[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001176484A - Porous film - Google Patents

Porous film

Info

Publication number
JP2001176484A
JP2001176484A JP35586399A JP35586399A JP2001176484A JP 2001176484 A JP2001176484 A JP 2001176484A JP 35586399 A JP35586399 A JP 35586399A JP 35586399 A JP35586399 A JP 35586399A JP 2001176484 A JP2001176484 A JP 2001176484A
Authority
JP
Japan
Prior art keywords
weight
solvent
thickness
film
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35586399A
Other languages
Japanese (ja)
Other versions
JP4583532B2 (en
Inventor
Yutaka Kishii
豊 岸井
Shigeru Fujita
茂 藤田
Toshisuke Nomi
俊祐 能見
Tomoaki Ichikawa
智昭 市川
Hideyuki Emori
秀之 江守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP35586399A priority Critical patent/JP4583532B2/en
Publication of JP2001176484A publication Critical patent/JP2001176484A/en
Application granted granted Critical
Publication of JP4583532B2 publication Critical patent/JP4583532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous film having superior heat resistance, while maintaining high mechanical strength. SOLUTION: This porous film is obtained by using super macromolecular weight of polyolefin and polyolefin having cross-linking ability, with the percentage of gel components being 40-70%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐熱性に優れた多
孔質膜に関し、さらに詳しくは、電池の正極負極間に配
置されてこれらを隔離させる電池用セパレータ等として
好適に用いられる多孔質膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous film having excellent heat resistance, and more particularly, to a porous film which is preferably used as a battery separator or the like which is disposed between a positive electrode and a negative electrode of a battery to isolate them. About.

【0002】[0002]

【従来の技術】種々のタイプの電池が実用に供されてい
るが、近年、電子機器のコードレス化等に対応するた
め、電池として軽量で、高起電力、高エネルギーを得ら
れ、しかも自己放電が少ないリチウム電池が注目を集め
ている。これら正極負極の間には正極負極の短絡防止の
ためのセパレータが介在せしめられるが、このセパレー
タとしては正極負極間のイオン透過性を確保するため多
数の微細孔が形成された多孔質膜が使用される。
2. Description of the Related Art Various types of batteries have been put to practical use. In recent years, in order to cope with a cordless electronic device, a lightweight, high electromotive force, high energy, and self-dischargeable battery is obtained. There are few lithium batteries that are attracting attention. A separator is interposed between the positive and negative electrodes to prevent a short circuit between the positive and negative electrodes. A porous membrane having a large number of micropores is used as the separator to ensure ion permeability between the positive and negative electrodes. Is done.

【0003】このような多孔質膜の製造方法として、従
来、超高分子量ポリオレフィンや超高分子量ポリオレフ
ィンとその他のポリオレフィン樹脂を溶媒中で加熱溶解
させた液からゲル状シートをつくり、延伸前後で脱溶媒
処理を行い、延伸処理し、残存溶媒を除去する方法が種
々提案されている。
[0003] As a method for producing such a porous membrane, conventionally, a gel-like sheet is prepared from a solution obtained by heating and dissolving an ultra-high-molecular-weight polyolefin or an ultra-high-molecular-weight polyolefin in a solvent, and removing the gel before and after stretching. Various methods have been proposed for performing a solvent treatment, performing a stretching treatment, and removing a residual solvent.

【0004】このようにして得られた多孔質膜は、電池
用セパレータとして好適に用いることができるが、近
年、電池の高容量化に伴い、外部短絡や過充電といった
電池の異常時などの過酷な状況でも孔が閉塞し、電流遮
断を行ういわゆるシャットダウン機能を発現し、かつそ
の状態をより高い温度まで保持し、破膜などによる内部
短絡を生じない、耐熱性に優れた多孔質膜が求められて
いる。
[0004] The porous membrane thus obtained can be suitably used as a battery separator. However, in recent years, as the capacity of the battery has increased, severe damage such as abnormalities in the battery such as external short-circuit or overcharge has occurred. A porous film with excellent heat resistance that exhibits a so-called shutdown function that closes the pores and interrupts the current even in difficult situations, maintains that state at a higher temperature, and does not cause internal short-circuiting due to a rupture of the membrane, etc. Have been.

【0005】耐熱性向上の方法として、例えば、ポリエ
チレンを電子線などで架橋処理した多孔質膜が報告され
ている。しかしながら、これらの多孔質膜は、繊維状の
フィブリルとその周囲に存在するラメラからなる形態を
有しており、該多孔質膜の骨格となっているフィブリル
は、電子線照射による架橋処理により切断されやすいと
いう欠点がある。従って、ポリエチレン等のポリオレフ
ィン樹脂を含有する多孔質膜を電子線照射によって架橋
処理すると、耐熱性は向上するものの、機械的強度が低
下し、電池用セパレータとして好適に用いることができ
ない。特に、電池用セパレータとして有用な分子量50
万以上の超高分子量のポリエチレンを用いる場合、電子
線照射による機械的強度の低下が著しくなる傾向があ
る。例えば、特開平10−7831号公報には、電子線
照射により架橋点間分子量をコントロールしその分子量
が20万以下の高強度、高耐熱性のポリエチレン多孔質
膜が開示されている。該多孔質膜に使用するポリエチレ
ンの分子量は、10万〜400万と記載されているが、
超高分子量ポリエチレンの実施例は示されておらず、実
際に超高分子量ポリエチレンを用いた場合、電子線照射
による実用的な強度の低下が危惧される。
As a method for improving heat resistance, for example, a porous film obtained by crosslinking polyethylene with an electron beam or the like has been reported. However, these porous membranes have a form composed of fibrous fibrils and lamella existing around the fibrils, and the fibrils forming the skeleton of the porous membrane are cut by cross-linking treatment by electron beam irradiation. There is a disadvantage that it is easy to be done. Therefore, when a porous film containing a polyolefin resin such as polyethylene is cross-linked by electron beam irradiation, heat resistance is improved, but mechanical strength is reduced, and the film cannot be suitably used as a battery separator. In particular, a molecular weight of 50 useful as a battery separator
When using ultrahigh molecular weight polyethylene of 10,000 or more, there is a tendency that the mechanical strength is significantly reduced by electron beam irradiation. For example, Japanese Patent Application Laid-Open No. 10-7831 discloses a high-strength, high-heat-resistant porous polyethylene film in which the molecular weight between crosslinking points is controlled by electron beam irradiation and the molecular weight is 200,000 or less. Although the molecular weight of polyethylene used for the porous membrane is described as 100,000 to 4,000,000,
Examples of ultrahigh molecular weight polyethylene are not shown, and when ultrahigh molecular weight polyethylene is actually used, there is a concern that the practical strength may be reduced by electron beam irradiation.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、高い
機械的強度を保持しつつ、優れた耐熱性を有する多孔質
膜を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a porous membrane having excellent heat resistance while maintaining high mechanical strength.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、超高分
子量ポリオレフィン及び架橋能を有するポリオレフィン
を用いて得られる、ゲル分率が40〜70%であること
を特徴とする多孔質膜に関する。
SUMMARY OF THE INVENTION The gist of the present invention relates to a porous membrane obtained by using an ultra-high molecular weight polyolefin and a polyolefin having a crosslinking ability and having a gel fraction of 40 to 70%. .

【0008】[0008]

【発明の実施の形態】本発明において、超高分子量ポリ
オレフィンとは、その重量平均分子量が50万以上のポ
リオレフィンをいう。該重量平均分子量としては、好ま
しくは100万〜2000万、より好ましくは100万
〜1500万である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an ultrahigh molecular weight polyolefin is a polyolefin having a weight average molecular weight of 500,000 or more. The weight average molecular weight is preferably 1,000,000 to 20,000,000, more preferably 1,000,000 to 15,000,000.

【0009】本発明に用いることができる超高分子量ポ
リオレフィンとしては、従来より多孔質膜に用いられて
いるものであればよく、特に限定はなく、例えば、エチ
レン、プロピレン、1−ブテン、4−メチル−1−ペン
テン、1−ヘキセンなどのオレフィンの単独重合体、共
重合体及びそれらの混合物などが挙げられ、これらの中
では、得られる多孔質膜の高強度化の観点から、超高分
子量ポリエチレン等の結晶性高分子樹脂が好ましく用い
られる。
The ultra-high molecular weight polyolefin that can be used in the present invention is not particularly limited as long as it has been conventionally used for a porous membrane. For example, ethylene, propylene, 1-butene, 4- Examples thereof include homopolymers and copolymers of olefins such as methyl-1-pentene and 1-hexene, and mixtures thereof. Among these, from the viewpoint of increasing the strength of the obtained porous membrane, an ultrahigh molecular weight A crystalline polymer resin such as polyethylene is preferably used.

【0010】超高分子量ポリオレフィンの多孔質膜中に
おける含有量は、30〜70重量%が好ましく、40〜
60重量%がより好ましい。
The content of the ultrahigh molecular weight polyolefin in the porous membrane is preferably 30 to 70% by weight, and more preferably 40 to 70% by weight.
60% by weight is more preferred.

