JP2001180957A - Glass substrate for display - Google Patents
Glass substrate for displayInfo
- Publication number
- JP2001180957A JP2001180957A JP36630799A JP36630799A JP2001180957A JP 2001180957 A JP2001180957 A JP 2001180957A JP 36630799 A JP36630799 A JP 36630799A JP 36630799 A JP36630799 A JP 36630799A JP 2001180957 A JP2001180957 A JP 2001180957A
- Authority
- JP
- Japan
- Prior art keywords
- glass substrate
- stress
- glass
- substrate
- deviation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Gas-Filled Discharge Tubes (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ディスプレイ用の
ガラス基板に関し、特に、液晶ディスプレイ(TFT−
LCD、STN−LCD)、プラズマディスプレイ(P
DP)、プラズマアシスト液晶ディスプレイ(PAL
C)、エレクトロ・ルミネッセンス・ディスプレイ(E
L)、フィールド・エミッション・ディスプレイ(FE
D)等のフラットパネルディスプレイ(平坦なディスプ
レイの総称)用のガラス基板に関する。The present invention relates to a glass substrate for a display, and more particularly, to a liquid crystal display (TFT-type).
LCD, STN-LCD), plasma display (P
DP), plasma assisted liquid crystal display (PAL)
C), electroluminescent display (E
L), Field Emission Display (FE)
D) and the like, and relates to a glass substrate for a flat panel display (a flat display).
【0002】[0002]
【従来の技術】フラットパネルディスプレイでは通常2
枚のガラス基板が使用されており、これら2枚のガラス
基板の間に発光機構や光透過制御機構が形成される。ガ
ラス基板として使用されるガラスは、代表的なものとし
て、TFT液晶ディスプレイでは無アルカリホウケイ酸
系ガラス(たとえば、旭硝子(株)製[商品名:AN6
35、AN100等])等、STN液晶ディスプレイで
はソーダライムガラス(たとえば、旭硝子(株)製[商
品名:AS])等、プラズマディスプレイでは高歪点ガ
ラス(たとえば、旭硝子(株)製[商品名:PD20
0])等が用いられている。2. Description of the Related Art In a flat panel display, usually 2
Two glass substrates are used, and a light emitting mechanism and a light transmission control mechanism are formed between these two glass substrates. The glass used as a glass substrate is typically a non-alkali borosilicate glass (for example, manufactured by Asahi Glass Co., Ltd. [trade name: AN6]) in a TFT liquid crystal display.
35, AN100, etc.), soda-lime glass (for example, [trade name: AS] manufactured by Asahi Glass Co., Ltd.) for STN liquid crystal displays, and high strain point glass (for example, trade name, manufactured by Asahi Glass Co., Ltd.) for plasma displays. : PD20
0]) etc. are used.
【0003】これらのガラス基板は、フロート法、フュ
ージョン法、スリットダウンドロー法等の方法で製造さ
れている。これらの製造方法によって一定の厚さに成形
されたガラスリボンは、所定寸法の面形状に切り出さ
れ、ガラス基板として供給される。また、一部のガラス
基板では、成形後に熱収縮率(コンパクション)を所定
の値に制御する目的で、徐冷処理(アニール処理)が施
される。[0003] These glass substrates are manufactured by a method such as a float method, a fusion method, or a slit down draw method. The glass ribbon formed into a certain thickness by these manufacturing methods is cut into a surface shape having a predetermined dimension and supplied as a glass substrate. Some glass substrates are subjected to a slow cooling treatment (annealing treatment) after molding in order to control the heat shrinkage (compaction) to a predetermined value.
【0004】上記ガラス基板を用いたフラットパネルデ
ィスプレイの製造にあたっては、目的に応じて、洗浄、
成膜、パターン形成、熱処理、検査等、様々な工程を経
る。ガラス基板は工程間を順次搬送されて、ディスプレ
イの製造が行われる。[0004] In manufacturing a flat panel display using the above glass substrate, cleaning,
Through various processes such as film formation, pattern formation, heat treatment, and inspection. The glass substrate is sequentially transported between the steps to manufacture a display.
【0005】ガラス基板は、通常、カセットに収納さ
れ、垂直または水平な状態で保管されている。水平の場
合には、一般的に、2辺または3辺が支持された状態で
保管される。また、製造工程では、ガラス基板は、アー
ムによりカセットへの出し入れが行われ、多くの工程で
アームによる搬送が行われている。アームは、基板の両
側辺または/および下辺を点接触、線接触または面接触
で保持することが多い。[0005] The glass substrate is usually housed in a cassette and stored in a vertical or horizontal state. When it is horizontal, it is generally stored with two or three sides supported. In the manufacturing process, the glass substrate is put in and taken out of the cassette by an arm, and is transported by the arm in many steps. The arms often hold both sides and / or the bottom side of the substrate in point, line or surface contact.
【0006】製造工程中には数百℃の加熱処理を含むも
のが数多くある。ガラス基板全面を均一に加熱するため
には、一般的にホットプレートが用いられている。ホッ
トプレートは、用途に応じて、金属製やセラミックス製
の表面加熱板に加え、真空吸着機構を有しているもの
や、両面から挟み込むタイプのもの等、様々な形状や機
能を有するものが利用されている。[0006] Many manufacturing processes include heat treatment at several hundred degrees Celsius. In order to uniformly heat the entire surface of the glass substrate, a hot plate is generally used. Depending on the application, in addition to metal or ceramic surface heating plates, hot plates that have various shapes and functions, such as those that have a vacuum suction mechanism and those that are sandwiched from both sides, are used depending on the application Have been.
【0007】[0007]
【発明が解決しようとする課題】ガラス基板の保管時や
搬送時には、支持方法により、ガラス基板にたわみが発
生する。近年、ディスプレイパネルの大型化と軽量化の
要請から、大面積で板厚の薄いガラス基板が使用されて
きており、従来より大きなたわみが発生しやすくなって
いる。たわみの発生は、ガラス基板の振動やガラス基板
と他の物との衝突の原因となり、ガラス基板の割れやガ
ラス基板に形成されたパターンの損傷等の問題を引き起
こす。When the glass substrate is stored or transported, the glass substrate bends depending on the supporting method. In recent years, due to demands for larger and lighter display panels, glass substrates having a large area and a small thickness have been used, and larger deflections have been more likely to occur than in the past. The occurrence of deflection causes vibration of the glass substrate and collision of the glass substrate with another object, and causes problems such as cracking of the glass substrate and damage of a pattern formed on the glass substrate.
【0008】ガラス基板のたわみ対策として、ガラス基
板製造メーカーは板厚の均質化や低密度組成のガラスの
開発、縦弾性率の高い組成のガラスの開発を進めてい
る。また、ディスプレイ製造装置のメーカーでは、ピン
支持位置の最適化やガラス基板搬送速度の調整等が行わ
れている。しかし、ガラスの物性値と形状で規定される
たわみ量を、さらに減少させようとする試みはこれまで
に行われていなかった。As a measure against deflection of a glass substrate, a glass substrate manufacturer has been working to develop a glass having a uniform thickness, a low-density composition, and a glass having a high longitudinal modulus. Further, manufacturers of display manufacturing apparatuses perform optimization of pin support positions, adjustment of glass substrate transfer speed, and the like. However, no attempt has been made to further reduce the amount of deflection defined by the physical properties and shape of glass.
【0009】ガラス基板のたわみの問題と類似の現象と
して、ガラス基板の熱反りの問題がある。これは、ガラ
ス基板をホットプレート等で加熱する際に、ガラス基板
中央部の温度が周辺部の温度より高くなり、ガラス基板
中央部がより大きく膨張する結果、ガラス基板の周囲部
分がホットプレートから浮き上がる現象である。As a phenomenon similar to the problem of the deflection of the glass substrate, there is a problem of the warpage of the glass substrate. This is because when the glass substrate is heated with a hot plate or the like, the temperature of the central portion of the glass substrate becomes higher than the temperature of the peripheral portion, and the central portion of the glass substrate expands more. It is a phenomenon that emerges.
【0010】ガラス基板の上記熱反りは、以下の原因で
発生すると考えられる。まず、ガラス基板のホットプレ
ートに接触した面(水平置きの場合、下面)が加熱さ
れ、接触面(下面)と非接触面(上面)との間で板厚方
向の温度差が発生する。その結果、接触面の方が熱膨張
量が多くなり、下に凸の形状に変形する。一旦、上記の
変形が起こると、ガラス基板の中央部のみがホットプレ
ート表面と接触した状態となり、ガラス基板面内で、中
央部で温度が高く周辺部で温度が低い温度分布となる。
中央部がより大きく膨張し、ガラス基板とホットプレー
トの接触も中央部分のみとなるため、ガラス基板の形状
は、熱により反った形で安定化する。It is considered that the above-mentioned thermal warpage of the glass substrate occurs due to the following reasons. First, the surface of the glass substrate that is in contact with the hot plate (the lower surface in the case of horizontal placement) is heated, and a temperature difference occurs in the thickness direction between the contact surface (the lower surface) and the non-contact surface (the upper surface). As a result, the contact surface has a larger thermal expansion amount and is deformed into a downwardly convex shape. Once the above deformation occurs, only the central portion of the glass substrate comes into contact with the hot plate surface, and the temperature distribution in the glass substrate surface is high at the central portion and low at the peripheral portions.
Since the central portion expands more and the contact between the glass substrate and the hot plate is only at the central portion, the shape of the glass substrate is stabilized in a warped shape by heat.
【0011】ガラス基板の熱反りには、ガラスの密度、
縦弾性率に加えて、熱膨張率や熱伝導率等の値が影響す
る。これらの値はガラス組成で定まる物性値である。ガ
ラスの熱膨張率や熱伝導率は、同一用途に用いられる基
板間では大きな差はなく、ほぼ一定の値となっている。[0011] The thermal warpage of the glass substrate includes the density of the glass,
In addition to the longitudinal modulus, values such as the coefficient of thermal expansion and the coefficient of thermal conductivity influence. These values are physical properties determined by the glass composition. The coefficient of thermal expansion and the coefficient of thermal conductivity of glass do not differ greatly between substrates used for the same application, and are almost constant.
【0012】ガラス基板の熱反りに対しては、ディスプ
レイ製造装置のメーカーでは、ホットプレートの温度分
布の均質化や、ガラス基板の予備加熱、ガラス基板のホ
ットプレートへの機械的な押付けを行う等といった対策
を行っている。しかし、ガラス基板自体を熱反りしにく
くするという試みは行われていなかった。With respect to the thermal warpage of the glass substrate, manufacturers of display manufacturing apparatuses perform homogenization of the temperature distribution of the hot plate, pre-heating of the glass substrate, mechanical pressing of the glass substrate to the hot plate, and the like. Such measures are taken. However, no attempt has been made to make the glass substrate itself less likely to be thermally warped.
【0013】ガラス基板は、熱反りを起こすと、目的と
する熱処理工程に影響を及ぼすほか、機械的な押付けに
よる割れの問題等を発生する。また、その後の搬送工程
における反りを増大させ、基板の振動や割れの確率を増
加させる。When a glass substrate undergoes thermal warpage, it not only affects a target heat treatment step, but also causes a problem such as cracking due to mechanical pressing. In addition, the warpage in the subsequent transfer step is increased, and the probability of vibration and cracking of the substrate is increased.
【0014】以上に説明したように、ガラス基板のたわ
みや熱反りは、フラットパネルディスプレイの製造工程
では割れ等の不具合を発生させる問題となる。近年、フ
ラットパネルディスプレイの大型化、軽量化が進んでお
り、ガラス基板もそれに対応して、大面積化、薄板化さ
れる傾向にある。大面積化、薄板化されたガラス基板、
たとえば、いずれの辺も300mm以上の略矩形のガラ
ス基板では、たわみや熱反りは、より大きくなり、ガラ
ス基板の取り扱いを困難とする問題となっていた。As described above, the deflection and thermal warpage of the glass substrate cause problems such as cracks in the manufacturing process of the flat panel display. In recent years, flat panel displays have become larger and lighter, and glass substrates have tended to be correspondingly larger and thinner. Larger and thinner glass substrates,
For example, in the case of a substantially rectangular glass substrate having a length of 300 mm or more on both sides, deflection and thermal warpage become larger, which has been a problem that the handling of the glass substrate becomes difficult.
【0015】[0015]
【課題を解決するための手段】本発明は、上記課題を解
決すべくなされたものであり、短辺が300mm以上の
略矩形の面形状であり、かつ板厚が0.3mm以上、6
mm以下のガラス基板であって、ガラス基板内の残留歪
による、板厚方向で測定したときの基板面内の偏差応力
が、基板の周囲に沿って圧縮方向で分布し、各辺の近傍
で辺と平行方向での偏差圧縮応力の最大値が0.3MP
a以上であるディスプレイ用ガラス基板を提供する。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has a substantially rectangular surface shape with a short side of 300 mm or more, and a plate thickness of 0.3 mm or more and 6 mm or more.
mm or less, due to the residual strain in the glass substrate, the deviation stress in the substrate plane measured in the thickness direction, distributed in the compression direction along the periphery of the substrate, near each side Maximum deviation compressive stress in the direction parallel to the side is 0.3MP
a glass substrate for a display which is not less than a.
【0016】このような、基板の周囲に沿って圧縮方向
の応力が分布したガラス基板では、たわみや熱反りが発
生した場合に、これを打ち消す方向の応力が作用してい
るため、ディスプレイ用のガラス基板、特に、大型化、
薄板化されたガラス基板として望ましい。In such a glass substrate in which stress in the compression direction is distributed along the periphery of the substrate, when deflection or thermal warpage occurs, stress is applied in a direction to cancel the deflection. Glass substrates, especially large,
It is desirable as a thin glass substrate.
【0017】なお、本発明のガラス基板は実質的に略矩
形のものであり、周辺部の隅を切り落とした(コーナー
カットした)ガラス基板をも含む。また、「各辺の近傍
で辺と平行方向での偏差圧縮応力の最大値が0.3MP
a以上」とは、ガラス基板の四辺のいずれの辺において
も、辺の近傍で辺と平行方向での偏差圧縮応力の最大値
が0.3MPa以上であることをいう。The glass substrate of the present invention is substantially rectangular, and includes a glass substrate in which the corners of the peripheral portion are cut off (corner cut). In addition, "the maximum value of the deviation compressive stress in the direction parallel to the side near each side is 0.3MP.
The expression “not less than a” means that the maximum value of the deviation compressive stress in a direction parallel to the side near any one of the four sides of the glass substrate is 0.3 MPa or more.
【0018】また、本発明は、歪点が570℃以上であ
り、プラズマディスプレイパネルに用いられるディスプ
レイ用ガラス基板を提供する。プラズマディスプレイパ
ネルの製造プロセスにおけるガラス基板の熱処理温度は
550℃付近まで達することが多いが、ガラス基板の歪
点が、プラズマディスプレイの製造プロセスにおける熱
処理温度より高ければ残留歪が緩和されにくい。Further, the present invention provides a display glass substrate having a strain point of 570 ° C. or higher and used for a plasma display panel. The heat treatment temperature of the glass substrate in the plasma display panel manufacturing process often reaches around 550 ° C., but if the strain point of the glass substrate is higher than the heat treatment temperature in the plasma display manufacturing process, the residual strain is hardly alleviated.
【0019】また、本発明は、歪点が650℃以上であ
り、液晶ディスプレイパネルに用いられるディスプレイ
用ガラス基板を提供する。液晶ディスプレイの製造プロ
セスにおけるガラス基板の熱処理温度は630℃付近ま
で達することが多いが、ガラス基板の歪点が、液晶ディ
スプレイの製造プロセスにおける熱処理温度より高けれ
ば残留歪が緩和されにくい。The present invention also provides a display glass substrate having a strain point of 650 ° C. or higher and used for a liquid crystal display panel. Although the heat treatment temperature of the glass substrate in the manufacturing process of the liquid crystal display often reaches around 630 ° C., if the strain point of the glass substrate is higher than the heat treatment temperature in the manufacturing process of the liquid crystal display, the residual strain is hardly alleviated.
【0020】なお、以上に述べたディスプレイ用ガラス
基板とは、プラズマディスプレイパネル、液晶ディスプ
レイパネル等に用いられる素板のことを指し、該素板の
サイズのままでプラズマディスプレイパネルに使用され
ることもあり、また、該素板一枚から複数の液晶ディス
プレイ用のガラス基板がマルチ取りされることもある。
また、「基板面」とは、板状部材であるガラス基板の表
裏面である平面を指し、「基板面内」とは、ガラス基板
の板厚方向を含まない。The above-mentioned glass substrate for display refers to a raw plate used for a plasma display panel, a liquid crystal display panel, etc., and is used for a plasma display panel in the same size as the raw plate. There is also a case where a plurality of glass substrates for a liquid crystal display are formed in multiple from a single base plate.
Further, the “substrate surface” refers to a plane that is the front and back surfaces of a glass substrate that is a plate-like member, and “in the substrate surface” does not include the thickness direction of the glass substrate.
【0021】[0021]
【発明の実施の形態】本発明において、ガラス基板中の
歪および応力は以下に述べる方法で測定される。ガラス
基板中の歪は光学的な複屈折の測定、すなわち直交する
直線偏光波の光路差の測定で見積ることができる。光路
差をR(nm)として、歪により発生する偏差応力F
(MPa)は、 F=R/CL として表される。ここでLは偏光波が通過した距離(c
m)であり、Cはガラスによって決まる比例定数で光弾
性定数と呼ばれ、通常20〜40(nm/cm)/(M
Pa)の値となる。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, strain and stress in a glass substrate are measured by the following methods. The distortion in the glass substrate can be estimated by measuring the optical birefringence, that is, by measuring the optical path difference between the orthogonal linearly polarized waves. Assuming that the optical path difference is R (nm), the deviation stress F generated due to the strain
(MPa) is expressed as F = R / CL. Here, L is the distance (c
m), and C is a proportionality constant determined by glass and is called a photoelastic constant, and is usually 20 to 40 (nm / cm) / (M
Pa).
【0022】ガラスに歪がないとき、すなわち応力がな
い、または等方的な応力がかかっているときは、2つの
直交する直線偏光波は同一速度でガラス内を通過する。
ガラス面内に歪があると、圧縮応力方向では偏光波が速
く通過し、引張応力方向では偏光波はゆっくり通過す
る。すなわち、2つの直交する直線偏光波に光路差が発
生する。基板面に垂直に光路をとり、光路差が最大とな
る方位とその大きさを測定することで、ガラス基板中の
歪の方向と大きさを測定できる。この歪の大きさを偏差
応力とする。When the glass has no strain, ie, no stress or isotropic stress, the two orthogonal linearly polarized waves pass through the glass at the same speed.
If there is a strain in the glass surface, the polarized wave will pass faster in the direction of compressive stress and will slowly pass in the direction of tensile stress. That is, an optical path difference occurs between two orthogonal linearly polarized waves. By taking an optical path perpendicular to the substrate surface and measuring the azimuth at which the optical path difference is maximized and its magnitude, the direction and magnitude of the strain in the glass substrate can be measured. The magnitude of this strain is defined as the deviation stress.
【0023】偏差応力Fは、偏光波の光路差から測定さ
れる応力値で、平面応力の異方性(すなわち、二つの主
応力の差)を表す指標となる。偏差応力Fは、ガラス基
板内で偏光が通過した距離の平均値であり、光路と垂直
な面内で直交する任意の2軸において、応力差が最大と
なる方向とその応力差として求められる。ガラス基板面
内のある方向(たとえばX方向)に圧縮応力が残留して
いる場合と、それと垂直な方向(Y方向)に同じ大きさ
の引張応力が残留している場合では、偏差応力の測定は
同一の結果となる。また、直交する2軸方向(X方向と
Y方向)に同じ量の圧縮または引張応力が残留している
と、偏差応力はゼロとなる。The deviation stress F is a stress value measured from an optical path difference of a polarized wave, and is an index indicating anisotropy of plane stress (ie, a difference between two principal stresses). The deviation stress F is an average value of the distance that the polarized light has passed in the glass substrate, and is determined as the direction in which the stress difference becomes maximum and the stress difference in any two axes orthogonal to each other in a plane perpendicular to the optical path. In the case where a compressive stress remains in a certain direction (for example, the X direction) in the surface of the glass substrate, and in the case where a tensile stress having the same magnitude remains in a direction perpendicular thereto (the Y direction), the deviation stress is measured. Have the same result. Further, if the same amount of compressive or tensile stress remains in two orthogonal axes directions (X direction and Y direction), the deviation stress becomes zero.
【0024】直線偏光波を利用したガラスの歪測定は、
セナルモン法等が知られており、数十nmの光路差を検
出できる。従来、ガラスの歪測定は、主に強化ガラス等
に残留している数十MPaの応力を対象としており、セ
ナルモン法はこのような歪測定には充分な分析精度を有
していた。The measurement of glass strain using a linearly polarized wave is as follows.
The Senarmont method and the like are known, and an optical path difference of several tens nm can be detected. Conventionally, strain measurement of glass mainly targets a stress of several tens MPa remaining in tempered glass or the like, and the Senarmont method has sufficient analysis accuracy for such strain measurement.
【0025】しかし、フラットパネルディスプレイ用の
ガラス基板に残留している平面応力は0.1MPa〜5
MPaの大きさであり、従来の測定方法では充分に検出
できない。そこで、本発明者らは、歪の検出装置として
ユニオプト社製ABR−10A複屈折測定器を使用し
た。ABR−10A複屈折測定器は、横ゼーマンレーザ
ー光を照射し、直交する直線偏光波の位相差を検出する
ことにより、複屈折の光路差と主軸方位を測定する装置
である。分解能として、光路差0.01nm、主軸方位
0.1度の精度を有する。However, the plane stress remaining on the glass substrate for a flat panel display is 0.1 MPa to 5 MPa.
It is a magnitude of MPa and cannot be sufficiently detected by the conventional measuring method. Therefore, the present inventors used an ABR-10A birefringence meter manufactured by Uniopt Corporation as a strain detection device. The ABR-10A birefringence measuring device is a device that measures a birefringent optical path difference and a principal axis direction by irradiating a transverse Zeeman laser beam and detecting a phase difference between orthogonal linearly polarized waves. The resolution has an optical path difference of 0.01 nm and a main axis azimuth of 0.1 degree.
【0026】ガラス基板の残留歪は、ガラスリボン成形
後の徐冷工程における温度分布に依存して発生する。す
なわち、先に冷えた部分に圧縮応力が形成され、後から
冷えた部分には引張応力が形成される。このことはガラ
スの物理強化または風冷強化の原理としてよく知られて
いる。強化ガラスでは、ガラス表面を急冷することによ
り表面に圧縮応力層を形成している。[0026] Residual strain of the glass substrate occurs depending on the temperature distribution in the slow cooling step after forming the glass ribbon. That is, a compressive stress is formed in a portion that has been cooled earlier, and a tensile stress is formed in a portion that is cooled later. This is well known as the principle of physical strengthening or air cooling of glass. In the tempered glass, a compression stress layer is formed on the surface by rapidly cooling the glass surface.
【0027】強化ガラスは、ガラスの断面方向での応力
分布を利用しているが、ガラスには平面応力の分布も存
在している。本発明者らは、ガラス基板の平面応力の分
布が、ガラス基板のたわみ防止および熱反り防止等に寄
与することを見い出し、歪により残留する応力を基板の
周囲に沿って圧縮方向で分布させることにより、たわみ
や熱反りを抑制した基板を提供することを可能とした。Although tempered glass utilizes the stress distribution in the cross-sectional direction of the glass, glass also has a plane stress distribution. The present inventors have found that the distribution of plane stress of the glass substrate contributes to prevention of deflection and thermal warpage of the glass substrate, and to distribute stress remaining due to strain in the compression direction along the periphery of the substrate. As a result, it has become possible to provide a substrate in which deflection and thermal warpage are suppressed.
【0028】ガラス基板の平面応力の分布は、ガラスリ
ボン成形後の冷却時の温度分布によって発生する。一般
にフラットパネルディスプレイ用のガラス基板は、フロ
ート法、フュージョン法、スリット・ダウンドロー法等
の製造方法により、連続的に製造されている。したがっ
て、冷却時のガラス基板の温度分布は、製造時のガラス
リボンの流れと垂直な板幅方向の温度分布によって支配
される。The distribution of the plane stress of the glass substrate is generated by the temperature distribution at the time of cooling after forming the glass ribbon. Generally, a glass substrate for a flat panel display is continuously manufactured by a manufacturing method such as a float method, a fusion method, and a slit down draw method. Therefore, the temperature distribution of the glass substrate during cooling is governed by the temperature distribution in the width direction perpendicular to the flow of the glass ribbon during manufacturing.
【0029】図1に、ガラスリボン成形後の徐冷工程に
おけるガラスリボンの板幅方向の温度分布、ガラスリボ
ンから切り出したガラス基板1の応力分布、およびガラ
ス基板の切断による変形を模式的に示す。ガラス基板1
の周辺部の温度が中心部に比べ低いとき、すなわち図中
(a)の状態のときは周辺部に圧縮の残留応力が入り、
ガラスリボンから切り出したガラス基板1で図中(b)
の平面応力状態となり、ガラス基板1の周辺部の温度が
中心部に比べ高いとき、すなわち図中(d)の状態のと
きは周辺部に引張の残留応力が入り、ガラスリボンから
切り出したガラス基板1で図中(e)の平面応力状態と
なる。なお、図中の矢印2は残留応力の方向を示す。FIG. 1 schematically shows the temperature distribution in the width direction of the glass ribbon, the stress distribution of the glass substrate 1 cut out from the glass ribbon, and the deformation of the glass substrate due to cutting in the annealing step after the glass ribbon is formed. . Glass substrate 1
When the temperature of the peripheral portion is lower than that of the central portion, that is, in the state of FIG.
The glass substrate 1 cut from the glass ribbon is shown in FIG.
When the temperature of the peripheral portion of the glass substrate 1 is higher than that of the central portion, that is, in the state of (d) in the figure, tensile residual stress enters the peripheral portion and the glass substrate cut out from the glass ribbon 1, the plane stress state shown in FIG. Arrow 2 in the figure indicates the direction of the residual stress.
【0030】ガラスリボンの流れ方向に応力分布がある
ときは、ガラスリボンからガラス基板寸法に切断した後
に、板幅方向にも応力分布を生じる。以下、この現象に
ついて説明する。図1の(b)や(e)に示される応力
状態の、ガラスリボンから切り出したガラス基板1を、
ガラスリボンの流れと平行方向に切断して2分割した場
合を考える。ガラスリボンから切り出されたガラス基板
1は応力を緩和するため扇形に変形し、(b)のガラス
リボンから切り出されたガラス基板1は(c)の状態
に、(e)のガラスリボンから切り出されたガラス基板
1は(f)の状態となる。When there is a stress distribution in the flow direction of the glass ribbon, after the glass ribbon is cut to the size of the glass substrate, a stress distribution also occurs in the plate width direction. Hereinafter, this phenomenon will be described. The glass substrate 1 cut out from the glass ribbon in the stress state shown in FIGS.
Consider a case in which the glass ribbon is cut in a direction parallel to the flow of the glass ribbon and divided into two. The glass substrate 1 cut out from the glass ribbon is deformed into a fan shape to relieve the stress, and the glass substrate 1 cut out from the glass ribbon shown in FIG. 2B is cut out from the glass ribbon shown in FIG. The glass substrate 1 thus placed is in the state shown in FIG.
【0031】ここで(c)や(f)の扇形のガラス基板
を、再び元の一枚のガラス基板として矩形の形状に貼り
合せた場合を想定する。この場合、扇形に変形した形状
を元の矩形の形状へと矯正するため、切断線方向のみな
らず基板面内で切断線と垂直の方向にも応力が発生す
る。すなわち、矩形のガラス基板の一辺の近傍に圧縮や
引張りの残留応力が存在するときは、応力のバランスか
ら、該辺に垂直な辺の近傍にも圧縮や引張りの残留応力
(すなわち共役応力)が発生する。以上の結果として、
ガラス基板に生じる平面残留応力は、各辺と平行方向に
分布することとなる。Here, it is assumed that the fan-shaped glass substrates (c) and (f) are bonded again to a rectangular shape as one original glass substrate. In this case, since the fan-shaped shape is corrected to the original rectangular shape, stress is generated not only in the cutting line direction but also in the direction perpendicular to the cutting line in the substrate plane. That is, when compressive or tensile residual stress is present near one side of a rectangular glass substrate, residual compressive or tensile stress (ie, conjugate stress) is also present near a side perpendicular to the side due to stress balance. appear. As a result of the above,
Plane residual stress generated in the glass substrate is distributed in a direction parallel to each side.
【0032】本発明者らは、ガラスリボン1の板幅方向
の温度分布とガラス基板の残留応力との関係を検証し、
上記温度分布を図1の(a)の状態に操作することによ
り、応力分布が図1の(b)の状態、すなわち基板寸法
に切断した後には、各辺と平行方向に圧縮の応力が分布
している基板を製造した。The present inventors have verified the relationship between the temperature distribution in the width direction of the glass ribbon 1 and the residual stress of the glass substrate.
By operating the above temperature distribution to the state shown in FIG. 1A, the stress distribution is changed to the state shown in FIG. 1B, that is, after cutting to the substrate size, the compressive stress is distributed in a direction parallel to each side. The substrate is manufactured.
【0033】同様に、ガラス基板の残留応力を制御する
ためには、ガラス基板成形後に再熱処理を施すことも有
効である。再熱処理を施す場合には、基板の変形や傷の
発生に充分に注意しつつ、ガラス基板を該ガラス基板の
徐冷点温度付近まで加熱し、基板中央部が基板周囲部分
よりも温度が高い状態を保ち、歪点温度付近までの冷却
を行う。Similarly, in order to control the residual stress of the glass substrate, it is also effective to perform a reheat treatment after forming the glass substrate. When performing the re-heat treatment, the glass substrate is heated to a temperature near the annealing point of the glass substrate while paying sufficient attention to the occurrence of deformation and scratches on the substrate, and the temperature of the central portion of the substrate is higher than the peripheral portion of the substrate. Maintain the condition and cool to near the strain point temperature.
【0034】次に、ガラスの歪点について説明する。歪
点とは、一般に定義されるように、直径0.65mm、
長さ460mmのガラスファイバに1kgの荷重をか
け、4℃/minで冷却したとき、伸びが0.0043
mm/minになったときの温度をいい、粘度は約10
14.5dPa・s(1013.5Pa・s)である。Next, the strain point of glass will be described. The strain point is, as generally defined, a diameter of 0.65 mm,
When a load of 1 kg was applied to a glass fiber having a length of 460 mm and cooled at 4 ° C./min, the elongation was 0.0043.
mm / min, the viscosity is about 10
It is 14.5 dPa · s (10 13.5 Pa · s).
【0035】本発明において、プラズマディスプレイ用
ガラス基板の場合、歪点が570℃以上のガラス基板で
あることが好ましく、歪点が590℃以上のガラス基板
であることがより好ましい。通常、プラズマディスプレ
イの製造プロセスでは、550〜580℃の熱処理が施
される。ガラス基板が歪点を超える温度に長時間保持さ
れると、残留歪は徐々に緩和される。その結果、基板内
に残留する応力がたわみや熱反りを低減する効果が、そ
れ以降のプロセスでは作用し得なくなる。したがって、
ガラス基板の歪点はディスプレイの製造工程での熱処理
温度より高いことが好ましい。In the present invention, in the case of a glass substrate for a plasma display, the glass substrate preferably has a strain point of 570 ° C. or higher, and more preferably has a strain point of 590 ° C. or higher. Usually, in a plasma display manufacturing process, a heat treatment at 550 to 580 ° C. is performed. When the glass substrate is kept at a temperature exceeding the strain point for a long time, the residual strain is gradually relaxed. As a result, the effect of reducing the deflection and thermal warpage of the stress remaining in the substrate cannot be exerted in the subsequent processes. Therefore,
The strain point of the glass substrate is preferably higher than the heat treatment temperature in the display manufacturing process.
【0036】プラズマディスプレイの製造工程での熱処
理温度がガラス基板の歪点より高い場合には、少なくと
も該当する熱処理の工程までは、残留応力によりたわみ
や熱反りを低減する効果が期待できる。特に熱反りは、
加熱工程の初期において発生するため、歪点より高い温
度の熱処理工程においても残留応力による熱反り低減効
果が現れる。When the heat treatment temperature in the plasma display manufacturing process is higher than the strain point of the glass substrate, an effect of reducing deflection and thermal warpage due to residual stress can be expected at least up to the corresponding heat treatment process. In particular, thermal warpage
Since it occurs at the beginning of the heating step, even in the heat treatment step at a temperature higher than the strain point, the effect of reducing the warpage due to the residual stress appears.
【0037】本発明において、液晶ディスプレイ用ガラ
ス基板、特にポリシリコンタイプの液晶ディスプレイ用
ガラス基板の場合、歪点が650℃以上のガラス基板で
あることが好ましく、歪点が665℃以上のガラス基板
であることがより好ましい。通常、ポリシリコンタイプ
の液晶ディスプレイの製造プロセスでは、500〜65
0℃の熱処理が施される。熱処理温度が歪点を超えると
残留応力の効果がなくなるのは前述のとおりであるが、
一般的に、液晶ディスプレイでは0.7mm以下の薄い
基板が用いられるため、熱処理による歪の緩和がより早
く進行する。したがって、熱処理温度よりも歪点が10
℃以上高いことが好ましい。In the present invention, in the case of a glass substrate for a liquid crystal display, particularly a glass substrate for a polysilicon type liquid crystal display, the glass substrate preferably has a strain point of 650 ° C. or more, and has a strain point of 665 ° C. or more. Is more preferable. Usually, in a manufacturing process of a polysilicon type liquid crystal display, 500 to 65
A heat treatment at 0 ° C. is performed. As described above, the effect of the residual stress disappears when the heat treatment temperature exceeds the strain point.
In general, a thin substrate having a thickness of 0.7 mm or less is used in a liquid crystal display, so that the strain due to the heat treatment can be alleviated more quickly. Therefore, the strain point is 10 times higher than the heat treatment temperature.
It is preferable that the temperature is higher by at least C.
【0038】液晶ディスプレイの製造工程での熱処理温
度がガラス基板の歪点より高い場合にも、少なくとも該
当する熱処理の工程までは、残留応力によりたわみや熱
反りを低減する効果が期待できる。Even when the heat treatment temperature in the manufacturing process of the liquid crystal display is higher than the strain point of the glass substrate, the effect of reducing deflection and thermal warpage due to residual stress can be expected at least up to the corresponding heat treatment process.
【0039】次に、光学的に測定される残留応力につい
て説明する。前記の、光学的に測定される残留応力は、
正確には偏差応力である。すなわち、光軸と垂直な面内
において直交する2つの方向の応力差を測定している。
ガラス基板の周辺部では、基板が辺において切れている
ため、辺に垂直な方向での応力は作用せず、辺に平行な
方向でのみ歪による応力が残留する。したがって、辺近
傍での偏差応力は残留応力とほぼ等しいものになる。一
方、基板中央部での偏差応力は面内のあらゆる方向から
歪による応力が加わり、直交する方向で相対的に打ち消
されるため、真の残留応力より小さい値が測定される。Next, the residual stress measured optically will be described. The optically measured residual stress is
More precisely, it is a deviation stress. That is, the stress difference in two directions orthogonal to each other in a plane perpendicular to the optical axis is measured.
In the peripheral portion of the glass substrate, since the substrate is cut at the side, no stress is applied in a direction perpendicular to the side, and a stress due to strain remains only in a direction parallel to the side. Therefore, the deviation stress near the side becomes substantially equal to the residual stress. On the other hand, the stress due to strain is applied to the deviation stress in the central portion of the substrate from all directions in the plane and is relatively canceled in the orthogonal direction. Therefore, a value smaller than the true residual stress is measured.
【0040】本発明のガラス基板は、基板面内におい
て、基板の周囲に沿った方向で圧縮応力が分布してい
る。基板の周辺部では、測定される偏差応力は、真の残
留応力に近い値となる、一方、基板の中央部では、四方
から引っ張られた応力分布となっているが、中央付近で
は、見掛け上、小さな偏差応力が観察されることにな
る。In the glass substrate of the present invention, compressive stress is distributed in a direction along the periphery of the substrate within the plane of the substrate. At the periphery of the substrate, the measured deviation stress is a value close to the true residual stress, while at the center of the substrate, the stress distribution is pulled from all sides, but apparently near the center, , A small deviation stress will be observed.
【0041】本発明者らは、基板内の残留歪による、板
厚方向で測定したときの基板面内の偏差応力が、基板の
周囲に沿って圧縮方向で分布したディスプレイ用ガラス
基板で、たわみや熱反りが発生しにくくなることを見い
出した。The inventors of the present invention have proposed a display glass substrate in which the deviation stress in the substrate plane measured in the thickness direction due to the residual strain in the substrate is distributed in the compression direction along the periphery of the substrate. And that heat warpage hardly occurs.
【0042】基板面積が小さいときは、たわみや熱反り
が発生しても変形量が小さいため、実質的に問題とはな
らない。基板寸法が、矩形では短辺が300mm以上、
より顕著には短辺が500mm以上であるときは、たわ
みや熱反りによる変形量が大きくなるため、残留応力に
よる変形抑制が有効となる。When the area of the substrate is small, even if deflection or thermal warpage occurs, the deformation amount is small, so that there is substantially no problem. When the board dimensions are rectangular, the short side is 300 mm or more,
More remarkably, when the short side is 500 mm or more, the amount of deformation due to deflection or thermal warpage increases, so that deformation suppression due to residual stress is effective.
【0043】基板寸法が、矩形では短辺が300mm以
上のガラス基板内の偏差応力が、基板の周囲に沿って圧
縮方向で分布し、各辺の近傍で辺と平行方向での偏差圧
縮応力の最大値が0.3MPa以上であると、基板のた
わみや熱反りを抑制する効果が現れる。When the substrate size is rectangular, the deviation stress in the glass substrate having a short side of 300 mm or more is distributed along the periphery of the substrate in the compression direction, and the deviation compression stress in the direction parallel to the side near each side. When the maximum value is 0.3 MPa or more, the effect of suppressing the deflection and thermal warpage of the substrate appears.
【0044】基板寸法が、矩形では短辺が500mm以
上の基板では、たわみや熱反りで発生する内部応力がよ
り大きくなるため、それを抑制するための周囲に沿った
偏差圧縮応力の最大値は0.5MPa以上、より顕著な
効果を発現するためには1MPa以上であることが好ま
しい。ただし、偏差圧縮応力の値が大きくなりすぎて
も、ガラス基板が座屈して複雑な変形を起こしたりする
ため、実用的ではなく、一定の上限がある。基板寸法
が、矩形では短辺が3000mmを超えると、重量や基
板のたわみの問題により、ガラス基板の取り扱いが困難
となり実用的ではないため、残留応力でたわみや熱反り
を制御をする意味はなくなる。In the case of a substrate having a rectangular shape with a short side of 500 mm or more, the internal stress generated by deflection or thermal warpage becomes larger. Therefore, the maximum value of the deviation compressive stress along the periphery for suppressing the internal stress is: It is preferably 0.5 MPa or more, and more preferably 1 MPa or more in order to exhibit a more remarkable effect. However, even if the value of the deviation compressive stress becomes too large, the glass substrate buckles to cause complicated deformation, so that it is not practical and has a certain upper limit. If the short dimension of the substrate exceeds 3,000 mm in a rectangular shape, handling of the glass substrate becomes difficult due to the problem of weight and deflection of the substrate, which is not practical. Therefore, there is no point in controlling deflection and thermal warpage with residual stress. .
【0045】ガラス基板の板厚は、ガラス基板の板厚が
0.3mm未満の場合は、たわみや熱反りがより発生し
やすくなるが、それを残留応力により抑制しようとして
も、ガラス基板が座屈して複雑な変形を起こしたりする
ため、実用的ではない。ガラス基板の板厚が6mmを超
えるときは、充分な板厚があるため、たわみや熱反りが
起こりにくくなり、残留応力を制御する意味がなくな
る。When the thickness of the glass substrate is less than 0.3 mm, deflection and thermal warpage are more likely to occur. It is not practical because it yields and causes complicated deformation. When the thickness of the glass substrate exceeds 6 mm, since there is a sufficient thickness, deflection and thermal warpage hardly occur, and there is no point in controlling the residual stress.
【0046】[0046]
【実施例】ガラス基板のたわみ量は、ガラスの密度、ガ
ラスの縦弾性係数、ガラス基板の寸法、基板の支持方法
等で決定される。本発明は、これらの要因に対して、ガ
ラス基板中の残留応力を利用して、たわみを低減したガ
ラス基板を提供するものである。一方、熱反りは、前記
の物性に加え、ガラスの熱伝導率、比熱、熱膨張係数等
が影響することになる。該熱反りも、ガラス基板中の残
留応力を利用して低減することが可能である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The amount of deflection of a glass substrate is determined by the density of the glass, the modulus of longitudinal elasticity of the glass, the dimensions of the glass substrate, the method of supporting the substrate, and the like. The present invention provides a glass substrate in which the deflection is reduced by utilizing the residual stress in the glass substrate with respect to these factors. On the other hand, thermal warpage is affected by the thermal conductivity, specific heat, thermal expansion coefficient, and the like of glass, in addition to the physical properties described above. The thermal warpage can also be reduced by utilizing the residual stress in the glass substrate.
【0047】本実施例において、密度2.50g/cm
2、縦弾性係数77GPa、熱伝導率1.0W/(m・
℃)、比熱750J/(kg・℃)、熱膨張係数38×
10 -7/℃、光弾性定数30(nm/cm)/(MP
a)のガラス基板を使用した。ガラス基板はフロート法
により、板厚0.7mmに成形し、試験用ガラス基板と
して、矩形で短辺550mm×長辺650mmの寸法に
切り出した。この際、短辺がガラスリボンの板幅方向、
長辺がガラスリボンの流れ方向となるようにした。In this embodiment, the density was 2.50 g / cm
Two, Longitudinal elastic modulus 77 GPa, thermal conductivity 1.0 W / (m ·
℃), specific heat 750J / (kg ・ ℃), coefficient of thermal expansion 38 ×
10 -7/ ° C, photoelastic constant 30 (nm / cm) / (MP
The glass substrate of a) was used. Glass substrate is float method
Is formed into a thickness of 0.7 mm, and
Then, it becomes rectangular 550mm long dimension × 650mm long side
I cut it out. At this time, the short side is the width direction of the glass ribbon,
The long side was set in the flow direction of the glass ribbon.
【0048】試験用ガラス基板の製造時には、徐冷工程
でのヒーターの操作により、ガラスリボンの板幅方向の
温度分布において、中央部と両端部との関係を様々に変
化させてガラス基板を製造した。歪の残留が少ない基板
を製造するときは、板幅方向の温度分布を均一にした。
周囲に沿って圧縮の応力が残留した基板を製造する際に
は、基板中央部分の温度が両端部より高くなるように調
整し、両端部から先に冷却を行った。During the production of the test glass substrate, the glass substrate is produced by operating the heater in the annealing step so as to change the relationship between the center and both ends in the temperature distribution in the width direction of the glass ribbon. did. When manufacturing a substrate with little residual distortion, the temperature distribution in the width direction of the plate was made uniform.
When manufacturing a substrate in which compressive stress remained along the periphery, the temperature of the central portion of the substrate was adjusted so as to be higher than that of both ends, and cooling was performed from both ends first.
【0049】偏差応力は、前記のユニオプト社製ABR
−10A複屈折測定器を使用し、複屈折の光路差から換
算して求めた。測定は縦横それぞれ50mm間隔で、1
枚のガラス基板で計143点に対して行った。The deviation stress was measured using the above-mentioned ABR manufactured by Uniopt.
Using a -10A birefringence measuring instrument, it was determined by conversion from the optical path difference of birefringence. Measurements were taken at 50 mm intervals in the vertical and horizontal directions.
The test was performed for a total of 143 points on one glass substrate.
【0050】応力を測定した基板は、2辺支持状態での
たわみを測定した。定盤上に間隔600mmで平行に2
本の支持棒を配設し、ガラス基板の550mmの辺を支
持棒と平行にして2本の支持棒上にガラス基板を置い
た。支持棒を平行に昇降させ、たわんだ基板の中央部が
定盤と接する瞬間の位置で支持棒の昇降を止め、そのと
きの定盤面と支持棒の上端との高差を測定し、たわみ量
とした。この結果を表1に「実測たわみ量」として示
す。The substrate on which the stress was measured was measured for deflection in a state where two sides were supported. 2 parallel on the platen with an interval of 600mm
Two support rods were provided, and the glass substrate was placed on the two support rods with the 550 mm side of the glass substrate parallel to the support rods. Raise and lower the support rods in parallel, stop raising and lowering the support rods at the moment when the center of the bent substrate comes into contact with the surface plate, measure the height difference between the surface of the surface plate and the upper end of the support rods at that time, and measure the amount of deflection. And The results are shown in Table 1 as "actual deflection amount".
【0051】次に面積600mm×700mmのホット
プレートを用いて、ガラス基板の熱反り量を評価した。
所定の温度に加熱したホットプレート上に室温状態のガ
ラス基板を素早く静置し、静置5分後の基板4隅の浮き
上がり量を、ホットプレート上にスケール(金尺)を垂
直に立てて計測した。この測定結果である、図7に示さ
れる「浮き上がり量」については後述する。Next, the amount of thermal warpage of the glass substrate was evaluated using a hot plate having an area of 600 mm × 700 mm.
A glass substrate at room temperature is quickly settled on a hot plate heated to a predetermined temperature, and the lift amount of four corners of the substrate after 5 minutes of standing is measured by setting a scale (gold scale) vertically on the hot plate. did. The “lift amount” shown in FIG. 7, which is the measurement result, will be described later.
【0052】[0052]
【表1】 [Table 1]
【0053】表1に、測定した基板の周辺近傍の偏差応
力の方向と基板面内の最大応力、およびたわみ量を示
す。試料1〜3はガラスリボンの中央部の温度が周辺部
に比べて高い状態で、試料4はガラスリボンの板幅方向
で平坦な温度分布をしている状態で、試料5は、ガラス
リボンの中央部の温度が周辺部に比べて低くなっている
状態で、それぞれ冷却された。各基板の偏差応力の測定
結果を図2〜6に示す。Table 1 shows the measured direction of the deviation stress near the periphery of the substrate, the maximum stress in the substrate surface, and the amount of deflection measured. Samples 1 to 3 are in a state in which the temperature of the central portion of the glass ribbon is higher than the peripheral portion, Sample 4 is in a state in which the temperature distribution is flat in the width direction of the glass ribbon, and Sample 5 is in the state of the glass ribbon. The cooling was performed in a state where the temperature at the center was lower than that at the periphery. The measurement results of the deviation stress of each substrate are shown in FIGS.
【0054】図2〜6は、ユニオプト社製ABR−10
A複屈折測定器により測定した結果で、各円の中心が測
定点を示し、円の直径が偏差応力の大きさ、円の直径と
して描かれた線が相対的に引張応力となる方向、直径の
線と紙面で垂直方向が相対的に圧縮応力となる方向を示
している。図2〜4は円直径の線がガラス基板中央を向
いており、ガラス基板周囲が圧縮方向であることが分か
る。一方、図6は円直径の線が基板周囲に沿って回って
おり、ガラス基板周囲が引張方向であることが分かる。FIGS. 2 to 6 show ABR-10 manufactured by Uniopt.
A The result of measurement with a birefringence meter, the center of each circle indicates the measurement point, the diameter of the circle is the magnitude of the deviation stress, the direction drawn by the line drawn as the diameter of the circle is the relative tensile stress, the diameter And the vertical direction on the paper indicates the direction in which the compressive stress becomes relatively large. 2 to 4, it can be seen that the line having the circular diameter is directed toward the center of the glass substrate, and the periphery of the glass substrate is in the compression direction. On the other hand, in FIG. 6, the line having the circular diameter runs around the periphery of the substrate, and it can be seen that the periphery of the glass substrate is in the tensile direction.
【0055】ガラスリボンは連続的に製造されるので、
ガラスリボンの冷却時には、板幅方向のみに板幅の中央
部と周辺部に温度分布が形成されており、ガラスリボン
の流れ方向には上流から下流に向かって単純に降下する
温度分布となっている。しかし、前述の説明のとおり、
応力のバランスにより、ガラス基板の寸法に切り出され
た後は、ガラス基板に対し各辺と平行方向の応力分布と
なっている。Since the glass ribbon is manufactured continuously,
At the time of cooling the glass ribbon, a temperature distribution is formed only in the central part and the peripheral part of the sheet width only in the sheet width direction, and the temperature distribution simply drops from upstream to downstream in the flow direction of the glass ribbon. I have. However, as explained above,
After being cut out to the size of the glass substrate due to the balance of stress, the stress distribution is in a direction parallel to each side with respect to the glass substrate.
【0056】ガラス基板のたわみ量は、板厚偏差の影響
を強く受ける。そこで、基板の板厚を測定し、その影響
を見積もった。表1の板厚は、各基板について10回測
定した平均値である。The amount of deflection of the glass substrate is strongly affected by the thickness deviation. Therefore, the thickness of the substrate was measured, and the effect was estimated. The plate thickness in Table 1 is an average value measured ten times for each substrate.
【0057】表1において、試料1〜3は、歪による残
留応力が周囲圧縮状態の基板であり、たわみ量は、板厚
を補正した試料形状から計算される値よりも小さくなっ
ている。一方、試料5は、歪による残留応力が周囲引張
状態の基板であり、たわみ量は、板厚を補正した試料形
状から計算される値よりも大きくなっている。試料4
は、歪による残留応力が極めて小さく、たわみ量は、試
料形状から計算される値と一致している。なお、「板厚
から算出したたわみ量」とは、材料力学の梁とたわみの
式で計算した値であり、具体的には、単純梁の等分布荷
重による最大たわみ量(梁の中央位置のたわみ量)の式
に諸量を代入して計算した。In Table 1, Samples 1 to 3 are substrates in which residual stress due to strain is in a state of compression in the surroundings, and the amount of deflection is smaller than the value calculated from the sample shape in which the thickness has been corrected. On the other hand, the sample 5 is a substrate in which the residual stress due to the strain is in a peripheral tensile state, and the deflection amount is larger than a value calculated from the sample shape in which the thickness is corrected. Sample 4
Shows that the residual stress due to strain is extremely small, and the amount of deflection matches the value calculated from the sample shape. The “deflection amount calculated from the plate thickness” is a value calculated by the equation of the beam and the deflection of the material mechanics. Specifically, the maximum deflection amount of the simple beam due to the uniformly distributed load (the center position of the beam) The deflection amount was calculated by substituting various amounts into the equation.
【0058】室温状態のガラス基板をホットプレート上
に静置し、5分後に、ホットプレート上での熱反り量を
測定した結果を図7に示す。図7の温度はホットプレー
トの設定温度であり、浮き上がり量はガラス基板の4隅
を測定した平均値である。試料1〜3の周囲圧縮状態の
基板では、熱反り、すなわち浮き上がりの開始温度が高
く、同一温度での浮き上がり量も小さくなっている。す
なわち、周囲に沿って圧縮応力が分布しているガラス基
板では、たわみ、熱反りが、ともに低減されていること
がわかる。The glass substrate at room temperature was left on a hot plate, and after 5 minutes, the result of measurement of the amount of thermal warpage on the hot plate is shown in FIG. The temperature in FIG. 7 is the set temperature of the hot plate, and the lift amount is an average value measured at four corners of the glass substrate. In the substrate in a compressed state around the samples 1 to 3, the warpage, that is, the rising start temperature is high, and the rising amount at the same temperature is small. That is, it can be seen that in the glass substrate in which the compressive stress is distributed along the periphery, both the deflection and the thermal warpage are reduced.
【0059】[0059]
【発明の効果】本発明により、ガラス基板のたわみや熱
反りを低減できる。本発明のガラス基板により、フラッ
トパネルディスプレイの搬送や製造工程中での、割れ等
のトラブルを抑制できる。According to the present invention, deflection and thermal warpage of a glass substrate can be reduced. With the glass substrate of the present invention, troubles such as cracking during transportation and manufacturing process of a flat panel display can be suppressed.
【図1】ガラスリボンの板幅方向の温度分布図、ガラス
リボンから切り出したガラス基板の応力状態図、および
ガラス基板の切断による変形を説明する模式図であっ
て、(a)は、切り出す前のガラスリボンの板幅方向の
温度分布を、(b)は、(a)のガラスリボンから切り
出したガラス基板の応力分布を、(c)は、(b)のガ
ラス基板の切断による変形を、(d)は、切り出す前の
ガラスリボンの板幅方向の温度分布を、(e)は、
(d)のガラスリボンから切り出したガラス基板の応力
分布を、(f)は、(e)のガラス基板の切断による変
形を、それぞれ示す。FIG. 1 is a schematic diagram illustrating a temperature distribution diagram of a glass ribbon in a plate width direction, a stress state diagram of a glass substrate cut out from the glass ribbon, and a deformation due to cutting of the glass substrate. (B) is the stress distribution of the glass substrate cut out from the glass ribbon of (a), (c) is the deformation of the glass substrate caused by cutting, and (D) is the temperature distribution in the width direction of the glass ribbon before cutting, and (e) is
(D) shows the stress distribution of the glass substrate cut out from the glass ribbon, and (f) shows the deformation due to the cutting of the glass substrate of (e).
【図2】周囲が圧縮応力であるガラス基板の偏差応力測
定例を示す図である。FIG. 2 is a diagram illustrating an example of measuring a deviation stress of a glass substrate whose surroundings are compressive stress.
【図3】周囲が圧縮応力であるガラス基板の偏差応力測
定例を示す図である。FIG. 3 is a diagram showing an example of measuring a deviation stress of a glass substrate whose surrounding is a compressive stress.
【図4】周囲が圧縮応力であるガラス基板の偏差応力測
定例を示す図である。FIG. 4 is a diagram showing an example of measuring a deviation stress of a glass substrate whose surroundings are compressive stress.
【図5】応力分布が極めて少ないガラス基板の偏差応力
測定例を示す図である。FIG. 5 is a diagram showing an example of measuring a deviation stress of a glass substrate having an extremely small stress distribution.
【図6】周囲が引張応力であるガラス基板の偏差応力測
定例を示す図である。FIG. 6 is a diagram showing an example of measuring a deviation stress of a glass substrate whose periphery has a tensile stress.
【図7】ホットプレート上での熱反り測定結果を示す図
である。FIG. 7 is a diagram showing a result of a measurement of a warpage on a hot plate.
1:ガラス基板 2:残留応力の方向 1: glass substrate 2: direction of residual stress
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G015 EA03 5C040 GA01 GA09 GA10 KA07 KB11 MA09 MA10 MA23 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G015 EA03 5C040 GA01 GA09 GA10 KA07 KB11 MA09 MA10 MA23
Claims (3)
あり、かつ板厚が0.3mm以上、6mm以下のガラス
基板であって、 ガラス基板内の残留歪による、板厚方向で測定したとき
の基板面内の偏差応力が、基板の周囲に沿って圧縮方向
で分布し、各辺の近傍で辺と平行方向での偏差圧縮応力
の最大値が0.3MPa以上であるディスプレイ用ガラ
ス基板。1. A glass substrate having a substantially rectangular surface shape with a short side of 300 mm or more and a plate thickness of 0.3 mm or more and 6 mm or less, measured in a plate thickness direction by residual strain in the glass substrate. The deviation stress in the plane of the substrate at the time of distribution is distributed in the compression direction along the periphery of the substrate, and the maximum value of the deviation compression stress in the direction parallel to the side near each side is 0.3 MPa or more. substrate.
スプレイパネルに用いられる請求項1に記載のディスプ
レイ用ガラス基板。2. The display glass substrate according to claim 1, which has a strain point of 570 ° C. or higher and is used for a plasma display panel.
レイパネルに用いられる請求項1に記載のディスプレイ
用ガラス基板。3. The display glass substrate according to claim 1, which has a strain point of 650 ° C. or higher and is used for a liquid crystal display panel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36630799A JP4438149B2 (en) | 1999-12-24 | 1999-12-24 | Glass substrate for display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36630799A JP4438149B2 (en) | 1999-12-24 | 1999-12-24 | Glass substrate for display |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009053738A Division JP5375213B2 (en) | 2009-03-06 | 2009-03-06 | Manufacturing method of glass substrate for display and manufacturing method of flat panel display |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001180957A true JP2001180957A (en) | 2001-07-03 |
JP4438149B2 JP4438149B2 (en) | 2010-03-24 |
Family
ID=18486457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP36630799A Expired - Lifetime JP4438149B2 (en) | 1999-12-24 | 1999-12-24 | Glass substrate for display |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4438149B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004021317A1 (en) * | 2002-08-28 | 2004-03-11 | Nippon Sheet Glass Co., Ltd. | Glass substrate for display |
JP2008209906A (en) * | 2007-01-29 | 2008-09-11 | Nippon Electric Glass Co Ltd | Glass substrate for display |
JP2009502706A (en) * | 2005-07-21 | 2009-01-29 | コーニング インコーポレイテッド | Sheet glass manufacturing method using controlled cooling |
WO2009116263A1 (en) * | 2008-03-18 | 2009-09-24 | パナソニック株式会社 | Plasma display panel and method for manufacturing the same |
WO2009122676A1 (en) * | 2008-04-01 | 2009-10-08 | パナソニック株式会社 | Plasma display panel and method for manufacturing the same |
US7984625B2 (en) | 2006-09-20 | 2011-07-26 | Corning Incorporated | Temperature compensation for shape-induced in-plane stresses in glass substrates |
US8292141B2 (en) | 2005-05-17 | 2012-10-23 | Corning Incorporated | Method for separating a pane of brittle material from a moving ribbon of material |
CN109455906A (en) * | 2017-09-06 | 2019-03-12 | Agc株式会社 | The manufacturing method of 3D the cover glass and its molding die and 3D the cover glass |
CN112981372A (en) * | 2019-12-12 | 2021-06-18 | Asm Ip私人控股有限公司 | Substrate supporting plate, substrate processing apparatus including the same, and substrate processing method |
WO2023171217A1 (en) * | 2022-03-09 | 2023-09-14 | 日本電気硝子株式会社 | Glass substrate |
-
1999
- 1999-12-24 JP JP36630799A patent/JP4438149B2/en not_active Expired - Lifetime
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100334673C (en) * | 2002-08-28 | 2007-08-29 | 日本板硝子株式会社 | Glass substrate for display |
WO2004021317A1 (en) * | 2002-08-28 | 2004-03-11 | Nippon Sheet Glass Co., Ltd. | Glass substrate for display |
US8292141B2 (en) | 2005-05-17 | 2012-10-23 | Corning Incorporated | Method for separating a pane of brittle material from a moving ribbon of material |
JP2009502706A (en) * | 2005-07-21 | 2009-01-29 | コーニング インコーポレイテッド | Sheet glass manufacturing method using controlled cooling |
US7984625B2 (en) | 2006-09-20 | 2011-07-26 | Corning Incorporated | Temperature compensation for shape-induced in-plane stresses in glass substrates |
JP2008209906A (en) * | 2007-01-29 | 2008-09-11 | Nippon Electric Glass Co Ltd | Glass substrate for display |
JP2013083995A (en) * | 2007-01-29 | 2013-05-09 | Nippon Electric Glass Co Ltd | Glass substrate for display |
WO2009116263A1 (en) * | 2008-03-18 | 2009-09-24 | パナソニック株式会社 | Plasma display panel and method for manufacturing the same |
EP2180496A4 (en) * | 2008-03-18 | 2010-11-03 | Panasonic Corp | Plasma display panel and method for manufacturing the same |
KR101136651B1 (en) * | 2008-03-18 | 2012-04-18 | 파나소닉 주식회사 | Plasma display panel and method for manufacturing the same |
EP2180496A1 (en) * | 2008-03-18 | 2010-04-28 | Panasonic Corporation | Plasma display panel and method for manufacturing the same |
WO2009122676A1 (en) * | 2008-04-01 | 2009-10-08 | パナソニック株式会社 | Plasma display panel and method for manufacturing the same |
CN109455906A (en) * | 2017-09-06 | 2019-03-12 | Agc株式会社 | The manufacturing method of 3D the cover glass and its molding die and 3D the cover glass |
CN109455906B (en) * | 2017-09-06 | 2022-12-13 | Agc株式会社 | 3D cover glass, mold for molding same, and method for manufacturing 3D cover glass |
CN112981372A (en) * | 2019-12-12 | 2021-06-18 | Asm Ip私人控股有限公司 | Substrate supporting plate, substrate processing apparatus including the same, and substrate processing method |
CN112981372B (en) * | 2019-12-12 | 2024-02-13 | Asm Ip私人控股有限公司 | Substrate support plate, substrate processing apparatus including the same, and substrate processing method |
WO2023171217A1 (en) * | 2022-03-09 | 2023-09-14 | 日本電気硝子株式会社 | Glass substrate |
Also Published As
Publication number | Publication date |
---|---|
JP4438149B2 (en) | 2010-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5137206B2 (en) | Method for producing flat glass with low warpage level | |
JP5428288B2 (en) | Glass plate manufacturing method and manufacturing equipment | |
US7984625B2 (en) | Temperature compensation for shape-induced in-plane stresses in glass substrates | |
EP2551245B1 (en) | Glass substrate manufacturing method | |
JP5224096B2 (en) | Manufacturing method of glass substrate for display | |
JP3586142B2 (en) | Glass plate manufacturing method, glass plate manufacturing apparatus, and liquid crystal device | |
JP5428287B2 (en) | Glass plate manufacturing method and manufacturing equipment | |
JP2009508803A5 (en) | ||
EP2460779A1 (en) | Glass ribbon and process for production thereof | |
TW201623168A (en) | Thermally tempered glass and methods and apparatuses for thermal tempering of glass | |
JP2001180957A (en) | Glass substrate for display | |
KR20100057523A (en) | Stable glass sheet and method for making same | |
KR20150091082A (en) | Method to manipulate brittle material sheet compound shape | |
WO2009081740A1 (en) | Process and apparatus for producing glass plate | |
CN111712471B (en) | Glass substrate set and method for manufacturing same | |
JP5375213B2 (en) | Manufacturing method of glass substrate for display and manufacturing method of flat panel display | |
JP3856754B2 (en) | Method for producing flat glass having low residual stress | |
JP5434977B2 (en) | Manufacturing method of glass substrate for display and manufacturing method of flat panel display | |
JP2009179552A5 (en) | ||
JP2001130920A (en) | Glass substrate for display | |
JP5365970B2 (en) | Glass substrate for display | |
JP4685901B2 (en) | Manufacturing method of polarizing glass | |
JPS598628A (en) | Method for heat-treating glass plate | |
KR20200142018A (en) | Method of making a glass substrate with reduced birefringence | |
WO2011136149A1 (en) | Production method for glass plate and glass plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090306 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090603 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090609 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090904 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091215 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091228 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4438149 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140115 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |