0.000 claims abstract description 50
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 50
- 229930195733 hydrocarbon Natural products 0.000 claims description 106
- 150000002430 hydrocarbons Chemical class 0.000 claims description 106
- 238000000746 purification Methods 0.000 claims description 14
- 239000004215 Carbon black (E152) Substances 0.000 claims description 7
- 230000004913 activation Effects 0.000 abstract description 12
- 239000002250 absorbent Substances 0.000 abstract 1
- 230000002745 absorbent Effects 0.000 abstract 1
- 230000000630 rising effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 67
- 239000010457 zeolite Substances 0.000 description 40
- 229910021536 Zeolite Inorganic materials 0.000 description 39
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 39
- 239000010410 layer Substances 0.000 description 39
- 239000000843 powder Substances 0.000 description 25
- 239000002002 slurry Substances 0.000 description 25
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 21
- 239000010948 rhodium Substances 0.000 description 15
- 229910000510 noble metal Inorganic materials 0.000 description 12
- 229910052697 platinum Inorganic materials 0.000 description 12
- 229910052703 rhodium Inorganic materials 0.000 description 10
- 239000011247 coating layer Substances 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000008188 pellet Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 102100033007 Carbonic anhydrase 14 Human genes 0.000 description 1
- 101000867862 Homo sapiens Carbonic anhydrase 14 Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910001657 ferrierite group Inorganic materials 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- -1 lifted up Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
Landscapes
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炭化水素吸着材と
酸化触媒又は三元触媒を用いた排ガス浄化用触媒に関
し、排ガス中の炭化水素(HC)を一層効率よく浄化でき
る排ガス浄化用触媒に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst using a hydrocarbon adsorbent and an oxidation catalyst or a three-way catalyst, and more particularly to an exhaust gas purifying catalyst capable of purifying hydrocarbons (HC) in exhaust gas more efficiently. .
【0002】[0002]
【従来の技術】従来より自動車の排ガス浄化用触媒とし
て、アルミナなどの多孔質担体に白金などの貴金属を担
持した酸化触媒が用いられている。この酸化触媒では、
排ガス中のHC及びCOが酸化されて浄化される。2. Description of the Related Art Heretofore, as an exhaust gas purifying catalyst for automobiles, an oxidation catalyst having a noble metal such as platinum supported on a porous carrier such as alumina has been used. In this oxidation catalyst,
HC and CO in the exhaust gas are oxidized and purified.
【0003】また空燃比を理論空燃比に制御すること
で、アルミナなどの多孔質担体に白金などの貴金属を担
持した触媒は排ガス中のCO及びHCの酸化とNOx の還元と
を同時に行うため、三元触媒と称されている。このよう
な三元触媒としては、例えばコーディエライトなどから
なる耐熱性のハニカム基材にγ−アルミナからなる多孔
質担体層を形成し、その多孔質担体層に白金(Pt)、ロ
ジウム(Rh)などの貴金属を担持させたものが広く用い
られている。[0003] By controlling the air-fuel ratio to the stoichiometric air-fuel ratio, the porous carrier catalyst carrying a noble metal such as platinum, such as alumina for performing the reduction of the oxidized and NO x CO and HC in the exhaust gas simultaneously , Is called a three-way catalyst. As such a three-way catalyst, for example, a porous carrier layer composed of γ-alumina is formed on a heat-resistant honeycomb substrate composed of cordierite or the like, and platinum (Pt), rhodium (Rh ) Are widely used.
【0004】しかしながら酸化触媒及び三元触媒では、
担持されている貴金属がその活性化温度以上となるまで
は触媒反応が生じないという問題がある。そのため始動
時あるいは冷間時などには、排ガスの温度が低いために
貴金属が活性化温度に達せず、HCやNOx の浄化は困難で
ある。[0004] However, in the oxidation catalyst and the three-way catalyst,
There is a problem that a catalytic reaction does not occur until the supported noble metal has a temperature equal to or higher than its activation temperature. In order to do such as during-start or during a cold, a noble metal for the temperature of the exhaust gas is low does not reach the activation temperature, the purification of HC and NO x is difficult.
【0005】そこで例えば特開平5-057148号公報あるい
は特開平6-154538号公報などに開示されているように、
排ガス流れ方向において、酸化触媒又は三元触媒の上流
側にゼオライトなどのHC吸着材を配置した排ガス浄化装
置が開発されている。この排ガス浄化装置では、低温時
において排ガス中のHCは先ずHC吸着材に吸着され、吸着
されたHCは昇温時に脱離して下流側に配置され活性化温
度以上となった酸化触媒又は三元触媒により酸化浄化さ
れる。したがってこのような排ガス浄化装置によれば、
冷間時や始動時などに排ガス中に含まれるHCはHC吸着材
に吸着されるため排出が抑制され、高温時にHC吸着材か
ら放出されたHC及び排ガス中のHCは酸化触媒又は三元触
媒で酸化浄化されるため、低温から高温までHCの排出を
抑制することができ、未浄化状態で排出されるHC量を低
減することができる。Therefore, as disclosed in, for example, JP-A-5-057148 or JP-A-6-154538,
Exhaust gas purifying devices have been developed in which an HC adsorbent such as zeolite is disposed upstream of an oxidation catalyst or a three-way catalyst in the exhaust gas flow direction. In this exhaust gas purifying device, HC in exhaust gas is first adsorbed by an HC adsorbent at a low temperature, and the adsorbed HC is desorbed at the time of temperature rise and is disposed downstream to be an oxidation catalyst or a three-way catalyst having an activation temperature or higher. The catalyst is oxidized and purified. Therefore, according to such an exhaust gas purifying apparatus,
HC contained in the exhaust gas during cold or start-up is adsorbed by the HC adsorbent, which suppresses the emission. HC released from the HC adsorbent at high temperatures and HC in the exhaust gas are oxidized catalysts or three-way catalysts Therefore, HC emission can be suppressed from a low temperature to a high temperature, and the amount of HC discharged in an unpurified state can be reduced.
【0006】また一体型のハニカム形状のモノリス触媒
において、下層にHC吸着材の粉末からなるコート層を形
成し、その上層に酸化触媒又は三元触媒の粉末からなる
コート層を形成した排ガス浄化用触媒も提案されてい
る。この排ガス浄化用触媒では、低温時においては排ガ
ス中のHCが活性化温度となっていない上層を通過して下
層のHC吸着材に吸着され、吸着されたHCは温度の上昇と
共に放出されて活性化温度以上となっている上層の酸化
触媒又は三元触媒で酸化浄化される。したがって冷間時
や始動時などに排ガス中に含まれるHCはHC吸着材に吸着
されるため排出が抑制され、高温時に下層のHC吸着材か
ら放出されたHC及び排ガス中のはHCは酸化触媒又は三元
触媒で酸化浄化されるため、低温から高温までHCの排出
を抑制することができる。[0006] Further, in the monolithic catalyst having an integral honeycomb shape, a coat layer made of HC adsorbent powder is formed as a lower layer, and a coat layer made of an oxidation catalyst or a three-way catalyst powder is formed as an upper layer. Catalysts have also been proposed. In this exhaust gas purifying catalyst, at low temperatures, HC in exhaust gas passes through the upper layer, which is not at the activation temperature, and is adsorbed by the lower HC adsorbent, and the adsorbed HC is released as the temperature rises and becomes active. It is oxidized and purified by the upper oxidation catalyst or the three-way catalyst which is at or above the formation temperature. Therefore, the HC contained in the exhaust gas is adsorbed by the HC adsorbent at the time of cold or start-up, so the emission is suppressed, and the HC released from the lower HC adsorbent at high temperature and the HC in the exhaust gas are oxidation catalysts. Alternatively, since the catalyst is oxidized and purified by the three-way catalyst, the emission of HC can be suppressed from a low temperature to a high temperature.
【0007】[0007]
【発明が解決しようとする課題】ところがゼオライトな
どのHC吸着材を酸化触媒又は三元触媒の上流側に配置し
た排ガス浄化装置においては、排ガスの熱が上流側のHC
吸着材に奪われるために、下流側の酸化触媒又は三元触
媒の昇温が妨げられ、担持されている貴金属の活性化温
度まで上昇する時間が長くなってその間はHC浄化率が低
いという問題があった。However, in an exhaust gas purifying apparatus in which an HC adsorbent such as zeolite is disposed on the upstream side of an oxidation catalyst or a three-way catalyst, the heat of exhaust gas is reduced by the HC on the upstream side.
Due to the deprivation of the adsorbent, the temperature rise of the downstream oxidation catalyst or the three-way catalyst is hindered, and the time required to raise the activation temperature of the supported noble metal becomes longer, during which the HC purification rate is low. was there.
【0008】また下層にHC吸着材層を形成し、その上層
に酸化触媒層又は三元触媒層を形成した排ガス浄化用触
媒においては、排ガス流れ方向の上流側に位置するHC吸
着材から放出されたHCは、下流側に位置する酸化触媒又
は三元触媒と接触する確率が高いので効率よく酸化され
る。しかしながら下流側に位置するHC吸着材から放出さ
れたHCは、その下流側に位置する酸化触媒又は三元触媒
の量が少なく酸化触媒又は三元触媒と接触する確率が低
いために、活性化温度以上の高温域においても酸化され
ずそのまま放出される場合がある。In an exhaust gas purifying catalyst in which an HC adsorbent layer is formed as a lower layer and an oxidation catalyst layer or a three-way catalyst layer is formed above the HC adsorbent layer, the HC adsorbent is discharged from the HC adsorbent positioned upstream in the exhaust gas flow direction. The HCs are efficiently oxidized because they have a high probability of contacting the oxidation catalyst or the three-way catalyst located on the downstream side. However, the HC released from the HC adsorbent located on the downstream side has an activation temperature because the amount of the oxidation catalyst or the three-way catalyst located on the downstream side is small and the probability of contact with the oxidation catalyst or the three-way catalyst is low. Even in the high temperature range described above, there is a case where it is released without being oxidized.
【0009】本発明はこのような事情に鑑みてなされた
ものであり、低温域から高温域まで未浄化のまま排出さ
れるHC量をさらに低減することを目的とする。The present invention has been made in view of such circumstances, and has as its object to further reduce the amount of HC discharged without purification from a low-temperature region to a high-temperature region.
【0010】[0010]
【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒の特徴は、酸化触媒又は三元触媒
とHC吸着材とからなる排ガス浄化用触媒であって、HC吸
着材は排ガス流れ方向の上流側で多く下流側で少ない濃
度分布をもって含有されていることにある。The feature of the exhaust gas purifying catalyst of the present invention which solves the above-mentioned problems is that the exhaust gas purifying catalyst comprises an oxidation catalyst or a three-way catalyst and an HC adsorbent. That is, it is contained with a high concentration on the upstream side in the exhaust gas flow direction and a small concentration distribution on the downstream side.
【0011】HC吸着材の排ガス流れ方向の上流側と下流
側の濃度比は、上流側:下流側=9〜7:1〜3である
ことが望ましい。さらに酸化触媒又は三元触媒は、排ガ
ス流れ方向の上流側で少なく下流側で多い濃度分布を有
することが望ましい。It is desirable that the concentration ratio of the HC adsorbent between the upstream side and the downstream side in the exhaust gas flow direction is upstream: downstream = 9〜7: 173. Further, it is desirable that the oxidation catalyst or the three-way catalyst has a concentration distribution that is small on the upstream side in the exhaust gas flow direction and large on the downstream side.
【0012】またHC吸着材と酸化触媒又は三元触媒との
排ガス流れ方向の上流側と下流側における濃度比は、上
流側(HC吸着材:酸化触媒又は三元触媒):下流側(HC
吸着材:酸化触媒又は三元触媒)=(9:1〜7:
3):(1:9〜3:7)であることが特に望ましい。The concentration ratio between the HC adsorbent and the oxidation catalyst or the three-way catalyst at the upstream side and the downstream side in the exhaust gas flow direction is as follows: upstream (HC adsorbent: oxidation catalyst or three-way catalyst): downstream (HC
Adsorbent: oxidation catalyst or three-way catalyst) = (9: 1 to 7:
3): (1: 9 to 3: 7) is particularly desirable.
【0013】[0013]
【発明の実施の形態】本発明の排ガス浄化用触媒では、
HC吸着材は排ガス流れ方向の上流側で多く下流側で少な
い濃度分布をもって含有されている。したがって低温域
においては、排ガス中のHCは上流側に多く含有されたHC
吸着材に主として吸着されるため、未浄化のHCの排出が
抑制される。そして酸化触媒又は三元触媒が排ガス流れ
方向の上流側にも存在している構成とすることにより、
排ガスの熱は上流側に存在する酸化触媒又は三元触媒に
速やかに伝わり、上流側に位置する酸化触媒又は三元触
媒は速やかに昇温されて活性化温度以上となるため、HC
吸着材から放出されたHC及び排ガス中のHCが酸化浄化さ
れる。さらに上流側における着火は下流側へ速やかに伝
播されるため、昇温が促進されて下流側の酸化触媒又は
三元触媒も速やかに活性化温度以上となる。これにより
低温域における浄化率が向上する。BEST MODE FOR CARRYING OUT THE INVENTION In the exhaust gas purifying catalyst of the present invention,
The HC adsorbent is contained with a high concentration on the upstream side in the exhaust gas flow direction and a small concentration distribution on the downstream side. Therefore, in the low temperature range, HC in the exhaust gas contains much HC in the upstream side.
Since it is mainly adsorbed by the adsorbent, the emission of unpurified HC is suppressed. And by adopting a configuration in which the oxidation catalyst or the three-way catalyst is also present on the upstream side in the exhaust gas flow direction,
The heat of the exhaust gas is quickly transmitted to the oxidation catalyst or the three-way catalyst present on the upstream side, and the oxidation catalyst or the three-way catalyst located on the upstream side is quickly heated to the activation temperature or more, so that the HC
HC released from the adsorbent and HC in exhaust gas are oxidized and purified. Further, since the ignition on the upstream side is promptly propagated to the downstream side, the temperature rise is promoted, and the oxidation catalyst or the three-way catalyst on the downstream side quickly becomes higher than the activation temperature. Thereby, the purification rate in the low temperature range is improved.
【0014】また下流側ではHC吸着材が少ないため、吸
着されるHC量も少ない。したがって温度の上昇と共に下
流側のHC吸着材から放出され、酸化触媒又は三元触媒と
接触せずに未浄化の状態で排出されるHC量は比較的少な
い。しかも下流側には酸化触媒又は三元触媒が多く含有
された構成とすれば、HC吸着材から放出されたHC及び排
ガス中のHCは、酸化触媒又は三元触媒と接触する確率が
高くなる。したがって未浄化のまま排出されるHC量は少
なくなり、高温域においても未浄化のまま排出されるHC
量を低減することができる。On the downstream side, the amount of HC adsorbed is small because the amount of HC adsorbent is small. Therefore, the amount of HC released from the HC adsorbent on the downstream side as the temperature rises and discharged in an unpurified state without contacting the oxidation catalyst or the three-way catalyst is relatively small. In addition, if the downstream side is configured to contain a large amount of the oxidation catalyst or the three-way catalyst, there is a high probability that HC released from the HC adsorbent and HC in the exhaust gas come into contact with the oxidation catalyst or the three-way catalyst. Therefore, the amount of HC discharged without purification is reduced, and HC discharged without purification even in a high temperature range.
The amount can be reduced.
【0015】HC吸着材としては、フェリエライト、ZSM-
5、モルデナイト、Y型ゼオライトなどのゼオライトを
用いることができる。またゼオライトにPdやAgなどの貴
金属を担持したものをHC吸着材とすることも好ましい。
このように貴金属を担持することで、低分子量のHCの吸
着性が一層向上する。As the HC adsorbent, ferrierite, ZSM-
5, zeolites such as mordenite and Y-type zeolite can be used. It is also preferable to use a zeolite carrying a noble metal such as Pd or Ag as the HC adsorbent.
By supporting the noble metal in this way, the adsorptivity of low molecular weight HC is further improved.
【0016】酸化触媒又は三元触媒としては、多孔質担
体と、多孔質担体に担持された貴金属とからなる従来と
同様の触媒を用いることができる。多孔質担体として
は、アルミナ、シリカ、シリカ−アルミナ、ジルコニ
ア、チタニアなどから選択して用いることができる。中
でも吸着特性及び耐熱性に優れたγ−アルミナが特に好
ましい。As the oxidation catalyst or the three-way catalyst, a conventional catalyst comprising a porous carrier and a noble metal supported on the porous carrier can be used. As the porous carrier, alumina, silica, silica-alumina, zirconia, titania, or the like can be used. Among them, γ-alumina having excellent adsorption characteristics and heat resistance is particularly preferable.
【0017】また上記多孔質担体には、セリア、セリア
−ジルコニアなどの酸素吸蔵放出材を担持あるいは混合
することが好ましい。この酸素吸蔵放出材により排ガス
中の酸素濃度を安定化することができ、排ガスを一層安
定してストイキ雰囲気とすることができるので、三元触
媒の浄化活性が一層向上する。It is preferable that an oxygen storage / release material such as ceria or ceria-zirconia is carried or mixed on the porous carrier. The oxygen storage / release material can stabilize the oxygen concentration in the exhaust gas and further stabilize the exhaust gas into a stoichiometric atmosphere, so that the purification activity of the three-way catalyst is further improved.
【0018】上記多孔質担体に担持される貴金属として
は、白金(Pt)、ロジウム(Rh)、パラジウム(Pd)、
イリジウム(Ir)などから一種あるいは複数種を選択し
て用いることができる。この貴金属の担持量は、多孔質
担体1リットルに対して 0.1〜10gとすることが好まし
い。これより少ないと浄化活性が不足し、これより多く
担持しても効果が飽和するとともに高価となる。The noble metals supported on the porous carrier include platinum (Pt), rhodium (Rh), palladium (Pd),
One or a plurality of iridium (Ir) or the like can be selected and used. The amount of the noble metal carried is preferably 0.1 to 10 g per liter of the porous carrier. If the amount is less than this, the purification activity is insufficient, and if the amount is more than this, the effect is saturated and the cost increases.
【0019】HC吸着材と酸化触媒又は三元触媒は、共に
粉末状態として両粉末を混合し、ペレット形状あるいは
ハニカム形状として用いることができる。ハニカム形状
とする場合には、コーディエライトあるいは金属箔から
形成されたハニカム担体基材に前記混合粉末からコート
層を形成して製造することができる。あるいはHC吸着材
粉末と多孔質担体粉末との混合粉末からコート層を形成
し、そのコート層に貴金属を担持してもよい。Both the HC adsorbent and the oxidation catalyst or the three-way catalyst can be used in the form of pellets or a honeycomb by mixing both powders in a powder state. In the case of a honeycomb shape, it can be manufactured by forming a coat layer from the mixed powder on a honeycomb carrier base material formed of cordierite or metal foil. Alternatively, a coat layer may be formed from a mixed powder of the HC adsorbent powder and the porous carrier powder, and the noble metal may be supported on the coat layer.
【0020】またHC吸着材の粉末からなるコート層と、
酸化触媒又は三元触媒の粉末からなるコート層とを積層
したハニカム形状の排ガス浄化用触媒とすることもでき
る。この場合には、下層にHC吸着材の粉末からなるコー
ト層を形成し、その上層に酸化触媒又は三元触媒の粉末
からなるコート層を形成したものとすることが望まし
い。A coat layer made of an HC adsorbent powder;
A honeycomb-shaped exhaust gas purifying catalyst in which a coating layer made of an oxidation catalyst or a three-way catalyst powder is laminated can also be used. In this case, it is desirable to form a coat layer made of the powder of the HC adsorbent in the lower layer and to form a coat layer made of the powder of the oxidation catalyst or the three-way catalyst on the upper layer.
【0021】ペレット形状の排ガス浄化用触媒とした場
合、HC吸着材が排ガス流れ方向の上流側で多く下流側で
少ない濃度分布をもって含有された構造とするには、HC
吸着材粉末と酸化触媒又は三元触媒の粉末との混合比率
が異なる複数種類のペレットを作製しておき、HC吸着材
粉末濃度の高いペレットを排ガス流れ方向の上流側に配
置するとともに、HC吸着材粉末濃度の低いペレットを排
ガス流れ方向の下流側に配置すればよい。In the case of a catalyst for purifying exhaust gas in the form of pellets, in order to obtain a structure in which the HC adsorbent is contained with a high concentration on the upstream side in the exhaust gas flow direction and a small concentration distribution on the downstream side, it is necessary to use HC
A plurality of types of pellets having different mixing ratios of the adsorbent powder and the oxidation catalyst or the three-way catalyst powder are prepared, and the pellet having a high HC adsorbent powder concentration is arranged on the upstream side in the exhaust gas flow direction, and the HC adsorption is performed. Pellets having a low material powder concentration may be arranged on the downstream side in the exhaust gas flow direction.
【0022】また混合粉末からなるコート層をもつ排ガ
ス浄化用触媒において、HC吸着材が排ガス流れ方向の上
流側で多く下流側で少ない濃度分布をもって含有された
構造とするには、コート層中のHC吸着材濃度を排ガス流
れ方向の上流側で多く下流側で少なくなるようにすれば
よい。このようなコート層を形成するには、HC吸着材粉
末と酸化触媒又は三元触媒の粉末との混合比率が異なる
複数種類のスラリーを調製しておき、HC吸着材粉末濃度
の高いスラリーで上流側のコート層を形成し、HC吸着材
粉末濃度の低いスラリーで下流側のコート層を形成する
ことで行うことができる。Further, in an exhaust gas purifying catalyst having a coat layer made of a mixed powder, a structure in which the HC adsorbent is contained with a high concentration on the upstream side in the flow direction of the exhaust gas and a small concentration distribution on the downstream side is required. The HC adsorbent concentration may be increased on the upstream side in the exhaust gas flow direction and decreased on the downstream side. In order to form such a coat layer, a plurality of types of slurries having different mixing ratios of the HC adsorbent powder and the oxidation catalyst or the three-way catalyst powder are prepared in advance, and a slurry having a high HC adsorbent powder concentration is used for upstream. This can be performed by forming a coating layer on the downstream side and forming a coating layer on the downstream side with a slurry having a low concentration of the HC adsorbent powder.
【0023】さらにHC吸着材のコート層と酸化触媒又は
三元触媒のコート層が積層された構成の排ガス浄化用触
媒において、HC吸着材が排ガス流れ方向の上流側で多く
下流側で少ない濃度分布をもって含有された構造とする
には、HC吸着材のコート層の厚さを上流側ほど厚くし、
下流側ほど薄くすることで行うことができる。コート層
の厚さをこのように調整するには、例えばハニカム基材
にHC吸着材粉末のスラリーを付着させた後、ハニカム基
材を上流側が下方となるように傾けてスラリーを流動さ
せることで行うことができる。また上流側のコート層形
成工程を下流側より多くしてもよい。あるいは上流側と
下流側でスラリー濃度を異ならせてもよいし、スラリー
を吸引する方法又は吹き払う方法を調整して行うことも
できる。Further, in an exhaust gas purifying catalyst having a configuration in which a coat layer of an HC adsorbent and a coat layer of an oxidation catalyst or a three-way catalyst are laminated, the concentration distribution of the HC adsorbent is high on the upstream side in the exhaust gas flow direction and low on the downstream side. In order to make the structure contained with, the thickness of the coat layer of the HC adsorbent is increased toward the upstream side,
This can be achieved by reducing the thickness toward the downstream side. In order to adjust the thickness of the coat layer in this way, for example, after adhering a slurry of the HC adsorbent powder to the honeycomb substrate, the honeycomb substrate is inclined so that the upstream side is downward, and the slurry is caused to flow. It can be carried out. Further, the number of steps of forming the coat layer on the upstream side may be larger than that on the downstream side. Alternatively, the slurry concentration may be different between the upstream side and the downstream side, or the method of sucking or blowing off the slurry may be adjusted.
【0024】なおHC吸着材の濃度分布は、上流側で高く
下流側で低い2段階あるいは複数段階の段階的に変化す
る構成であってもよいし、上流側から下流側に向かって
徐々に低くなるように連続的に変化する構成としてもよ
い。The concentration distribution of the HC adsorbent may be changed in two steps or a plurality of steps which are high on the upstream side and low on the downstream side, or may gradually decrease from the upstream side to the downstream side. It is good also as a structure which changes continuously so that it may become.
【0025】HC吸着材の排ガス流れ方向の上流側と下流
側の濃度比は、例えば上流側端部と下流側端部におい
て、上流側:下流側=9〜7:1〜3であることが望ま
しい。上流側のHC吸着材の濃度がこの範囲より低くなる
と、低温域におけるHC吸着量が少なくなるため低温域に
おけるHC浄化率が低くなってしまう。また上流側のHC吸
着材の濃度がこの範囲より高くなると、HC吸着材に排ガ
スの熱が奪われるため下流側の酸化触媒又は三元触媒が
活性化温度となるまでの時間が長くなり、浄化率が低く
なる場合がある。上流側:下流側=9〜8:1〜2の範
囲が好ましく、上流側:下流側=8:2近傍が特に望ま
しい。The concentration ratio of the HC adsorbent between the upstream side and the downstream side in the exhaust gas flow direction may be, for example, 9: 7: 1 to 3 at the upstream end and the downstream end. desirable. If the concentration of the HC adsorbent on the upstream side is lower than this range, the amount of adsorbed HC in the low temperature range is reduced, and the HC purification rate in the low temperature range is lowered. If the concentration of the HC adsorbent on the upstream side is higher than this range, the heat of the exhaust gas is taken away by the HC adsorbent, so that the time required for the oxidation catalyst or the three-way catalyst on the downstream side to reach the activation temperature is prolonged, resulting in purification. The rate may be lower. Upstream: Downstream = 9 to 8: 1 to 2 is preferable, and Upstream: Downstream = 8: 2 is particularly desirable.
【0026】酸化触媒又は三元触媒は、排ガス流れ方向
の上流側で少なく下流側で多い濃度分布を有することが
望ましい。このように構成することで、HC吸着材に濃度
分布を形成した本発明の排ガス浄化用触媒における前述
した作用が最大に発現される。なお酸化触媒又は三元触
媒にこのように濃度分布を形成するには、上記したHC吸
着材の場合と同様の方法を用いて行うことができる。It is desirable that the oxidation catalyst or the three-way catalyst has a concentration distribution that is small on the upstream side in the exhaust gas flow direction and large on the downstream side. With such a configuration, the above-described action of the exhaust gas purifying catalyst of the present invention in which the concentration distribution is formed in the HC adsorbent is maximized. In order to form such a concentration distribution in the oxidation catalyst or the three-way catalyst, the same method as in the case of the HC adsorbent described above can be used.
【0027】HC吸着材と酸化触媒又は三元触媒との排ガ
ス流れ方向の上流側と下流側における濃度比は、例えば
上流側端部と下流側端部において、上流側(HC吸着材:
酸化触媒又は三元触媒):下流側(HC吸着材:酸化触媒
又は三元触媒)=(9:1〜7:3):(1:9〜3:
7)であることが望ましい。上流側のHC吸着材の濃度が
この範囲より低くなると、低温域におけるHC吸着量が少
なくなるため低温域におけるHC浄化率が低くなってしま
う。また上流側の酸化触媒又は三元触媒の濃度がこの範
囲より低くなると、上流側の酸化触媒又は三元触媒が活
性化温度となるまでの時間が長くなるとともに着火の伝
播が生じにくくなるため、浄化率が低くなってしまう。The concentration ratio between the HC adsorbent and the oxidation catalyst or the three-way catalyst at the upstream side and the downstream side in the exhaust gas flow direction is, for example, at the upstream end and the downstream end, the upstream (HC adsorbent:
Oxidation catalyst or three-way catalyst): Downstream side (HC adsorbent: oxidation catalyst or three-way catalyst) = (9: 1 to 7: 3): (1: 9 to 3:
7) is desirable. If the concentration of the HC adsorbent on the upstream side is lower than this range, the amount of adsorbed HC in the low temperature range is reduced, and the HC purification rate in the low temperature range is lowered. Also, if the concentration of the upstream oxidation catalyst or the three-way catalyst is lower than this range, the time until the upstream oxidation catalyst or the three-way catalyst becomes the activation temperature becomes longer and the propagation of ignition becomes less likely to occur, The purification rate will be low.
【0028】[0028]
【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。The present invention will be specifically described below with reference to examples and comparative examples.
【0029】(実施例1)モル比SiO2/Al2O3 が2000の
ZSM-5粉末と、モル比SiO2/Al2O3 が 400のY型ゼオラ
イト粉末を重量比でZSM-5:Y型ゼオライト=7:3の
割合で混合したゼオライト粉末 100重量部と、バインダ
としての固形分40%のシリカゾルを75重量部と、水25重
量部とを混合してスラリーを調製した。(Example 1) When the molar ratio of SiO 2 / Al 2 O 3 is 2000
100 parts by weight of zeolite powder obtained by mixing ZSM-5 powder, Y type zeolite powder having a molar ratio of SiO 2 / Al 2 O 3 of 400 at a ratio of ZSM-5: Y type zeolite = 7: 3 by weight, and a binder Was mixed with 75 parts by weight of silica sol having a solid content of 40% and 25 parts by weight of water to prepare a slurry.
【0030】容量1300ccのコーディエライト製ハニカム
基材を用意し、上記スラリーに浸漬した後引き上げ、上
流側端面となる端面側から空気を引き抜いて余分なスラ
リーを除去した。このとき空気の引き抜き速度を調整す
ることにより、下流側端面から上流側端面に向かうにつ
れてスラリーの付着量が多くなるようにした。そして12
0℃で 120分間乾燥後、 500℃で 120分間焼成して、ゼ
オライトコート層を形成した。ゼオライトコート層は、
ハニカム基材1リットルあたり 180g形成された。A cordierite honeycomb substrate having a capacity of 1300 cc was prepared, immersed in the above slurry, lifted up, and air was drawn out from the end face, which is the upstream end face, to remove excess slurry. At this time, the amount of slurry attached was increased from the downstream end face toward the upstream end face by adjusting the air extraction speed. And 12
After drying at 0 ° C. for 120 minutes, it was baked at 500 ° C. for 120 minutes to form a zeolite coat layer. The zeolite coat layer is
180 g was formed per liter of the honeycomb substrate.
【0031】次に、γ-Al2O3粉末とCeO2−ZrO2複合酸化
物粉末(原子比Ce:Zr=1:1)を重量比で3:2とな
るように混合した混合粉末を用意し、所定濃度のジニト
ロジアンミン白金硝酸水溶液の所定量を含浸させ、蒸発
乾固してPtを担持した。さらに所定濃度の硝酸ロジウム
水溶液の所定量を含浸させ、蒸発乾固してRhを担持し
た。Pt及びRhの担持量は、Ptが1.54重量%、Rhが0.31重
量%である。Next, a mixed powder obtained by mixing the γ-Al 2 O 3 powder and the CeO 2 —ZrO 2 composite oxide powder (atomic ratio Ce: Zr = 1: 1) in a weight ratio of 3: 2 is used. It was prepared, impregnated with a predetermined amount of a dinitrodiammineplatinum nitric acid aqueous solution having a predetermined concentration, and evaporated to dryness to carry Pt. Further, a predetermined amount of an aqueous solution of rhodium nitrate having a predetermined concentration was impregnated and evaporated to dryness to carry Rh. The loading amounts of Pt and Rh are 1.54% by weight of Pt and 0.31% by weight of Rh.
【0032】上記により得られた三元触媒粉末 160重量
部と、バインダとしての固形分40%のアルミナゾルを50
重量部と、水 130重量部とを混合してスラリーを調製し
た。そしてゼオライトコート層が形成された上記ハニカ
ム基材をこのスラリーに浸漬した後引き上げ、下流側端
面となる端面側から空気を引き抜いて余分なスラリーを
除去した。このとき空気の引き抜き速度を調整すること
により、上流側端面から下流側端面に向かうにつれてス
ラリーの付着量が多くなるようにした。そして120℃で
120分間乾燥後、 500℃で 120分間焼成して、三元触媒
コート層を形成した。三元触媒コート層はハニカム基材
1リットルあたり 130g形成され、Ptは2g、Rhは 0.4
g担持されている。160 parts by weight of the three-way catalyst powder obtained above and alumina sol having a solid content of 40% as a binder were mixed with 50 parts by weight.
Parts by weight and 130 parts by weight of water were mixed to prepare a slurry. Then, the honeycomb substrate on which the zeolite coat layer was formed was immersed in the slurry and then pulled up, and air was extracted from the end face side which was the downstream end face to remove excess slurry. At this time, the amount of slurry attached was increased from the upstream end face to the downstream end face by adjusting the air extraction speed. And at 120 ° C
After drying for 120 minutes, it was baked at 500 ° C. for 120 minutes to form a three-way catalyst coat layer. The three-way catalyst coat layer is formed in an amount of 130 g per liter of the honeycomb substrate, Pt is 2 g, Rh is 0.4 g
g is carried.
【0033】得られた本実施例の排ガス浄化用触媒を切
断して分析したところ、上流側端面から全長の1/4だ
け奥へ入った部分におけるゼオライトと三元触媒の濃度
比は、ゼオライト:三元触媒=93:7であった。また下
流側端面から全長の1/4だけ奥へ入った部分における
ゼオライトと三元触媒の濃度比は、ゼオライト:三元触
媒=5:95であった。When the obtained exhaust gas purifying catalyst of the present embodiment was cut and analyzed, the concentration ratio of zeolite to the three-way catalyst in the portion extending from the end face on the upstream side by 1 / of the total length was as follows: The three-way catalyst was 93: 7. The concentration ratio of zeolite and three-way catalyst in a portion that was deeper by 1/4 of the entire length from the downstream end face was zeolite: three-way catalyst = 5: 95.
【0034】(実施例2)余分なスラリーを除去する際
の空気の引き抜き速度を調整し、上流側端面から全長の
1/4だけ奥へ入った部分におけるゼオライトと三元触
媒の濃度比をゼオライト:三元触媒=87:13とし、下流
側端面から全長の1/4だけ奥へ入った部分におけるゼ
オライトと三元触媒の濃度比をゼオライト:三元触媒=
11:89としたこと以外は実施例1と同様にして、実施例
2の排ガス浄化用触媒を調製した。各コート層のコート
量及びPtとRhの担持量も実施例1と同様である。(Example 2) The removal rate of air during removal of excess slurry was adjusted, and the concentration ratio of zeolite to three-way catalyst at a portion that entered the back by 1/4 of the entire length from the upstream end face was determined. : Three-way catalyst = 87:13, and the concentration ratio of zeolite and three-way catalyst at a portion that is 1/4 of the entire length from the downstream end surface is zeolite: three-way catalyst =
An exhaust gas purifying catalyst of Example 2 was prepared in the same manner as in Example 1 except that the ratio was set to 11:89. The coating amount of each coating layer and the carrying amounts of Pt and Rh are the same as in Example 1.
【0035】(実施例3)余分なスラリーを除去する際
の空気の引き抜き速度を調整し、上流側端面から全長の
1/4だけ奥へ入った部分におけるゼオライトと三元触
媒の濃度比をゼオライト:三元触媒=82:18とし、下流
側端面から全長の1/4だけ奥へ入った部分におけるゼ
オライトと三元触媒の濃度比をゼオライト:三元触媒=
19:81としたこと以外は実施例1と同様にして、実施例
3の排ガス浄化用触媒を調製した。各コート層のコート
量及びPtとRhの担持量も実施例1と同様である。(Example 3) The removal rate of air during removal of excess slurry was adjusted, and the concentration ratio of zeolite to three-way catalyst at a portion that was 奥 of the entire length from the upstream end face was determined. : Three-way catalyst = 82:18, and the concentration ratio of zeolite to three-way catalyst at a portion that is 1/4 of the entire length from the downstream end surface is zeolite: three-way catalyst =
An exhaust gas purifying catalyst of Example 3 was prepared in the same manner as in Example 1 except that the ratio was set to 19:81. The coating amount of each coating layer and the carrying amounts of Pt and Rh are the same as in Example 1.
【0036】(実施例4)余分なスラリーを除去する際
の空気の引き抜き速度を調整し、上流側端面から全長の
1/4だけ奥へ入った部分におけるゼオライトと三元触
媒の濃度比をゼオライト:三元触媒=79:21とし、下流
側端面から全長の1/4だけ奥へ入った部分におけるゼ
オライトと三元触媒の濃度比をゼオライト:三元触媒=
20:80としたこと以外は実施例1と同様にして、実施例
4の排ガス浄化用触媒を調製した。各コート層のコート
量及びPtとRhの担持量も実施例1と同様である。(Example 4) The removal rate of air when removing excess slurry was adjusted, and the concentration ratio of zeolite to the three-way catalyst in the portion that entered the back by 1/4 of the entire length from the upstream end surface was determined. : Three-way catalyst = 79:21, and the concentration ratio between zeolite and three-way catalyst at a portion that is 1/4 of the entire length from the downstream end surface is zeolite: three-way catalyst =
An exhaust gas purifying catalyst of Example 4 was prepared in the same manner as in Example 1 except that the ratio was 20:80. The coating amount of each coating layer and the carrying amounts of Pt and Rh are the same as in Example 1.
【0037】(実施例5)余分なスラリーを除去する際
の空気の引き抜き速度を調整し、上流側端面から全長の
1/4だけ奥へ入った部分におけるゼオライトと三元触
媒の濃度比をゼオライト:三元触媒=73:27とし、下流
側端面から全長の1/4だけ奥へ入った部分におけるゼ
オライトと三元触媒の濃度比をゼオライト:三元触媒=
24:76としたこと以外は実施例1と同様にして、実施例
5の排ガス浄化用触媒を調製した。各コート層のコート
量及びPtとRhの担持量も実施例1と同様である。(Example 5) The removal ratio of air when removing excess slurry was adjusted, and the concentration ratio of zeolite to three-way catalyst at a portion which was deeper by 1/4 of the entire length from the upstream end face was determined. : Three-way catalyst = 73:27, and the concentration ratio of zeolite and three-way catalyst at a portion that is 1/4 of the total length from the downstream end surface is zeolite: three-way catalyst =
An exhaust gas purifying catalyst of Example 5 was prepared in the same manner as in Example 1 except that the ratio was set to 24:76. The coating amount of each coating layer and the carrying amounts of Pt and Rh are the same as in Example 1.
【0038】(実施例6)余分なスラリーを除去する際
の空気の引き抜き速度を調整し、上流側端面から全長の
1/4だけ奥へ入った部分におけるゼオライトと三元触
媒の濃度比をゼオライト:三元触媒=67:33とし、下流
側端面から全長の1/4だけ奥へ入った部分におけるゼ
オライトと三元触媒の濃度比をゼオライト:三元触媒=
31:69としたこと以外は実施例1と同様にして、実施例
6の排ガス浄化用触媒を調製した。各コート層のコート
量及びPtとRhの担持量も実施例1と同様である。(Example 6) The removal rate of air when removing excess slurry was adjusted, and the concentration ratio of zeolite and three-way catalyst at a portion that entered the back by 1/4 of the entire length from the upstream end face was determined. : Three-way catalyst = 67:33, and the concentration ratio of zeolite and three-way catalyst at a portion that is 1/4 of the total length from the downstream end surface is zeolite: three-way catalyst =
An exhaust gas purifying catalyst of Example 6 was prepared in the same manner as Example 1 except that the ratio was 31:69. The coating amount of each coating layer and the carrying amounts of Pt and Rh are the same as in Example 1.
【0039】(比較例1)余分なスラリーを除去する際
の空気の引き抜き速度を調整し、ゼオライトコート層及
び三元触媒コート層を全長にわたって均一となるように
形成したこと以外は実施例1と同様にして、比較例1の
排ガス浄化用触媒を調製した。各コート層のコート量及
びPtとRhの担持量は実施例1と同様である。なお上流側
端面から全長の1/4だけ奥へ入った部分におけるゼオ
ライトと三元触媒の濃度比は、ゼオライト:三元触媒=
52:48であり、全長にわたってこの組成となっている。(Comparative Example 1) Example 1 was the same as Example 1 except that the zeolite coat layer and the three-way catalyst coat layer were formed to be uniform over the entire length by adjusting the air extraction speed when removing excess slurry. Similarly, an exhaust gas purifying catalyst of Comparative Example 1 was prepared. The coating amount of each coating layer and the carrying amounts of Pt and Rh are the same as in Example 1. The concentration ratio between the zeolite and the three-way catalyst at the portion that is 1/4 of the total length from the upstream end surface is zeolite: three-way catalyst =
The ratio is 52:48, which is the composition over the entire length.
【0040】(比較例2)実施例1と同様のスラリーを
用い、同様のハニカム基材の上流側端面から全長の1/
2を浸漬した後引き上げ、上流側端面から空気を引き抜
いて余分なスラリーを除去した後、実施例1と同様に乾
燥・焼成し、上流側端面から全長の1/2の部分にゼオ
ライトコート層を形成した。(Comparative Example 2) The same slurry as in Example 1 was used.
2 and then lifted, air was extracted from the upstream end face to remove excess slurry, dried and fired in the same manner as in Example 1, and a zeolite coat layer was applied to a half of the total length from the upstream end face. Formed.
【0041】次に実施例1と同様のスラリーを用い、上
流側端面から全長の1/2の部分にゼオライトコート層
をもつハニカム基材の下流側端面から全長の1/2を浸
漬した後引き上げ、下流側端面から空気を引き抜いて余
分なスラリーを除去した後、実施例1と同様に乾燥・焼
成し、下流側端面から全長の1/2の部分に三元触媒コ
ート層を形成した。ゼオライトコート層及び三元触媒コ
ート層はそれぞれ均一な厚さで形成され、コート量はそ
れぞれ実施例1と同様である。またPtとRhの担持量も実
施例1と同様である。Next, using the same slurry as in Example 1, 1 / of the entire length was dipped from the downstream end face of the honeycomb base material having the zeolite coat layer on the half of the entire length from the upstream end face and then pulled up. Then, air was drawn from the downstream end face to remove excess slurry, and then dried and fired in the same manner as in Example 1 to form a three-way catalyst coat layer on a half of the entire length from the downstream end face. The zeolite coat layer and the three-way catalyst coat layer are each formed with a uniform thickness, and the coating amounts are the same as in Example 1. The amounts of Pt and Rh carried are the same as in Example 1.
【0042】<試験・評価>上記したそれぞれの排ガス
浄化用触媒を評価装置にそれぞれ装着し、室温(50℃)
の状態から 300℃の実エンジン排ガスを空間速度2000h
-1で2分間流通させたときの出ガス中のHC量をそれぞれ
測定した。それぞれの結果を、比較例1の排ガス浄化用
触媒のHC量を1とした場合の相対比で図1に示す。<Test / Evaluation> Each of the exhaust gas purifying catalysts described above was attached to an evaluation device, and the room temperature (50 ° C.)
The actual engine exhaust gas of 300 ℃ from the state of the space velocity 2000h
The amount of HC in the outgas when flowing at -1 for 2 minutes was measured. Each result is shown in FIG. 1 as a relative ratio when the HC amount of the exhaust gas purifying catalyst of Comparative Example 1 was 1.
【0043】図1より各実施例の排ガス浄化用触媒は比
較例に比べて出ガス中のHC量が少なく、300℃におけるH
C浄化性能に優れていることがわかる。これはゼオライ
トコート層を全長にわたって形成するとともに、ゼオラ
イト濃度を上流側で高く下流側で低くした効果であるこ
とが明らかである。As shown in FIG. 1, the exhaust gas purifying catalysts of the respective embodiments have a smaller amount of HC in the outgas compared with the comparative example.
It turns out that it is excellent in C purification performance. This is apparently the effect of forming the zeolite coat layer over the entire length and increasing the zeolite concentration on the upstream side and decreasing on the downstream side.
【0044】そして各実施例どうしの比較より、実施例
2〜5の排ガス浄化用触媒が特にHCの排出が少ない。し
たがってゼオライトと三元触媒との排ガス流れ方向の上
流側と下流側における濃度比は、上流側(ゼオライト:
三元触媒):下流側(ゼオライト:三元触媒)=(9:
1〜7:3):(1:9〜3:7)の範囲が特に望まし
いことが明らかである。From the comparison between the examples, the exhaust gas purifying catalysts of Examples 2 to 5 emit less HC. Therefore, the concentration ratio between the zeolite and the three-way catalyst on the upstream side and the downstream side in the exhaust gas flow direction is the upstream side (zeolite:
Three-way catalyst): Downstream side (zeolite: Three-way catalyst) = (9:
It is clear that the range of 1-7: 3) :( 1: 9-3: 7) is particularly desirable.
【0045】[0045]
【発明の効果】すなわち本発明の排ガス浄化用触媒によ
れば、低温域におけるHC吸着能に優れ、かつ貴金属の活
性化温度に速やかに昇温されるため、低温域から高温域
まで高い浄化率でHCを浄化することができる。According to the exhaust gas purifying catalyst of the present invention, the excellent HC adsorption ability in the low temperature range and the rapid rise of the temperature to the activation temperature of the noble metal can be achieved. Can purify HC.
【図1】本発明の実施例及び比較例の排ガス浄化用触媒
における出ガス中のHC量を相対比で示すグラフである。FIG. 1 is a graph showing the relative amounts of HC amounts in outgases in exhaust gas purifying catalysts of Examples and Comparative Examples of the present invention.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/28 301 B01D 53/36 C Fターム(参考) 3G091 AA02 AA13 AB02 AB03 AB10 BA01 BA15 FB02 FB03 FC07 FC08 GA01 GA06 GA18 GB01Z GB05W GB06W GB07W GB09Y GB10Y GB17X GB17Z 4D048 AA13 AA18 AB01 BA03X BA08X BA10X BA11X BA19X BA30X BA33X BA41X BA42X BB02 BB16 4G066 AA22D AA61B BA05 BA07 CA51 DA02 FA14 FA22 FA37 GA01 GA06 4G069 AA01 AA04 AA08 AA09 AA11 BA01B BA01C BA05B BA07B BA13B BA13C BB06B BB06C BC43B BC43C BC71A BC71B BC71C BC75A BC75B BC75C CA03 CA07 CA09 CA14 CA15 DA06 EA19 EE09 FA01 FB14 FB15 ZA04B ZA11B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/28 301 B01D 53/36 C F-term (Reference) 3G091 AA02 AA13 AB02 AB03 AB10 BA01 BA15 FB02 FB03 FC07 FC08 GA01 GA06 GA18 GB01Z GB05W GB06W GB07W GB09Y GB10Y GB17X GB17Z 4D048 AA13 AA18 AB01 BA03X BA08X BA10X BA11X BA19X BA30X BA33X BA41X BA42X BB02 BB16 4G066 AA22D AA61B BA05 BA07 BA01 BA01 A01 A02 A BB06B BB06C BC43B BC43C BC71A BC71B BC71C BC75A BC75B BC75C CA03 CA07 CA09 CA14 CA15 DA06 EA19 EE09 FA01 FB14 FB15 ZA04B ZA11B
Claims (4)
とからなる排ガス浄化用触媒であって、該炭化水素吸着
材は排ガス流れ方向の上流側で多く下流側で少ない濃度
分布をもって含有されていることを特徴とする排ガス浄
化用触媒。1. An exhaust gas purifying catalyst comprising an oxidation catalyst or a three-way catalyst and a hydrocarbon adsorbent, wherein the hydrocarbon adsorbent is contained in the exhaust gas with a high concentration on the upstream side and a small concentration distribution on the downstream side. An exhaust gas purifying catalyst, comprising:
上流側と下流側の濃度比は、上流側:下流側=9〜7:
1〜3であることを特徴とする請求項1に記載の排ガス
浄化用触媒。2. The concentration ratio of the hydrocarbon adsorbent between the upstream side and the downstream side in the exhaust gas flow direction is: upstream side: downstream side = 9-7:
The exhaust gas purifying catalyst according to claim 1, wherein the number is 1 to 3.
れ方向の上流側で少なく下流側で多い濃度分布を有する
ことを特徴とする請求項1又は請求項2に記載の排ガス
浄化用触媒。3. The exhaust gas purifying catalyst according to claim 1, wherein the oxidation catalyst or the three-way catalyst has a concentration distribution that is small on the upstream side and high on the downstream side in the exhaust gas flow direction.
三元触媒との排ガス流れ方向の上流側と下流側における
濃度比は、上流側(炭化水素吸着材:酸化触媒又は三元
触媒):下流側(炭化水素吸着材:酸化触媒又は三元触
媒)=(9:1〜7:3):(1:9〜3:7)である
ことを特徴とする請求項3に記載の排ガス浄化用触媒。4. The concentration ratio between the hydrocarbon adsorbent and the oxidation catalyst or the three-way catalyst on the upstream side and the downstream side in the exhaust gas flow direction is determined on the upstream side (hydrocarbon adsorbent: oxidation catalyst or three-way catalyst): The exhaust gas purification according to claim 3, wherein the downstream side (hydrocarbon adsorbent: oxidation catalyst or three-way catalyst) = (9: 1 to 7: 3) :( 1: 9 to 3: 7). Catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000006077A JP2001190960A (en) | 2000-01-11 | 2000-01-11 | Catalyst for exhaust gas cleaning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000006077A JP2001190960A (en) | 2000-01-11 | 2000-01-11 | Catalyst for exhaust gas cleaning |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001190960A true JP2001190960A (en) | 2001-07-17 |
Family
ID=18534667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000006077A Pending JP2001190960A (en) | 2000-01-11 | 2000-01-11 | Catalyst for exhaust gas cleaning |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001190960A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003314268A (en) * | 2002-04-24 | 2003-11-06 | Nissan Motor Co Ltd | Exhaust gas purifier |
JP2003314267A (en) * | 2002-04-24 | 2003-11-06 | Nissan Motor Co Ltd | Exhaust gas purifier |
JP2006006995A (en) * | 2004-06-22 | 2006-01-12 | Mitsubishi Motors Corp | Hc adsorption catalyst and exhaust gas purifier using the same |
US7344684B2 (en) | 2003-07-30 | 2008-03-18 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust emission purifying catalyst device |
JP2008291672A (en) * | 2007-05-22 | 2008-12-04 | Nissan Diesel Motor Co Ltd | Exhaust emission control device for engine |
JP2009255034A (en) * | 2008-03-27 | 2009-11-05 | Ibiden Co Ltd | Honeycomb structure and apparatus of treating exhaust gas |
WO2014076816A1 (en) | 2012-11-16 | 2014-05-22 | トヨタ自動車株式会社 | Exhaust gas purification device for internal-combustion engine |
-
2000
- 2000-01-11 JP JP2000006077A patent/JP2001190960A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003314268A (en) * | 2002-04-24 | 2003-11-06 | Nissan Motor Co Ltd | Exhaust gas purifier |
JP2003314267A (en) * | 2002-04-24 | 2003-11-06 | Nissan Motor Co Ltd | Exhaust gas purifier |
US7344684B2 (en) | 2003-07-30 | 2008-03-18 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Exhaust emission purifying catalyst device |
JP2006006995A (en) * | 2004-06-22 | 2006-01-12 | Mitsubishi Motors Corp | Hc adsorption catalyst and exhaust gas purifier using the same |
JP2008291672A (en) * | 2007-05-22 | 2008-12-04 | Nissan Diesel Motor Co Ltd | Exhaust emission control device for engine |
JP2009255034A (en) * | 2008-03-27 | 2009-11-05 | Ibiden Co Ltd | Honeycomb structure and apparatus of treating exhaust gas |
WO2014076816A1 (en) | 2012-11-16 | 2014-05-22 | トヨタ自動車株式会社 | Exhaust gas purification device for internal-combustion engine |
JP5999193B2 (en) * | 2012-11-16 | 2016-09-28 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JPWO2014076816A1 (en) * | 2012-11-16 | 2017-01-05 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
US9662612B2 (en) | 2012-11-16 | 2017-05-30 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification apparatus for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5647623B2 (en) | Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion | |
JP4642978B2 (en) | Exhaust gas purification catalyst | |
JP5909191B2 (en) | Banded catalyst soot filter | |
JP3904802B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
KR101129812B1 (en) | Exhaust-gas converting filter and production process for the same | |
JP6206327B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP2006075724A (en) | Catalyst for exhaust gas cleaning | |
JP2009285605A (en) | Catalyst for cleaning exhaust gas | |
JPH11267504A (en) | Catalyst for cleaning exhaust gas and exhaust gas cleaning system using it | |
JP3827143B2 (en) | Exhaust gas purification catalyst | |
JP2004016931A (en) | Exhaust gas purification catalyst | |
JP2001190960A (en) | Catalyst for exhaust gas cleaning | |
JP2002045702A (en) | Catalyst for purifying exhaust gas | |
JP2009000648A (en) | Exhaust gas cleaning catalyst | |
JP2001289035A (en) | Exhaust emission control method and system | |
WO2002070127A1 (en) | Exhaust gas purifying catalyst | |
JP2009208045A (en) | Exhaust gas cleaning catalyst | |
JP2004275814A (en) | Exhaust gas purifying catalyst, its manufacturing method and exhaust gas purifying apparatus | |
JP2002191988A (en) | Catalyst for cleaning exhaust gas | |
JP2004176589A (en) | Emission control device | |
JP2006167540A (en) | Hydrocarbon adsorption/combustion catalyst | |
JP2001252565A (en) | Exhaust gas cleaning catalyst | |
JP4507446B2 (en) | Exhaust gas purification catalyst | |
JP2005131551A (en) | Catalyst for purifying exhaust gas | |
JP7388951B2 (en) | Exhaust gas purification device |