【0011】本発明の多孔質膜は、さらに架橋能を有す
るポリオレフィンを含有する。本発明においては該架橋
能を有するポリオレフィンを用いる点に一つの大きな特
徴があり、かかる樹脂を含有する多孔質膜を架橋処理す
ることにより、機械的強度を維持しながら、耐熱性にも
優れた多孔質膜を製造することができる。
[0011] The porous membrane of the present invention further contains a polyolefin having a crosslinking ability. In the present invention, there is one great feature in using the polyolefin having the cross-linking ability, and by performing a cross-linking treatment on the porous film containing such a resin, the heat resistance is excellent while maintaining the mechanical strength. A porous membrane can be manufactured.

【0012】架橋能を有するポリオレフィンとしては、
前記超高分子量ポリオレフィンと相溶性の良い樹脂であ
れば、特に限定はなく、例えば、シラン架橋性ポリオレ
フィン、スチレン−ブタジエンゴム、天然ゴム、イソプ
レンゴム、ブタジエンゴム、エチレン−プロピレンゴム
などが挙げられる。中でも、電子線照射等による分子量
の低下が生じず、水蒸気、温水等の穏やかな条件でも効
率良く架橋可能な点から、シラン架橋性ポリエチレンが
特に好ましい。該シラン架橋性ポリエチレンのシランか
らなるシラノール基は、水や水蒸気による脱水反応によ
り、シロキサン結合を生成し架橋される。なお、該シラ
ン架橋性ポリエチレンとしては、そのメルトフローレー
ト(MFR)が0.03〜10のものが好ましい。これ
らの架橋能を有するポリオレフィンは、単独でまたは2
種以上を組み合わせて使用してもよい。
The polyolefin having a crosslinking ability includes
There is no particular limitation as long as the resin has good compatibility with the ultrahigh molecular weight polyolefin, and examples thereof include silane crosslinkable polyolefin, styrene-butadiene rubber, natural rubber, isoprene rubber, butadiene rubber, and ethylene-propylene rubber. Among them, silane-crosslinkable polyethylene is particularly preferable because it does not cause a decrease in molecular weight due to electron beam irradiation or the like and can be efficiently crosslinked under mild conditions such as steam and hot water. The silanol group composed of silane of the silane crosslinkable polyethylene is crosslinked by forming a siloxane bond by a dehydration reaction with water or steam. The silane crosslinkable polyethylene preferably has a melt flow rate (MFR) of 0.03 to 10. These crosslinkable polyolefins can be used alone or
A combination of more than one species may be used.

【0013】前記架橋能を有するポリオレフィンの多孔
質膜中における含有量は、30〜70重量%、好ましく
は40〜60重量%である。該含有量の下限は、多孔質
膜の耐熱性を向上させる観点から、30重量%以上であ
り、その上限は、針貫通強度などの機械的強度を維持す
る観点から、70重量%以下が好ましい。
The content of the crosslinkable polyolefin in the porous membrane is 30 to 70% by weight, preferably 40 to 60% by weight. The lower limit of the content is 30% by weight or more from the viewpoint of improving the heat resistance of the porous membrane, and the upper limit is preferably 70% by weight or less from the viewpoint of maintaining mechanical strength such as needle penetration strength. .

【0014】以上のような構成を有する本発明の多孔質
膜は、そのゲル分率が40〜70%のものである。本発
明において、該ゲル分率は多孔質膜の架橋構造の尺度を
示し、このゲル分率の値が高いほど高温にさらされた場
合の多孔質膜の形状保持能が高いことを示す。本発明に
おいては、該ゲル分率が40〜70%であることで、多
孔質膜は高い機械的強度と優れた耐熱性を有するという
効果が発現される。該ゲル分率は、好ましくは50〜7
0%であり、より好ましくは60〜70%である。該ゲ
ル分率は、耐熱性の観点から、40%以上であり、機械
的強度の観点から、70%以下である。なお、ここでゲ
ル分率とは、後述の実施例に記載の方法により測定され
たものをいう。
The porous membrane of the present invention having the above structure has a gel fraction of 40 to 70%. In the present invention, the gel fraction indicates a measure of the crosslinked structure of the porous membrane. The higher the value of the gel fraction, the higher the shape retention ability of the porous membrane when exposed to high temperatures. In the present invention, when the gel fraction is 40 to 70%, the effect that the porous film has high mechanical strength and excellent heat resistance is exhibited. The gel fraction is preferably 50 to 7
0%, more preferably 60 to 70%. The gel fraction is 40% or more from the viewpoint of heat resistance, and 70% or less from the viewpoint of mechanical strength. Here, the gel fraction refers to a value measured by a method described in Examples described later.

【0015】次に、本発明による多孔質膜の製造方法に
ついて説明する。本発明による多孔質膜の製造には、乾
式成膜法、湿式成膜法など公知の方法を利用することが
できる。例えば、前記超高分子量ポリオレフィン、架橋
能を有するポリオレフィン等からなる樹脂組成物を溶媒
と混合し、溶解混練りしながら成形した後、圧延し、一
軸方向以上に延伸し、溶媒を抽出除去し、架橋処理する
ことにより製造することができる。
Next, a method for producing a porous film according to the present invention will be described. For the production of the porous film according to the present invention, known methods such as a dry film forming method and a wet film forming method can be used. For example, the ultra-high molecular weight polyolefin, a resin composition comprising a polyolefin having a cross-linking ability and the like, mixed with a solvent, formed by melting and kneading, then rolling, stretching in one or more axial directions, and extracting and removing the solvent, It can be produced by a crosslinking treatment.

【0016】溶媒としては、前記樹脂組成物の溶解性に
優れたものであればよく、例えば、ノナン、デカン、ウ
ンデカン、ドデカン、デカリン、流動パラフィンなどの
脂肪族または環式の炭化水素、沸点がこれらに対応する
鉱油留分などが挙げられ、流動パラフィンなどの脂環式
炭化水素を多く含む不揮発性溶媒が好ましい。
Any solvent may be used as long as it is excellent in the solubility of the resin composition. Examples of the solvent include aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, decalin, and liquid paraffin, and boiling points. Corresponding mineral oil fractions and the like are mentioned, and non-volatile solvents containing a large amount of alicyclic hydrocarbons such as liquid paraffin are preferred.

【0017】また、樹脂組成物と溶媒の混合割合は、溶
媒の種類、該溶媒への樹脂組成物の溶解性等により一概
には限定できないが、例えば、孔構造の微細性の観点か
ら、樹脂組成物の混合割合が混合物の5〜30重量%で
あることが好ましく、8〜20重量%であることがより
好ましい。例えば、多孔質膜としての機械的強度を発現
する観点から、樹脂組成物の成分として重量平均分子量
50万以上の結晶性超高分子量ポリオレフィンを用いる
場合、該化合物の混合割合が混合物の5重量%以上であ
ることが好ましい。また、溶媒の混合割合は、例えば、
混合物の70〜95重量%が好ましく、80〜92重量
%がより好ましい。
The mixing ratio between the resin composition and the solvent cannot be unconditionally limited depending on the type of the solvent, the solubility of the resin composition in the solvent, and the like. The mixing ratio of the composition is preferably from 5 to 30% by weight of the mixture, more preferably from 8 to 20% by weight. For example, when a crystalline ultrahigh molecular weight polyolefin having a weight average molecular weight of 500,000 or more is used as a component of the resin composition from the viewpoint of exhibiting mechanical strength as a porous film, the mixing ratio of the compound is 5% by weight of the mixture. It is preferable that it is above. Further, the mixing ratio of the solvent, for example,
Preferably 70-95% by weight of the mixture, more preferably 80-92% by weight.

【0018】樹脂組成物と溶媒の混合物を溶解混練り
し、成形する工程は、公知の方法により行うことがで
き、例えば、ヘンシェルミキサー等で予め均一に分散さ
せ、スラリー状にした混合溶液をバンバリーミキサー、
ニーダーなどを用いてバッチ式で溶解混練りし、次い
で、Tダイスなどを取り付けた押出機などを用いて成形
したり、冷却された金属版に挟み込み急冷して急冷結晶
化により成形してもよく、重量式フィーダーや液添ポン
プを使用し、直接二軸押出機や連続混練機で溶解混練り
を行い、混練機先端につけたTダイスで成形してもよ
い。なお、混練りは、適当な温度条件下であればよく、
特に限定されないが、好ましくは100〜200℃であ
る。
The step of dissolving and kneading the mixture of the resin composition and the solvent and molding can be carried out by a known method. For example, the mixed solution which has been uniformly dispersed in advance with a Henschel mixer or the like to form a slurry is banned. mixer,
It may be melt-kneaded in a batch system using a kneader or the like, and then molded using an extruder equipped with a T die or the like, or may be sandwiched between cooled metal plates and rapidly cooled to form by rapid crystallization. Alternatively, the mixture may be directly melt-kneaded with a twin-screw extruder or a continuous kneader using a gravimetric feeder or a liquid addition pump, and may be formed with a T die attached to the tip of the kneader. The kneading may be performed under appropriate temperature conditions.
Although not particularly limited, it is preferably 100 to 200 ° C.

【0019】このようにして得られる成形物の形として
は、シート状、丸棒状、チューブ状等が挙げられる。中
でもシート状及びチューブ状成形物の厚みとしては、特
に限定されないが、3〜30mmが好ましく、5〜20
mmがより好ましい。該厚みは、溶媒を抽出した後の膜
(溶媒抽出膜)の強度を維持する観点から3mm以上が
好ましく、圧延工程での薄膜化を効率よく行う観点か
ら、30mm以下が好ましい。
The shape of the molded product thus obtained may be a sheet, a round bar, a tube, or the like. Above all, the thickness of the sheet-like or tube-like molded product is not particularly limited, but is preferably 3 to 30 mm, and 5 to 20 mm.
mm is more preferable. The thickness is preferably 3 mm or more from the viewpoint of maintaining the strength of the film (solvent extraction film) after extracting the solvent, and is preferably 30 mm or less from the viewpoint of efficiently reducing the thickness in the rolling step.

【0020】得られた成形物を圧延する工程は、ダブル
ベルトプレス機などのプレス法、所定の形状のダイスを
使用するダイス内圧延法等により行うことができる。特
に、チューブ状成形物にはチューブ状ダイスを適用で
き、その際にダイスの引取方向から引っ張り縦横強度比
を適宜調整して圧延を行うことが好ましい。
The step of rolling the obtained molded product can be performed by a pressing method using a double belt press or the like, an in-die rolling method using a die having a predetermined shape, or the like. In particular, a tube-shaped die can be applied to the tube-shaped molded product, and in that case, it is preferable to perform rolling by appropriately adjusting the tensile strength-to-width ratio in the direction in which the die is pulled.

【0021】このようにして得られる圧延処理したシー
ト(圧延シート)の厚みは、特に限定されないが、例え
ば、0.2〜3mmが好ましく、0.2〜2mmがより
好ましい。該厚みは、圧延処理による薄膜化が容易であ
る観点から、0.2mm以上が好ましく、多孔質膜の生
産性の観点から、3mm以下が好ましい。また、圧延処
理温度は、特に限定されないが、前記混練物融点の−1
0〜−30℃が好ましい。圧延温度は、圧延処理による
薄膜化を容易にする観点から混練物融点の−30℃以上
が好ましく、電池用セパレータとして必要な機械的強度
及び均質性を得る観点から、混練物融点の−10℃以下
が好ましい。また、プレス法を用いた場合の全加圧時間
は、特に限定されないが、1〜5分が好ましい。該時間
は、所定の厚みの圧延シートを得る観点から、1分以上
が好ましく、生産性に優れる観点から、5分以下が好ま
しい。
The thickness of the rolled sheet (rolled sheet) thus obtained is not particularly limited, but is preferably, for example, 0.2 to 3 mm, more preferably 0.2 to 2 mm. The thickness is preferably 0.2 mm or more from the viewpoint of easy thinning by rolling, and preferably 3 mm or less from the viewpoint of productivity of the porous film. Further, the rolling temperature is not particularly limited, but the melting point of the kneaded material is -1.
0-30 ° C is preferred. The rolling temperature is preferably −30 ° C. or more of the melting point of the kneaded material from the viewpoint of facilitating thinning by the rolling process, and −10 ° C. of the melting point of the kneaded material from the viewpoint of obtaining the mechanical strength and homogeneity required for a battery separator. The following is preferred. Further, the total pressurizing time when using the pressing method is not particularly limited, but is preferably 1 to 5 minutes. The time is preferably 1 minute or more from the viewpoint of obtaining a rolled sheet having a predetermined thickness, and is preferably 5 minutes or less from the viewpoint of excellent productivity.

【0022】前記圧延シートの延伸処理の方式として
は、特に限定されるものではなく、通常のテンター法、
ロール法、インフレーション法またはこれらの方法の組
合せであってもよく、また、一軸延伸、二軸延伸などの
いずれの方式をも適用することができる。また、二軸延
伸の場合は、縦横同時延伸または逐次延伸のいずれかで
もよい。延伸処理の温度は、100〜140℃であるこ
とが好ましい。
The method of stretching the rolled sheet is not particularly limited, but may be a usual tenter method,
A roll method, an inflation method or a combination of these methods may be used, and any method such as uniaxial stretching and biaxial stretching can be applied. In the case of biaxial stretching, either vertical or horizontal simultaneous stretching or sequential stretching may be used. The temperature of the stretching treatment is preferably 100 to 140 ° C.

【0023】脱溶媒処理は、延伸処理したシート(延伸
シート)から溶媒を除去して微多孔構造を形成させる工
程であり、例えば、延伸シートを溶剤で洗浄して残留す
る溶媒を除去することにより行うことができる。溶剤と
しては、ペンタン、ヘキサン、ヘプタン、デカンなどの
炭化水素、塩化メチレン、四塩化炭素などの塩素炭化水
素、三フッ化エタンなどのフッ化炭化水素、ジエチルエ
ーテル、ジオキサンなどのエーテル類などの易揮発性溶
剤が挙げられ、これらは単独でまたは2種以上を混合し
て用いることができる。かかる溶剤を用いた洗浄方法
は、特に限定されず、例えば、延伸シートを溶剤中に浸
漬して溶媒を抽出する方法、溶剤を延伸シートにシャワ
ーする方法などが挙げられる。
The desolvation treatment is a step of forming a microporous structure by removing the solvent from the stretched sheet (stretched sheet). For example, by removing the residual solvent by washing the stretched sheet with a solvent. It can be carried out. Examples of the solvent include hydrocarbons such as pentane, hexane, heptane, and decane; chlorine hydrocarbons such as methylene chloride and carbon tetrachloride; fluorinated hydrocarbons such as ethane trifluoride; and ethers such as diethyl ether and dioxane. Volatile solvents can be mentioned, and these can be used alone or in combination of two or more. The washing method using such a solvent is not particularly limited, and examples thereof include a method of immersing the stretched sheet in the solvent to extract the solvent and a method of showering the solvent on the stretched sheet.

【0024】次いで、脱溶媒処理した膜(脱溶媒膜)を
得た後、該脱溶媒膜を構成する樹脂組成物を架橋処理し
て、多孔質膜を得ることができる。架橋には、使用して
いる架橋能を有するポリオレフィンの種類に応じて、
熱、電子線、放射線、水蒸気、温水等を用いることがで
きる。これらの中では、水蒸気や温水を用いる架橋処理
が、超高分子量ポリオレフィンのフィブリルの切断が生
じず、高い機械的強度を保持し、耐熱性(高温での耐破
膜性)を大きく向上させることができる点で好ましい。
水蒸気を用いる架橋処理とは、例えば、恒温恒湿機中、
湿度80%以上で行う処理が挙げられる。その条件は、
ゲル分率を40〜70%となるよう適宜選択されるが、
その温度は、80〜110℃が好ましい。該温度は、架
橋が十分に進む観点から80℃以上が好ましく、適度な
空孔率を保持する観点から、110℃以下が好ましい。
また、温水を用いる架橋処理の温度は、70〜100℃
が好ましい。これらの架橋処理の時間は、0.1〜2時
間が好ましい。
Next, after obtaining a desolvated film (desolvation film), the resin composition constituting the desolvation film can be cross-linked to obtain a porous film. For crosslinking, depending on the type of polyolefin having crosslinking ability used,
Heat, electron beam, radiation, steam, hot water, or the like can be used. Among these, the cross-linking treatment using steam or hot water does not cause cutting of ultra-high molecular weight polyolefin fibrils, maintains high mechanical strength, and greatly improves heat resistance (film rupture resistance at high temperatures). It is preferable in that it can be performed.
Cross-linking treatment using steam, for example, in a thermo-hygrostat,
A process performed at a humidity of 80% or more can be given. The condition is
The gel fraction is appropriately selected to be 40 to 70%,
The temperature is preferably from 80 to 110 ° C. The temperature is preferably 80 ° C. or higher from the viewpoint of sufficient progress of crosslinking, and is preferably 110 ° C. or lower from the viewpoint of maintaining an appropriate porosity.
The temperature of the crosslinking treatment using hot water is 70 to 100 ° C.
Is preferred. The time for these crosslinking treatments is preferably 0.1 to 2 hours.

【0025】また、前記架橋処理工程に続いて、熱収縮
の防止のため一般に多孔質膜をヒートセット(熱固定)
してもよい。特に、本発明においては、前記のように熱
を用いた架橋処理を行うことで、処理条件によっては実
質的にヒートセットも可能となるが、ヒートセットとし
て不充分な場合には、熱収縮をよりよく防止するため
に、前記架橋処理後に、さらに加熱してヒートセットを
行ってもよい。該ヒートセットする際の温度は、例え
ば、110〜140℃で0.5〜2時間程度行えばよ
い。
After the above-mentioned cross-linking treatment step, the porous membrane is generally heat-set (heat-fixed) to prevent heat shrinkage.
May be. In particular, in the present invention, by performing the cross-linking treatment using heat as described above, depending on the processing conditions, substantially heat setting is also possible, but when the heat setting is insufficient, the heat shrinkage is reduced. For better prevention, heat setting may be performed by further heating after the crosslinking treatment. The heat setting may be performed, for example, at 110 to 140 ° C. for about 0.5 to 2 hours.

【0026】以上のようにして得られる多孔質膜の厚み
は、1〜60μmが好ましく、5〜45μmがより好ま
しい。その空孔率は、20〜80%が好ましく、25〜
75%がより好ましい。
The thickness of the porous membrane obtained as described above is preferably 1 to 60 μm, more preferably 5 to 45 μm. The porosity is preferably 20 to 80%, and
75% is more preferred.

【0027】多孔質膜の機械的強度として、例えば針貫
通強度は、300gf/25μm以上が好ましく、40
0gf/25μm以上がより好ましい。その耐熱性とし
て、耐熱温度は、160℃以上が好ましく、180℃以
上がより好ましい。なお、針貫通強度、耐熱温度の測定
方法としては、後述の実施例に記載の方法が挙げられ
る。
As the mechanical strength of the porous membrane, for example, the needle penetration strength is preferably 300 gf / 25 μm or more,
0 gf / 25 μm or more is more preferable. As the heat resistance, the heat resistance temperature is preferably 160 ° C. or higher, more preferably 180 ° C. or higher. In addition, as a method of measuring the needle penetration strength and the heat resistant temperature, the method described in Examples described later can be used.

【0028】本発明の多孔質膜は、以上のように機械的
強度に優れるとともに高温での耐破膜性にも優れた電池
用セパレータとして使用することで、電池の様々な大き
さや用途に対してより安全性を向上させることが期待で
きる。
The porous membrane of the present invention can be used as a battery separator having excellent mechanical strength and high resistance to rupture at high temperatures as described above, and can be used in various sizes and applications of batteries. Can be expected to further improve safety.

【0029】[0029]

【実施例】以下、実施例及び比較例を挙げてさらに詳細
に説明するが、本発明はこれら実施例により何ら限定さ
れるものではない。なお、各種特性については下記要領
にて測定を行った。
The present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, various characteristics were measured in the following manner.

【0030】(厚み)1/10000mmシックネスゲ
ージ及び多孔質膜の断面の1万倍走査電子顕微鏡写真か
ら測定した。
(Thickness) The thickness was measured from a 1 / 10,000 mm thickness gauge and a 10,000 × scanning electron micrograph of the cross section of the porous membrane.

【0031】(空孔率)得られた多孔質膜を60mmφ
のポンチで打抜き、1/1000mmシックネスゲージ
で厚みを求め、電子天秤にて重量を秤量し、下記の式で
空孔率を求めた。尚、樹脂成分の密度は0.940g/
mlとした。 空孔率(%)=空孔体積×100/膜全体積
(Porosity) The obtained porous membrane is
The thickness was determined with a 1/1000 mm thickness gauge, the weight was weighed with an electronic balance, and the porosity was determined by the following formula. The density of the resin component was 0.940 g /
ml. Porosity (%) = pore volume × 100 / total membrane volume

【0032】(ゲル分率)得られた多孔質膜をソックス
レー抽出器を用い、沸騰パラキシレン中で8時間抽出を
行い、以下の式からゲル分率を求めた。 ゲル分率(%)=100×残存重量(g)/試料重量
(g)
(Gel Fraction) The obtained porous membrane was extracted in boiling para-xylene for 8 hours using a Soxhlet extractor, and the gel fraction was determined from the following equation. Gel fraction (%) = 100 × residual weight (g) / sample weight (g)

【0033】(針貫通強度)カトーテック(株)製ハン
ディー圧縮試験機「KES−G5」を用い、針は直径
1.0mm、先端形状R0.5mm、ホルダー径11.
3mm、押し込み速度2mm/秒にて測定し、膜が破れ
るまでの最大荷重を針貫通強度とした。値は全て25μ
mに換算した。
(Needle penetration strength) Using a handy compression tester "KES-G5" manufactured by Kato Tech Co., Ltd., the needle has a diameter of 1.0 mm, the tip shape R is 0.5 mm, and the holder diameter is 11.
The measurement was performed at 3 mm at a pushing speed of 2 mm / sec, and the maximum load until the film was broken was defined as the needle penetration strength. All values are 25μ
m.

【0034】(耐熱温度)正極板(白金製、直径14m
m)、負極板(白金製、直径16mm)の間に直径20
mmの多孔質膜を挟んだ測定治具を5℃/minにて昇
温し、短絡が生じた温度を正極板に接続した熱電対で測
定し、該温度を耐熱温度とした。
(Heat-resistant temperature) Positive electrode plate (made of platinum, 14 m in diameter)
m), between the negative electrode plate (made of platinum, 16 mm in diameter)
The temperature of the measuring jig sandwiching the porous membrane of 5 mm was increased at 5 ° C./min, and the temperature at which short-circuit occurred was measured with a thermocouple connected to the positive electrode plate, and the temperature was defined as the heat-resistant temperature.

【0035】実施例1 重量平均分子量が200万の超高分子量ポリエチレン5
重量%と、メルトフローレート0.5、密度0.942
のシラン架橋性ポリエチレン(三菱化学(株)製、商品
名:リンクロン、以下同じ)10重量%、さらに溶媒で
ある流動パラフィン(40℃における動粘度が59mm
2/sの溶媒)85重量%からなる溶液を、スラリー状に
均一混合し、160℃で二軸押出機(シリンダー径40
mm、L/D=42)を使用して溶解混練りし、二軸押
出機先端のTダイス(リップ厚5mm)を用い、160
℃でシート状に成形し、水浴により急冷した。その後得
られたシート状成形物を115℃に予備加熱後、成形温
度115℃で3分間プレスし、厚み0.5mmの圧延シ
ートを得た。その後、バッチ式同時二軸延伸機にて11
5℃で縦横3.5×3.5倍に延伸後、ヘプタンにて脱
溶媒処理を行い、厚み35μm、空孔率60%の脱溶媒
膜を得た。得られた膜を恒温恒湿機中で温度90℃、湿
度95%で4時間架橋処理した。処理した膜を110℃
で0.5時間ヒートセットし、厚み26μmで空孔率4
2%の多孔質膜を得た。
Example 1 Ultra high molecular weight polyethylene 5 having a weight average molecular weight of 2,000,000
Weight%, melt flow rate 0.5, density 0.942
10% by weight of silane-crosslinkable polyethylene (manufactured by Mitsubishi Chemical Corporation, trade name: Linklon, the same applies hereinafter), and liquid paraffin as a solvent (kinematic viscosity at 40 ° C. is 59 mm
A solution consisting of 85% by weight of a 2 / s solvent) was uniformly mixed in a slurry form at 160 ° C. and a twin screw extruder (cylinder diameter 40
mm, L / D = 42), using a T-die (lip thickness 5 mm) at the tip of the twin-screw extruder,
The mixture was formed into a sheet at ℃ and quenched by a water bath. Thereafter, the obtained sheet-like molded product was preheated to 115 ° C. and then pressed at a molding temperature of 115 ° C. for 3 minutes to obtain a rolled sheet having a thickness of 0.5 mm. Then, the batch type simultaneous biaxial stretching machine 11
After stretching 3.5 × 3.5 times at 5 ° C., desolvation treatment was performed with heptane to obtain a desolvation film having a thickness of 35 μm and a porosity of 60%. The obtained membrane was subjected to a crosslinking treatment in a thermo-hygrostat at a temperature of 90 ° C. and a humidity of 95% for 4 hours. 110 ° C
For 0.5 hour at a thickness of 26 μm and a porosity of 4
A 2% porous membrane was obtained.

【0036】実施例2 重量平均分子量が200万の超高分子量ポリエチレン1
0重量%と、メルトフローレート0.5、密度0.94
2のシラン架橋性ポリエチレン20重量%、さらに溶媒
である流動パラフィン(40℃における動粘度が59m
2/sの溶媒)70重量%からなる溶液を、スラリー状
に均一混合し、160℃で二軸押出機(シリンダー径4
0mm、L/D=42)を使用して溶解混練りし、二軸
押出機先端のTダイス(リップ厚5mm)で160℃で
シート状に成形し、水浴により急冷した。その後得られ
たシート状成形物を115℃に予備加熱後、成形温度1
15℃で、3分間プレスし、厚み0.5mmの圧延シー
トを得た。その後、バッチ式同時二軸延伸機にて温度1
15℃で縦横3.5×3.5倍に延伸後、ヘプタンにて
脱溶媒処理を行い、厚み42μm、空孔率58%の脱溶
媒膜を得た。得られた膜を恒温恒湿機中で温度90℃、
湿度95%で4時間架橋処理した。処理した膜を110
℃で0.5時間ヒートセットし、厚み28μmで空孔率
40%の多孔質膜を得た。
Example 2 Ultra high molecular weight polyethylene 1 having a weight average molecular weight of 2,000,000
0% by weight, melt flow rate 0.5, density 0.94
20% by weight of silane-crosslinkable polyethylene 2 and liquid paraffin as a solvent (kinematic viscosity at 40 ° C. is 59 m
A solution consisting of 70% by weight (m 2 / s solvent) was uniformly mixed in a slurry form at 160 ° C. and a twin-screw extruder (cylinder diameter 4
0 mm, L / D = 42), melt-kneaded, formed into a sheet at 160 ° C. with a T die (lip thickness 5 mm) at the tip of a twin-screw extruder, and quenched in a water bath. Thereafter, the obtained sheet-like molded product was preheated to 115 ° C., and then a molding temperature of 1
Pressing was performed at 15 ° C. for 3 minutes to obtain a rolled sheet having a thickness of 0.5 mm. After that, the batch type simultaneous biaxial stretching machine was used to adjust the temperature to 1
After stretching 3.5 × 3.5 times in length and width at 15 ° C., desolvation treatment was performed with heptane to obtain a desolvation film having a thickness of 42 μm and a porosity of 58%. The obtained film was heated in a thermo-hygrostat at a temperature of 90 ° C.
Crosslinking treatment was performed at a humidity of 95% for 4 hours. The treated membrane is
Heat setting was performed at 0.5 ° C. for 0.5 hour to obtain a porous film having a thickness of 28 μm and a porosity of 40%.

【0037】実施例3 重量平均分子量が200万の超高分子量ポリエチレン1
0重量%と、メルトフローレート0.5、密度0.94
2のシラン架橋性ポリエチレン20重量%、さらに溶媒
である流動パラフィン(40℃における動粘度が59m
2/sの溶媒)70重量%からなる溶液を、スラリー状
に均一混合し、160℃で二軸押出機(シリンダー径4
0mm、L/D=42)を使用して溶解混練りし、二軸
押出機先端のTダイス(リップ厚5mm)で160℃で
シート状に成形し、水浴により急冷した。その後得られ
たシート状成形物を115℃に予備加熱後、成形温度1
15℃で3分間プレスし、厚み0.5mmの圧延シート
を得た。その後、バッチ式同時二軸延伸機にて温度11
5℃で縦横3.5×3.5倍に延伸後、ヘプタンにて脱
溶媒処理を行い、厚み42μm、空孔率58%の脱溶媒
膜を得た。得られた膜を恒温恒湿機中で温度90℃、湿
度95%で1時間架橋処理した。処理した膜を110℃
で0.5時間ヒートセットし、厚み26μmで空孔率4
3%の多孔質膜を得た。
Example 3 Ultra high molecular weight polyethylene 1 having a weight average molecular weight of 2,000,000
0% by weight, melt flow rate 0.5, density 0.94
20% by weight of silane-crosslinkable polyethylene 2 and liquid paraffin as a solvent (kinematic viscosity at 40 ° C. is 59 m
A solution consisting of 70% by weight (m 2 / s solvent) was uniformly mixed in a slurry form at 160 ° C. and a twin-screw extruder (cylinder diameter 4
0 mm, L / D = 42), melt-kneaded, formed into a sheet at 160 ° C. with a T die (lip thickness 5 mm) at the tip of a twin-screw extruder, and quenched in a water bath. Thereafter, the obtained sheet-like molded product was preheated to 115 ° C., and then a molding temperature of 1
Pressing was performed at 15 ° C. for 3 minutes to obtain a rolled sheet having a thickness of 0.5 mm. Thereafter, the temperature was adjusted to 11 by a batch-type simultaneous biaxial stretching machine.
After stretching 3.5 × 3.5 times at 5 ° C., desolvation treatment was performed with heptane to obtain a desolvation film having a thickness of 42 μm and a porosity of 58%. The obtained film was subjected to a crosslinking treatment in a thermo-hygrostat at a temperature of 90 ° C. and a humidity of 95% for 1 hour. 110 ° C
For 0.5 hour at a thickness of 26 μm and a porosity of 4
A 3% porous membrane was obtained.

【0038】比較例1 重量平均分子量が200万の超高分子量ポリエチレン5
重量%と、メルトフローレート0.6、密度0.964
の高密度ポリエチレン10重量%、さらに溶媒である流
動パラフィン(40℃における動粘度が59mm2/sの
溶媒)85重量%からなる溶液を、スラリー状に均一混
合し、160℃の温度で二軸押出機(シリンダー径40
mm、L/D=42)を使用して溶解混練りし、二軸押
出機先端のTダイス(リップ厚5mm)で160℃でシ
ート状に成形し、水浴により急冷した。その後得られた
シート状成形物を115℃に予備加熱後、成形温度11
5℃で3分間プレスし、厚み0.5mmの圧延シートを
得た。その後、バッチ式同時二軸延伸機を用い、115
℃で縦横3.5×3.5倍に延伸後、ヘプタンにて脱溶
媒処理を行い、厚み35μm、空孔率60%の脱溶媒膜
を得た。得られた膜を恒温恒湿機中で温度90℃、湿度
95%で4時間架橋処理した。処理した膜を110℃で
0.5時間ヒートセットし、厚み26μmで空孔率42
%の多孔質膜を得た。
Comparative Example 1 Ultra-high molecular weight polyethylene 5 having a weight average molecular weight of 2,000,000
Weight%, melt flow rate 0.6, density 0.964
A solution consisting of 10% by weight of high-density polyethylene and 85% by weight of a liquid paraffin as a solvent (solvent having a kinematic viscosity of 59 mm 2 / s at 40 ° C.) is uniformly mixed in a slurry form, and biaxially heated at a temperature of 160 ° C. Extruder (cylinder diameter 40
mm, L / D = 42), melt-kneaded, formed into a sheet at 160 ° C. with a T-die (lip thickness 5 mm) at the tip of a twin-screw extruder, and quenched in a water bath. Thereafter, the obtained sheet-like molded product was preheated to 115 ° C., and then a molding temperature of 11 ° C.
Pressing was performed at 5 ° C. for 3 minutes to obtain a rolled sheet having a thickness of 0.5 mm. Then, using a batch type simultaneous biaxial stretching machine, 115
After stretching 3.5 × 3.5 times in length and width at ° C., desolvation treatment was performed with heptane to obtain a desolvation film having a thickness of 35 μm and a porosity of 60%. The obtained membrane was subjected to a crosslinking treatment in a thermo-hygrostat at a temperature of 90 ° C. and a humidity of 95% for 4 hours. The treated film was heat-set at 110 ° C. for 0.5 hour, and had a porosity of 42 μm and a thickness of 26 μm.
% Of the porous membrane was obtained.

【0039】比較例2 重量平均分子量が200万の超高分子量ポリエチレン1
0重量%と、メルトフローレート0.5、密度0.94
2のシラン架橋性ポリエチレン20重量%、さらに溶媒
である流動パラフィン(40℃における動粘度が59m
2/sの溶媒)70重量%からなる溶液を、スラリー状
に均一混合し、160℃で二軸押出機(シリンダー径4
0mm、L/D=42)を使用して溶解混練りし、二軸
押出機先端のTダイス(リップ厚5mm)を用い、16
0℃でシート状に成形し、水浴により急冷した。その後
得られたシート状成形物を115℃に予備加熱後、成形
温度115℃で3分間プレスし、厚み0.5mmの圧延
シートを得た。その後、バッチ式同時二軸延伸機にて温
度115℃で縦横3.5×3.5倍に延伸後、ヘプタン
にて脱溶媒処理を行い、厚み42μm、空孔率58%の
脱溶媒膜を得た。得られた膜を恒温恒湿機中で温度80
℃、湿度95%で1時間架橋処理した。処理した膜を1
10℃で0.5時間ヒートセットし、厚み30μmで空
孔率41%の多孔質膜を得た。
Comparative Example 2 Ultra high molecular weight polyethylene 1 having a weight average molecular weight of 2,000,000
0% by weight, melt flow rate 0.5, density 0.94
20% by weight of silane-crosslinkable polyethylene 2 and liquid paraffin as a solvent (kinematic viscosity at 40 ° C. is 59 m
A solution consisting of 70% by weight (m 2 / s solvent) was uniformly mixed in a slurry form at 160 ° C. and a twin-screw extruder (cylinder diameter 4
0 mm, L / D = 42), using a T-die (lip thickness 5 mm) at the tip of the twin-screw extruder,
It was formed into a sheet at 0 ° C. and quenched by a water bath. Thereafter, the obtained sheet-like molded product was preheated to 115 ° C. and then pressed at a molding temperature of 115 ° C. for 3 minutes to obtain a rolled sheet having a thickness of 0.5 mm. After that, the film is stretched 3.5 × 3.5 times horizontally and vertically at a temperature of 115 ° C. by a batch-type simultaneous biaxial stretching machine, and then subjected to a desolvation treatment with heptane to form a desolvation film having a thickness of 42 μm and a porosity of 58%. Obtained. The obtained film is heated at a temperature of 80 in a thermo-hygrostat.
Cross-linking treatment was carried out at 95 ° C. and a humidity of 95% for 1 hour. 1 treated membrane
Heat setting was performed at 10 ° C. for 0.5 hour to obtain a porous film having a thickness of 30 μm and a porosity of 41%.

【0040】比較例3 重量平均分子量が200万の超高分子量ポリエチレン2
重量%と、メルトフローレート0.5、密度0.942
のシラン架橋性ポリエチレン18重量%、さらに溶媒で
ある流動パラフィン(40℃における動粘度が59mm
2/sの溶媒)80重量%からなる溶液を、スラリー状に
均一混合し、160℃で二軸押出機(シリンダー径40
mm、L/D=42)を使用して溶解混練りし、二軸押
出機先端のTダイス(リップ厚5mm)を用い、160
℃でシート状に成形し、水浴により急冷した。その後得
られたシート状成形物を115℃に予備加熱後、成形温
度115℃で3分間プレスし、厚み0.5mmの圧延シ
ートを得た。その後、バッチ式同時二軸延伸機にて11
5℃で縦横3.5×3.5倍に延伸後、ヘプタンにて脱
溶媒処理を行い、厚み42μm、空孔率58%の脱溶媒
膜を得た。得られた膜を恒温恒湿機中で温度80℃、湿
度95%で4時間架橋処理した。処理した膜を110℃
で0.5時間ヒートセットし、厚み27μmで空孔率3
6%の多孔質膜を得た。
Comparative Example 3 Ultra high molecular weight polyethylene 2 having a weight average molecular weight of 2,000,000
Weight%, melt flow rate 0.5, density 0.942
18% by weight of silane-crosslinkable polyethylene, and liquid paraffin as a solvent (kinematic viscosity at 40 ° C. is 59 mm
A solution consisting of 80% by weight of a 2 / s solvent) was uniformly mixed in a slurry form at 160 ° C. and a twin screw extruder (cylinder diameter 40
mm, L / D = 42), using a T-die (lip thickness 5 mm) at the tip of the twin-screw extruder,
The mixture was formed into a sheet at ℃ and quenched by a water bath. Thereafter, the obtained sheet-like molded product was preheated to 115 ° C. and then pressed at a molding temperature of 115 ° C. for 3 minutes to obtain a rolled sheet having a thickness of 0.5 mm. Then, the batch type simultaneous biaxial stretching machine 11
After stretching 3.5 × 3.5 times at 5 ° C., desolvation treatment was performed with heptane to obtain a desolvation film having a thickness of 42 μm and a porosity of 58%. The obtained film was subjected to a crosslinking treatment at a temperature of 80 ° C. and a humidity of 95% for 4 hours in a thermo-hygrostat. 110 ° C
For 0.5 hour at a thickness of 27 μm and a porosity of 3
A 6% porous membrane was obtained.

【0041】実施例1〜3および比較例1〜3で得られ
た多孔質膜のゲル分率、耐熱温度および針貫通強度を表
1に示す。
Table 1 shows the gel fraction, heat resistance temperature and needle penetration strength of the porous membranes obtained in Examples 1 to 3 and Comparative Examples 1 to 3.

【0042】[0042]

【表1】 [Table 1]

【0043】表1の結果より、実施例1〜3で得られた
多孔質膜は、いずれも適度な空孔率を有し、そのゲル分
率が40〜70%の範囲内であり、比較例1〜3で得ら
れた多孔質膜に比べ、耐熱温度と針貫通強度のどちらも
が高いものであることがわかる。
From the results shown in Table 1, all of the porous membranes obtained in Examples 1 to 3 had an appropriate porosity, and the gel fraction was in the range of 40 to 70%. It can be seen that both the heat resistant temperature and the needle penetration strength are higher than those of the porous membranes obtained in Examples 1 to 3.

【0044】[0044]

【発明の効果】本発明の多孔質膜は、常温での針貫通強
度を損なうことなく、高い耐熱温度を有するものであ
り、電池用セパレータとして使用することにより、温度
上昇に伴うセパレータの形状維持性能を高めることが可
能になる。
The porous membrane of the present invention has a high heat-resistant temperature without impairing the needle penetration strength at room temperature, and can be used as a battery separator to maintain the shape of the separator as the temperature rises. Performance can be improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能見 俊祐 大阪府茨木市下穂積1−1−2 日東電工 株式会社内 (72)発明者 市川 智昭 大阪府茨木市下穂積1−1−2 日東電工 株式会社内 (72)発明者 江守 秀之 大阪府茨木市下穂積1−1−2 日東電工 株式会社内 Fターム(参考) 4F070 AA12 AA14 AA15 AB07 AB11 AB12 AB22 AC75 AE08 GA01 GB03 GC02 4F074 AA16 AA16H AB01 BB22 CA02 CA03 CA04 CC02Y CC06Z CC27Z CC28Z CC29Z DA04 DA22 DA49 5H021 CC00 EE04 HH01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shunsuke Nomi 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation (72) Inventor Tomoaki Ichikawa 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko (72) Inventor Hideyuki Emori 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation F-term (reference) 4F070 AA12 AA14 AA15 AB07 AB11 AB12 AB22 AC75 AE08 GA01 GB03 GC02 4F074 AA16 AA16H AB01 BB22 CA02 CA03 CA04 CC02Y CC06Z CC27Z CC28Z CC29Z DA04 DA22 DA49 5H021 CC00 EE04 HH01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超高分子量ポリオレフィン及び架橋能を
有するポリオレフィンを用いて得られる、ゲル分率が4
0〜70%であることを特徴とする多孔質膜。
1. A gel fraction obtained by using an ultrahigh molecular weight polyolefin and a crosslinkable polyolefin having a gel fraction of 4
A porous membrane, which is 0 to 70%.
【請求項2】 架橋能を有するポリオレフィンがシラン
架橋性ポリオレフィンである請求項1記載の多孔質膜。
2. The porous membrane according to claim 1, wherein the crosslinkable polyolefin is a silane crosslinkable polyolefin.
JP35586399A 1999-12-15 1999-12-15 Porous membrane Expired - Fee Related JP4583532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35586399A JP4583532B2 (en) 1999-12-15 1999-12-15 Porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35586399A JP4583532B2 (en) 1999-12-15 1999-12-15 Porous membrane

Publications (2)

Publication Number Publication Date
JP2001176484A true JP2001176484A (en) 2001-06-29
JP4583532B2 JP4583532B2 (en) 2010-11-17

Family

ID=18446119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35586399A Expired - Fee Related JP4583532B2 (en) 1999-12-15 1999-12-15 Porous membrane

Country Status (1)

Country Link
JP (1) JP4583532B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193742A (en) * 2008-02-13 2009-08-27 Nitto Denko Corp Separator for battery and electrode/separator assembly obtained therefrom
JP2009193759A (en) * 2008-02-13 2009-08-27 Nitto Denko Corp Reactive polymer supporting porous film for separator for battery and electrode/separator assembly obtained therefrom
JP2009193755A (en) * 2008-02-13 2009-08-27 Nitto Denko Corp Reactive polymer supporting porous film for separator for battery and electrode/separator assembly obtained therefrom
CN105576172A (en) * 2014-10-31 2016-05-11 Lg化学株式会社 Crosslinked polyolefin separator and method of preparing the same
KR20160146134A (en) * 2015-06-11 2016-12-21 주식회사 엘지화학 Manufacturing method of closslinked polyolefine separator and separator manufactured by the same method
WO2020040389A1 (en) * 2018-08-23 2020-02-27 더블유스코프코리아 주식회사 Separator and method for producing same
WO2020046075A1 (en) * 2018-08-31 2020-03-05 주식회사 엘지화학 Cross-linked polyolefin separator and manufacturing method therefor
WO2020075865A1 (en) 2018-10-11 2020-04-16 旭化成株式会社 Lithium ion battery separator
JP2020061312A (en) * 2018-10-11 2020-04-16 旭化成株式会社 Trace metallic bridge separator
WO2020075866A1 (en) 2018-10-11 2020-04-16 旭化成株式会社 Lithium ion battery using crosslinked separator
KR20200039060A (en) * 2018-10-04 2020-04-16 더블유스코프코리아 주식회사 A separator and a method for manufacturing the same
KR20200100538A (en) 2019-02-18 2020-08-26 아사히 가세이 가부시키가이샤 Microporous membrane for electricity storage device
KR20200121237A (en) 2019-04-15 2020-10-23 아사히 가세이 가부시키가이샤 Polyolefin laminated microporous membrane
CN112332019A (en) * 2019-07-18 2021-02-05 今创景新材料科技(上海)有限公司 Method for applying silane modified polyolefin material to polyolefin resin and method for preparing film material
KR20210024954A (en) 2019-08-26 2021-03-08 아사히 가세이 가부시키가이샤 Separator using a blend resin of silane cross linking polyolefins
KR20210024953A (en) 2019-08-26 2021-03-08 아사히 가세이 가부시키가이샤 Separator dispersed crosslinkable resin
JP2021093353A (en) * 2019-12-06 2021-06-17 ダブリュー−スコープ コリア カンパニー,リミテッド Cross-link separator and manufacturing method of the same
KR20220033494A (en) 2020-04-13 2022-03-16 아사히 가세이 가부시키가이샤 Composite single layer chemical crosslinking separator
KR20220033495A (en) 2020-04-13 2022-03-16 아사히 가세이 가부시키가이샤 Composite laminated chemical crosslinked separator
WO2022092302A1 (en) * 2020-10-30 2022-05-05 旭化成株式会社 Siloxane dispersed crosslinked separator
WO2022232329A1 (en) * 2021-04-30 2022-11-03 Celgard, Llc Membrane with reacted networks
KR20230072561A (en) * 2021-11-17 2023-05-25 더블유스코프코리아 주식회사 A method for manufacturing a separator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102181119B1 (en) 2019-04-26 2020-11-23 더블유스코프코리아 주식회사 A crosslinked polyolefin separator and a method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257415A (en) * 1985-11-30 1987-11-10 Mitsui Petrochem Ind Ltd Molded article of molecule orientated and silane crosslinked ultra-high-molecular-weight polyethylene and production thereof
JPH0221559A (en) * 1988-07-08 1990-01-24 Nitto Denko Corp Separator for battery and manufacture thereof
JPH0364334A (en) * 1989-08-03 1991-03-19 Tonen Corp Microporous polyolefin film and its preparation
WO1997044839A1 (en) * 1996-05-22 1997-11-27 Kureha Chemical Industry Co., Ltd. Porous film and separator for batteries comprising porous film
JPH1067870A (en) * 1996-08-28 1998-03-10 Asahi Chem Ind Co Ltd Microporous polyethylene film and its production
JPH1067871A (en) * 1996-08-28 1998-03-10 Asahi Chem Ind Co Ltd Production of microporous polyethylene film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257415A (en) * 1985-11-30 1987-11-10 Mitsui Petrochem Ind Ltd Molded article of molecule orientated and silane crosslinked ultra-high-molecular-weight polyethylene and production thereof
JPH0221559A (en) * 1988-07-08 1990-01-24 Nitto Denko Corp Separator for battery and manufacture thereof
JPH0364334A (en) * 1989-08-03 1991-03-19 Tonen Corp Microporous polyolefin film and its preparation
WO1997044839A1 (en) * 1996-05-22 1997-11-27 Kureha Chemical Industry Co., Ltd. Porous film and separator for batteries comprising porous film
JPH1067870A (en) * 1996-08-28 1998-03-10 Asahi Chem Ind Co Ltd Microporous polyethylene film and its production
JPH1067871A (en) * 1996-08-28 1998-03-10 Asahi Chem Ind Co Ltd Production of microporous polyethylene film

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193742A (en) * 2008-02-13 2009-08-27 Nitto Denko Corp Separator for battery and electrode/separator assembly obtained therefrom
JP2009193759A (en) * 2008-02-13 2009-08-27 Nitto Denko Corp Reactive polymer supporting porous film for separator for battery and electrode/separator assembly obtained therefrom
JP2009193755A (en) * 2008-02-13 2009-08-27 Nitto Denko Corp Reactive polymer supporting porous film for separator for battery and electrode/separator assembly obtained therefrom
CN105576172A (en) * 2014-10-31 2016-05-11 Lg化学株式会社 Crosslinked polyolefin separator and method of preparing the same
US9887405B2 (en) 2014-10-31 2018-02-06 Lg Chem, Ltd. Crosslinked polyolefin separator and method of preparing the same
CN105576172B (en) * 2014-10-31 2018-06-22 Lg化学株式会社 cross-linked polyolefin diaphragm and preparation method thereof
KR20160146134A (en) * 2015-06-11 2016-12-21 주식회사 엘지화학 Manufacturing method of closslinked polyolefine separator and separator manufactured by the same method
KR101960926B1 (en) 2015-06-11 2019-03-21 주식회사 엘지화학 Manufacturing method of closslinked polyolefine separator and separator manufactured by the same method
WO2020040389A1 (en) * 2018-08-23 2020-02-27 더블유스코프코리아 주식회사 Separator and method for producing same
CN110857362A (en) * 2018-08-23 2020-03-03 韩国沃思可福有限公司 Separator and method for producing same
CN110857362B (en) * 2018-08-23 2022-03-22 韩国沃思可福有限公司 Separator and method for producing same
WO2020046075A1 (en) * 2018-08-31 2020-03-05 주식회사 엘지화학 Cross-linked polyolefin separator and manufacturing method therefor
US11674011B2 (en) 2018-08-31 2023-06-13 Lg Chem, Ltd. Cross-linked polyolefin separator and manufacturing method thereof
CN111433264A (en) * 2018-08-31 2020-07-17 株式会社Lg化学 Crosslinked polyolefin separator and method for producing same
KR102120667B1 (en) * 2018-10-04 2020-06-10 더블유스코프코리아 주식회사 A separator and a method for manufacturing the same
KR20200039060A (en) * 2018-10-04 2020-04-16 더블유스코프코리아 주식회사 A separator and a method for manufacturing the same
JP7016977B2 (en) 2018-10-11 2022-02-07 旭化成株式会社 Lithium-ion battery with cross-linked separator
JP7112572B2 (en) 2018-10-11 2022-08-03 旭化成株式会社 Lithium-ion battery using cross-linked separator
KR20200060489A (en) 2018-10-11 2020-05-29 아사히 가세이 가부시키가이샤 Separator for lithium ion battery
EP4425682A1 (en) 2018-10-11 2024-09-04 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinked separator
CN111630687A (en) * 2018-10-11 2020-09-04 旭化成株式会社 Lithium ion battery using cross-linked separator
KR20240049846A (en) 2018-10-11 2024-04-17 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
KR102655732B1 (en) * 2018-10-11 2024-04-11 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
JP2021015799A (en) * 2018-10-11 2021-02-12 旭化成株式会社 Lithium ion battery using crosslinkable separator
JP2021015798A (en) * 2018-10-11 2021-02-12 旭化成株式会社 Lithium ion battery using crosslinkable separator
JPWO2020075865A1 (en) * 2018-10-11 2021-02-15 旭化成株式会社 Separator for lithium-ion batteries
JPWO2020075866A1 (en) * 2018-10-11 2021-02-15 旭化成株式会社 Lithium-ion battery using cross-linked separator
JP2021022570A (en) * 2018-10-11 2021-02-18 旭化成株式会社 Lithium ion battery using crosslinkable separator
US20210057701A1 (en) * 2018-10-11 2021-02-25 Asahi Kasei Kabushiki Kaisha Separator for Lithium Ion Battery
EP4350875A2 (en) 2018-10-11 2024-04-10 Asahi Kasei Kabushiki Kaisha Lithium ion battery separator
KR102632166B1 (en) * 2018-10-11 2024-02-02 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
KR102609222B1 (en) 2018-10-11 2023-12-06 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
KR102609224B1 (en) 2018-10-11 2023-12-06 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
JP2021048138A (en) * 2018-10-11 2021-03-25 旭化成株式会社 Lithium ion battery separator
US11837750B2 (en) 2018-10-11 2023-12-05 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
JP2021097052A (en) * 2018-10-11 2021-06-24 旭化成株式会社 Lithium-ion battery using cross-linked separator
JP7383672B2 (en) 2018-10-11 2023-11-20 旭化成株式会社 Lithium-ion battery using cross-linked separator
JP2021122022A (en) * 2018-10-11 2021-08-26 旭化成株式会社 Lithium ion battery separator
JP2021122024A (en) * 2018-10-11 2021-08-26 旭化成株式会社 Lithium ion battery separator
JP2021122023A (en) * 2018-10-11 2021-08-26 旭化成株式会社 Lithium ion battery separator
KR20210131466A (en) 2018-10-11 2021-11-02 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
KR20210131463A (en) 2018-10-11 2021-11-02 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
KR20210131464A (en) 2018-10-11 2021-11-02 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
KR20210131465A (en) 2018-10-11 2021-11-02 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
KR20210134062A (en) 2018-10-11 2021-11-08 아사히 가세이 가부시키가이샤 Lithium ion battery separator
JP2021177493A (en) * 2018-10-11 2021-11-11 旭化成株式会社 Lithium ion battery using crosslinkable separator
JP2021177494A (en) * 2018-10-11 2021-11-11 旭化成株式会社 Lithium ion battery using crosslinkable separator
JP2021177492A (en) * 2018-10-11 2021-11-11 旭化成株式会社 Lithium ion battery using crosslinkable separator
JP2021180182A (en) * 2018-10-11 2021-11-18 旭化成株式会社 Lithium ion battery using crosslinkable separator
JP2022002211A (en) * 2018-10-11 2022-01-06 旭化成株式会社 Lithium ion battery using crosslinkable separator
KR102601002B1 (en) * 2018-10-11 2023-11-14 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
JP7000540B2 (en) 2018-10-11 2022-02-04 旭化成株式会社 Separator for lithium-ion batteries
WO2020075866A1 (en) 2018-10-11 2020-04-16 旭化成株式会社 Lithium ion battery using crosslinked separator
JP7351875B2 (en) 2018-10-11 2023-09-27 旭化成株式会社 Lithium-ion battery using cross-linked separator
JP7350811B2 (en) 2018-10-11 2023-09-26 旭化成株式会社 Lithium-ion battery using cross-linked separator
JP2020061312A (en) * 2018-10-11 2020-04-16 旭化成株式会社 Trace metallic bridge separator
JP7045508B2 (en) 2018-10-11 2022-03-31 旭化成株式会社 Separator for lithium-ion batteries
EP4235940A2 (en) 2018-10-11 2023-08-30 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
KR20220056882A (en) 2018-10-11 2022-05-06 아사히 가세이 가부시키가이샤 Lithium ion battery separator
KR20220066414A (en) 2018-10-11 2022-05-24 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
JP7112568B2 (en) 2018-10-11 2022-08-03 旭化成株式会社 Lithium-ion battery separator
KR20200062292A (en) 2018-10-11 2020-06-03 아사히 가세이 가부시키가이샤 Lithium ion battery using a crosslinked separator
JP7112571B2 (en) 2018-10-11 2022-08-03 旭化成株式会社 Lithium-ion battery using cross-linked separator
KR20220119165A (en) 2018-10-11 2022-08-26 아사히 가세이 가부시키가이샤 Lithium ion battery separator
EP4053986A2 (en) 2018-10-11 2022-09-07 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
EP4053987A2 (en) 2018-10-11 2022-09-07 Asahi Kasei Kabushiki Kaisha Lithium ion battery separator
EP4064443A2 (en) 2018-10-11 2022-09-28 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
EP4068488A1 (en) 2018-10-11 2022-10-05 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
JP7160621B2 (en) 2018-10-11 2022-10-25 旭化成株式会社 Trace metal cross-linked separator
EP4235934A2 (en) 2018-10-11 2023-08-30 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
JP7167245B2 (en) 2018-10-11 2022-11-08 旭化成株式会社 Lithium-ion battery separator
KR20220156668A (en) 2018-10-11 2022-11-25 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
US20230006305A1 (en) * 2018-10-11 2023-01-05 Asahi Kasei Kabushiki Kaisha Separator for Lithium Ion Battery
US20230006306A1 (en) * 2018-10-11 2023-01-05 Asahi Kasei Kabushiki Kaisha Separator for Lithium Ion Battery
JP2023011734A (en) * 2018-10-11 2023-01-24 旭化成株式会社 Lithium ion battery separator
KR20230023830A (en) 2018-10-11 2023-02-17 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
KR20230023829A (en) 2018-10-11 2023-02-17 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
US11588208B2 (en) 2018-10-11 2023-02-21 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
EP4235933A2 (en) 2018-10-11 2023-08-30 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
US11670822B2 (en) 2018-10-11 2023-06-06 Asahi Kasei Kabushiki Kaisha Separator having silane-modified polyolefin and polyethylene, and method for producing the same
WO2020075865A1 (en) 2018-10-11 2020-04-16 旭化成株式会社 Lithium ion battery separator
KR20230097225A (en) 2018-10-11 2023-06-30 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
KR20230098365A (en) 2018-10-11 2023-07-03 아사히 가세이 가부시키가이샤 Lithium ion battery using crosslinked separator
EP4220844A2 (en) 2018-10-11 2023-08-02 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinked separator
EP4220845A2 (en) 2018-10-11 2023-08-02 Asahi Kasei Kabushiki Kaisha Separator for lithium ion battery
EP4224613A2 (en) 2018-10-11 2023-08-09 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinked separator
EP4235939A2 (en) 2018-10-11 2023-08-30 Asahi Kasei Kabushiki Kaisha Lithium ion battery using crosslinkable separator
KR20200100538A (en) 2019-02-18 2020-08-26 아사히 가세이 가부시키가이샤 Microporous membrane for electricity storage device
KR102227096B1 (en) 2019-02-18 2021-03-12 아사히 가세이 가부시키가이샤 Microporous membrane for electricity storage device
KR102280521B1 (en) 2019-04-15 2021-07-26 아사히 가세이 가부시키가이샤 Polyolefin laminated microporous membrane
KR20200121237A (en) 2019-04-15 2020-10-23 아사히 가세이 가부시키가이샤 Polyolefin laminated microporous membrane
CN112332019A (en) * 2019-07-18 2021-02-05 今创景新材料科技(上海)有限公司 Method for applying silane modified polyolefin material to polyolefin resin and method for preparing film material
CN112510318B (en) * 2019-08-26 2023-12-08 旭化成株式会社 Crosslinked resin dispersion separator
CN112510318A (en) * 2019-08-26 2021-03-16 旭化成株式会社 Cross-linked resin dispersion separator
KR20210024954A (en) 2019-08-26 2021-03-08 아사히 가세이 가부시키가이샤 Separator using a blend resin of silane cross linking polyolefins
KR20210024953A (en) 2019-08-26 2021-03-08 아사히 가세이 가부시키가이샤 Separator dispersed crosslinkable resin
JP2021093353A (en) * 2019-12-06 2021-06-17 ダブリュー−スコープ コリア カンパニー,リミテッド Cross-link separator and manufacturing method of the same
JP7002779B2 (en) 2019-12-06 2022-01-20 ダブリュー-スコープ コリア カンパニー,リミテッド Cross-linked separator and its manufacturing method
KR20220033494A (en) 2020-04-13 2022-03-16 아사히 가세이 가부시키가이샤 Composite single layer chemical crosslinking separator
KR20220033495A (en) 2020-04-13 2022-03-16 아사히 가세이 가부시키가이샤 Composite laminated chemical crosslinked separator
WO2022092302A1 (en) * 2020-10-30 2022-05-05 旭化成株式会社 Siloxane dispersed crosslinked separator
WO2022232329A1 (en) * 2021-04-30 2022-11-03 Celgard, Llc Membrane with reacted networks
KR20230134108A (en) * 2021-11-17 2023-09-20 더블유스코프코리아 주식회사 A method for manufacturing a separator
KR20230072561A (en) * 2021-11-17 2023-05-25 더블유스코프코리아 주식회사 A method for manufacturing a separator
KR102654251B1 (en) 2021-11-17 2024-04-05 더블유스코프코리아 주식회사 A method for manufacturing a separator
KR102577609B1 (en) * 2021-11-17 2023-09-13 더블유스코프코리아 주식회사 A method for manufacturing a separator

Also Published As

Publication number Publication date
JP4583532B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP2001176484A (en) Porous film
JP5630827B2 (en) POLYOLEFIN POROUS MEMBRANE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE
JP4195810B2 (en) Polyolefin microporous membrane and production method and use thereof
JP3917721B2 (en) Method for producing microporous membrane
JP4177929B2 (en) Porous film and method for producing the same
JP2002128943A (en) Polyolefin microporous film and its manufacturing method
JP3113287B2 (en) Polyethylene microporous membrane with low fuse temperature
JP4606532B2 (en) Polyolefin microporous membrane
JP6548430B2 (en) METHOD FOR PRODUCING POLYOLEFIN MICROPOROUS FILM, SEPARATOR FOR BATTERY, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP5171012B2 (en) Method for producing polyolefin microporous membrane
JP4641623B2 (en) Porous film and method for producing the same
JP3983660B2 (en) Battery separator
JP3747963B2 (en) High heat-resistant polyethylene microporous membrane
JPH1160790A (en) Polyethylene microporous film and its production
JP2002047372A (en) Porous film and method of preparing the same and battery using the same
JP4713441B2 (en) Method for producing polyolefin microporous membrane
JP2003119313A (en) Method for producing porous film
JP2000072908A (en) Porous film and its production and use
JP2003119306A (en) Low-shrinkable fine porous film and method for producing the same
JP5411550B2 (en) Polyolefin microporous membrane
JP4507334B2 (en) Polymer blend microporous membrane
JP2001059036A (en) Porous film
JP4248071B2 (en) Porous film and method for producing the same
JP2001002812A (en) Preparation of porous film
JP4600970B2 (en) Method for producing polyolefin microporous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Ref document number: 4583532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160910

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees