[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001174098A - Waste heat absorption refrigerating machine - Google Patents

Waste heat absorption refrigerating machine

Info

Publication number
JP2001174098A
JP2001174098A JP35280399A JP35280399A JP2001174098A JP 2001174098 A JP2001174098 A JP 2001174098A JP 35280399 A JP35280399 A JP 35280399A JP 35280399 A JP35280399 A JP 35280399A JP 2001174098 A JP2001174098 A JP 2001174098A
Authority
JP
Japan
Prior art keywords
temperature
heat source
pipe
absorber
exhaust heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35280399A
Other languages
Japanese (ja)
Other versions
JP4301666B2 (en
Inventor
Hiroshi Fujimoto
洋 藤本
Yasuki Aida
泰規 合田
Keiichi Tanaka
啓一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP35280399A priority Critical patent/JP4301666B2/en
Publication of JP2001174098A publication Critical patent/JP2001174098A/en
Application granted granted Critical
Publication of JP4301666B2 publication Critical patent/JP4301666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a low temperature refrigeration medium at low running cost and initial cost. SOLUTION: A single effect absorption refrigerating machine is operated using waste heat from the low temperature waste heat source of a gas engine 1 as a heat source. On the other hand, a part of ammonia-aqueous solution fed from a regenerator 8 to an absorber 12 is taken out and steam is generated by waste gas from a high temperature waste heat source. A steam turbine 21 is driven with that steam and a compressor 27 interlocked with the steam turbine 21 is driven. The compressor 27 sucks steam in an evaporator 14 to lower the pressure in the evaporator 14 below the pressure in the absorber 12. As evaporation progresses in the evaporator 14, a low temperature refrigeration medium is taken out through a pipe 34 for taking out refrigeration medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディーゼルエンジ
ン、スターリングエンジン、ミラーサイクルガスエンジ
ンといった原動機などから発生する排熱を回収して冷凍
用媒体を取り出すように構成した排熱吸収冷凍機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste heat absorption refrigerator configured to recover waste heat generated from a prime mover such as a diesel engine, a Stirling engine, or a Miller cycle gas engine to take out a refrigeration medium.

【0002】[0002]

【従来の技術】従来の排熱吸収冷凍機としては、図5の
従来例の概略構成図に示すようなアンモニア吸収冷凍機
があった。この従来例によれば、ガスエンジン01に、
カップリング02を介して発電機03が連動連結されて
いる。
2. Description of the Related Art As a conventional exhaust heat absorption refrigerator, there has been an ammonia absorption refrigerator as shown in a schematic configuration diagram of a conventional example in FIG. According to this conventional example, the gas engine 01
The generator 03 is interlocked via a coupling 02.

【0003】ガスエンジン01の低温排熱源としてのエ
ンジン冷却部の出口と入口とにわたって、ジャケット冷
却水を循環する第1のポンプ04を介装した循環配管0
5が接続され、この循環配管05に、単効用吸収冷凍機
を構成する再生器06が設けられている。再生器06に
は、ガスエンジン01からのジャケット冷却水(温度85
〜95℃)によって蒸発可能なアンモニアを冷媒とし、か
つ、水を吸収剤とした非共沸混合媒体としてアンモニア
−水系溶液が収容されている。このジャケット冷却水
は、通常ガスエンジン01の排気ガスの排熱も排気ガス
熱交換器を介して回収している。
[0003] A circulation pipe 0 having a first pump 04 for circulating jacket cooling water interposed between an outlet and an inlet of an engine cooling unit as a low-temperature exhaust heat source of the gas engine 01.
5 is connected to the circulation pipe 05, and a regenerator 06 constituting a single-effect absorption refrigerator is provided. The regenerator 06 has jacket cooling water (temperature 85) from the gas engine 01.
(−95 ° C.) as a non-azeotropic mixed medium containing ammonia evaporable as a refrigerant and water as an absorbent. This jacket cooling water also collects the exhaust heat of the exhaust gas of the gas engine 01 via the exhaust gas heat exchanger.

【0004】再生器06には、精溜器07を介して水を
分離したアンモニア蒸気を供給するように凝縮器08が
連通接続され、かつ、再生器06に第1の配管09を介
して吸収器010が接続されるとともに、凝縮器08に
第2の配管011を介して蒸発器012が接続され、更
に、吸収器010と蒸発器012とが連通接続され、単
効用吸収冷凍機が構成されている。
[0004] A condenser 08 is connected to the regenerator 06 via a rectifier 07 so as to supply ammonia vapor from which water has been separated, and is absorbed by the regenerator 06 via a first pipe 09. The evaporator 012 is connected to the condenser 08 via the second pipe 011, and the absorber 010 and the evaporator 012 are connected to each other to form a single-effect absorption refrigerator. ing.

【0005】凝縮器08では、再生器06で蒸発したア
ンモニアを凝縮液化し、その液化したアンモニアを蒸発
器012に噴霧供給により戻すようになっている。ま
た、蒸発器012では、吸収器010における水による
アンモニアの吸収に伴い、アンモニアが蒸発するように
なっている。
[0005] In the condenser 08, the ammonia evaporated in the regenerator 06 is condensed and liquefied, and the liquefied ammonia is returned to the evaporator 012 by spray supply. In the evaporator 012, the ammonia evaporates with the absorption of the ammonia by the water in the absorber 010.

【0006】再生器06と吸収器010とにわたって、
溶液ポンプ013を介装した第3の配管014が接続さ
れ、この第3の配管014と第1の配管09との間に熱
交換器015が設けられ、再生器06に戻す液化したア
ンモニア−水系溶液を、再生器06から吸収器010に
流すアンモニア−水系溶液によって加熱するようになっ
ている。
[0006] In the regenerator 06 and the absorber 010,
A third pipe 014 having a solution pump 013 interposed therebetween is connected, a heat exchanger 015 is provided between the third pipe 014 and the first pipe 09, and a liquefied ammonia-water system returned to the regenerator 06 is provided. The solution is heated by an ammonia-water solution flowing from the regenerator 06 to the absorber 010.

【0007】上記構成により、ガスエンジン01からの
低温排熱であるジャケット冷却水を利用して、蒸発器0
12でのアンモニアの蒸発に伴い、冷水を得るようにな
っている。
With the above configuration, the evaporator 0 is cooled by utilizing the jacket cooling water, which is low-temperature exhaust heat from the gas engine 01.
With the evaporation of ammonia at 12, cold water is obtained.

【0008】ところが、アンモニアや、LiBr(リチ
ウムブロマイド)などの吸収式冷凍機では、吸収プロセ
スや蒸発プロセスにたよっているために、電動型圧縮機
によって冷媒を強制的に圧縮・膨張する冷媒回路を備え
た冷凍機に比べ、成績係数が低くなる傾向にある。
[0008] However, in an absorption refrigerator such as ammonia or LiBr (lithium bromide), the refrigerant circuit forcibly compresses and expands the refrigerant by an electric compressor, because it depends on an absorption process or an evaporation process. The coefficient of performance tends to be lower than that of a refrigerator provided.

【0009】そのため、従来より、吸収式冷凍機の成績
係数を高くする方法が種々検討され、その一つとして、
蒸発器012と吸収器010との間に電動型圧縮機を設
け、蒸発器012内の蒸気を吸引し、その吸引した蒸気
を吸収器010に加圧供給するようなプロセスが提案さ
れている。
For this reason, various methods for increasing the coefficient of performance of an absorption refrigerator have been conventionally studied.
A process has been proposed in which an electric compressor is provided between the evaporator 012 and the absorber 010, the steam in the evaporator 012 is sucked, and the sucked steam is pressurized and supplied to the absorber 010.

【0010】この構成によれば、吸収器010内での圧
力は低下しないため、前述のような電動型圧縮機によっ
て冷媒を強制的に圧縮・膨張する冷媒回路を備えた冷凍
機の場合と同様に低温の温度を取り出すことができる。
また、性能面においても、電動型圧縮機に使用する電力
を除いた場合の成績係数を 1.2倍以上に高めることがで
きる。また、従来の方法では、デューリング線図上、ジ
ャケット冷却水レベルの温度を加熱源として、−10℃以
下の冷熱を取り出すことができないが、この構成によれ
ば取り出すことができるようになる。
According to this configuration, since the pressure in the absorber 010 does not decrease, it is the same as that of the refrigerator having the refrigerant circuit for forcibly compressing and expanding the refrigerant by the electric compressor as described above. Low temperature can be taken out.
In terms of performance, it is possible to increase the coefficient of performance to 1.2 times or more when the electric power used for the electric compressor is excluded. Further, in the conventional method, it is impossible to extract cold heat of −10 ° C. or less by using the temperature of the jacket cooling water level as a heating source on the During diagram, but according to this configuration, it is possible to extract cold heat.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、電動型
圧縮機の場合、電動モータと圧縮機とを連動連結し、伝
動軸の軸受部に対して潤滑と漏洩に対するシールをしな
ければならず、例えば、アンモニア吸収冷凍機に適用し
た場合、潤滑油が系内に混入するとアンモニアの蒸発が
阻害されるなど、冷媒への伝熱に弊害を及ぼすなど、潤
滑油と漏洩の問題が、開発を阻害する大きな要因になっ
ていた。
However, in the case of an electric compressor, the electric motor and the compressor must be connected to each other, and the bearing of the transmission shaft must be lubricated and sealed against leakage. When applied to an ammonia absorption refrigerator, problems with lubricating oil and leakage, such as adverse effects on heat transfer to the refrigerant, such as evaporation of ammonia when lubricating oil is mixed into the system, hinder development. It was a big factor.

【0012】また、同時に、電動型圧縮機の駆動に必要
な電力が大きくてランニングコストが増大する問題があ
った。もちろん、潤滑油や漏洩の問題だけであれば、密
閉式のキャンドモータを用いることも可能であるが、ラ
ンニングコストやイニシャルコストが増大する欠点があ
った。
At the same time, there is a problem that the electric power required for driving the electric compressor is large and the running cost is increased. Of course, if only the problem of lubricating oil or leakage is encountered, it is possible to use a sealed canned motor, but there is a drawback that running costs and initial costs increase.

【0013】本発明は、このような事情に鑑みてなされ
たものであって、請求項1に係る発明は、ランニングコ
ストおよびイニシャルコストのいずれも安価にして冷凍
用媒体を得られるようにすることを目的とし、請求項2
に係る発明は、軸受部に対する潤滑と漏洩に対するシー
ルを安価にして良好に行えるようにすることを目的と
し、請求項3および請求項4に係る発明は、常温から低
温まで冷却するような場合に、成績係数を高くできるよ
うにすることを目的する。そして、請求項5に係る発明
は、熱回収をより良好に行えるようにすることを目的と
し、請求項6に係る発明は、高温排熱源からの排熱回収
効率を向上できるようにすることを目的する。
The present invention has been made in view of such circumstances, and an invention according to claim 1 is to provide a medium for refrigeration by lowering both running costs and initial costs. Claim 2
An object of the present invention is to provide an inexpensive and good seal for lubrication and leakage of a bearing portion. The invention according to claims 3 and 4 is intended for cooling from room temperature to a low temperature. The goal is to be able to increase the coefficient of performance. The invention according to claim 5 aims to improve the heat recovery, and the invention according to claim 6 aims to improve the efficiency of exhaust heat recovery from a high-temperature exhaust heat source. Aim.

【0014】[0014]

【課題を解決するための手段】請求項1に係る発明の排
熱吸収冷凍機は、上述のような目的を達成するために13
0℃よりも低い温度の排熱を発生する低温排熱源と、130
℃よりも高い温度の排熱を発生する高温排熱源と、再生
器(8) と吸収器(12)と凝縮器(10)と蒸発器(14)とから成
る単効用吸収冷凍機と、前記低温排熱源からの排熱を熱
源とするように前記低温排熱源と前記再生器(8) とにわ
たって接続される循環配管(7) と、前記低温排熱源から
の排熱によって蒸発可能な冷媒を含む非共沸混合媒体を
前記吸収器(12)から前記再生器(8) に供給する配管(16)
と、前記再生器(8) から前記吸収器(12)に非共沸混合媒
体を供給する配管(11)と、前記配管(11)の途中に接続さ
れて再生器(8) から前記吸収器(12)に供給する非共沸混
合媒体の一部を取り出す分岐配管(19)と、前記高温排熱
源に接続されて前記高温排熱源からの排気ガスを取り出
すガス配管(4) と、前記ガス配管(4) と前記分岐配管(1
9)との間に設けられて、前記高温排熱源からの排気ガス
により非共沸混合媒体を加熱して蒸発させる熱交換器(2
0)と、前記分岐配管(19)に設けられて、前記熱交換器(2
0)で蒸発した非共沸混合媒体の蒸気によって駆動する蒸
気タービン(21)と、前記蒸発器(14)と前記吸収器(12)と
を連通接続する蒸気路と、前記蒸気路に設けられるとと
もに前記蒸気タービン(21)に一体的に連動連結されて前
記蒸発器(14)内の蒸気を吸引して前記吸収器(12)との間
に圧力差を発生させる圧縮機(27)と、前記蒸発器(14)に
付設されて冷凍用媒体を取り出す冷凍用媒体取り出し管
(34)と、を備えて構成する。
According to the first aspect of the present invention, there is provided an exhaust heat absorption refrigerator for achieving the above object.
A low-temperature heat source that generates heat at a temperature lower than 0 ° C .;
A high-temperature exhaust heat source that generates exhaust heat at a temperature higher than ℃, a single-effect absorption refrigerator including a regenerator (8), an absorber (12), a condenser (10), and an evaporator (14); A circulation pipe (7) connected between the low-temperature exhaust heat source and the regenerator (8) so that the exhaust heat from the low-temperature exhaust heat source is used as a heat source, and a refrigerant evaporable by the exhaust heat from the low-temperature exhaust heat source. A pipe (16) for supplying a non-azeotropic mixed medium containing the mixture from the absorber (12) to the regenerator (8)
A pipe (11) for supplying a non-azeotropic mixed medium from the regenerator (8) to the absorber (12); and a regenerator (8) connected in the middle of the pipe (11) from the absorber. A branch pipe (19) for extracting a part of the non-azeotropic mixed medium supplied to (12), a gas pipe (4) connected to the high-temperature exhaust heat source and for extracting exhaust gas from the high-temperature exhaust heat source, Pipe (4) and the branch pipe (1
9), and a heat exchanger (2) for heating and evaporating the non-azeotropic mixed medium by the exhaust gas from the high-temperature exhaust heat source.
0) and the heat exchanger (2) provided in the branch pipe (19).
The steam turbine (21) driven by the non-azeotropic mixed medium vaporized in (0), a steam path communicating and connecting the evaporator (14) and the absorber (12), and the steam path is provided in the steam path. A compressor (27) integrally and operatively connected to the steam turbine (21) to generate a pressure difference between the evaporator (14) and the absorber (12) by sucking steam in the evaporator (14); Refrigeration medium take-out tube attached to the evaporator (14) to take out refrigeration medium
(34).

【0015】なお、例えば、排気ガスの熱を高温部と低
温部の複数の熱交換器を用いて、 130℃よりも高い温度
の排熱と 130℃よりも低い温度の排熱とを取り出して使
用する場合も、それぞれ高温排熱源および低温排熱源と
みなす。
[0015] For example, the heat of the exhaust gas is extracted by using a plurality of heat exchangers in a high-temperature section and a low-temperature section to extract exhaust heat at a temperature higher than 130 ° C and exhaust heat at a temperature lower than 130 ° C. When used, they are regarded as a high-temperature exhaust heat source and a low-temperature exhaust heat source, respectively.

【0016】また、請求項2に係る発明の排熱吸収冷凍
機は、前述のような目的を達成するために、請求項1に
係る発明の排熱吸収冷凍機における圧縮機(27)と蒸気タ
ービン(21)とを連動連結する伝動軸(26)を気体軸受(30)
によって支持するとともに、前記気体軸受(30)と分岐配
管(19)とを接続し、熱交換器(20)で蒸発した非共沸混合
媒体の蒸気を前記気体軸受(30)に供給して潤滑するよう
に構成する。
Further, in order to achieve the above object, the exhaust heat absorption refrigerator according to the second aspect of the present invention is provided with the compressor (27) and the steam in the exhaust heat absorption refrigerator according to the first aspect of the invention. A transmission shaft (26) that links the turbine (21) and the gas turbine (30)
The gas bearing (30) is connected to a branch pipe (19), and the vapor of the non-azeotropic mixed medium evaporated in the heat exchanger (20) is supplied to the gas bearing (30) for lubrication. It is constituted so that.

【0017】また、請求項3に係る発明の排熱吸収冷凍
機は、前述のような目的を達成するために、請求項1ま
たは請求項2に係る発明の排熱吸収冷凍機における低温
排熱源と高温排熱源とを有する原動機(41)を設け、前記
原動機(41)にターボ冷凍機(42)を連動連結し、前記ター
ボ冷凍機(42)で冷却した後の被冷却物を冷凍用媒体取り
出し管(44)から取り出される冷凍用媒体と熱交換させて
冷却するように構成する。
In order to achieve the above object, a low-temperature exhaust heat source in the exhaust heat absorption refrigerator according to the first or second aspect of the present invention is provided. And a motor (41) having a high-temperature exhaust heat source, a turbo refrigerator (42) is interlockedly connected to the motor (41), and the object to be cooled after being cooled by the turbo refrigerator (42) is cooled. The cooling medium is cooled by exchanging heat with the freezing medium taken out from the take-out pipe (44).

【0018】また、請求項4に係る発明の排熱吸収冷凍
機は、前述のような目的を達成するために、請求項1ま
たは請求項2に係る発明の排熱吸収冷凍機における低温
排熱源と高温排熱源とを有する原動機を設け、前記原動
機に発電機を連動連結し、前記発電機の発電電力線に電
動ターボ冷凍機を接続し、前記電動ターボ冷凍機で冷却
した後の被冷却物を冷凍用媒体取り出し管から取り出さ
れる冷凍用媒体と熱交換させて冷却するように構成す
る。
In order to achieve the above object, a low-temperature exhaust heat source in the exhaust heat absorption refrigerator according to the first or second aspect of the present invention is provided. And a prime mover having a high-temperature exhaust heat source, a generator is interlocked to the prime mover, an electric turbo chiller is connected to a power generation line of the generator, and the object to be cooled after being cooled by the electric turbo chiller is cooled. The cooling medium is cooled by exchanging heat with the freezing medium taken out of the freezing medium take-out tube.

【0019】また、請求項5に係る発明の排熱吸収冷凍
機は、前述のような目的を達成するために、請求項1、
請求項2、請求項3、請求項4のいずれかに係る発明の
排熱吸収冷凍機における蒸気路の圧縮機(27)と吸収器(1
2)との間に、前記圧縮機(27)からの吐出ガスによって、
吸収器(12)から再生器(8) に供給される非共沸混合媒体
を加熱する熱交換器(25)を設けて構成する。
Further, the exhaust heat absorption refrigerator of the invention according to claim 5 has the following features.
The steam path compressor (27) and the absorber (1) in the exhaust heat absorption refrigerator according to any one of claims 2, 3, and 4.
Between 2), by the discharge gas from the compressor (27),
The heat exchanger (25) for heating the non-azeotropic mixed medium supplied from the absorber (12) to the regenerator (8) is provided.

【0020】また、請求項6に係る発明の排熱吸収冷凍
機は、前述のような目的を達成するために、請求項1、
請求項2、請求項3、請求項4、請求項5のいずれかに
係る発明の排熱吸収冷凍機における高温排熱源から熱交
換器(20)を経た排ガス配管に、給湯用温水取り出し用の
熱交換器(33)を設けて構成する。
In order to achieve the above object, the exhaust heat absorption refrigerator of the invention according to claim 6 has the following features.
In the exhaust heat absorption refrigerator of the invention according to any one of claims 2, 3, 4, and 5, the exhaust heat pipe from the high temperature exhaust heat source to the exhaust gas pipe passing through the heat exchanger (20) is provided for taking out hot water for hot water supply. The heat exchanger (33) is provided.

【0021】低温排熱源からの排熱によって蒸発可能な
冷媒を含む非共沸混合媒体としては、アンモニア−水系
の混合溶液、メタノール−水系の混合溶液等が使用でき
る。この非共沸混合媒体は、冷媒と吸収剤以外に、腐食
防止などのために若干の第三成分を含んでいてもよい。
As a non-azeotropic mixed medium containing a refrigerant evaporable by the exhaust heat from the low-temperature exhaust heat source, an ammonia-water mixed solution, a methanol-water mixed solution, or the like can be used. The non-azeotropic mixture medium may contain some third components for preventing corrosion, in addition to the refrigerant and the absorbent.

【0022】[0022]

【作用】請求項1に係る発明の排熱吸収冷凍機の構成に
よれば、低温排熱源からの排熱を熱源として単効用吸収
冷凍機を作動する。一方、高温排熱源からの排気ガスに
より、再生器(8) から吸収器(12)に供給される、約85℃
などと比較的高温の非共沸混合媒体を熱交換器(20)を介
して加熱して非共沸混合媒体の蒸気を発生させ、その蒸
気によって蒸気タービン(21)を駆動し、蒸気タービン(2
1)に一体的に連動連結した圧縮機(27)を駆動する。この
圧縮機(27)により、蒸発器(14)内の蒸気を吸引して蒸発
器(14)内の圧力を吸収器(12)内の圧力よりも低下させ、
蒸発器(14)での蒸発に伴い、冷凍用媒体取り出し管(34)
を通じて低温の冷凍用媒体を取り出すことができる。
According to the configuration of the exhaust heat absorption refrigerator of the first aspect of the present invention, the single-effect absorption refrigerator is operated using the exhaust heat from the low-temperature exhaust heat source as a heat source. On the other hand, the exhaust gas from the high-temperature exhaust heat source is supplied from the regenerator (8) to the absorber (12) at approximately 85 ° C.
A non-azeotropic mixed medium having a relatively high temperature is heated through a heat exchanger (20) to generate steam of the non-azeotropic mixed medium, and the steam drives a steam turbine (21) to produce a steam turbine ( Two
The compressor (27), which is integrally linked to (1), is driven. By this compressor (27), the vapor in the evaporator (14) is sucked to lower the pressure in the evaporator (14) below the pressure in the absorber (12),
Along with the evaporation in the evaporator (14), the medium extraction pipe for freezing (34)
, A low-temperature freezing medium can be taken out.

【0023】また、請求項2に係る発明の排熱吸収冷凍
機の構成によれば、蒸気タービン(21)を作動するため
の、熱交換器(20)で蒸発した非共沸混合媒体の蒸気自体
を潤滑剤として気体軸受(30)に供給し、その気体軸受(3
0)によって、圧縮機(27)と蒸気タービン(21)とを連動連
結する伝動軸(26)を支持する。
According to the configuration of the exhaust heat absorption refrigerator of the second aspect of the present invention, the steam of the non-azeotropic mixed medium evaporated in the heat exchanger (20) for operating the steam turbine (21). It supplies itself to the gas bearing (30) as a lubricant, and the gas bearing (3
0) supports a transmission shaft (26) that interlocks the compressor (27) and the steam turbine (21).

【0024】また、請求項3に係る発明の排熱吸収冷凍
機の構成によれば、原動機(41)に連動連結したターボ冷
凍機(42)によって被冷却物を冷却し、その被冷却物を、
原動機(41)からの排熱によって得られる冷凍用媒体と熱
交換させて冷却する。
According to the third aspect of the present invention, the object to be cooled is cooled by the turbo refrigerator (42) interlocked with the prime mover (41), and the object to be cooled is cooled. ,
Cooling is performed by exchanging heat with a freezing medium obtained by exhaust heat from the prime mover (41).

【0025】また、請求項4に係る発明の排熱吸収冷凍
機の構成によれば、原動機に発電機を連動連結して発電
し、その発電機の電力で駆動される電動ターボ冷凍機に
よって被冷却物を冷却し、その被冷却物を、原動機から
の排熱によって得られる冷凍用媒体と熱交換させて冷却
する。
Further, according to the structure of the exhaust heat absorption refrigerator of the fourth aspect of the present invention, the generator is connected to the prime mover to generate electric power, and the electric motor is cooled by the electric turbo refrigerator driven by the electric power of the generator. The cooled object is cooled, and the object to be cooled is cooled by exchanging heat with a freezing medium obtained by exhaust heat from the prime mover.

【0026】また、請求項5に係る発明の排熱吸収冷凍
機の構成によれば、圧縮機(27)からの吐出ガスの排熱に
よって、吸収器(12)から再生器(8) に供給される非共沸
混合媒体を加熱する。
According to the structure of the exhaust heat absorption refrigerator of the fifth aspect of the present invention, the exhaust gas discharged from the compressor (27) is supplied from the absorber (12) to the regenerator (8). The non-azeotropic mixture medium is heated.

【0027】また、請求項6に係る発明の排熱吸収冷凍
機の構成によれば、蒸気タービン(21)駆動用蒸気の発生
のために熱回収された排気ガスを熱交換器(33)に供給
し、その排気ガスの顕熱および潜熱を、給湯用温水の取
り出しのために回収する。
Further, according to the configuration of the exhaust heat absorption refrigerator of the invention according to claim 6, the exhaust gas heat recovered for generating steam for driving the steam turbine (21) is transferred to the heat exchanger (33). The exhaust gas is supplied, and the sensible heat and latent heat of the exhaust gas are collected for taking out hot water for hot water supply.

【0028】[0028]

【発明の実施の形態】次に、本発明の実施例を図面に基
づいて詳細に説明する。図1は、本発明に係る排熱吸収
冷凍機の第1実施例を示す概略構成図であり、原動機と
してのガスエンジン1に、カップリング2を介して発電
機3が連動連結されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a first embodiment of a waste heat absorption refrigerator according to the present invention. A generator 3 is interlocked to a gas engine 1 as a prime mover via a coupling 2.

【0029】高温排熱源としてのガスエンジン1の排気
管にガス配管4が接続され、そのガス配管4に、NOx
成分を除去する脱硝装置5が付設されている。
A gas pipe 4 is connected to an exhaust pipe of the gas engine 1 as a high-temperature exhaust heat source.
A denitration device 5 for removing components is provided.

【0030】ガスエンジン1の低温排熱源としてのエン
ジン冷却部の出口と入口とにわたって、ジャケット冷却
水を循環する第1のポンプ6を介装した循環配管7が接
続され、この循環配管7に、単効用吸収冷凍機を構成す
る再生器8が設けられている。再生器8には、ガスエン
ジン1からのジャケット冷却水(温度85〜95℃)によっ
て蒸発可能なアンモニアを冷媒とし、かつ、水を吸収剤
とした非共沸混合媒体としてのアンモニア−水系溶液が
収容されている。
A circulation pipe 7 having a first pump 6 for circulating jacket cooling water is connected between an outlet and an inlet of an engine cooling unit as a low-temperature exhaust heat source of the gas engine 1. A regenerator 8 constituting a single-effect absorption refrigerator is provided. The regenerator 8 contains an ammonia-water-based solution as a non-azeotropic mixed medium using ammonia evaporable by jacket cooling water (temperature 85 to 95 ° C.) from the gas engine 1 as a refrigerant and water as an absorbent. Is housed.

【0031】再生器8には、精溜器9を介して水を分離
したアンモニア蒸気を供給するように凝縮器10が連通
接続され、再生器8に第1の配管11を介して吸収器1
2が接続されるとともに、凝縮器10に第2の配管13
を介して蒸発器14が接続され、更に、吸収器12と蒸
発器14とが蒸気路を介して連通接続され、単効用吸収
冷凍機が構成されている。
A condenser 10 is connected to the regenerator 8 via an rectifier 9 so as to supply ammonia vapor from which water has been separated, and the regenerator 8 is connected to the absorber 1 via a first pipe 11.
2 is connected, and the second pipe 13 is connected to the condenser 10.
The evaporator 14 is connected to the evaporator 14, and the absorber 12 and the evaporator 14 are connected to each other via a steam path, thereby forming a single-effect absorption refrigerator.

【0032】凝縮器10では、再生器8で蒸発した冷媒
を凝縮液化し、その液化した冷媒を蒸発器14に噴霧供
給により戻すようになっている。蒸発器14では、吸収
器12における吸収剤による冷媒の吸収に伴い、冷媒が
蒸発するようになっている。
In the condenser 10, the refrigerant evaporated in the regenerator 8 is condensed and liquefied, and the liquefied refrigerant is returned to the evaporator 14 by spray supply. In the evaporator 14, the refrigerant evaporates with the absorption of the refrigerant by the absorbent in the absorber 12.

【0033】再生器8と吸収器12とにわたって、第1
の溶液ポンプ15を介装した第3の配管16が接続さ
れ、この第3の配管16と第1の配管11との間に第1
の熱交換器17が設けられ、再生器8に戻す液化したア
ンモニア−水系溶液を、再生器8から吸収器12に流す
アンモニア−水系溶液によって加熱するようになってい
る。
The first regenerator 8 and the absorber 12
A third pipe 16 having a solution pump 15 interposed therebetween is connected, and a first pipe 11 is provided between the third pipe 16 and the first pipe 11.
Is provided so that the liquefied ammonia-water solution returned to the regenerator 8 is heated by the ammonia-water solution flowing from the regenerator 8 to the absorber 12.

【0034】第1の配管11の再生器8と第1の熱交換
器17との間に、第2の溶液ポンプ18を介装した分岐
配管19が接続され、この分岐配管19とガス配管4と
にわたって第2の熱交換器20が設けられ、液化したア
ンモニア−水系溶液をガスエンジン1からの排気ガスと
の伝熱により加熱し、高温高圧の蒸気を発生させるよう
に構成されている。
A branch pipe 19 with a second solution pump 18 interposed is connected between the regenerator 8 of the first pipe 11 and the first heat exchanger 17, and the branch pipe 19 and the gas pipe 4 A second heat exchanger 20 is provided between the first and second heat exchangers, and is configured to heat the liquefied ammonia-water solution by heat transfer with the exhaust gas from the gas engine 1 to generate high-temperature and high-pressure steam.

【0035】分岐配管19に蒸気タービン21が接続さ
れるとともに、その蒸気タービン21と吸収器12とが
第4の配管22を介して接続され、単効用吸収冷凍機の
作動媒体であるアンモニア−水系溶液の高温高圧の蒸気
によって蒸気タービン21を駆動するとともに、蒸気タ
ービン21から排出される蒸気を吸収器12に戻すよう
に構成されている。
A steam turbine 21 is connected to the branch pipe 19, and the steam turbine 21 and the absorber 12 are connected via a fourth pipe 22, and an ammonia-water system as a working medium of a single-effect absorption refrigerator is used. The steam turbine 21 is driven by the high-temperature and high-pressure steam of the solution, and the steam discharged from the steam turbine 21 is returned to the absorber 12.

【0036】第3の配管16において、開閉弁23を介
装したバイパス配管24が第1の熱交換器17と並列に
接続され、そのバイパス配管24と第4の配管22とに
わたって第3の熱交換器25が設けられ、再生器8に戻
す液化したアンモニア−水系溶液を、蒸気タービン21
から排出されるアンモニア−水系溶液の蒸気によって加
熱するようになっている。
In the third pipe 16, a bypass pipe 24 provided with an on-off valve 23 is connected in parallel with the first heat exchanger 17, and a third heat pipe is provided between the bypass pipe 24 and the fourth pipe 22. An exchanger 25 is provided, and the liquefied ammonia-water solution returned to the regenerator 8 is supplied to the steam turbine 21.
Is heated by the vapor of the ammonia-water solution discharged from the heater.

【0037】図2の断面図に示すように、蒸気タービン
21に伝動軸26を介して圧縮機27が一体的に連動連
結され、蒸気タービン21、伝動軸26および圧縮機2
7が、パッキング28を介してシールした状態で一体化
されたケーシング29内に収容されるとともに、伝動軸
26が気体軸受30を介して回転自在に支持されてい
る。
As shown in the sectional view of FIG. 2, a compressor 27 is integrally connected to the steam turbine 21 via a transmission shaft 26, and the steam turbine 21, the transmission shaft 26 and the compressor 2
7 is housed in an integrated casing 29 in a sealed state via a packing 28, and a transmission shaft 26 is rotatably supported via a gas bearing 30.

【0038】第2の配管13の途中箇所に第4の熱交換
器31が設けられ、この第4の熱交換器31と吸収器1
2との間に前述の圧縮機27が設けられ、圧縮機27に
よって蒸発器14内の蒸気を吸引し、第4の熱交換器3
1を経てから吸収器12に供給するようになっている。
この蒸発器14と吸収器12とを接続する蒸気配管を蒸
気路と称する。
A fourth heat exchanger 31 is provided in the middle of the second pipe 13, and the fourth heat exchanger 31 and the absorber 1
The compressor 27 described above is provided between the fourth heat exchanger 3 and the second heat exchanger 3.
After passing through 1, it is supplied to the absorber 12.
The steam pipe connecting the evaporator 14 and the absorber 12 is called a steam path.

【0039】ガス配管4の第2の熱交換器20の下流側
において、給湯管32とにわたって給湯用温水取り出し
用の熱交換器33が設けられ、第2の熱交換器20で蒸
気タービン21駆動用の蒸気発生のために顕熱分が回収
された後の排気ガスから顕熱および潜熱を回収して給湯
用温水を得るように構成されている。
Downstream of the second heat exchanger 20 of the gas pipe 4, a heat exchanger 33 for taking out hot water for hot water supply is provided across the hot water supply pipe 32, and the second heat exchanger 20 drives the steam turbine 21. The sensible heat and the latent heat are recovered from the exhaust gas after the sensible heat is recovered for the generation of steam for use to obtain hot water for hot water supply.

【0040】蒸発器14に、冷凍用媒体としてのブライ
ンを取り出す冷凍用媒体取り出し管34が付設されてい
る。このブラインとの熱交換により、食品とか下水処理
システムでの下水汚泥などの被冷却物を冷却・冷凍する
のである。凝縮器10および吸収器12には、クーリン
グタワーからの冷却水を供給する冷却管35が通されて
いる。
The evaporator 14 is provided with a refrigerating medium take-out pipe 34 for taking out brine as a refrigerating medium. The heat exchange with the brine cools and freezes the object to be cooled such as food or sewage sludge in the sewage treatment system. A cooling pipe 35 that supplies cooling water from the cooling tower is passed through the condenser 10 and the absorber 12.

【0041】気体軸受30には、第2の熱交換器20で
発生した高温高圧の蒸気が供給され、単効用吸収式冷凍
機の作動媒体であるアンモニア−水系溶液によって潤滑
するように構成されている。この気体軸受30からの蒸
気は、第4の配管22を通じて吸収器12に戻されるよ
うになっている。
The gas bearing 30 is supplied with high-temperature and high-pressure steam generated in the second heat exchanger 20, and is configured to be lubricated by an ammonia-water solution as a working medium of the single-effect absorption refrigerator. I have. The steam from the gas bearing 30 is returned to the absorber 12 through the fourth pipe 22.

【0042】上記第1実施例では、蒸気タービン21か
ら排出されるアンモニア−水系溶液の蒸気を吸収器12
に供給するように構成しているが、その蒸気の温度が 1
00℃を越えるような場合には、再生器8に供給するよう
にしても良い。
In the first embodiment, the ammonia-water solution vapor discharged from the steam turbine 21 is supplied to the absorber 12
But the temperature of the steam is 1
If the temperature exceeds 00 ° C., it may be supplied to the regenerator 8.

【0043】また、上記第1実施例では、気体軸受30
に、第2の熱交換器20で発生した高温高圧の蒸気を供
給するように構成しているが、例えば、吸収器12から
のアンモニア−水系溶液を供給するなど、要するに、単
効用吸収式冷凍機の作動媒体であるアンモニア−水系溶
液によって潤滑するものであれば、各種の構成が採用で
きる。
In the first embodiment, the gas bearing 30
The high-temperature and high-pressure steam generated in the second heat exchanger 20 is supplied to the first heat exchanger 20. For example, a single-effect absorption refrigeration system such as supplying an ammonia-water solution from the absorber 12 is used. Various configurations can be adopted as long as they are lubricated by an ammonia-water solution as a working medium of the machine.

【0044】また、上記第1実施例では、ガスエンジン
1によって発電機3を駆動して電力を取り出す、いわゆ
るコジェネレーションシステムを示したが、ガスエンジ
ン1によって各種の機械装置を駆動する場合にも適用で
きる。
In the first embodiment, a so-called cogeneration system is described in which the generator 3 is driven by the gas engine 1 to extract electric power. Applicable.

【0045】図3は、第2実施例を示す概略構成図であ
り、第1実施例と異なるところは次の通りである。すな
わち、発電機3に代えてターボ冷凍機を用いるものであ
り、ガスエンジン41にターボ冷凍機42が連動連結さ
れ、被冷却物の処理搬送路43がターボ冷凍機42を経
た後、冷凍用媒体取り出し管44から取り出される冷凍
用媒体と熱交換し、被冷却物を冷却するように構成され
ている。他の構成は第1実施例と同じであり、その説明
は省略する。
FIG. 3 is a schematic structural view showing the second embodiment. The difference from the first embodiment is as follows. That is, a turbo chiller is used in place of the generator 3, a turbo chiller 42 is connected to the gas engine 41 in an interlocked manner, and a processing medium passage 43 for the object to be cooled passes through the centrifugal chiller 42. It is configured to exchange heat with the refrigeration medium taken out from the take-out pipe 44 to cool the object to be cooled. Other configurations are the same as those of the first embodiment, and a description thereof will be omitted.

【0046】この第2実施例によれば、常温から−10℃
以下の低温まで冷却する場合において、ターボ冷凍機4
2の特性を有効に活用し、全体としての成績係数を大幅
に高くできる。ターボ冷凍機42は、常温から−10℃程
度までの範囲で極めて成績係数が高いが、それよりも低
温になると極端に成績係数が低下する。その低温での冷
却を、本発明の単効用吸収冷凍機と蒸気タービンおよび
圧縮機を組み合わせた冷凍構成によって行い、成績係数
を低下させないようにしているのである。
According to the second embodiment, from room temperature to -10.degree.
When cooling to the following low temperature, the centrifugal chiller 4
By effectively utilizing the characteristics of item 2, the coefficient of performance as a whole can be significantly increased. The centrifugal chiller 42 has a very high coefficient of performance in a range from room temperature to about −10 ° C., but when the temperature is lower than that, the coefficient of performance extremely decreases. The cooling at the low temperature is performed by the refrigeration configuration in which the single-effect absorption refrigerator of the present invention is combined with the steam turbine and the compressor, so that the coefficient of performance is not reduced.

【0047】上述第2実施例の変形例として、ターボ冷
凍機42に代えて電動ターボ冷凍機を用いるように、ガ
スエンジン41に発電機を連動連結するとともに、その
発電機の発電電力線に電動ターボ冷凍機を接続し、その
電動ターボ冷凍機で冷却した後の被冷却物を冷凍用媒体
取り出し管から取り出される冷凍用媒体と熱交換させて
冷却するように構成しても良い。
As a modification of the second embodiment, a generator is connected to the gas engine 41 so as to use an electric turbo chiller instead of the centrifugal chiller 42, and an electric turbo chiller is connected to the power line of the generator. A refrigerator may be connected, and the object to be cooled after being cooled by the electric turbo refrigerator may be cooled by exchanging heat with the freezing medium taken out of the freezing medium take-out pipe.

【0048】図4は、本発明に係る排熱吸収冷凍機の第
3実施例を示す概略構成図であり、第1実施例と異なる
ところは次の通りである。すなわち、圧縮機27からの
蒸気路が、第3の熱交換器24と蒸気タービン21との
間において第4の配管22に接続され、圧縮機27から
の吐出ガスによって、吸収器12から再生器8に供給さ
れる非共沸混合媒体を加熱するように構成されている。
FIG. 4 is a schematic structural view showing a third embodiment of the exhaust heat absorption refrigerator according to the present invention. The difference from the first embodiment is as follows. That is, the steam path from the compressor 27 is connected to the fourth pipe 22 between the third heat exchanger 24 and the steam turbine 21, and the gas discharged from the compressor 27 causes the regenerator 8 is configured to heat the non-azeotropic mixed medium supplied to the liquid.

【0049】上述実施例では、再生器8から吸収器12
に供給される非共沸混合媒体であるアンモニア−水系溶
液の一部を取り出し、第2の熱交換器20を排ガスボイ
ラとして蒸気を発生させているため、吸収器12から非
共沸混合媒体を取り出す場合に比べて、吸収剤に対する
冷媒の濃度、すなわち、水に対するアンモニアの濃度が
低い部分を使用でき、ランキン効率を向上できている。
In the above embodiment, the regenerator 8 is connected to the absorber 12
Since a part of the ammonia-water-based solution that is the non-azeotropic mixed medium supplied to the tank is taken out and the second heat exchanger 20 is used as an exhaust gas boiler to generate steam, the non-azeotropic mixed medium is removed from the absorber 12. Compared with the case of taking out, a portion where the concentration of the refrigerant with respect to the absorbent, that is, the concentration of ammonia with respect to the water is low can be used, thereby improving Rankine efficiency.

【0050】また、第1の熱交換器17に供給される上
流側で非共沸混合媒体であるアンモニア−水系溶液の一
部を取り出す結果、第1の熱交換器17で吸収器12か
ら再生器8に供給されるアンモニア−水系溶液の加熱に
供される熱量が少なくなることになる。しかしながら、
再生器8から吸収器12に供給されるアンモニア−水系
溶液の温度が約85℃で、吸収器12から再生器8に供給
されるアンモニア−水系溶液の温度約32℃に比べて十分
高い上に、下降流に比較して吸収器12から再生器8に
供給される上昇流の方がエンタルピ落差が小さく、上昇
流によって律速されるため、第1の熱交換器17での熱
交換量は変わらず、悪影響を与えることはない。
Also, as a result of taking out a part of the ammonia-water-based solution, which is a non-azeotropic mixture medium, on the upstream side supplied to the first heat exchanger 17, the first heat exchanger 17 regenerates from the absorber 12. The amount of heat supplied to the heating of the ammonia-water solution supplied to the vessel 8 is reduced. However,
The temperature of the ammonia-water solution supplied from the regenerator 8 to the absorber 12 is about 85 ° C., which is sufficiently higher than the temperature of the ammonia-water solution supplied from the absorber 12 to the regenerator 8 of about 32 ° C. Since the upward flow supplied from the absorber 12 to the regenerator 8 has a smaller enthalpy head than the downward flow and is controlled by the upward flow, the amount of heat exchange in the first heat exchanger 17 varies. No adverse effect.

【0051】上述実施例のガスエンジン1としては、ミ
ラーサイクルガスエンジンやディーゼルエンジンやスタ
ーリングエンジンなど各種のガスエンジンを用いること
ができる。
As the gas engine 1 of the above embodiment, various gas engines such as a Miller cycle gas engine, a diesel engine and a Stirling engine can be used.

【0052】なお、わかりやすくするために、特許請求
の範囲、ならびに、課題を解決するための手段および作
用それぞれの欄において、構成部材に参照図番を付して
いるが、これに制限されるものでは無い。
For the sake of simplicity, reference numerals are assigned to constituent members in the claims and in the respective means and means for solving the problems, but the invention is not limited to this. Not a thing.

【0053】[0053]

【発明の効果】以上説明したように、請求項1に係る発
明の排熱吸収冷凍機によれば、低温排熱源からの排熱を
熱源として単効用吸収冷凍機を作動しながら、高温排熱
源からの排熱により蒸気タービンを駆動して圧縮機を駆
動し、蒸発器内の圧力を吸収器内の圧力よりも低下させ
て低温の冷凍用媒体を取り出すから、低温排熱源および
高温排熱源からの排熱によって冷凍用媒体を取り出すこ
とができ、ランニングコストおよびイニシャルコストの
いずれも安価にして、零度よりも低温の冷凍用媒体を得
ることができる。すなわち、例えば、上述の圧縮機とし
て電動型圧縮機を用いれば、圧縮機の駆動に電力を要す
るためにランニングコストが増大する。本発明ではこの
ような駆動電力が不要である。また、蒸気タービンを駆
動する蒸気と、蒸発器内の圧力を吸収器内の圧力よりも
低下させるために圧縮機によって吸引する蒸気とが、い
ずれも単効用吸収冷凍機の作動媒体である非共沸混合媒
体の蒸気であり、また、軸受潤滑を同一媒体で行えるこ
とから、蒸気タービンと圧縮機ならびにそれらを連動連
結する伝動軸を同じケーシング内に収容することがで
き、電動モータと圧縮機とを連動連結する伝動軸に対す
る軸受部の潤滑と漏洩に対するシールに複雑な構成を採
用したり、密閉式のキャンドモータを用いたりする場合
に比べてイニシャルコストを安価にできる。しかも、再
生器から吸収器に供給する非共沸混合媒体を熱交換器に
供給し、高温排熱源からの排気ガスと熱交換させて蒸気
タービン駆動用の蒸気を発生させるから、排気ガスの顕
熱のみで蒸気を発生することができ、熱交換器あるいは
排ガス配管の酸性凝縮水による腐食損傷を回避できるた
めに高価な材料を用いる必要が無く、例えば、吸収器か
らの非共沸混合媒体を用いる場合に比べて安価にできる
利点がある。詳述すれば、再生器から吸収器に供給する
非共沸混合媒体の温度が約85℃と高いのに対して、吸収
器からの非共沸混合媒体を用いる場合、その非共沸混合
媒体の温度が約32℃程度と低いため、蒸気を発生させる
ために多量の熱量を必要とし、高温排熱源からの排気ガ
スの顕熱のみならず潜熱まで消費されることになる。排
気ガスが凝縮液化すると、排気ガス中の亜硫酸成分など
によって酸性凝縮水が生じ、この酸性凝縮水が高圧下で
熱交換器あるいは排ガス配管に作用して腐食損傷させ
る。この結果、腐食損傷による破裂等を防止するために
チタン等の高級な耐腐食性材料が必要になって高価にな
ってしまうのである。
As described above, according to the exhaust heat absorption refrigerator of the first aspect of the present invention, while operating the single-effect absorption refrigerator using the exhaust heat from the low-temperature exhaust heat source as the heat source, the high-temperature exhaust heat source is operated. The steam turbine is driven by the exhaust heat from the compressor to drive the compressor, and the pressure in the evaporator is made lower than the pressure in the absorber to take out the low-temperature refrigeration medium. The refrigeration medium can be taken out by the exhaust heat of the refrigeration medium, and both the running cost and the initial cost can be reduced, and a refrigeration medium at a temperature lower than zero degrees can be obtained. That is, for example, if an electric compressor is used as the above-described compressor, the running cost increases because power is required to drive the compressor. The present invention does not require such driving power. In addition, the steam that drives the steam turbine and the steam that is sucked by the compressor to reduce the pressure in the evaporator to be lower than the pressure in the absorber are both non-common, which are the working medium of the single-effect absorption refrigerator. Since it is the steam of the boiling mixed medium and the bearing can be lubricated with the same medium, the steam turbine, the compressor, and the transmission shaft interconnecting them can be housed in the same casing, and the electric motor and the compressor The initial cost can be reduced as compared with the case where a complicated configuration is adopted for the lubrication of the bearing portion and the seal against the leakage with respect to the transmission shaft for interlocking connection and the use of a sealed canned motor. In addition, since the non-azeotropic mixed medium supplied from the regenerator to the absorber is supplied to the heat exchanger and heat-exchanged with the exhaust gas from the high-temperature exhaust heat source to generate steam for driving the steam turbine, the exhaust gas is exposed. It is possible to generate steam only by heat, and it is not necessary to use expensive materials in order to avoid corrosion damage due to acidic condensed water in a heat exchanger or exhaust gas piping.For example, a non-azeotropic mixed medium from an absorber can be used. There is an advantage that the cost can be reduced as compared with the case where it is used. More specifically, when the temperature of the non-azeotropic mixed medium supplied from the regenerator to the absorber is as high as about 85 ° C., when the non-azeotropic mixed medium from the absorber is used, the non-azeotropic mixed medium is used. Since the temperature is as low as about 32 ° C., a large amount of heat is required to generate steam, and not only sensible heat but also latent heat of exhaust gas from the high-temperature exhaust heat source is consumed. When the exhaust gas is condensed and liquefied, acidic condensed water is generated by sulfurous acid components in the exhaust gas, and the acidic condensed water acts on a heat exchanger or an exhaust gas pipe under high pressure to cause corrosion damage. As a result, a high-grade corrosion-resistant material such as titanium is required in order to prevent rupture or the like due to corrosion damage, which increases the cost.

【0054】また、請求項2に係る発明の排熱吸収冷凍
機によれば、蒸気タービンと圧縮機とを連動連結する伝
動軸の気体軸受の潤滑を、蒸気タービンを作動する非共
沸混合媒体の蒸気自体によって行うから、その蒸気の一
部が軸受から漏洩しようとも異物にならず、潤滑油を用
いる場合のような高いシール構成を不要にでき、軸受部
に対する潤滑と漏洩に対するシールを、簡単な構成で安
価にして良好に行える。
According to the exhaust heat absorption refrigerator of the second aspect of the present invention, the lubrication of the gas bearing of the transmission shaft for interlocking the steam turbine and the compressor is performed by the non-azeotropic mixed medium for operating the steam turbine. Because the steam itself is used, even if a part of the steam leaks from the bearing, it does not become a foreign matter, eliminating the need for a high seal configuration such as when using lubricating oil, making it easy to lubricate the bearing and seal against leakage. It can be performed favorably at low cost with a simple configuration.

【0055】また、請求項3に係る発明の排熱吸収冷凍
機によれば、例えば、食品冷凍とか下水処理システムで
の下水汚泥の凍結乾燥のように、常温から−20℃以下の
低温まで冷却する場合に、常温から−10℃や−15℃程度
までは、その範囲で極めて成績係数の高いターボ冷凍機
によって被冷却物を冷却し、それより低温の範囲では原
動機からの排熱によって得られる冷凍用媒体で冷却し、
常温から低温まで冷却する場合に、全体としての成績係
数を大幅に高くできる。
According to the exhaust heat absorption refrigerator of the third aspect of the present invention, for example, cooling from normal temperature to a low temperature of -20 ° C. or less, such as freeze-drying of food or sewage sludge in a sewage treatment system. In the case where the temperature is from room temperature to about -10 ° C or -15 ° C, the object to be cooled is cooled by a turbo refrigerator having a very high coefficient of performance in that range, and in the lower temperature range, it is obtained by exhaust heat from the prime mover. Cool with freezing medium,
When cooling from room temperature to low temperature, the coefficient of performance as a whole can be significantly increased.

【0056】また、請求項4に係る発明の排熱吸収冷凍
機によれば、原動機に連動連結した発電機の電力によっ
て電動ターボ冷凍機を駆動し、例えば、食品冷凍とか下
水処理システムでの下水汚泥の凍結乾燥のように、常温
から−20℃以下の低温まで冷却する場合に、常温から−
10℃や−15℃程度までは、その範囲で極めて成績係数の
高い電動ターボ冷凍機によって被冷却物を冷却し、それ
より低温の範囲では原動機からの排熱によって得られる
冷凍用媒体で冷却し、常温から低温まで冷却する場合
に、全体としての成績係数を大幅に高くできる。
According to the exhaust heat absorption refrigerator of the fourth aspect of the present invention, the electric turbo refrigerator is driven by the electric power of the generator interlocked with the prime mover, for example, for refrigeration of food or sewage in a sewage treatment system. When cooling from room temperature to a low temperature of -20 ° C or lower, such as freeze drying of sludge,
Up to about 10 ° C or -15 ° C, the object to be cooled is cooled by an electric turbo chiller with a very high coefficient of performance in that range, and in a lower temperature range, it is cooled by a refrigeration medium obtained by exhaust heat from the prime mover. When cooling from room temperature to low temperature, the coefficient of performance as a whole can be greatly increased.

【0057】また、請求項5に係る発明の排熱吸収冷凍
機によれば、圧縮機からの吐出ガスの排熱を、吸収器か
ら再生器に供給される非共沸混合媒体の加熱に利用する
から、熱回収をより良好に行える。
Further, according to the fifth aspect of the present invention, the exhaust heat of the gas discharged from the compressor is used for heating the non-azeotropic mixed medium supplied from the absorber to the regenerator. Therefore, heat recovery can be performed more favorably.

【0058】また、請求項6に係る発明の排熱吸収冷凍
機によれば、高温排熱源からの排気ガスの顕熱の範囲
で、蒸気タービン駆動用蒸気の発生のための熱が排気ガ
スから回収され、その後の排気ガスを熱交換器に供給
し、その排気ガスの顕熱および潜熱を回収して給湯用温
水を取り出すから、高温排熱源からの排熱回収効率を向
上できる。
According to the exhaust heat absorption refrigerator of the present invention, the heat for generating steam for driving the steam turbine is generated from the exhaust gas within the range of the sensible heat of the exhaust gas from the high-temperature exhaust heat source. The recovered exhaust gas is supplied to the heat exchanger, and the sensible heat and latent heat of the exhaust gas are recovered to extract hot water for hot water supply. Therefore, the efficiency of recovering the exhaust heat from the high-temperature exhaust heat source can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る排熱吸収冷凍機の第1実施例を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram showing a first embodiment of a waste heat absorption refrigerator according to the present invention.

【図2】要部の断面図である。FIG. 2 is a sectional view of a main part.

【図3】第2実施例を示す概略構成図である。FIG. 3 is a schematic configuration diagram showing a second embodiment.

【図4】第3実施例を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a third embodiment.

【図5】従来例の概略構成図である。FIG. 5 is a schematic configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1…原動機としてのガスエンジン 4…ガス配管 7…循環配管 8…再生器 10…凝縮器 11…第1の配管 12…吸収器 14…蒸発器 16…第3の配管 19…分岐配管 20…第2の熱交換器 21…蒸気タービン 25…第3の熱交換器 26…伝動軸 27…圧縮機 30…気体軸受 33…給湯用温水取り出し用の熱交換器 34…冷凍用媒体取り出し管 41…原動機としてのガスエンジン 42…ターボ冷凍機 44…冷凍用媒体取り出し管 DESCRIPTION OF SYMBOLS 1 ... Gas engine as a motor 4 ... Gas pipe 7 ... Circulation pipe 8 ... Regenerator 10 ... Condenser 11 ... 1st pipe 12 ... Absorber 14 ... Evaporator 16 ... 3rd pipe 19 ... Branch pipe 20 ... No. 2 heat exchanger 21 ... steam turbine 25 ... third heat exchanger 26 ... power transmission shaft 27 ... compressor 30 ... gas bearing 33 ... heat exchanger for taking out hot water for hot water supply 34 ... tube for taking out refrigeration medium 41 ... motor Gas engine 42 as a centrifugal chiller 44 as a refrigeration medium outlet pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 啓一 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 Fターム(参考) 3G081 BB07 BC07 BD00 3L093 AA01 AA03 BB01 BB05 BB26 BB29 BB39 BB44 LL05 MM07 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keiichi Tanaka 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi F-term in Osaka Gas Co., Ltd. (reference) 3G081 BB07 BC07 BD00 3L093 AA01 AA03 BB01 BB05 BB26 BB29 BB39 BB44 LL05 MM07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 130℃よりも低い温度の排熱を発生する低
温排熱源と、 130℃よりも高い温度の排熱を発生する高温排熱源と、 再生器(8) と吸収器(12)と凝縮器(10)と蒸発器(14)とか
ら成る単効用吸収冷凍機と、 前記低温排熱源からの排熱を熱源とするように前記低温
排熱源と前記再生器(8) とにわたって接続される循環配
管(7) と、 前記低温排熱源からの排熱によって蒸発可能な冷媒を含
む非共沸混合媒体を前記吸収器(12)から前記再生器(8)
に供給する配管(16)と、 前記再生器(8) から前記吸収器(12)に非共沸混合媒体を
供給する配管(11)と、 前記配管(11)の途中に接続されて再生器(8) から前記吸
収器(12)に供給する非共沸混合媒体の一部を取り出す分
岐配管(19)と、 前記高温排熱源に接続されて前記高温排熱源からの排気
ガスを取り出すガス配管(4) と、 前記ガス配管(4) と前記分岐配管(19)との間に設けられ
て、前記高温排熱源からの排気ガスにより非共沸混合媒
体を加熱して蒸発させる熱交換器(20)と、 前記分岐配管(19)に設けられて、前記熱交換器(20)で蒸
発した非共沸混合媒体の蒸気によって駆動する蒸気ター
ビン(21)と、 前記蒸発器(14)と前記吸収器(12)とを連通接続する蒸気
路と、 前記蒸気路に設けられるとともに前記蒸気タービン(21)
に一体的に連動連結されて前記蒸発器(14)内の蒸気を吸
引して前記吸収器(12)との間に圧力差を発生させる圧縮
機(27)と、 前記蒸発器(14)に付設されて冷凍用媒体を取り出す冷凍
用媒体取り出し管(34)と、 を備えたことを特徴とする排熱吸収冷凍機。
1. A low-temperature heat source generating exhaust heat at a temperature lower than 130 ° C., a high-temperature heat source generating exhaust heat at a temperature higher than 130 ° C., a regenerator (8) and an absorber (12) A single-effect absorption refrigerator comprising: a condenser (10) and an evaporator (14); and a connection between the low-temperature exhaust heat source and the regenerator (8) such that exhaust heat from the low-temperature exhaust heat source is used as a heat source. Circulation pipe (7), and a non-azeotropic mixed medium containing a refrigerant evaporable by exhaust heat from the low-temperature exhaust heat source from the absorber (12) to the regenerator (8).
A pipe (16) for supplying a non-azeotropic mixed medium from the regenerator (8) to the absorber (12); and a regenerator connected in the middle of the pipe (11). (8) a branch pipe (19) for extracting a part of the non-azeotropic mixed medium supplied to the absorber (12), and a gas pipe connected to the high-temperature exhaust heat source and extracting exhaust gas from the high-temperature exhaust heat source. (4), a heat exchanger that is provided between the gas pipe (4) and the branch pipe (19), and heats and evaporates a non-azeotropic mixed medium with exhaust gas from the high-temperature exhaust heat source ( A steam turbine (21) provided in the branch pipe (19) and driven by the steam of the non-azeotropic mixed medium evaporated in the heat exchanger (20); and the evaporator (14) A steam passage communicating and connecting the absorber (12), and the steam turbine (21) provided in the steam passage.
A compressor (27) that is integrally and operatively connected to generate a pressure difference between the evaporator (14) and the absorber (12) by sucking the vapor in the evaporator (14); And a refrigerating medium take-out pipe (34) attached to take out a refrigerating medium.
【請求項2】請求項1に記載の圧縮機(27)と蒸気タービ
ン(21)とを連動連結する伝動軸(26)を気体軸受(30)によ
って支持するとともに、前記気体軸受(30)と分岐配管(1
9)とを接続し、熱交換器(20)で蒸発した非共沸混合媒体
の蒸気を前記気体軸受(30)に供給して潤滑するものであ
る排熱吸収冷凍機。
2. A gas bearing (30) for supporting a transmission shaft (26) interlockingly connecting a compressor (27) and a steam turbine (21) according to claim 1 and a gas bearing (30). Branch piping (1
9), wherein the steam of the non-azeotropic mixed medium evaporated in the heat exchanger (20) is supplied to the gas bearing (30) for lubrication.
【請求項3】請求項1または請求項2に記載の低温排熱
源と高温排熱源とを有する原動機(41)を設け、前記原動
機(41)にターボ冷凍機(42)を連動連結し、前記ターボ冷
凍機(42)で冷却した後の被冷却物を冷凍用媒体取り出し
管(44)から取り出される冷凍用媒体と熱交換させて冷却
するものである排熱吸収冷凍機。
3. A motor (41) having a low-temperature heat source and a high-temperature heat source according to claim 1 or 2, and a centrifugal chiller (42) is operatively connected to the motor (41). An exhaust heat absorption refrigerator that cools an object to be cooled after being cooled by a turbo refrigerator (42) by exchanging heat with a refrigerant for cooling taken out of a refrigerant medium take-out pipe (44).
【請求項4】請求項1または請求項2に記載の低温排熱
源と高温排熱源とを有する原動機を設け、前記原動機に
発電機を連動連結し、前記発電機の発電電力線に電動タ
ーボ冷凍機を接続し、前記電動ターボ冷凍機で冷却した
後の被冷却物を冷凍用媒体取り出し管から取り出される
冷凍用媒体と熱交換させて冷却するものである排熱吸収
冷凍機。
4. A motor having a low-temperature exhaust heat source and a high-temperature exhaust heat source according to claim 1 or 2, a generator is operatively connected to the motor, and an electric turbo refrigerator is connected to a power line of the generator. , And the object to be cooled after being cooled by the electric turbo chiller is cooled by exchanging heat with a refrigeration medium taken out from a refrigeration medium take-out pipe.
【請求項5】請求項1、請求項2、請求項3、請求項4
のいずれかに記載の蒸気路の圧縮機(27)と吸収器(12)と
の間に、前記圧縮機(27)からの吐出ガスによって、吸収
器(12)から再生器(8) に供給される非共沸混合媒体を加
熱する熱交換器(25)を設けてある排熱吸収冷凍機。
5. The method of claim 1, claim 2, claim 3, or claim 4.
Between the compressor (27) and the absorber (12) in the steam path according to any of the above, the gas discharged from the compressor (27) is supplied from the absorber (12) to the regenerator (8). A waste heat absorption refrigerator provided with a heat exchanger (25) for heating a non-azeotropic mixed medium to be heated.
【請求項6】請求項1、請求項2、請求項3、請求項
4、請求項5のいずれかに記載の高温排熱源から熱交換
器(20)を経た排ガス配管に、給湯用温水取り出し用の熱
交換器(33)を設けてある排熱吸収冷凍機。
6. Hot water supply for hot water supply from an exhaust heat source according to any one of claims 1, 2, 3, 4, and 5 to an exhaust gas pipe passing through a heat exchanger (20). Waste heat absorption refrigerator provided with a heat exchanger (33) for use.
JP35280399A 1999-12-13 1999-12-13 Waste heat absorption refrigerator Expired - Fee Related JP4301666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35280399A JP4301666B2 (en) 1999-12-13 1999-12-13 Waste heat absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35280399A JP4301666B2 (en) 1999-12-13 1999-12-13 Waste heat absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2001174098A true JP2001174098A (en) 2001-06-29
JP4301666B2 JP4301666B2 (en) 2009-07-22

Family

ID=18426551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35280399A Expired - Fee Related JP4301666B2 (en) 1999-12-13 1999-12-13 Waste heat absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4301666B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008581A (en) * 2006-06-30 2008-01-17 Toho Gas Co Ltd Absorption type space heating/hot water supply device
JP2008008582A (en) * 2006-06-30 2008-01-17 Toho Gas Co Ltd Adsorption type space heating/hot water supplying device
JP2008261234A (en) * 2007-04-10 2008-10-30 Osaka Gas Co Ltd Gas seal mechanism and power system
CN103245126A (en) * 2013-04-09 2013-08-14 天津大学 Cold electric double-effect waste heat recovery system for marine engine
JP2014152950A (en) * 2013-02-05 2014-08-25 Mitsubishi Heavy Ind Ltd Refrigeration system, ship, and operation method of refrigeration system
CN107842907A (en) * 2017-12-07 2018-03-27 青岛宏科达机械科技有限公司 A kind of heating system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106546033B (en) * 2016-11-03 2018-06-19 天津大学 The extra heat source driving supercharging triple effect compound-refrigerating circulatory system of gas machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008581A (en) * 2006-06-30 2008-01-17 Toho Gas Co Ltd Absorption type space heating/hot water supply device
JP2008008582A (en) * 2006-06-30 2008-01-17 Toho Gas Co Ltd Adsorption type space heating/hot water supplying device
JP2008261234A (en) * 2007-04-10 2008-10-30 Osaka Gas Co Ltd Gas seal mechanism and power system
JP2014152950A (en) * 2013-02-05 2014-08-25 Mitsubishi Heavy Ind Ltd Refrigeration system, ship, and operation method of refrigeration system
CN103245126A (en) * 2013-04-09 2013-08-14 天津大学 Cold electric double-effect waste heat recovery system for marine engine
CN107842907A (en) * 2017-12-07 2018-03-27 青岛宏科达机械科技有限公司 A kind of heating system
CN107842907B (en) * 2017-12-07 2023-09-29 青岛宏科达机械科技有限公司 Heating system

Also Published As

Publication number Publication date
JP4301666B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JPH01131860A (en) Refrigeration system using combustion as power
CN111473540B (en) Ship waste heat driven CO2Supercritical power generation coupling transcritical refrigeration cycle system
JP4274619B2 (en) Waste heat recovery system
JP2004251125A (en) Exhaust heat recovery system
JPH10288047A (en) Liquefied natural gas evaporating power generating device
JP2001248936A (en) Exhaust heat absorbing refrigeration system
JP4301666B2 (en) Waste heat absorption refrigerator
JP2005315127A (en) Gas turbine
JP4342094B2 (en) Waste heat absorption refrigerator
JP4659601B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
JP4187562B2 (en) Ammonia absorption heat pump
JPH10274010A (en) Binary power generating system
JP4152140B2 (en) Waste heat absorption refrigerator
JP4265714B2 (en) Waste heat absorption refrigerator
JP4187563B2 (en) Ammonia absorption refrigerator
JP4233201B2 (en) Waste heat absorption refrigerator
JP4005884B2 (en) Ammonia absorption refrigerator
JPS6187908A (en) Combined device of power generation, refrigeration, and heat pump cycle
Bhatia Overview of vapor absorption cooling systems
JPH02106665A (en) Cogeneration system utilizing absorbing type heat pump cycle
JP2001116391A (en) Exhaust heat absorption refrigerating machine
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
JP2000018757A (en) Cooler
JPH11343864A (en) Cryogenic turbine power generation system
JPS6022253B2 (en) absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees