[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001182627A - Egr gas cooling system - Google Patents

Egr gas cooling system

Info

Publication number
JP2001182627A
JP2001182627A JP36584499A JP36584499A JP2001182627A JP 2001182627 A JP2001182627 A JP 2001182627A JP 36584499 A JP36584499 A JP 36584499A JP 36584499 A JP36584499 A JP 36584499A JP 2001182627 A JP2001182627 A JP 2001182627A
Authority
JP
Japan
Prior art keywords
egr gas
egr
heat transfer
condensed water
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36584499A
Other languages
Japanese (ja)
Other versions
JP4253975B2 (en
Inventor
Masami Kawasaki
昌美 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP36584499A priority Critical patent/JP4253975B2/en
Publication of JP2001182627A publication Critical patent/JP2001182627A/en
Application granted granted Critical
Publication of JP4253975B2 publication Critical patent/JP4253975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an EGR gas cooling system which prevents degradation of its cooling performance by reducing accumulation quantity of condensed water generated by cooling EGR gas. SOLUTION: This EGR gas cooling system comprises an upstream EGR gas chamber, a downstream EGR gas chamber, multiple heat-transfer tubes which connect the internal space of both EGR gas chambers and in which EGR gas flows, and cooling water passage formed around the heat-transfer tubes. The EGR gas chambers are so formed that the maximum level of condensed water which may accumulate in the EGR gas chambers is flush with the lowest point of the peripheral edge inside the water-surface side opening end of the heat-transfer tube located vertically lowest among all the heat transfer tubes, or the maximum level of condensed water which may accumulate in the EGR gas chambers is located vertically below the lowest point of the peripheral edge inside the water-surface side opening end of the heat-transfer tube located vertically lowest among all the heat transfer tubes when the EGR gas cooling system is mounted on a vehicle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関のEGRガス
を冷却するEGRガス冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an EGR gas cooling device for cooling EGR gas of an internal combustion engine.

【0002】[0002]

【従来の技術】従来より、ディーゼルエンジン等におい
て、燃焼時に発生する窒素酸化物(NOx)を低減する
ため、排気ガスの一部を排気系から取り出し、吸気系に
還流させるEGR(Exhaust Gas Reci
rculation:排気再循環)装置が知られてい
る。窒素酸化物は、高温の燃焼ガスのもとでガス中の酸
素と窒素とが反応して生成されるため、このEGR装置
は排気ガスを吸気系に還流させることにより燃焼温度を
下げて窒素酸化物の生成を低減させるものである。そし
て、このEGR装置にあっては、吸気側に還流されるE
GRガスの温度が高すぎると、EGRガスの体積が増加
して新規の吸入空気量の割合が減少し、吸気温度が低下
しないために窒素酸化物生成の抑制が促進されないとと
もに燃費が悪化するため、EGRガスを冷却することが
必要になる。
2. Description of the Related Art Conventionally, in a diesel engine or the like, in order to reduce nitrogen oxides (NOx) generated during combustion, a part of exhaust gas is taken out of an exhaust system and returned to an intake system by EGR (Exhaust Gas Reci.).
2. Description of the Related Art Devices for recirculation are known. Since nitrogen oxides are produced by the reaction of oxygen and nitrogen in the gas under high-temperature combustion gas, this EGR device lowers the combustion temperature by returning the exhaust gas to the intake system to reduce the nitrogen oxidation. It is to reduce the generation of products. In this EGR device, E is recirculated to the intake side.
If the temperature of the GR gas is too high, the volume of the EGR gas increases, the proportion of the new intake air amount decreases, and the intake air temperature does not decrease, so that the suppression of the generation of nitrogen oxides is not promoted and the fuel efficiency deteriorates. , EGR gas needs to be cooled.

【0003】そこで、近年では、EGRガスを冷却する
ために、エンジンの吸気通路と排気通路とを連結するE
GR通路にEGRガス冷却装置を設置したEGR装置が
提供されている。このEGRガス冷却装置としては、一
般に多管式のEGRガス冷却装置が利用される。図11
は従来の多管式EGRガス冷却装置の一例を示すもの
で、筒状の熱交換部70の内部は、側面に設けられた冷
却媒体導入口76a及び冷却媒体排出口76bを介して
冷却媒体が通流するようになっており、且つ、筒状の熱
交換部70の両端を夫々閉塞する隔壁72a,72bに
端部附近が固着された複数本の伝熱管群74が配設され
ている。ここで、EGRガスの圧力損失を考慮すると、
EGRパイプ4の内周の断面積と各伝熱管74の内周の
断面積の総和は少なくとも等しいことが望ましく、且
つ、筒状の熱交換部70の内部には冷却媒体を通流させ
る空間を確保することが必要であるため、筒状の熱交換
部70の断面積は必然的にEGRパイプ4の断面積より
大きくなる。さらに、冷却効率を向上させるために熱交
換部70内になるべく多量の冷却媒体を通流させるに
は、熱交換部70内に冷却媒体が通流する空間を充分に
確保する必要があり、熱交換部70の断面積はEGRパ
イプ4の断面積より一層大きくなる。そこで、筒状の熱
交換部70内の伝熱管74内部にEGRガスを分配して
導入するため、及び、伝熱管74内部のEGRガスを収
集してEGRパイプ4に排出するために、筒状の熱交換
部70の両端部の隔壁72a,72bの外側にボンネッ
ト部材80a,80bが固着されている。ボンネット部
材80a,80bは、内周面が熱交換部70の両端部側
に向けて拡径されており、EGRパイプ4と熱交換部7
0の両端部の夫々とを連結している。そして、隔壁72
aとボンネット部材80aとで上流側EGRガス室90
aが形成され,隔壁72bとボンネット部材80bとで
下流側EGRガス室90bが形成されている。したがっ
て、上流側EGRガス室90aを介して筒状の熱交換部
70に導入されたEGRガスは、複数本の伝熱管内74
を並列に流れ、その周囲を囲む冷却媒体によって冷却さ
れたのち、下流側EGRガス室90bを介してEGRパ
イプ4に排出される(特開平10−318050号公
報、特開平9−89491号公報参照)。
Therefore, in recent years, in order to cool the EGR gas, an engine connecting an intake passage and an exhaust passage of an engine has been developed.
An EGR device in which an EGR gas cooling device is installed in a GR passage is provided. Generally, a multi-tube EGR gas cooling device is used as the EGR gas cooling device. FIG.
Shows an example of a conventional multi-tube type EGR gas cooling device, in which a cooling medium is supplied through a cooling medium inlet 76a and a cooling medium outlet 76b provided on the side surface of the cylindrical heat exchange unit 70. A plurality of heat transfer tube groups 74 are provided so as to allow the flow to flow, and the ends of the heat transfer tubes 70 are fixed to partition walls 72a and 72b closing both ends of the cylindrical heat exchange section 70, respectively. Here, considering the pressure loss of the EGR gas,
It is desirable that the sum of the cross-sectional area of the inner circumference of the EGR pipe 4 and the cross-sectional area of the inner circumference of each heat transfer tube 74 be at least equal, and that a space through which the cooling medium flows is provided inside the cylindrical heat exchange unit 70. Since it is necessary to secure the cross-sectional area, the cross-sectional area of the cylindrical heat exchange unit 70 is necessarily larger than the cross-sectional area of the EGR pipe 4. Further, in order to allow a large amount of cooling medium to flow into the heat exchange unit 70 in order to improve the cooling efficiency, it is necessary to ensure a sufficient space for the cooling medium to flow in the heat exchange unit 70. The cross-sectional area of the replacement unit 70 is larger than the cross-sectional area of the EGR pipe 4. Therefore, in order to distribute and introduce the EGR gas into the heat transfer tube 74 in the tubular heat exchange unit 70, and to collect and discharge the EGR gas inside the heat transfer tube 74 to the EGR pipe 4, Bonnet members 80a, 80b are fixed to the outside of the partition walls 72a, 72b at both ends of the heat exchange section 70. The inner peripheral surfaces of the bonnet members 80a and 80b are enlarged toward both ends of the heat exchange unit 70, and the EGR pipe 4 and the heat exchange unit 7
0 are connected to both ends. And the partition wall 72
a and the bonnet member 80a and the upstream EGR gas chamber 90.
a, and the downstream EGR gas chamber 90b is formed by the partition wall 72b and the bonnet member 80b. Therefore, the EGR gas introduced into the tubular heat exchange unit 70 via the upstream EGR gas chamber 90a is supplied to the plurality of heat transfer tubes 74.
After being cooled by a cooling medium surrounding the periphery thereof, and then discharged to the EGR pipe 4 via the downstream EGR gas chamber 90b (see JP-A-10-318050 and JP-A-9-89491). ).

【0004】[0004]

【発明が解決しようとする課題】ところで、EGRガス
には多量の水分が含まれているため、EGRガスを冷却
した場合には凝縮水が発生する。特に、冬季やエンジン
の始動直後のように、冷却媒体の温度が低く、EGRガ
ス冷却装置自体が冷えている時には、EGRガスと冷却
媒体との温度差が大きいため、EGRガスが過冷却され
て多量の凝縮水が発生する。そして、この凝縮水にEG
Rガス中に含まれる硫黄成分が溶解して硫酸が生成され
る。上記のような従来の多管式EGRガス冷却装置で
は、上流側EGRガス室90a,下流側EGRガス室9
0bには、隔壁72a,72bとボンネット部材80
a,80bの内周面とで凹状空間Cが形成されており、
この凹状空間Cに硫酸を含んだ凝縮水10が溜まる構造
となっている。この凹状空間Cに溜まった凝縮水10
は、EGRガスが高温になるにつれてある程度の量は蒸
発するものの、その全量が蒸発しきれずに凹状空間Cに
残留してしまう。
Incidentally, since the EGR gas contains a large amount of water, condensed water is generated when the EGR gas is cooled. In particular, when the temperature of the cooling medium is low and the EGR gas cooling device itself is cold, such as in winter or immediately after the start of the engine, the temperature difference between the EGR gas and the cooling medium is large. A large amount of condensed water is generated. And EG is added to this condensed water.
The sulfur component contained in the R gas is dissolved to generate sulfuric acid. In the conventional multi-pipe EGR gas cooling device as described above, the upstream EGR gas chamber 90a, the downstream EGR gas chamber 9
0b, the partition walls 72a and 72b and the bonnet member 80
a, a concave space C is formed with the inner peripheral surface of 80b,
The condensed water 10 containing sulfuric acid is stored in the concave space C. Condensed water 10 accumulated in this concave space C
Although the EGR gas evaporates to a certain extent as the temperature of the EGR gas increases, the entire amount of the EGR gas remains in the concave space C without being completely evaporated.

【0005】このように、EGRガスの冷却により発生
する凝縮水10が、EGRガス室内の凹状空間Cに多量
に溜まってしまうと、EGRガス冷却装置自体が、その
軸線が水平方向に対して傾斜するように車両に搭載され
る場合において、伝熱管74の開口端部が凝縮水10で
閉塞されることにより、熱交換部70内でのEGRガス
の流れが阻害され、EGRガス冷却装置の冷却性能が低
下してしまうという問題があった。
When a large amount of the condensed water 10 generated by cooling the EGR gas accumulates in the concave space C in the EGR gas chamber, the EGR gas cooling device itself has its axis inclined with respect to the horizontal direction. When the heat exchanger is mounted on a vehicle, the opening end of the heat transfer tube 74 is blocked by the condensed water 10 so that the flow of the EGR gas in the heat exchange unit 70 is obstructed, and the cooling of the EGR gas cooling device is performed. There is a problem that the performance is reduced.

【0006】本発明は上記問題点を鑑みてなされたもの
であり、EGRガスの冷却によって発生する凝縮水が溜
まり得る量を低減させて、冷却性能の低下を防止するE
GRガス冷却装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and reduces the amount of condensed water generated by cooling EGR gas to prevent the deterioration of cooling performance.
An object of the present invention is to provide a GR gas cooling device.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係るEGRガス冷却装置は、内燃機関の排
気系から排気ガスの一部を取り出し吸気系へ還流させる
EGRガス通路の途中に設けられるEGRガス冷却装置
は、前記EGRガス通路の上流側に連通する上流側EG
Rガス室と、前記EGRガス通路の下流側に連通する下
流側EGRガス室と、前記上流側EGRガス室の内部空
間と前記下流側EGRガス室の内部空間とを連通すると
ともに内部にEGRガスが流通する複数の伝熱管と、前
記上流側EGRガス室と前記下流側EGRガス室との間
において、前記伝熱管の周囲に形成された冷却媒体通路
と、から構成され、前記上流側EGRガス室及び前記下
流側EGRガス室のうち少なくとも一方は、前記EGR
ガス冷却装置が車両に搭載された際において、前記EG
Rガス室内に溜まり得る最大量の凝縮水の水面と、前記
伝熱管のうち最も鉛直下方に位置する伝熱管における前
記水面側の開口端部内周縁の最下点と、が一致するか、
又は、前記水面が前記最下点より鉛直下側に離間するよ
う形成されたことを特徴とする。
In order to solve the above problems, an EGR gas cooling device according to the present invention is provided in an EGR gas passage for extracting a part of exhaust gas from an exhaust system of an internal combustion engine and recirculating the exhaust gas to an intake system. An EGR gas cooling device provided at the upstream includes an upstream EG communicating with the upstream side of the EGR gas passage.
An R gas chamber, a downstream EGR gas chamber communicating with a downstream side of the EGR gas passage, an internal space of the upstream EGR gas chamber, and an internal space of the downstream EGR gas chamber, and an EGR gas inside. And a cooling medium passage formed around the heat transfer tube between the upstream EGR gas chamber and the downstream EGR gas chamber, wherein the upstream EGR gas At least one of the chamber and the downstream EGR gas chamber is the EGR gas chamber.
When the gas cooling device is mounted on a vehicle, the EG
Whether the water surface of the maximum amount of condensed water that can accumulate in the R gas chamber coincides with the lowest point of the inner peripheral edge of the opening end on the water surface side of the heat transfer tube located at the lowest position among the heat transfer tubes,
Alternatively, it is characterized in that the water surface is formed so as to be separated vertically below the lowermost point.

【0008】[0008]

【発明の作用と効果】本発明に係るEGRガス冷却装置
によれば、EGRガス室が、車両搭載時において、EG
Rガス室内に溜まり得る最大量の凝縮水の水面と、伝熱
管のうち最も鉛直下方に位置する伝熱管の水面側の開口
端部内周縁の最下点とが一致するか、又は、凝縮水の水
面が伝熱管のうち最も鉛直下方に位置する伝熱管の開口
端部内周縁の最下点より鉛直下側に位置することによ
り、伝熱管の開口端部が凝縮水で閉塞されることがない
ので、EGRガスの流れが阻害されず、冷却性能の低下
を防止することができる。
According to the EGR gas cooling device of the present invention, when the EGR gas chamber is mounted on a vehicle,
The maximum surface of the condensed water that can accumulate in the R gas chamber coincides with the lowest point of the inner peripheral edge of the opening end on the water surface side of the heat transfer tube located at the lowest position among the heat transfer tubes, or Since the water surface is located vertically below the lowest point of the inner peripheral edge of the opening end of the heat transfer tube located at the lowest position among the heat transfer tubes, the opening end of the heat transfer tube is not blocked by condensed water. , The flow of the EGR gas is not hindered, and a decrease in cooling performance can be prevented.

【0009】[0009]

【発明の実施の形態】以下、本発明の好適な実施の形態
を図面に基づいて詳述する。 (第1の実施の形態)以下、第1の実施の形態を図1乃
至図6に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings. (First Embodiment) A first embodiment will be described below with reference to FIGS.

【0010】図1は本第1の実施の形態に係るEGRガ
ス冷却装置の全体構成を示す縦断側面図、図2は図1の
A−A線断面図、図3は伝熱管24を示す一部を省略し
た一部縦断側面図、図4は本第1の実施の形態に係るE
GRガス冷却装置を車両に搭載した際の要部を示す中央
を省略した縦断側面図、図5はボンネット部材30aの
全体を示す斜視図、図6は本第1の実施の形態に係るE
GRガス冷却装置を車両に搭載した際の凹状空間Aに最
大量の凝縮水が溜まった様子を示す縦断側面図である。
FIG. 1 is a vertical sectional side view showing the entire structure of an EGR gas cooling apparatus according to the first embodiment, FIG. 2 is a sectional view taken along line AA of FIG. 1, and FIG. FIG. 4 is a partially longitudinal side view in which a portion is omitted, and FIG.
FIG. 5 is a perspective view showing the entire bonnet member 30a, and FIG. 6 is a perspective view showing an E of the first embodiment.
FIG. 4 is a vertical sectional side view showing a state in which a maximum amount of condensed water has accumulated in a concave space A when the GR gas cooling device is mounted on a vehicle.

【0011】図1に示されるように、EGRガス冷却装
置1は、大略すると熱交換部2と上流側EGRガス室3
aと下流側EGRガス室3bとにより構成されている。
As shown in FIG. 1, the EGR gas cooling device 1 generally includes a heat exchange section 2 and an upstream EGR gas chamber 3.
a and a downstream EGR gas chamber 3b.

【0012】熱交換部2は、主に、筒体20,チューブ
シート22a,22b,伝熱管24等により構成されて
いる。
The heat exchange section 2 is mainly composed of a tubular body 20, tube sheets 22a and 22b, heat transfer tubes 24 and the like.

【0013】筒体20は、オーステナイト系ステンレス
鋼からなり、両端が開口して断面が円形を成す中空円柱
部材で構成されている。筒体20の両端附近の側面に
は、冷却水用導入口及び冷却水排出口が穿設され、この
冷却水用導入口及び冷却水排出口の周縁に、オーステナ
イト系ステンレス鋼からなる冷却水用導入管26a及び
冷却水用排出管26bの開口端部を拡径して形成された
フランジ部がNiろう付けされており、冷却媒体である
エンジン冷却水を筒体20内部に導入及び排出するよう
構成されている。筒体20の両端外周縁には、チューブ
シート22a,22bの内周縁がNiろう付けされてお
り、筒体20の両端開口部をぞれぞれ閉塞して、筒体2
0内部を冷却水が通流するよう構成されている。
The cylindrical body 20 is made of austenitic stainless steel, and is formed of a hollow cylindrical member having both ends open and a circular cross section. A cooling water inlet and a cooling water outlet are formed in the side surfaces near both ends of the cylindrical body 20, and a cooling water inlet made of austenitic stainless steel is provided around the cooling water inlet and the cooling water outlet. The flanges formed by enlarging the open ends of the introduction pipe 26a and the cooling water discharge pipe 26b are brazed with Ni so that engine cooling water as a cooling medium is introduced and discharged into the cylindrical body 20. It is configured. The inner peripheral edges of the tube sheets 22a and 22b are Ni-brazed to the outer peripheral edges of both ends of the cylindrical body 20, and the openings at both ends of the cylindrical body 20 are closed respectively, so that the cylindrical body 2 is closed.
The cooling water is configured to flow through the inside.

【0014】図2に示されるように、チューブシート2
2a,22bは、オーステナイト系ステンレス鋼で成形
され、伝熱管24を放射状に配列して挿通固着するべ
く、伝熱管24の外径に略等しい直径を有する貫通孔2
3が放射状に穿設されている。
[0014] As shown in FIG.
The through holes 2a and 22b are formed of austenitic stainless steel and have a diameter substantially equal to the outer diameter of the heat transfer tube 24 so that the heat transfer tubes 24 are radially arranged and inserted and fixed.
3 are pierced radially.

【0015】伝熱管24は、オーステナイト系ステンレ
ス鋼からなる中空円柱部材で構成されている。図3に示
されるように、EGRガスの上流側の開口端部がEGR
ガスの上流側に向かってテーパ状に拡管されており、E
GRガスが各伝熱管24内に流入し易く構成されてい
る。また、側面には外周面側から螺旋状に溝加工を施す
ことによって内周面側に螺旋状の突条27が形成されて
おり、伝熱管24内を流れるEGRガスに旋回力を与え
て強制的に乱流を発生させることにより、伝熱性能が高
められている。そして、両端部附近の外周面がそれぞれ
チューブシート22a,22bに穿設された貫通孔23
の内周面にNiろう付けされ、筒体20の軸線21に沿
って並列に配列されて、後述する上流側EGRガス室3
aの内部空間と下流側EGRガス室3bの内部空間とを
連通している。さらに、伝熱管24の周囲の空間が冷却
媒体通路である冷却水通路28となり、伝熱管24の周
囲が冷却水によって囲まれている。
The heat transfer tube 24 is formed of a hollow cylindrical member made of austenitic stainless steel. As shown in FIG. 3, the opening end on the upstream side of the EGR gas is EGR gas.
The pipe is expanded in a tapered shape toward the upstream side of the gas.
The configuration is such that the GR gas easily flows into each heat transfer tube 24. Further, a spiral ridge 27 is formed on the inner peripheral surface side by applying a spiral groove processing from the outer peripheral surface side to the side surface, and the swirling force is applied to the EGR gas flowing in the heat transfer tube 24 to forcibly apply the whirl force. By generating the turbulent flow, the heat transfer performance is enhanced. The outer peripheral surfaces near both ends are formed with through holes 23 formed in the tube sheets 22a and 22b, respectively.
Are brazed to the inner peripheral surface of the cylinder E, and are arranged in parallel along the axis 21 of the cylindrical body 20 to form an upstream EGR gas chamber 3 described later.
a and the internal space of the downstream EGR gas chamber 3b. Further, a space around the heat transfer tube 24 becomes a cooling water passage 28 as a cooling medium passage, and the periphery of the heat transfer tube 24 is surrounded by the cooling water.

【0016】上流側EGRガス室3a,下流側EGRガ
ス室3bは、チューブシート22a,22b,ボンネッ
ト部材30a,30bにより構成されている。
The upstream EGR gas chamber 3a and the downstream EGR gas chamber 3b are constituted by tube sheets 22a, 22b and bonnet members 30a, 30b.

【0017】ボンネット部材30a,30bは、オース
テナイト系ステンレス鋼からなり、円形断面形状を保ち
つつ内周面が一端の開口端部側から他端の開口端部側に
向けて拡径されている。ボンネット部材30aの小径側
の開口端部内周は、内燃機関(図示せず)の排気通路
(図示せず)に連通する上流側EGRパイプ4aの開口
端部外周にNiろう付けされて、EGRガス導入口31
aを形成し、ボンネット部材30bの小径側の開口端部
内周は、内燃機関(図示せず)の吸気通路(図示せず)
に連通する下流側EGRパイプ4bの開口端部外周にN
iろう付けされて、EGRガス排出口31bを構成して
いる。そして、ボンネット部材30a,30bの大径側
の開口端部内周は、熱交換部2の両端に固着されたチュ
ーブシート22a,22bにNiろう付けされてる。し
たがって、チューブシート22a,22bとボンネット
部材30a,30bとにより、上流側EGRガス室3
a,下流側EGRガス室3bが形成されている。
The bonnet members 30a and 30b are made of austenitic stainless steel, and the inner peripheral surface is enlarged from the open end at one end to the open end at the other end while maintaining a circular cross-sectional shape. The inner periphery of the opening end on the small diameter side of the bonnet member 30a is Ni-brazed on the outer periphery of the opening end of the upstream EGR pipe 4a communicating with the exhaust passage (not shown) of the internal combustion engine (not shown), and EGR gas is supplied. Inlet 31
a is formed, and the inner circumference of the opening end on the small diameter side of the bonnet member 30b is formed in an intake passage (not shown) of an internal combustion engine (not shown).
N around the opening end of the downstream EGR pipe 4b communicating with the
i, which are brazed to form the EGR gas discharge port 31b. The inner circumferences of the large-diameter-side open ends of the bonnet members 30a and 30b are Ni-brazed to the tube sheets 22a and 22b fixed to both ends of the heat exchange unit 2. Therefore, the upstream EGR gas chamber 3 is formed by the tube sheets 22a and 22b and the bonnet members 30a and 30b.
a, a downstream EGR gas chamber 3b is formed.

【0018】尚、図1に示されるように、本第1の実施
の形態では、EGRパイプ4a,4bは、EGRガス冷
却装置1が配設される附近において、その軸線が筒体2
0の軸線21に平行になるよう直線状に形成されてお
り、EGRパイプ4aは直線部分よりEGRガスの上流
側が低くなるように屈曲して形成され、EGRパイプ4
bは直線部分よりEGRガスの下流側が低くなるように
屈曲して形成されている。したがって、EGRガス冷却
装置1とEGRパイプ4a,4bとで形成される系にお
いて、EGRガス冷却装置1が最も高い位置に配設され
ている。さらに、図4に示されるように、EGRパイプ
4a,4bは、EGRガス冷却装置1が配設される直線
部分が、EGRガスの上流側が下流側より低くなるよう
に水平方向に対して若干傾斜して車両に搭載されてい
る。したがって、EGRガス冷却装置1は、上流側EG
Rガス室3aが下流側EGRガス室3bより鉛直下側に
位置しており、筒体20の軸線21及び伝熱管24の軸
線(図示せず)が水平方向に対して若干傾斜して車両に
搭載されている。
As shown in FIG. 1, in the first embodiment, the EGR pipes 4a and 4b have their axes aligned with the cylinder 2 near the location where the EGR gas cooling device 1 is provided.
The EGR pipe 4a is formed in a straight line so as to be parallel to the axis 21 of 0, and the EGR pipe 4a is bent so that the upstream side of the EGR gas is lower than the straight line portion.
b is bent so that the downstream side of the EGR gas is lower than the straight portion. Therefore, in the system formed by the EGR gas cooling device 1 and the EGR pipes 4a and 4b, the EGR gas cooling device 1 is disposed at the highest position. Further, as shown in FIG. 4, the EGR pipes 4a and 4b are slightly inclined with respect to the horizontal direction so that the straight portion where the EGR gas cooling device 1 is disposed is lower on the upstream side of the EGR gas than on the downstream side. And is mounted on the vehicle. Therefore, the EGR gas cooling device 1 is
The R gas chamber 3a is located vertically below the downstream EGR gas chamber 3b, and the axis 21 of the cylindrical body 20 and the axis (not shown) of the heat transfer tube 24 are slightly inclined with respect to the horizontal direction to the vehicle. It is installed.

【0019】ここで、ボンネット部材30a,30bの
各々の形状について詳述する。
Here, the shapes of the bonnet members 30a and 30b will be described in detail.

【0020】図4及び図5に示されるように、ボンネッ
ト部材30a,30bのうち、EGRガスの上流側に配
設されるボンネット部材30aは、大径側(熱交換部2
側)の開口部の中心32aが筒体20の軸線21上に位
置しており、小径側(EGRパイプ4a側)の開口部の
中心34aが筒体20の軸線21に対して鉛直下方にオ
フセットして形成されている。さらに、ボンネット部材
30aは、小径側の開口部から大径側の開口部に向かっ
て、第1円筒部T1と斜円錐台形状部T2と第2円筒部
T3とから構成されている(ここで、斜円錐台形状と
は、斜円錐を頂点を通らない底面に平行な平面で切り、
頂点を含む部分を除いてできる形状を示す)。第1円筒
部T1では、その軸線が筒体20の軸線21に対して平
行であり、内径がEGRパイプ4aの外径に略等しく形
成されて、この部位でEGRパイプ4aが固着されてい
る。斜円錐台形状部T2では、小径側の開口部から大径
側の開口部に向かって、母線と円形底面とが垂直である
ような斜円錐台状に内周面が拡径されるとともに、円形
底面に垂直な母線が筒体20の軸線21に対して平行で
あり、且つ、母線のうちで最も鉛直下方に位置するよう
形成されている。また、第2円筒部T3との境界部附近
の下部においては、母線に対して所定の傾斜角をなして
段差状に若干拡管されている。第2円筒部T3では、そ
の軸線が筒体20の軸線21と同軸上に位置しており、
内径がチューブシート22aの外径に略等しく形成され
て、この部位でチューブシート22aが固着されてい
る。そして、ボンネット部材30aの大径側開口部の中
心32a及び小径側開口部の中心34aを含む鉛直縦断
面における2本の内側線のうち鉛直下側の内側線36a
が、伝熱管24のうち最も鉛直下方に位置する伝熱管2
4aにおけるEGRガス上流側の開口端部内周縁の最下
点25aより鉛直下側に位置するよう構成されている。
また、この内側線36aは、斜円錐台形状部T2で段差
状に拡管されている部位以外の大部分では、筒体20の
軸線21に対して平行となっており、水平方向に対して
若干傾斜している。尚、第1円筒部T1,斜円錐台形状
部T2,第2円筒部T3の夫々の境界部の内周面は、滑
らかに連続して形成されている。
As shown in FIGS. 4 and 5, of the bonnet members 30a and 30b, the bonnet member 30a disposed on the upstream side of the EGR gas has a large diameter (the heat exchange section 2).
The center 32a of the opening is located on the axis 21 of the cylindrical body 20, and the center 34a of the opening on the small diameter side (the EGR pipe 4a side) is vertically offset from the axis 21 of the cylindrical body 20. It is formed. Further, the bonnet member 30a is composed of a first cylindrical portion T1, an oblique truncated cone-shaped portion T2, and a second cylindrical portion T3 from the opening on the small diameter side to the opening on the large diameter side (here, the cylindrical portion T3). , With the oblique frustum shape, cut the oblique cone with a plane parallel to the bottom surface that does not pass through the apex,
This shows the shape that can be formed except for the part including the vertices.) In the first cylindrical portion T1, the axis is parallel to the axis 21 of the cylinder 20, the inner diameter is formed substantially equal to the outer diameter of the EGR pipe 4a, and the EGR pipe 4a is fixed at this portion. In the oblique truncated cone-shaped portion T2, the inner peripheral surface is expanded in a truncated conical shape such that the generatrix and the circular bottom face are perpendicular from the small-diameter opening to the large-diameter opening. A generatrix perpendicular to the circular bottom surface is formed so as to be parallel to the axis 21 of the cylindrical body 20 and to be positioned at the lowest vertically among the generatrix. In the lower part near the boundary with the second cylindrical portion T3, the pipe is slightly expanded in a stepped manner at a predetermined inclination angle with respect to the generatrix. In the second cylindrical portion T3, its axis is located coaxially with the axis 21 of the cylinder 20,
The inner diameter is substantially equal to the outer diameter of the tube sheet 22a, and the tube sheet 22a is fixed at this portion. Then, of the two inner lines in the vertical vertical section including the center 32a of the large-diameter side opening and the center 34a of the small-diameter side opening of the bonnet member 30a, the inner line 36a on the vertically lower side is used.
Is the heat transfer tube 2 located at the most vertically lower position of the heat transfer tubes 24.
4a, it is configured to be located vertically below the lowest point 25a of the inner peripheral edge of the opening end on the upstream side of the EGR gas.
In addition, the inner line 36a is parallel to the axis 21 of the cylindrical body 20 in most parts other than the part where the pipe is expanded stepwise at the oblique frustoconical portion T2, and is slightly parallel to the horizontal direction. It is inclined. The inner peripheral surface of each boundary between the first cylindrical portion T1, the oblique-cone-shaped portion T2, and the second cylindrical portion T3 is formed smoothly and continuously.

【0021】したがって、上流側EGRガス室3a内に
は、ボンネット部材30aが斜円錐台形状部T2で下部
が段差状に拡管されていることにより、段差状の拡管が
立ち下がる部位とチューブシート22aとの間におい
て、ボンネット部材30aの内周面とチューブシート2
2aとで凹状空間Aが形成されている。
Therefore, in the upstream side EGR gas chamber 3a, the lower portion of the bonnet member 30a is expanded stepwise at the oblique frustoconical portion T2, so that the portion where the stepped expansion falls and the tube sheet 22a. Between the inner peripheral surface of the bonnet member 30 a and the tube sheet 2.
2a form a concave space A.

【0022】一方、EGRガスの下流側に配設されるボ
ンネット部材30bは、従来のEGRガス冷却装置のボ
ンネット部材80a,80bと基本的には同一構成を成
しており、大径側(熱交換部2側)の開口部の中心32
bと小径側(EGRパイプ4b側)の開口部の中心34
bとが、筒体20の軸線21と同軸上に位置しており、
小径側の開口部、即ちEGRガス排出口31bの内周縁
の最下点が、伝熱管24のうち最も鉛直下方に位置する
伝熱管24aにおけるEGRガス下流側の開口端部内周
縁の最下点25bより鉛直上側に位置している。さら
に、ボンネット部材30bは、小径側の開口部から大径
側の開口部に向かって、第1円筒部S1と円錐台形状部
S2と第2円筒部S3とから構成されている(ここで、
円錐台形状とは、直円錐を頂点を通らない底面に平行な
平面で切り、頂点を含む部分を除いてできる形状を示
す)。第1円筒部S1では、その軸線が筒体20の軸線
21と同軸上に位置しており、内径がEGRパイプ4b
の外径に略等しく形成されて、この部位でEGRパイプ
4bが固着されている。円錐台形状部S2では、小径側
の開口部から大径側の開口部に向かって、筒体20の軸
線21と同軸状の円錐台状に内周面が拡径されている。
第2円筒部S3では、その軸線が筒体20の軸線21と
同軸上に位置しており、内径がチューブシート22bの
外径に略等しく形成されて、この部位でチューブシート
22bが固着されている。尚、第1円筒部S1,斜円錐
台形状部S2,第2円筒部S3の夫々の境界部の内周面
は、滑らかに連続して形成されている。
On the other hand, the bonnet member 30b disposed downstream of the EGR gas has basically the same configuration as the bonnet members 80a and 80b of the conventional EGR gas cooling device, and Center 32 of opening of exchange unit 2)
b and the center 34 of the opening on the small diameter side (the EGR pipe 4b side)
b is coaxial with the axis 21 of the cylinder 20,
The lower end of the opening on the smaller diameter side, that is, the lowermost point of the inner peripheral edge of the EGR gas discharge port 31b is the lowermost point 25b of the inner peripheral edge of the opening end on the downstream side of the EGR gas in the heat transfer tube 24a located at the lowest position among the heat transfer tubes 24. It is located more vertically above. Further, the bonnet member 30b is composed of a first cylindrical portion S1, a truncated cone-shaped portion S2, and a second cylindrical portion S3 from the opening on the small diameter side to the opening on the large diameter side (here,
The truncated cone shape refers to a shape formed by cutting a straight cone with a plane parallel to the bottom surface that does not pass through the apex and excluding a portion including the apex). In the first cylindrical portion S1, the axis is located coaxially with the axis 21 of the cylindrical body 20, and the inner diameter is the EGR pipe 4b.
And the EGR pipe 4b is fixed at this portion. In the truncated cone-shaped portion S2, the inner peripheral surface is expanded in a truncated cone shape coaxial with the axis 21 of the cylindrical body 20 from the opening on the small diameter side to the opening on the large diameter side.
In the second cylindrical portion S3, the axis is located coaxially with the axis 21 of the cylindrical body 20, the inner diameter is formed substantially equal to the outer diameter of the tube sheet 22b, and the tube sheet 22b is fixed at this portion. I have. The inner peripheral surface of the boundary between the first cylindrical portion S1, the oblique-cone-shaped portion S2, and the second cylindrical portion S3 is smoothly and continuously formed.

【0023】したがって、下流側EGRガス室3b内に
は、ボンネット部材30bが円錐台形状部S2で円錐台
状に内周面が拡径されていることにより、円錐台形状部
S2及び第2円筒部S3において、ボンネット部材30
bの内周面とチューブシート22bとで凹状空間Bが形
成されている。
Therefore, in the downstream side EGR gas chamber 3b, the inner peripheral surface of the bonnet member 30b is expanded in a truncated cone shape at the truncated cone shape S2, so that the truncated cone shape portion S2 and the second cylinder are formed. In the part S3, the bonnet member 30
A concave space B is formed by the inner peripheral surface of the tube b and the tube sheet 22b.

【0024】尚、上流側EGRガス室3aにおける凹状
空間Aの軸線21方向の長さは、下流側EGRガス室3
bにおける凹状空間Bの軸線21方向の長さよりも短く
形成されている。
The length of the concave space A in the upstream EGR gas chamber 3a in the direction of the axis 21 is equal to the length of the downstream EGR gas chamber 3a.
It is formed shorter than the length of the concave space B in the direction of the axis 21 at b.

【0025】さらに、ボンネット部材30aにおけるE
GRパイプ4a側の開口端部と熱交換部2側の開口端部
との距離Laが、ボンネット部材30bにおけるEGR
パイプ4b側の開口端部と熱交換部2側の開口端部との
距離Lbよりも長く設定されている。
Further, E in the bonnet member 30a
The distance La between the open end on the GR pipe 4a side and the open end on the heat exchange section 2 side is equal to the EGR in the bonnet member 30b.
The distance is set to be longer than the distance Lb between the open end on the pipe 4b side and the open end on the heat exchange section 2 side.

【0026】以下、上記構成によるEGRガス冷却装置
の作用及び効果について説明する。
The operation and effect of the EGR gas cooling device having the above configuration will be described below.

【0027】上記構成とされたEGRガス冷却装置1に
よれば、EGRガスは、上流側EGRパイプ4aから上
流側EGRガス室3aの内部空間を介して熱交換部2内
の各伝熱管24へ分配され、伝熱管24内を通過しなが
ら伝熱管24の周囲を囲む冷却水によって冷却された
後、下流側EGRガス室3bの内部空間にて集合されて
下流側EGRパイプ4bに排出される。一方、冷却水
は、冷却水用導入口26aから筒体20内に導入され
て、伝熱管24の周囲の冷却水通路28を通流した後、
冷却水用排出口26bから排出される。
According to the EGR gas cooling device 1 configured as described above, EGR gas is transferred from the upstream EGR pipe 4a to each heat transfer tube 24 in the heat exchange unit 2 via the internal space of the upstream EGR gas chamber 3a. After being distributed and cooled by the cooling water surrounding the periphery of the heat transfer tube 24 while passing through the heat transfer tube 24, they are collected in the internal space of the downstream EGR gas chamber 3 b and discharged to the downstream EGR pipe 4 b. On the other hand, the cooling water is introduced into the cylindrical body 20 from the cooling water inlet 26a, and flows through the cooling water passage 28 around the heat transfer tube 24.
It is discharged from the cooling water discharge port 26b.

【0028】このようにEGRガスを冷却すると、上述
のごとく凝縮水10が発生するが、本第1の実施の形態
に係るEGRガス冷却装置1によれば、図6に示される
ように、チューブシート22aとボンネット部材30a
の内周面とで形成される凹状空間Aが凝縮水10で満た
された場合、即ち、上流側EGRガス室3a内に溜まり
得る最大量の凝縮水が溜まった場合において、内側線3
6aの大部分が水平方向に対して若干傾斜していること
により、凝縮水10の水面12は、内側線36a上で、
且つ、段差状の拡管が立ち下がる部位まで達する。とこ
ろが、内側線36aが、伝熱管24aにおけるEGRガ
ス上流側の開口端部内周縁の最下点25aより鉛直下側
に形成されていることにより、凝縮水10の水面12
は、伝熱管24aの開口端部内周縁の最下点25aより
も鉛直下側に離間している。したがって、伝熱管24a
の開口端部が凝縮水10によって閉塞されることがない
ので、EGRガスの流れが阻害されず、EGRガス冷却
装置1の冷却効率の低下を防止することができる。
When the EGR gas is cooled in this manner, the condensed water 10 is generated as described above. However, according to the EGR gas cooling device 1 according to the first embodiment, as shown in FIG. Seat 22a and bonnet member 30a
When the concave space A formed by the inner peripheral surface of the inner line 3 is filled with the condensed water 10, that is, when the maximum amount of condensed water that can be stored in the upstream EGR gas chamber 3a is stored, the inner line 3
Because most of 6a is slightly inclined with respect to the horizontal direction, the water surface 12 of the condensed water 10 is on the inner line 36a,
And it reaches the part where the step-shaped expansion pipe falls. However, since the inner line 36a is formed vertically below the lowest point 25a of the inner peripheral edge of the open end of the heat transfer tube 24a on the upstream side of the EGR gas, the water surface 12 of the condensed water 10
Are spaced vertically below the lowest point 25a of the inner peripheral edge of the open end of the heat transfer tube 24a. Therefore, the heat transfer tube 24a
Is not blocked by the condensed water 10, the flow of the EGR gas is not hindered, and a decrease in the cooling efficiency of the EGR gas cooling device 1 can be prevented.

【0029】さらに、凹状空間Aが凝縮水10で満たさ
れた後にも凝縮水が発生し続ける場合において、内側線
36a上で、且つ、段差状の拡管が立ち下がる部位が、
伝熱管24aの開口端部内周縁の最下点25aより鉛直
下側に形成されているとともに、EGRパイプ4aが直
線部分よりEGRガス上流側が低くなるように屈曲して
形成されていることにより、凝縮水10は、EGRパイ
プ4a側、即ち、内燃機関の排気通路側に溢れ出す。し
たがって、上流側EGRガス室3a内で発生した凝縮水
10が、伝熱管24内を通って下流側EGRガス室3b
側に流れ込むことがないので、凹状空間Bに溜まる凝縮
水10の水面12を低く保つことができ、EGRガスの
流れが阻害されることが抑制され、EGRガス冷却装置
1の冷却効率の低下を防止することができる。また、凹
状空間Aから溢れ出した凝縮水10が排気通路側に流れ
ると、排気通路内の温度は高温であるために、溢れ出し
た凝縮水10が蒸発し易いという利点が得られる。
Furthermore, when the condensed water continues to be generated even after the concave space A is filled with the condensed water 10, the portion on the inner line 36a where the step-shaped expansion tube falls is defined as follows.
Since the EGR pipe 4a is formed vertically below the lowest point 25a of the inner peripheral edge of the open end of the heat transfer tube 24a and the EGR pipe 4a is bent so that the upstream side of the EGR gas is lower than the straight portion, condensation occurs. The water 10 overflows to the EGR pipe 4a side, that is, to the exhaust passage side of the internal combustion engine. Therefore, the condensed water 10 generated in the upstream EGR gas chamber 3a passes through the heat transfer tube 24, and flows into the downstream EGR gas chamber 3b.
Since the water does not flow to the side, the water surface 12 of the condensed water 10 that accumulates in the concave space B can be kept low, the flow of the EGR gas is prevented from being inhibited, and the cooling efficiency of the EGR gas cooling device 1 is reduced. Can be prevented. Further, when the condensed water 10 overflowing from the concave space A flows to the exhaust passage side, since the temperature in the exhaust passage is high, there is an advantage that the overflowed condensed water 10 is easily evaporated.

【0030】さらに、上流側EGRガス室3aが、下流
側EGRガス室3bより鉛直下側に位置するように筒体
20の軸線21及び伝熱管24の軸線が水平方向に対し
て若干傾斜して車両に搭載されていることにより、伝熱
管24内で発生した凝縮水10は、傾斜に沿って上流側
EGRガス室3a側に向かって流れるので、下流側EG
Rガス室3b側に凝縮水10が流れることはない。した
がって、EGRガス冷却装置1が、筒体20の軸線21
及び伝熱管24の軸線が水平方向に車両に搭載された場
合に比べて、下流側EGRガス室3bに流れ込む凝縮水
10の量が低減されるので、凹状空間Bに溜まる凝縮水
10の水面12を低く保つことができ、EGRガスの流
れが阻害されることが抑制され、EGRガス冷却装置1
の冷却効率の低下を防止することができる。
Further, the axis 21 of the cylinder 20 and the axis of the heat transfer tube 24 are slightly inclined with respect to the horizontal direction so that the upstream EGR gas chamber 3a is located vertically below the downstream EGR gas chamber 3b. Since the condensed water 10 generated in the heat transfer tube 24 by being mounted on the vehicle flows along the slope toward the upstream EGR gas chamber 3a, the downstream EG
The condensed water 10 does not flow to the R gas chamber 3b side. Accordingly, the EGR gas cooling device 1 is
The amount of condensed water 10 flowing into the downstream EGR gas chamber 3b is reduced as compared with the case where the axis of the heat transfer tube 24 is mounted on the vehicle in the horizontal direction. Of the EGR gas cooling device 1
Of the cooling efficiency can be prevented.

【0031】さらに、ボンネット部材30aの内側線3
6aが、伝熱管24aにおけるEGRガス上流側の開口
端部内周縁の最下点25aより鉛直下側に位置している
のに対して、ボンネット部材30bのEGRガス排出口
31bの内周縁の最下点が、伝熱管24aにおけるEG
Rガス下流側の開口端部内周縁の最下点25bより鉛直
上側に位置しており、且つ、ボンネット部材30aにお
ける凹状空間Aの軸線21方向の長さは、ボンネット部
材30bにおける凹状空間Bの軸線21方向の長さより
も短く形成されていることにより、上流側EGRガス室
3aにおける凹状空間Aの容積は、従来のものと基本的
に同一構成を有する下流側EGRガス室3bにおける凹
状空間Bの容積より遥かに縮小されている。これによ
り、凹状空間Aに溜まった少量の凝縮水10は、EGR
ガスが高温になるにつれて簡単に蒸発し、残留すること
がないので、凝縮水10の水面12を一層低く保つこと
ができ、従来のものに比べて、EGRガスの流れが阻害
されることが抑制され、EGRガス冷却装置1の冷却効
率の低下を防止することができる。
Further, the inner line 3 of the bonnet member 30a
6a is located vertically below the lowest point 25a of the inner peripheral edge of the opening end of the heat transfer tube 24a on the upstream side of the EGR gas, whereas the lowermost point of the inner peripheral edge of the EGR gas outlet 31b of the bonnet member 30b is located. The point is EG in the heat transfer tube 24a.
The length of the concave space A of the bonnet member 30a in the direction of the axis 21 is located vertically above the lowest point 25b of the inner peripheral edge of the opening end on the downstream side of the R gas, and the axis of the concave space B of the bonnet member 30b. By being formed shorter than the length in the 21 direction, the volume of the concave space A in the upstream EGR gas chamber 3a is substantially equal to the volume of the concave space B in the downstream EGR gas chamber 3b having basically the same configuration as the conventional one. It is much smaller than its volume. As a result, a small amount of the condensed water 10 accumulated in the concave space A is
Since the gas evaporates easily as the temperature becomes high and does not remain, the water surface 12 of the condensed water 10 can be kept lower, and the flow of the EGR gas is suppressed from being hindered as compared with the conventional one. Thus, a decrease in the cooling efficiency of the EGR gas cooling device 1 can be prevented.

【0032】さらに、一般に、ボンネット部材30aに
おけるEGRパイプ4a側の開口部の中心34aと熱交
換部2側の開口部の中心32aとがオフセットしている
場合には、ボンネット部材30bのごとくEGRパイプ
側の開口部の中心と熱交換部側の開口部の中心とが同軸
上に位置するよう形成された従来のものに比べて、EG
Rガスの拡散が不均一になる。しかしながら、本第1の
実施の形態に係るEGRガス冷却装置1によれば、ボン
ネット部材30aにおけるEGRパイプ4a側の開口端
部と熱交換部2側の開口端部との距離Laが、従来のも
のと基本的に同一構成を有するボンネット部材30bに
おけるEGRパイプ4b側の開口端部と熱交換部2側の
開口端部との距離Lbよりも長く設定されている。この
ことにより、EGRガスが不均一に拡散されることが防
止され、伝熱管24の夫々に均一にEGRガスが分配さ
れる。 (第2の実施の形態)次に、第2の実施の形態について
図7に基づいて説明する。
Further, in general, when the center 34a of the opening on the EGR pipe 4a side of the bonnet member 30a is offset from the center 32a of the opening on the side of the heat exchange section 2, the EGR pipe is like the bonnet member 30b. The center of the opening on the side of the heat exchange section and the center of the opening on the side of the heat exchange section are EG,
The diffusion of the R gas becomes non-uniform. However, according to the EGR gas cooling device 1 according to the first embodiment, the distance La between the opening end of the bonnet member 30a on the EGR pipe 4a side and the opening end of the heat exchange unit 2 side is the same as the conventional one. It is set longer than the distance Lb between the open end on the EGR pipe 4b side and the open end on the heat exchange section 2 side in the bonnet member 30b having basically the same configuration as that of the bonnet member 30b. As a result, the EGR gas is prevented from being unevenly diffused, and the EGR gas is uniformly distributed to each of the heat transfer tubes 24. (Second Embodiment) Next, a second embodiment will be described with reference to FIG.

【0033】本第2の実施の形態も上記第1の実施の形
態と同様に、EGRガスを冷却するEGRガス冷却装置
に本発明を適用したものであり、上記第1の実施の形態
と基本的には同一の構成である。なお、上記第1の実施
の形態と同一部材には同一符号を付してその詳細な説明
は省略する。
In the second embodiment, similarly to the first embodiment, the present invention is applied to an EGR gas cooling device for cooling the EGR gas. In general, they have the same configuration. The same members as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0034】図7は本第2の実施の形態に係るEGRガ
ス冷却装置の要部を示す中央を省略した縦断側面図、図
8は凹状空間A’,B’に最大量の凝縮水が溜まった様
子を示す縦断側面図である。
FIG. 7 is a vertical sectional side view of a main part of the EGR gas cooling apparatus according to the second embodiment, in which the center is omitted, and FIG. 8 shows that the maximum amount of condensed water is stored in the concave spaces A 'and B'. FIG.

【0035】図7に示されるように、本第2の実施の形
態に係るEGRガス冷却装置1においては、熱交換部
2,EGRガスの上流側に配設されるボンネット部材5
0aは、上記第1の実施の形態と同一構成を成している
が、EGRガスの下流側に配設されるボンネット部材5
0bが、EGRガスの上流側に配設されるボンネット部
材50aと同一形状を成している点と、EGRパイプ4
a,4bが、上記第1の実施の形態と同一形状を成して
いるものの、直線部分が水平方向に対して平行に車両に
搭載され、筒体20の軸線21が水平方向に沿うよう傾
斜せずに車両に搭載されている点で、上記第1の実施の
形態と異なっている。
As shown in FIG. 7, in the EGR gas cooling device 1 according to the second embodiment, the heat exchange section 2 and the bonnet member 5 disposed upstream of the EGR gas are provided.
0a has the same configuration as that of the first embodiment, but has a bonnet member 5 disposed downstream of the EGR gas.
0b has the same shape as the bonnet member 50a disposed on the upstream side of the EGR gas.
Although a and 4b have the same shape as the first embodiment, the straight portion is mounted on the vehicle parallel to the horizontal direction, and the axis 21 of the cylindrical body 20 is inclined so as to be along the horizontal direction. The first embodiment is different from the first embodiment in that the first embodiment is mounted on a vehicle without using the first embodiment.

【0036】即ち、ボンネット部材50a,50bは、
大径側(熱交換部2側)の開口部の中心52a,52b
が筒体20の軸線21上に位置しており、小径側(EG
Rパイプ4a,4b側)の開口部の中心54a,54b
が筒体20の軸線21に対して鉛直下側にオフセットし
て形成されている。さらに、ボンネット部材50a,5
0bは、小径側の開口部から大径側の開口部に向かっ
て、第1円筒部T1’,S1’と斜円錐台形状部T
2’,S2’と第2円筒部T3’,S3’とから構成さ
れている。第1円筒部T1’,S1’では、その軸線が
筒体20の軸線21に対して平行であり、内径がEGR
パイプ4a,4bの外径に略等しく形成されて、この部
位でEGRパイプ4a,4bが固着されいる。斜円錐台
形状部T2’,S2’では、小径側の開口部から大径側
の開口部に向かって、母線と円形底面とが垂直であるよ
うな斜円錐台状に内周面が拡径されるとともに、円形底
面に垂直な母線が筒体20の軸線21に対して平行であ
り、且つ、母線のうちで最も鉛直下方に位置するよう形
成されている。また、第2円筒部T3’,S3’との境
界部附近の下部においては、母線に対して所定の傾斜角
をなして段差状に若干拡管されている。第2円筒部T
3’,S3’では、その軸線が筒体20の軸線21と同
軸上に位置しており、内径がチューブシート22a,2
2bの外径に略等しく形成されて、この部位でチューブ
シート22a,22bが固着されている。そして、ボン
ネット部材50a,50bの大径側開口部の中心52
a,52b及び小径側開口部の中心54a,54bを含
む鉛直縦断面における2本の内側線のうち鉛直下側の内
側線56a,56bが、伝熱管24のうち最も鉛直下方
に位置する伝熱管24aにおけるEGRガス上流側の開
口端部内周縁の最下点25a及びEGRガス下流側の開
口端部内周縁の最下点25bより鉛直下側に位置するよ
う構成されている。尚、EGRパイプ4a,4bは、開
口端部内周縁の最下点42a,42bが伝熱管24aの
開口端部内周縁の最下点25a,25bより鉛直下側に
位置するように肉厚が設定されている。尚、第1円筒部
T1’,S1’,斜円錐台形状部T2’,S2’,第2
円筒部T3’,S3’の夫々の境界部の内周面は、滑ら
かに連続して形成されている。
That is, the bonnet members 50a and 50b are
Centers 52a, 52b of openings on the large diameter side (heat exchange unit 2 side)
Are located on the axis 21 of the cylindrical body 20, and the small diameter side (EG
Centers 54a, 54b of openings of R pipes 4a, 4b side)
Are offset vertically downward with respect to the axis 21 of the cylindrical body 20. Further, the bonnet members 50a, 5
0b, the first cylindrical portions T1 ′ and S1 ′ and the oblique frustoconical portion T from the small-diameter side opening toward the large-diameter side opening.
2 ', S2' and second cylindrical portions T3 ', S3'. In the first cylindrical portions T1 'and S1', the axis is parallel to the axis 21 of the cylinder 20, and the inner diameter is EGR.
The EGR pipes 4a, 4b are formed to be substantially equal to the outer diameters of the pipes 4a, 4b, and the EGR pipes 4a, 4b are fixed at this portion. In the oblique truncated cone-shaped portions T2 'and S2', the inner peripheral surface is enlarged in a truncated cone shape such that the generatrix and the circular bottom face are perpendicular from the small-diameter opening to the large-diameter opening. At the same time, a generating line perpendicular to the circular bottom surface is formed so as to be parallel to the axis 21 of the cylindrical body 20 and to be located at the most vertically lower position among the generating lines. In the lower part near the boundary between the second cylindrical portions T3 'and S3', the pipe is slightly expanded in a stepped manner at a predetermined inclination angle with respect to the generatrix. 2nd cylindrical part T
In 3 ′ and S3 ′, the axis is located coaxially with the axis 21 of the cylindrical body 20, and the inner diameters of the tube sheets 22a, 2
The tube sheets 22a and 22b are formed to be substantially equal to the outer diameter of the tube sheet 2b, and the tube sheets 22a and 22b are fixed at this portion. Then, the center 52 of the large diameter side opening of the bonnet members 50a, 50b.
Among the two inner lines in the vertical vertical section including the centers a and 52b and the centers of the small-diameter-side openings, the inner lines 56a and 56b on the vertically lower side are the heat transfer tubes located at the most vertically lower position among the heat transfer tubes 24. The lowermost point 25a of the inner peripheral edge of the opening end on the upstream side of the EGR gas and the lowermost point 25b of the inner peripheral edge of the opening end on the downstream side of the EGR gas in 24a are configured to be located vertically below. The thickness of the EGR pipes 4a, 4b is set such that the lowermost points 42a, 42b of the inner peripheral edge of the open end are located vertically below the lowermost points 25a, 25b of the inner peripheral edge of the open end of the heat transfer tube 24a. ing. The first cylindrical portion T1 ′, S1 ′, the oblique truncated cone-shaped portion T2 ′, S2 ′, the second
The inner peripheral surface of each boundary between the cylindrical portions T3 'and S3' is formed smoothly and continuously.

【0037】したがって、上流側EGRガス室5a,下
流側EGRガス室5b内には、ボンネット部材50a,
50bが斜円錐台形状部T2’,S2’で下部が段差状
に拡管されていることにより、EGRパイプ4a,4b
の開口端部壁面44a,44bとボンネット部材50
a,50bの内周面とチューブシート22a,22bと
で凹状空間A’,B’が形成されている。
Accordingly, the bonnet member 50a, the upstream EGR gas chamber 5a, and the downstream EGR gas chamber 5b are provided in the upstream EGR gas chamber 5b.
The EGR pipes 4a, 4b are provided with the oblique truncated cone-shaped portions T2 ', S2', and the lower portion is expanded in a stepped manner.
Open end wall surfaces 44a, 44b and bonnet member 50
Concave spaces A 'and B' are formed by the inner peripheral surfaces of the a and 50b and the tube sheets 22a and 22b.

【0038】上記構成とされたEGRガス冷却装置1に
よれば、図8に示されるように、凹状空間A’,B’が
凝縮水10で満たされた場合、即ち、上流側EGRガス
室5a,下流側EGRガス室5b内に溜まり得る最大量
の凝縮水が溜まった場合において、EGRパイプ4a及
び4bが、EGRガス冷却装置1が配設されて水平方向
に対して平行な直線部分より上流側及び下流側が低くな
るよう屈曲して形成されていることにより、凝縮水10
の水面12は、EGRパイプ4a,4bの開口端部内周
縁の最下点42a,42bまで達する。ところが、内側
線56a,56bが、伝熱管24aの開口端部内周縁の
最下点25a,25bより鉛直下側に位置するよう構成
されているとともに、EGRパイプ4a,4bが、開口
端部内周縁の最下点42a,42bが伝熱管24aの開
口端部内周縁の最下点25a,25bより鉛直下側に位
置するように肉厚が設定されていることにより、凝縮水
10の水面12は、伝熱管24aの開口端部内周の最下
点25a,25bよりも鉛直下側に離間している。した
がって、上流側EGRガス室5a側及び下流側EGRガ
ス室5b側の双方において、伝熱管24aの開口端部が
凝縮水10によって閉塞されることがなく、上記第1の
実施の形態に比べて、一層、EGRガス冷却装置1の冷
却性能低下の防止を促進することができる。
According to the EGR gas cooling device 1 configured as described above, as shown in FIG. 8, when the concave spaces A 'and B' are filled with the condensed water 10, that is, the upstream EGR gas chamber 5a When the maximum amount of condensed water that can accumulate in the downstream-side EGR gas chamber 5b accumulates, the EGR pipes 4a and 4b are arranged upstream of a straight portion parallel to the horizontal direction in which the EGR gas cooling device 1 is disposed. The condensed water 10 and the downstream side are bent so as to be lower.
The water surface 12 reaches the lowermost points 42a, 42b of the inner peripheral edges of the open ends of the EGR pipes 4a, 4b. However, the inner lines 56a and 56b are configured to be located vertically below the lowest points 25a and 25b of the inner peripheral edge of the open end of the heat transfer tube 24a, and the EGR pipes 4a and 4b are connected to the inner peripheral edge of the open end. The water surface 12 of the condensed water 10 is conveyed by setting the wall thickness so that the lowermost points 42a and 42b are located vertically below the lowermost points 25a and 25b of the inner peripheral edge of the open end of the heat transfer tube 24a. The lower end points 25a and 25b of the inner circumference of the open end of the heat pipe 24a are separated vertically below. Therefore, on both the upstream EGR gas chamber 5a side and the downstream EGR gas chamber 5b side, the opening end of the heat transfer tube 24a is not blocked by the condensed water 10, and compared with the first embodiment. Further, it is possible to further prevent the cooling performance of the EGR gas cooling device 1 from lowering.

【0039】さらに、上流側EGRガス室5a内の凹状
空間A’が凝縮水10で満たされた後にも凝縮水が発生
し続ける場合において、EGRパイプ4aが、開口端部
内周縁の最下点42aが伝熱管24aの開口端部内周縁
の最下点25aより鉛直下側に位置するように肉厚が設
定されており、且つ、水平方向に対して平行な直線部分
より上流側が低くなるよう屈曲して形成されていること
により、凝縮水10は、EGRパイプ4a側、即ち、内
燃機関の排気通路側に溢れ出す。したがって、排気通路
内の温度は高温であるために、溢れ出した凝縮水10が
蒸発し易いという利点が得られる。 (第3の実施の形態)次に、第3の実施の形態について
図9に基づいて説明する。
Further, when the condensed water continues to be generated even after the concave space A 'in the upstream EGR gas chamber 5a is filled with the condensed water 10, the EGR pipe 4a is connected to the lowermost point 42a of the inner peripheral edge of the open end. Is positioned so as to be located vertically below the lowermost point 25a of the inner peripheral edge of the open end of the heat transfer tube 24a, and bent so that the upstream side is lower than a straight line portion parallel to the horizontal direction. As a result, the condensed water 10 overflows toward the EGR pipe 4a, that is, toward the exhaust passage of the internal combustion engine. Therefore, since the temperature in the exhaust passage is high, there is an advantage that the overflowed condensed water 10 is easily evaporated. (Third Embodiment) Next, a third embodiment will be described with reference to FIG.

【0040】本第3の実施の形態も上記第1及び第2の
実施の形態と同様に、EGRガスを冷却するEGRガス
冷却装置に本発明を適用したものであり、上記第1及び
第2の実施の形態と基本的には同一の構成である。な
お、上記第1及び第2の実施の形態と同一部材には同一
符号を付してその詳細な説明は省略する。
In the third embodiment, similarly to the first and second embodiments, the present invention is applied to an EGR gas cooling device for cooling the EGR gas. The configuration is basically the same as that of the embodiment. The same members as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0041】図9は本第3の実施の形態に係るEGRガ
ス冷却装置の要部を示す中央を省略した縦断側面図、図
10は凹状空間A”,B”に最大量の凝縮水が溜まった
様子を示す縦断側面図である。
FIG. 9 is a vertical sectional side view showing a main part of the EGR gas cooling apparatus according to the third embodiment, in which the center is omitted. FIG. 10 shows that the maximum amount of condensed water is stored in the concave spaces A "and B". FIG.

【0042】本第3の実施の形態に係るEGRガス冷却
装置1においては、熱交換部2、及び、EGRパイプ4
a,4bは上記第1及び第2の実施の形態と同一構成を
成しているが、ボンネット部材60a,60bの形状が
上記第1及び第2の実施の形態と異なっている。尚、本
第3の実施の形態に係るEGRガス冷却装置1は、上記
第2の実施の形態と同様に、筒体20の軸線21が水平
方向に沿うよう傾斜せずに車両に搭載されている。
In the EGR gas cooling apparatus 1 according to the third embodiment, the heat exchange section 2 and the EGR pipe 4
Although a and 4b have the same configuration as those of the first and second embodiments, the shapes of the bonnet members 60a and 60b are different from those of the first and second embodiments. The EGR gas cooling device 1 according to the third embodiment is mounted on a vehicle without tilting so that the axis 21 of the cylindrical body 20 extends along the horizontal direction, similarly to the second embodiment. I have.

【0043】図9に示されるように、ボンネット部材6
0a,60bは、大径側(熱交換部2側)の開口部の中
心62a,62bが筒体20の軸線21上に位置してお
り、小径側(EGRパイプ4a,4b側)の開口部の中
心64a,64bが筒体20の軸線21に対して鉛直下
方にオフセットして形成されている。さらに、ボンネッ
ト部材60a,60bは、小径側の開口部から大径側の
開口部に向かって、第1円筒部T1”,S1”と斜円錐
台形状部T2”,S2”と第2円筒部T3”,S3”と
から構成されている。第1円筒部T1”,S1”では、
その軸線が筒体20の軸線21に対して平行であり、内
径がEGRパイプ4a,4bの外径に略等しく形成され
て、この部位でEGRパイプ4a,4bが固着されい
る。斜円錐台形状部T2”,S2”では、小径側の開口
部から大径側の開口部に向かって、母線と円形底面とが
垂直であるような斜円錐台状に内周面が拡径されるとと
もに、円形底面に垂直な母線が筒体20の軸線21に対
して平行であり、且つ、母線のうちで最も鉛直下方に位
置するよう形成されている。第2円筒部T3”,S3”
では、その軸線が筒体20の軸線21と同軸上に位置し
ており、内径がチューブシート22a,22bの外径に
略等しく形成されて、この部位でチューブシート22
a,22bが固着されている。そして、ボンネット部材
60a,60bの大径側開口部の中心62a,62b及
び小径側開口部の中心64a,64bを含む鉛直縦断面
における2本の内側線のうち鉛直下側の内側線66a,
66bが、伝熱管24のうち最も鉛直下方に位置する伝
熱管24aにおけるEGRガス上流側の開口端部内周縁
の最下点25a及びEGRガス下流側の開口端部内周縁
の最下点25bより鉛直下側に位置するよう構成されて
いる。尚、EGRパイプ4a,4bは、開口端部内周縁
の最下点42a,42bが伝熱管24aの開口端部内周
縁の最下点25a,25bより鉛直下側に位置するよう
に肉厚が設定されている。尚、第1円筒部T1”,S
1”,斜円錐台形状部T2”,S2”,第2円筒部T
3”,S3”の夫々の境界部の内周面は、滑らかに連続
して形成されている。
As shown in FIG. 9, the bonnet member 6
Reference numerals 0a and 60b denote openings 62a and 62b on the large-diameter side (heat exchange unit 2 side) centered on the axis 21 of the cylindrical body 20 and small-diameter sides (EGR pipes 4a and 4b side). Are formed vertically offset vertically below the axis 21 of the cylindrical body 20. Further, the bonnet members 60a and 60b are arranged such that the first cylindrical portions T1 "and S1", the truncated cone-shaped portions T2 "and S2", and the second cylindrical portions are arranged from the small-diameter opening to the large-diameter opening. T3 "and S3". In the first cylindrical portion T1 ″, S1 ″,
The axis is parallel to the axis 21 of the cylinder 20, the inner diameter is formed substantially equal to the outer diameter of the EGR pipes 4a, 4b, and the EGR pipes 4a, 4b are fixed at this portion. In the oblique truncated cone-shaped portions T2 ″ and S2 ″, the inner peripheral surface is enlarged in a truncated conical shape such that the generatrix and the circular bottom face are perpendicular from the small-diameter opening to the large-diameter opening. At the same time, a generatrix perpendicular to the circular bottom surface is formed so as to be parallel to the axis 21 of the cylindrical body 20 and to be positioned at the lowest vertically among the generatrix. Second cylindrical portion T3 ″, S3 ″
In this example, the axis is located coaxially with the axis 21 of the cylindrical body 20, and the inner diameter is formed substantially equal to the outer diameter of the tube sheets 22a and 22b.
a and 22b are fixed. Then, of the two inner lines in the vertical vertical section including the centers 62a, 62b of the large-diameter side openings of the bonnet members 60a, 60b and the centers 64a, 64b of the small-diameter side openings, the inner line 66a, vertically lower, of the two inner lines.
66b is vertically lower than the lowest point 25a of the inner peripheral edge of the opening end on the upstream side of the EGR gas and the lowermost point 25b of the inner peripheral edge of the opening end on the downstream side of the EGR gas in the heat transfer tube 24a located at the lowest position among the heat transfer tubes 24. Side. The thickness of the EGR pipes 4a, 4b is set such that the lowermost points 42a, 42b of the inner peripheral edges of the open ends are vertically lower than the lowermost points 25a, 25b of the inner peripheral edges of the heat transfer tubes 24a. ing. The first cylindrical portion T1 ″, S
1 ″, oblique frustoconical portion T2 ″, S2 ″, second cylindrical portion T
The inner peripheral surface of each boundary portion of 3 ″ and S3 ″ is formed smoothly and continuously.

【0044】したがって、上流側EGRガス室6a,下
流側EGRガス室6b内には、EGRパイプ4a,4b
の開口端部壁面44a,44bとボンネット部材60
a,60bの内周面とチューブシート22a,22bと
で微小な凹状空間A”,B”が形成されている。
Therefore, the EGR pipes 4a, 4b are provided in the upstream EGR gas chamber 6a and the downstream EGR gas chamber 6b.
Open end wall surfaces 44a, 44b and bonnet member 60
A minute concave space A ", B" is formed between the inner peripheral surfaces of the a and 60b and the tube sheets 22a and 22b.

【0045】上記構成とされたEGRガス冷却装置1に
よれば、図10に示されるように、凹状空間A”,B”
が凝縮水10で満たされた場合、即ち、上流側EGRガ
ス室6a,下流側EGRガス室6b内に溜まり得る最大
量の凝縮水が溜まった場合において、EGRパイプ4a
及び4bが、EGRガス冷却装置1が配設されて水平方
向に対して平行な直線部分より上流側及び下流側が低く
なるよう屈曲して形成されていることにより、凝縮水1
0の水面12は、EGRパイプ4a,4bの開口端部内
周縁の最下点42a,42bまで達する。ところが、内
側線66a,66bが、伝熱管24aの開口端部内周縁
の最下点25a,25bより鉛直下側に位置するよう構
成されているとともに、EGRパイプ4a,4bが、開
口端部内周縁の最下点42a,42bが伝熱管24aの
開口端部内周縁の最下点25a,25bより鉛直下側に
位置するように肉厚が設定されていることにより、凝縮
水10の水面12は、伝熱管24aの開口端部内周の最
下点25a,25bよりも鉛直下側に離間している。し
たがって、上流側EGRガス室5a側及び下流側EGR
ガス室5b側の双方において、伝熱管24aの開口端部
が凝縮水10によって閉塞されることがなく、上記第1
の実施の形態に比べて、一層、EGRガス冷却装置1の
冷却性能低下の防止を促進することができる。
According to the EGR gas cooling device 1 configured as described above, as shown in FIG. 10, the concave spaces A ", B"
Is filled with the condensed water 10, that is, when the maximum amount of condensed water that can be accumulated in the upstream EGR gas chamber 6a and the downstream EGR gas chamber 6b is accumulated, the EGR pipe 4a
And 4b are bent so that the upstream and downstream sides are lower than the straight portion parallel to the horizontal direction in which the EGR gas cooling device 1 is provided, so that the condensed water 1
The zero water surface 12 reaches the lowest points 42a and 42b of the inner peripheral edges of the open ends of the EGR pipes 4a and 4b. However, the inner lines 66a, 66b are configured to be located vertically below the lowest points 25a, 25b of the inner peripheral edge of the open end of the heat transfer tube 24a, and the EGR pipes 4a, 4b are connected to the inner peripheral edge of the open end. The water surface 12 of the condensed water 10 is conveyed by setting the wall thickness so that the lowermost points 42a and 42b are located vertically below the lowermost points 25a and 25b of the inner peripheral edge of the open end of the heat transfer tube 24a. The lower end points 25a and 25b of the inner circumference of the open end of the heat pipe 24a are separated vertically below. Therefore, the upstream EGR gas chamber 5a and the downstream EGR
On both sides of the gas chamber 5b, the open end of the heat transfer tube 24a is not blocked by the condensed water 10, and the first
As compared with the embodiment, it is possible to further prevent the cooling performance of the EGR gas cooling device 1 from lowering.

【0046】さらに、本第3の実施の形態に係るEGR
ガス冷却装置1は、ボンネット部材60a,60bの円
錐台形状部T2”,S2”で、上記第1及び第2の実施
の形態のごとく下部が段差状に拡管されていないことに
より、凹状空間A”,B”が、上記第1及び第2の実施
の形態における凹状空間A,A’,B’に比べて極めて
小さい。したがって、凹状空間A”,B”には、凝縮水
10がごく少量しか溜まることがなく、凝縮水10が高
温のEGRガスによって蒸発すると、上記第1及び第2
の実施の形態に比べて残留し難くなり、より一層、EG
Rガス冷却装置1の冷却性能低下の防止を促進すること
ができる。
Further, the EGR according to the third embodiment
The gas cooling device 1 has a concave space A due to the truncated conical portions T2 ″ and S2 ″ of the bonnet members 60a and 60b not having the lower portion expanded in a stepped shape as in the first and second embodiments. ", B" is extremely smaller than the concave spaces A, A ', B' in the first and second embodiments. Therefore, only a very small amount of the condensed water 10 accumulates in the concave spaces A "and B", and when the condensed water 10 evaporates with the high-temperature EGR gas, the first and second condensed water 10 are removed.
And hardly remain as compared with the embodiment of FIG.
It is possible to promote prevention of deterioration in the cooling performance of the R gas cooling device 1.

【0047】さらに、上流側EGRガス室6a内の凹状
空間A”が凝縮水10で満たされた後にも凝縮水が発生
し続ける場合において、EGRパイプ4aが、開口端部
内周縁の最下点42aが伝熱管24aの開口端部内周縁
の最下点25aより鉛直下側に位置するように肉厚が設
定されており、且つ、水平方向に対して平行な直線部分
より上流側が低くなるよう屈曲して形成されていること
により、凝縮水10は、EGRパイプ4a側、即ち、内
燃機関の排気通路側に溢れ出す。したがって、排気通路
内の温度は高温であるために、溢れ出した凝縮水10が
蒸発し易いという利点が得られる。
Further, when the condensed water continues to be generated even after the concave space A "in the upstream EGR gas chamber 6a is filled with the condensed water 10, the EGR pipe 4a is connected to the lowermost point 42a of the inner peripheral edge of the open end. Is positioned so as to be located vertically below the lowermost point 25a of the inner peripheral edge of the open end of the heat transfer tube 24a, and bent so that the upstream side is lower than a straight line portion parallel to the horizontal direction. As a result, the condensed water 10 overflows to the EGR pipe 4a side, that is, to the exhaust passage side of the internal combustion engine. Is easily evaporated.

【0048】尚、本発明は、上記実施の形態に限定され
るものではなく、発明の趣旨を逸脱しない範囲で適宜に
変更して、以下のように実施することもできる。 (1)上記第1の実施の形態、及び、第2の実施の形態
では、凹状空間A,A’,B’が凝縮水で満たされた場
合、即ち、上流側EGRガス室3a,5a,5bに、溜
まり得る最大量の凝縮水10が溜まった場合において、
凝縮水10の水面12が、伝熱管24aの開口端部内周
縁の最下点25a,25bより鉛直下側に離間する例を
示したが、凝縮水10の水面12が、伝熱管24aの開
口端部内周縁の最下点25a,25bに一致するように
構成されても、伝熱管24aの開口端部が閉塞されるこ
とがなく、従来に比べて冷却効率低下の防止が促進され
る。 (2)上記第1の実施の形態、及び、第2の実施の形態
では、ボンネット部材30a,50a,50bの第1円
筒部T1,T1’,S2’において、内周面がEGRパ
イプ4a,4bの開口端部外周にNiろう付けされてい
るが、ボンネット部材30a,50a,50bの外周面
がEGRパイプ4a,4bの開口端部内周にNiろう付
けされていても、内側線36a,56a,56bが、伝
熱管24aの開口端部内周縁の最下点25a,25bよ
り鉛直下側に位置するよう構成されていることにより、
凹状空間A,A’,B’が、伝熱管24aの開口端部内
周縁の最下点25a,25bより鉛直下側に位置してお
り、凝縮水10の水面12が伝熱管24aの開口端部内
周縁の最下点25a,25bに達することはなく、冷却
効率の低下を防止することができる。 (3)上記第1の実施の形態では、EGRガス冷却装置
1が、上流側EGRガス室3aが、下流側EGRガス室
3bより鉛直下側に位置するように筒体20の軸線21
及び伝熱管24の軸線28が水平方向に対して若干傾斜
して車両に搭載された例を示したが、筒体20の軸線2
1及び伝熱管24の軸線28が水平方向に沿うように車
両に搭載されても、従来に比べて冷却効率低下の防止が
促進される。 (4)上記第1乃至第3の実施の形態では、凹状空間
A,A’,A”が凝縮水で満たされた場合、即ち、上流
側EGRガス室3a,5a,6aに溜まり得る最大量の
凝縮水10が溜まった場合において、凝縮水10の水面
12が、伝熱管24aの開口端部内周縁の最下点25a
より鉛直下側に離間しているため、凹状空間A,A’,
A”が凝縮水10で満たされた後にも凝縮水10が発生
し続ける場合には、凝縮水10は、上流側EGRガス室
3a,5a,6aが連通する上流側EGRパイプ4a
側、即ち、内燃機関の排気通路側に溢れ出すことで、容
易に蒸発させることができる例を示した。そこで、上流
側EGRガス室3a,5a,6aに溜まり得る最大量の
凝縮水10の水面12と、伝熱管24aにおける上流側
の開口端部内周縁の最下点25aとが一致する場合に
は、伝熱管24aが、EGRガス上流側に比べてEGR
ガス下流側が高くなるよう傾斜させることで、凹状空間
A,A’,A”が凝縮水10で満たされた後に凝縮水1
0が発生し続けると、凝縮水10は、上流側EGRガス
室3a,5a,6aが連通する上流側EGRパイプ4a
側、即ち、内燃機関の排気通路側に溢れ出し、容易に蒸
発させることができる。
It should be noted that the present invention is not limited to the above-described embodiment, and can be implemented as follows with appropriate modifications without departing from the spirit of the invention. (1) In the first and second embodiments, when the concave spaces A, A ', B' are filled with condensed water, that is, when the upstream EGR gas chambers 3a, 5a, In the case where the maximum amount of condensed water 10 that can be accumulated in 5b is accumulated,
Although the example in which the water surface 12 of the condensed water 10 is vertically separated from the lowermost points 25a and 25b of the inner peripheral edge of the open end of the heat transfer tube 24a, the water surface 12 of the condensed water 10 is Even if the lower end points 25a and 25b of the inner peripheral edge are configured to coincide with each other, the opening end of the heat transfer tube 24a is not closed, and the prevention of a decrease in cooling efficiency is promoted as compared with the related art. (2) In the first embodiment and the second embodiment, in the first cylindrical portions T1, T1 ′, S2 ′ of the bonnet members 30a, 50a, 50b, the inner peripheral surface is the EGR pipe 4a, Although the Ni brazing is performed on the outer periphery of the opening end of the EGR pipes 4a and 4b, the inner wires 36a and 56a are formed even if the outer peripheral surfaces of the bonnet members 30a, 50a and 50b are Ni brazed on the inner periphery of the opening ends of the EGR pipes 4a and 4b. , 56b are located vertically below the lowermost points 25a, 25b of the inner peripheral edge of the open end of the heat transfer tube 24a.
The concave spaces A, A ', B' are located vertically below the lowest points 25a, 25b of the inner peripheral edge of the open end of the heat transfer tube 24a, and the water surface 12 of the condensed water 10 is located inside the open end of the heat transfer tube 24a. The lowermost points 25a and 25b of the peripheral edge are not reached, so that a decrease in cooling efficiency can be prevented. (3) In the first embodiment, the EGR gas cooling device 1 controls the axis 21 of the cylinder 20 so that the upstream EGR gas chamber 3a is located vertically below the downstream EGR gas chamber 3b.
And the axis 28 of the heat transfer tube 24 is mounted on the vehicle with a slight inclination with respect to the horizontal direction.
Even when mounted on the vehicle such that the axis 28 of the heat transfer tube 1 and the heat transfer tube 24 extend along the horizontal direction, prevention of a decrease in cooling efficiency is promoted as compared with the related art. (4) In the first to third embodiments, when the concave spaces A, A ′, A ″ are filled with the condensed water, that is, the maximum amount that can be stored in the upstream EGR gas chambers 3a, 5a, 6a. When the condensed water 10 accumulates, the water surface 12 of the condensed water 10 becomes lowermost point 25a of the inner peripheral edge of the open end of the heat transfer tube 24a.
Because they are more vertically separated, the concave spaces A, A ',
When the condensed water 10 continues to be generated even after the A ″ is filled with the condensed water 10, the condensed water 10 is supplied to the upstream EGR pipe 4a to which the upstream EGR gas chambers 3a, 5a, and 6a communicate.
An example has been shown in which the fuel can easily be evaporated by overflowing into the exhaust gas side of the internal combustion engine. Therefore, when the water surface 12 of the maximum amount of condensed water 10 that can accumulate in the upstream EGR gas chambers 3a, 5a, and 6a coincides with the lowermost point 25a of the inner peripheral edge of the upstream end of the heat transfer tube 24a, The heat transfer tube 24a has an EGR gas
By inclining the downstream side of the gas to be higher, the condensed water 1 is filled after the concave spaces A, A ′, A ″ are filled with the condensed water 10.
If 0 continues to be generated, the condensed water 10 flows into the upstream EGR pipe 4a to which the upstream EGR gas chambers 3a, 5a, 6a communicate.
Side, that is, to the side of the exhaust passage of the internal combustion engine, and can be easily evaporated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態に係るEGRガス冷却装置の
全体構成を示す縦断側面図である。
FIG. 1 is a vertical sectional side view showing an overall configuration of an EGR gas cooling device according to a first embodiment.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】伝熱管24aを示す一部を省略した一部縦断側
面図である。
FIG. 3 is a partially longitudinal side view in which a part of a heat transfer tube 24a is omitted.

【図4】第1の実施の形態に係るEGRガス冷却装置を
車両に搭載した際の要部を示す中央を省略した縦断側面
図である。
FIG. 4 is a vertical sectional side view of a main part when the EGR gas cooling device according to the first embodiment is mounted on a vehicle, with a center omitted in FIG.

【図5】ボンネット部材30aの全体を示す斜視図であ
る。
FIG. 5 is a perspective view showing the entire bonnet member 30a.

【図6】凹状空間Aに最大量の凝縮水が溜まった様子を
示す縦断側面図である。
6 is a vertical sectional side view showing a state in which a maximum amount of condensed water is accumulated in a concave space A. FIG.

【図7】第2の実施の形態に係るEGRガス冷却装置の
要部を示す中央を省略した縦断側面図である。
FIG. 7 is a vertical cross-sectional side view of a main part of an EGR gas cooling device according to a second embodiment, in which the center is omitted.

【図8】凹状空間A’,B’に最大量の凝縮水が溜まっ
た様子を示す縦断側面図である。
FIG. 8 is a vertical sectional side view showing a state in which a maximum amount of condensed water has accumulated in the concave spaces A ′ and B ′.

【図9】第3の実施の形態に係るEGRガス冷却装置の
要部を示す中央を省略した縦断側面図である。
FIG. 9 is a vertical cross-sectional side view of a main part of an EGR gas cooling device according to a third embodiment, with the center omitted.

【図10】凹状空間A”,B”に最大量の凝縮水が溜ま
った様子を示す縦断側面図である。
FIG. 10 is a vertical sectional side view showing a state where a maximum amount of condensed water has accumulated in the concave spaces A ″ and B ″.

【図11】従来の多管式EGRガス冷却装置の一例の全
体構成を示す縦断側面図である。
FIG. 11 is a vertical sectional side view showing an overall configuration of an example of a conventional multi-tube EGR gas cooling device.

【符号の説明】[Explanation of symbols]

1 EGRガス冷却装置 2 熱交換部 3a 上流側EGRガス室 3b 下流側EGRガス室 4a,4b EGRガス通路 10 凝縮水 12 水面 24 伝熱管 24a 最も鉛直下方に位置する伝熱管 25a 開口端部内周縁の最下点 28 冷却媒体通路 A 凹状空間 DESCRIPTION OF SYMBOLS 1 EGR gas cooling device 2 Heat exchange part 3a Upstream EGR gas chamber 3b Downstream EGR gas chamber 4a, 4b EGR gas passage 10 Condensed water 12 Water surface 24 Heat transfer tube 24a Heat transfer tube most vertically located 25a Lowermost point 28 Cooling medium passage A Concave space

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内燃機関の排気系から排気ガスの一部を取
り出し吸気系へ還流させるEGRガス通路の途中に設け
られるEGRガス冷却装置は、前記EGRガス通路の上
流側に連通する上流側EGRガス室と、前記EGRガス
通路の下流側に連通する下流側EGRガス室と、前記上
流側EGRガス室の内部空間と前記下流側EGRガス室
の内部空間とを連通するとともに内部にEGRガスが流
通する複数の伝熱管と、前記上流側EGRガス室と前記
下流側EGRガス室との間において、前記伝熱管の周囲
に形成された冷却媒体通路と、から構成され、前記上流
側EGRガス室及び前記下流側EGRガス室のうち少な
くとも一方は、前記EGRガス冷却装置が車両に搭載さ
れた際において、前記EGRガス室内に溜まり得る最大
量の凝縮水の水面と、前記伝熱管のうち最も鉛直下方に
位置する伝熱管における前記水面側の開口端部内周縁の
最下点と、が一致するか、又は、前記水面が前記最下点
より鉛直下側に離間するよう形成されたことを特徴とす
るEGRガス冷却装置。
An EGR gas cooling device provided in the middle of an EGR gas passage for extracting a part of exhaust gas from an exhaust system of an internal combustion engine and recirculating the exhaust gas to an intake system has an upstream EGR communicating with an upstream side of the EGR gas passage. A gas chamber communicates with a downstream EGR gas chamber communicating with the downstream side of the EGR gas passage, an internal space of the upstream EGR gas chamber, and an internal space of the downstream EGR gas chamber, and an EGR gas is formed therein. The upstream EGR gas chamber, comprising: a plurality of heat transfer tubes flowing therethrough; and a cooling medium passage formed around the heat transfer tube between the upstream EGR gas chamber and the downstream EGR gas chamber. And at least one of the downstream EGR gas chambers has a surface of a maximum amount of condensed water that can accumulate in the EGR gas chamber when the EGR gas cooling device is mounted on a vehicle. The lowermost point of the inner peripheral edge of the open end on the water surface side of the heat transfer tube located at the most vertically lower position among the heat transfer tubes, or the water surface is vertically separated from the lowermost point An EGR gas cooling device characterized by being formed as described above.
JP36584499A 1999-12-24 1999-12-24 EGR gas cooling device Expired - Fee Related JP4253975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36584499A JP4253975B2 (en) 1999-12-24 1999-12-24 EGR gas cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36584499A JP4253975B2 (en) 1999-12-24 1999-12-24 EGR gas cooling device

Publications (2)

Publication Number Publication Date
JP2001182627A true JP2001182627A (en) 2001-07-06
JP4253975B2 JP4253975B2 (en) 2009-04-15

Family

ID=18485265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36584499A Expired - Fee Related JP4253975B2 (en) 1999-12-24 1999-12-24 EGR gas cooling device

Country Status (1)

Country Link
JP (1) JP4253975B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6942027B2 (en) * 2001-10-30 2005-09-13 Visteon Global Technologies, Inc. Exhaust-gas heat recovery appliance
EP1367252A3 (en) * 2002-05-30 2006-05-24 Valeo Termico S.A. Gas heat exchanger
JP2007113795A (en) * 2005-10-18 2007-05-10 Usui Kokusai Sangyo Kaisha Ltd Multitubular heat exchanger for exhaust gas cooling device
JP2007178109A (en) * 2005-12-28 2007-07-12 Usui Kokusai Sangyo Kaisha Ltd Multitubular heat exchanger for exhaust gas cooling device
DE102006046341A1 (en) * 2006-09-28 2008-04-03 GM Global Technology Operations, Inc., Detroit Method for operating an exhaust gas recirculation system
JP2010084554A (en) * 2008-09-30 2010-04-15 Kubota Corp Multi-cylinder engine
JP2010270604A (en) * 2009-05-19 2010-12-02 Denso Corp Exhaust gas cooling device
JP4878287B2 (en) * 2003-10-29 2012-02-15 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger
JP2014105573A (en) * 2012-11-22 2014-06-09 Mazda Motor Corp Exhaust gas recirculation device of engine
JP2015025604A (en) * 2013-07-25 2015-02-05 株式会社ユタカ技研 Heat exchanger and heat exchange device
US9464598B2 (en) 2011-07-20 2016-10-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas cooling device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110859U (en) * 1984-08-23 1986-07-14
JPH07269417A (en) * 1994-03-29 1995-10-17 Nissan Diesel Motor Co Ltd Cooling device for egr
JPH0989491A (en) * 1995-09-21 1997-04-04 Usui Internatl Ind Co Ltd Egr gas cooling device
JPH09324707A (en) * 1996-06-06 1997-12-16 Usui Internatl Ind Co Ltd Egr device
JPH10122062A (en) * 1996-10-24 1998-05-12 Isuzu Motors Ltd Exhaust reflux system
JPH10259762A (en) * 1997-03-19 1998-09-29 Nissan Diesel Motor Co Ltd Egr device for diesel engine
JPH10318050A (en) * 1997-05-14 1998-12-02 Usui Internatl Ind Co Ltd Egr gas cooling device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110859U (en) * 1984-08-23 1986-07-14
JPH07269417A (en) * 1994-03-29 1995-10-17 Nissan Diesel Motor Co Ltd Cooling device for egr
JPH0989491A (en) * 1995-09-21 1997-04-04 Usui Internatl Ind Co Ltd Egr gas cooling device
JPH09324707A (en) * 1996-06-06 1997-12-16 Usui Internatl Ind Co Ltd Egr device
JPH10122062A (en) * 1996-10-24 1998-05-12 Isuzu Motors Ltd Exhaust reflux system
JPH10259762A (en) * 1997-03-19 1998-09-29 Nissan Diesel Motor Co Ltd Egr device for diesel engine
JPH10318050A (en) * 1997-05-14 1998-12-02 Usui Internatl Ind Co Ltd Egr gas cooling device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6942027B2 (en) * 2001-10-30 2005-09-13 Visteon Global Technologies, Inc. Exhaust-gas heat recovery appliance
EP1367252A3 (en) * 2002-05-30 2006-05-24 Valeo Termico S.A. Gas heat exchanger
JP4878287B2 (en) * 2003-10-29 2012-02-15 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger
JP2007113795A (en) * 2005-10-18 2007-05-10 Usui Kokusai Sangyo Kaisha Ltd Multitubular heat exchanger for exhaust gas cooling device
JP2007178109A (en) * 2005-12-28 2007-07-12 Usui Kokusai Sangyo Kaisha Ltd Multitubular heat exchanger for exhaust gas cooling device
DE102006046341A1 (en) * 2006-09-28 2008-04-03 GM Global Technology Operations, Inc., Detroit Method for operating an exhaust gas recirculation system
JP2010084554A (en) * 2008-09-30 2010-04-15 Kubota Corp Multi-cylinder engine
JP2010270604A (en) * 2009-05-19 2010-12-02 Denso Corp Exhaust gas cooling device
US9464598B2 (en) 2011-07-20 2016-10-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas cooling device
JP2014105573A (en) * 2012-11-22 2014-06-09 Mazda Motor Corp Exhaust gas recirculation device of engine
JP2015025604A (en) * 2013-07-25 2015-02-05 株式会社ユタカ技研 Heat exchanger and heat exchange device
CN104344753A (en) * 2013-07-25 2015-02-11 株式会社丰技研 Heat exchanger and heat exchange device

Also Published As

Publication number Publication date
JP4253975B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
RU2511930C2 (en) Used gas heat exchanger, particularly, used gas cooler for circulation of used gases in vehicles
JP3774843B2 (en) Multi-tube heat exchanger
JP2001182627A (en) Egr gas cooling system
US7594536B2 (en) EGR cooler
US20060130818A1 (en) Egr cooler
JP5405027B2 (en) Aero engine with heat exchange means
JP2007046890A (en) Tubular heat exchanger for egr gas cooler
JP4810511B2 (en) Waste heat recovery device for internal combustion engine
JP2007170271A (en) Multipipe heat exchanger for exhaust gas cooling device
JP3783395B2 (en) EGR cooler
JP4247942B2 (en) EGR gas cooling device
JP3744432B2 (en) Exhaust heat exchanger
JP2007225137A (en) Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device
JP2006118436A (en) Bonnet for egr gas cooling device
JP2769699B2 (en) Axisymmetric mixed flow once-through boiler
US20200333089A1 (en) A heat exchanger and an additive manufacturing method for manufacturing a heat exchanger
JPH11183062A (en) Double piped heat exchanger
JP2002180915A (en) Egr cooler
JPH1113549A (en) Egr cooler
JPH11193992A (en) Multitubular egr gas cooling device
JP2004124809A (en) Exhaust gas recirculation cooler
JP2008008568A (en) Heat exchanger
JP2001304047A (en) Egr gas cooling device
JPH11303688A (en) Egr cooler
JPH1113550A (en) Egr cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081029

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4253975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees