JP2001159705A - Color separation optical system and television camera using the same - Google Patents
Color separation optical system and television camera using the sameInfo
- Publication number
- JP2001159705A JP2001159705A JP34359199A JP34359199A JP2001159705A JP 2001159705 A JP2001159705 A JP 2001159705A JP 34359199 A JP34359199 A JP 34359199A JP 34359199 A JP34359199 A JP 34359199A JP 2001159705 A JP2001159705 A JP 2001159705A
- Authority
- JP
- Japan
- Prior art keywords
- prism
- color separation
- optical system
- prisms
- television camera
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 36
- 230000003287 optical effect Effects 0.000 title claims abstract description 27
- 239000003086 colorant Substances 0.000 claims abstract 2
- 230000005540 biological transmission Effects 0.000 claims description 20
- 238000003384 imaging method Methods 0.000 claims description 20
- 239000006185 dispersion Substances 0.000 claims description 5
- 230000004907 flux Effects 0.000 abstract description 5
- 239000007787 solid Substances 0.000 abstract 1
- 239000011521 glass Substances 0.000 description 11
- 230000014509 gene expression Effects 0.000 description 9
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000004075 alteration Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Color Television Image Signal Generators (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、従来の走査線数で
ある625本(PAL方式)を超える高解像度の放送用
テレビカメラに用いる色分解光学系およびそれを用いた
テレビカメラに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color separation optical system used for a high-resolution broadcast television camera exceeding the conventional number of scanning lines of 625 (PAL system), and a television camera using the same. .
【0002】[0002]
【従来の技術】従来より、カラーテレビカメラ等の撮像
装置では、対物レンズからの光を色分解プリズムで青
色、緑色、赤色の3つの色光に色分解した後、各々の色
光に基づく被写体像を、対応する固体撮像素子面上に結
像している。2. Description of the Related Art Conventionally, in an image pickup apparatus such as a color television camera, after a light from an objective lens is separated into three color lights of blue, green and red by a color separation prism, a subject image based on each color light is separated. , On the corresponding solid-state imaging element surface.
【0003】図4は、この様な従来のカラーテレビカメ
ラの要部断面図である。同図において、Caはカメラの
筐体、Leは対物レンズである。対物レンズLeは、カ
メラの筐体Caと接続するためのマウント部MTを有し
て交換可能であり、フランジ面Fを合わせて、カメラ筐
体Caと接続されている。対物レンズLeは、不図示の
被写体からの光束を集光し、色分解プリズムへと導光し
ている。FIG. 4 is a sectional view of a main part of such a conventional color television camera. In the figure, Ca is a camera housing, and Le is an objective lens. The objective lens Le is interchangeable with a mount part MT for connection to the camera housing Ca, and is connected to the camera housing Ca with the flange surface F aligned. The objective lens Le collects a light beam from a subject (not shown) and guides the light beam to a color separation prism.
【0004】色分解プリズム1001の第1プリズム
は、入射面1002より入射した対物レンズLeからの
光を透過面1003に施した青反射ダイクロイック膜に
て青色光のみを反射させ、残りを透過させる。反射した
青色光は、入射面1002にて全反射し、出射面100
4を射出して固体撮像素子1011Bに向かう。[0004] The first prism of the color separation prism 1001 reflects only the blue light on the blue reflection dichroic film applied to the transmission surface 1003, and transmits the rest of the light from the objective lens Le incident from the entrance surface 1002. The reflected blue light is totally reflected on the incident surface 1002 and
4 to the solid-state imaging device 1011B.
【0005】第1プリズムの透過面1003を透過した
光は、空気間隙1005を通って第2プリズムの入射面
1006より入射する。第2プリズムの透過面1007
に施した赤反射ダイクロイック膜は、赤色光のみを反射
し、残った緑色光を透過させる。反射した赤色光は、空
気間隙1005と接する第2プリズムの入射面1006
面にて全反射し、出射面1008を射出して固体撮像素
子1011Rに向かう。[0005] The light transmitted through the transmitting surface 1003 of the first prism passes through the air gap 1005 and enters from the incident surface 1006 of the second prism. Transmission surface 1007 of second prism
The red-reflective dichroic film applied to only reflects the red light and transmits the remaining green light. The reflected red light is incident on the entrance surface 1006 of the second prism in contact with the air gap 1005.
The light is totally reflected by the surface, exits the emission surface 1008, and travels toward the solid-state imaging device 1011R.
【0006】第2プリズムの透過面1007を透過した
緑色光は、出射面1010を射出し、固体撮像素子10
11Gに向かう。このようにして、色分解プリズムは光
束を分解する。The green light transmitted through the transmission surface 1007 of the second prism exits the emission surface 1010 and is
Head to 11G. Thus, the color separation prism separates the light beam.
【0007】プリズム系の形状は、特開昭60−427
01号公報等に記載されるように、使用するプリズムの
ガラス(硝子)材の屈折率nおよびFno等の仕様によ
り決定される。つまり、図4のように、第1プリズムの
光入射面(1002)と、透過面のダイクロイック膜面
(1003)との成す角をθ1、第2プリズムの光入射
面(1006)と、透過面のダイクロイック膜面(10
07)との成す角をθ2とすると、以下の条件式を満足
しなければならない。[0007] The shape of the prism system is disclosed in Japanese Patent Application Laid-Open No. 60-427.
As described in Japanese Patent Publication No. 01-2001 or the like, it is determined by the specifications such as the refractive index n and Fno of the glass (glass) material of the prism used. That is, as shown in FIG. 4, the angle between the light incident surface (1002) of the first prism and the dichroic film surface (1003) of the transmitting surface is θ1, the light incident surface (1006) of the second prism and the transmitting surface Dichroic membrane surface (10
07) and θ2, the following conditional expression must be satisfied.
【0008】 θ1 ≦Sin-1(1/n)-Sin-1{1/(2n・Fno)} … (1) 2・θ1 ≧Sin-1(1/n)+Sin-1{1/(2n・Fno)} … (2) 2・θ2 ≧θ1+Sin-1(1/n)+Sin-1{1/(2n・Fno)} … (3) ただし、条件式(1)は、ダイクロイック面1003で
透過すべき波長領域光が全反射しないこと、条件式
(2)は、ダイクロイック面1003で反射された波長
領域光が入射面1002で全反射すること、条件式
(3)は、ダイクロイック面1007で反射された波長
領域光が入射面1006で全反射すること、のためにそ
れぞれ必要である。[0008] θ1 ≦ Sin −1 (1 / n) −Sin −1 {1 / (2n · Fno)} (1) 2 · θ1 ≧ Sin −1 (1 / n) + Sin −1 {1 / ( 2n · Fno)}… (2) 2 · θ2 ≧ θ1 + Sin -1 (1 / n) + Sin -1 {1 / (2n · Fno)}… (3) However, conditional expression (1) is dichroic. Conditional expression (2) is that the wavelength region light to be transmitted by the surface 1003 is not totally reflected. Conditional expression (2) is that the wavelength region light reflected by the dichroic surface 1003 is totally reflected by the incident surface 1002. Conditional expression (3) is This is necessary for the wavelength region light reflected on the surface 1007 to be totally reflected on the incident surface 1006.
【0009】ここで、角θ1に注目すると、角θ1が存
在できる範囲は、条件式(1),(2)より硝子材の屈
折率とFnoから決定される。Here, focusing on the angle θ1, the range in which the angle θ1 can exist is determined from the refractive index of the glass material and Fno from the conditional expressions (1) and (2).
【0010】図5のグラフは、この事柄を示しており、
硝子材の屈折率nをパラメータにして、Fnoと角θ1
との関係を示している。例えば、n=1.5のグラフの
Aが条件(1)のグラフであり、Bのグラフが条件
(2)のグラフである。このグラフより、式(1),
(2)を同時に満足する角θ1の範囲は硝子材の屈折率
nに関わらず、FnoがほぼF1.4より大きな範囲に
限られることが分かる。即ち3個のプリズム系によって
構成された色分解光学系では、F1.4付近が限界であ
る。また、プリズムの硝子材の屈折率n=1.7の場合
には、Aの条件(1)とBの条件(2)との交点は屈折
率がn=1.5の場合よりも大きく、FnoがF1.4
より僅かに大きい点である。The graph of FIG. 5 illustrates this matter.
Using the refractive index n of the glass material as a parameter, Fno and the angle θ1
The relationship is shown. For example, A of the graph of n = 1.5 is the graph of the condition (1), and B is the graph of the condition (2). From this graph, equations (1),
It can be seen that the range of the angle θ1 that simultaneously satisfies (2) is limited to a range where Fno is substantially larger than F1.4, regardless of the refractive index n of the glass material. That is, in a color separation optical system constituted by three prism systems, the limit is around F1.4. Further, when the refractive index n of the glass material of the prism is n = 1.7, the intersection of the condition (1) of A and the condition (2) of B is larger than the case where the refractive index is n = 1.5. Fno is F1.4
It is a slightly larger point.
【0011】図6のグラフ中Cは、対物レンズLeの径
2/3″で、F1.4というほぼ限界のFnoにて第1
プリズムに必要な最小の光路長(Lmin)を計算し、
屈折率1.55の時の光路長を0とする基準に、それか
らの変化量を表わしたグラフである。In the graph of FIG. 6, C denotes the diameter of the objective lens Le, which is 2/3 ", and the first value is F1.4, which is almost the limit of F1.4.
Calculate the minimum optical path length (Lmin) required for the prism,
7 is a graph showing the amount of change from a reference value of 0 for an optical path length at a refractive index of 1.55.
【0012】条件としては、 Θ1は、式(1) の上限値と式(2) の下限値の中間値 … (4) Fno は1.4 … (5) とすると Θ1=[3×Sin-1(1/n)-Sin-1{1/(2n・Fno)}]/4 となり、これと、第1プリズムの射出面には走査方向の
撮像サイズd1は6.6mm …(6)プリズムの射出面
から結像面までの距離を5mm …
(7)とから、対物レンズLeや第1乃至第3プリズムの
形状や寸法、材質等が決定される。As a condition, Θ1 is an intermediate value between the upper limit value of Expression (1) and the lower limit value of Expression (2) (4) If Fno is 1.4 (5), 1 = [3 × Sin − 1 (1 / n) -Sin -1 {1 / (2n · Fno)}] / 4, and the imaging size d1 in the scanning direction on the exit surface of the first prism is 6.6 mm (6) Prism The distance from the exit plane to the imaging plane is 5mm ...
From (7), the shape, size, material, and the like of the objective lens Le and the first to third prisms are determined.
【0013】図8に示すように、撮像面より離れた位置
(面)における有効光束長は、結像(撮像)面からの距
離(空気換算長)とSin-1{1/(2・Fno)}の
角度にて次式で表わせ、 (有効光束長)=d1+2× (撮像面からの距離) ×tan [Sin-1{1/(2・Fno)}] … (8) の関係となる。As shown in FIG. 8, the effective luminous flux length at a position (plane) distant from the imaging plane is represented by the distance (air conversion length) from the imaging (imaging) plane and Sin -1 {1 / (2 · Fno). ) Expressed by the following equation at the angle of}, (effective beam length) = d1 + 2 × (distance from the imaging surface) × tan [Sin -1 {1 / (2 · Fno)}]… (8) Becomes
【0014】これらの条件を使うと、 Lmin=(射出面の有効光束長)×sin (2×Θ1){ 2×cos( 2×Θ1)+1}… (9) とすることができる。屈折率n=1.55の時のLは、
18.347である。Using these conditions, Lmin = (effective luminous flux length at the exit surface) × sin (2 × Θ1) {2 × cos (2 × Θ1) +1} (9) L when the refractive index n = 1.55 is
18.347.
【0015】グラフから本質的に屈折率が高くなるほど
色分解プリズム自体は小型化できることがわかる。It can be seen from the graph that the color separation prism itself can be made smaller as the refractive index becomes higher.
【0016】放送分野に関する標準規格を作る任意団体
の放送技術開発協議会(BTA)の高解像度のHDシス
テムの規定(放送技術開発協議会 技術資料BTA S
−1005−A)においては、推奨の硝種として屈折率
1.612としているため、ゴースト等を考慮したプリ
ズムの光路長は、ほぼ34.0mmとなる。The definition of a high-resolution HD system by the Broadcasting Technology Development Council (BTA) of an arbitrary organization that creates standards in the broadcasting field (Broadcasting Technology Development Council Technical Document BTAS
In -1005-A), the refractive index is set to 1.612 as a recommended glass type, so that the optical path length of the prism in consideration of ghost and the like is approximately 34.0 mm.
【0017】[0017]
【発明が解決しようとする課題】放送用のテレビカメラ
(以下、テレビカメラと略す)は、交換式のレンズを採
用している。レンズの互換性を維持するため、レンズを
テレビカメラに取り付けるためのレンズ取り付け面
(F)から結像面までの空気換算長(以下、FB)が一
定であるという取り決めが行われている。面Fと結像面
の間のガラスの種類(屈折率)が変わっても、いつも撮
像素子上にベストピントがとれるための、取り決めであ
る。A television camera for broadcasting (hereinafter abbreviated as a television camera) employs an interchangeable lens. In order to maintain the interchangeability of the lenses, it has been agreed that the air-equivalent length (hereinafter referred to as FB) from the lens mounting surface (F) for mounting the lens to the television camera to the image forming surface is constant. This is a rule that the best focus can always be obtained on the image sensor even if the type of glass (refractive index) between the surface F and the imaging surface changes.
【0018】また、レンズと結像面の間のガラスの厚み
が球面収差に影響するため、面Fと結像面の間のガラス
の厚みも取り決められている。Further, since the thickness of the glass between the lens and the imaging surface affects the spherical aberration, the thickness of the glass between the surface F and the imaging surface is also determined.
【0019】しかしながら、面Fと結像面の実際の(物
理的な)距離(以下、FBr)は、プリズムの屈折率が
変化することによって変化する。However, the actual (physical) distance (hereinafter, referred to as FBr) between the surface F and the image forming surface changes as the refractive index of the prism changes.
【0020】図7のグラフは、図6のグラフCを変化量
としたものに、プリズムの屈折率が変化することによる
FBr長の変化量のグラフDを付け加えたものである。
変化量は屈折率1.55の時を0とし、そこからの伸び
量として表した。The graph of FIG. 7 is obtained by adding the graph D of the change amount of the FBr length due to the change in the refractive index of the prism to the graph C of FIG.
The amount of change was defined as 0 when the refractive index was 1.55, and expressed as the amount of elongation therefrom.
【0021】図7よりわかるように、プリズムの屈折率
をあげることにより、プリズムの光路長は短くなるもの
の、FBr長はより長くなるのである。As can be seen from FIG. 7, increasing the refractive index of the prism shortens the optical path length of the prism but increases the FBr length.
【0022】最近のテレビカメラは、大衆の高画像への
要求により高解像度を撮影できるものが求められてい
る。しかし、高解像度の撮像素子は、その動作周波数が
高くなるため、熱の放出も現行の2倍から3倍と非常に
多い。さらに、特に放送用のテレビカメラはまだまだ大
きく、高解像度になっても大型化が許されない状況であ
る。ところが、カメラ筐体の大きさを現行と同じとし
て、プリズムの高屈折率化によるプリズムだけの小型化
を図った場合、FBrが伸びてしまい、カメラ筐体内に
収まりきれず、カメラ筐体を大型化せざるをえない問題
が生じる。Recent television cameras are required to be capable of capturing high-resolution images in response to public demand for high images. However, since the operating frequency of a high-resolution imaging device is increased, the amount of heat release is extremely large, ie, two to three times that of the current case. Furthermore, especially television cameras for broadcasting are still large, and it is difficult to increase the size even if the resolution becomes high. However, if the size of the camera housing is the same as the current one and the prism alone is reduced in size by increasing the refractive index of the prism, the FBr grows and cannot fit in the camera housing. There is an inevitable problem.
【0023】また、小型化の要望が強いハンドヘルドの
テレビカメラにおいては、撮影時に十分な光量が与えら
れるとは限らないため、プリズムが通すことのできる光
束は、より明るい光束を通さなければならず、Fnoを
大きくできないという課題を持っている。Further, in a handheld television camera, which has a strong demand for miniaturization, a sufficient amount of light is not always given at the time of shooting, so that a light beam that can pass through the prism must pass a brighter light beam. , Fno cannot be increased.
【0024】[0024]
【課題を解決するための手段】このように、交換レンズ
の互換性を保ち、走査線数が625本を超える高解像度
のテレビカメラ装置に内蔵され、対物レンズと固体撮像
素子の間に配置する色分解プリズムで、対物レンズ側か
ら第1のプリズム、第2のプリズム、第3のプリズムの
3つのプリズム、そして第1と第2のプリズムは空気層
を介する様に構成され、ほぼF1.4のレンズの光束を
通す能力を有するプリズムの場合、前記3つのプリズム
の屈折率は1.6より小さくすることである。As described above, the interchangeability of the interchangeable lens is maintained, and the interchangeable lens is built in a high-resolution television camera device having more than 625 scanning lines, and is disposed between the objective lens and the solid-state image pickup device. In the color separation prism, three prisms of a first prism, a second prism, a third prism, and a first prism and a second prism are configured to pass through an air layer from the objective lens side. In the case of a prism having the ability to pass the light flux of the lens of the above (3), the refractive indices of the three prisms are to be smaller than 1.6.
【0025】また、本発明は、交換レンズの互換性を保
ち、走査線数が625本を超える高解像度のテレビカメ
ラ装置に内蔵され、対物レンズと固体撮像素子の間に配
置し、対物レンズ側から第1のプリズム、第2のプリズ
ム、第3のプリズムの3つのプリズムより構成されて3
色分解とし、前記第1と前記第2のプリズムはそれぞれ
入射面と出射面と透過面の3面を備え空気層を介して配
置され、ほぼF1.4のレンズの光束を通す能力を有す
るプリズムであって、前記3つのプリズムの屈折率ne
はそれぞれ1.6より小さいことを特徴とする色分解光
学系が内蔵されたことを特徴とする。Further, the present invention provides a high-resolution television camera device having more than 625 scanning lines while maintaining the interchangeability of the interchangeable lens, and is disposed between the objective lens and the solid-state image pickup device. From three prisms of a first prism, a second prism, and a third prism.
The first and second prisms are provided with an entrance surface, an exit surface, and a transmission surface, respectively, and are disposed via an air layer, and have a capability of transmitting a light beam of a lens of approximately F1.4. And the refractive indices ne of the three prisms
Is characterized in that a color separation optical system characterized by being smaller than 1.6 is built in.
【0026】前記光学系を使用することにより、プリズ
ム自体の小型化を疎外するものの、テレビカメラシステ
ム全体の大型化を防止しながら、テレビカメラを長時間
安定に使用することが可能となる。By using the optical system, the television camera can be stably used for a long time while preventing the size of the entire television camera system from being reduced, although the miniaturization of the prism itself is alienated.
【0027】[0027]
【発明の実施の形態】本発明による実施形態について、
図面を参照しつつ詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments according to the present invention will be described.
This will be described in detail with reference to the drawings.
【0028】[第1の実施形態]図1は、本発明の第1
の実施形態による色分解光学系の要部断面図である。[First Embodiment] FIG. 1 shows a first embodiment of the present invention.
It is principal part sectional drawing of the color separation optical system by embodiment.
【0029】図1において、Leは対物レンズ、MTは
対物レンズをカメラに接続するためのマウント部、Fは
対物レンズとカメラを接続するフランジ面、Caはカメ
ラ筐体、101は色分解プリズムである。In FIG. 1, Le is an objective lens, MT is a mount for connecting the objective lens to the camera, F is a flange surface connecting the objective lens and the camera, Ca is a camera housing, and 101 is a color separation prism. is there.
【0030】色分解プリズムは、対物レンズ側より第1
のプリズム、第2のプリズム、第3のプリズムから構成
され、第1のプリズムと第2のプリズムの間には空気間
隙105を有し、第2のプリズムと第3のプリズムは接
着によって結合されている。The color separation prism is a first prism from the objective lens side.
, A second prism, and a third prism. An air gap 105 is provided between the first prism and the second prism, and the second prism and the third prism are bonded by bonding. ing.
【0031】対物レンズLeは、不図示の被写体からの
光束を集光し、色分解プリズムへと導光している。な
お、Pはプリント基板である。The objective lens Le collects a light beam from an object (not shown) and guides the light beam to a color separation prism. In addition, P is a printed circuit board.
【0032】プリズム101の第1プリズムは、対物レ
ンズLeのレンズ面にほぼ面して入射面102を有し、
入射面102より入射したレンズからの光を、透過面1
03に施した青反射ダイクロイック膜にて青色光のみを
反射させ、残りを透過させる。反射した青色光は、入射
面102にて全反射し、出射面104を射出して固体撮
像素子111Bに向かう。The first prism of the prism 101 has an entrance surface 102 substantially facing the lens surface of the objective lens Le,
The light from the lens incident from the incident surface 102 is transmitted to the transmission surface 1.
Only the blue light is reflected by the blue reflection dichroic film applied to No. 03, and the rest is transmitted. The reflected blue light is totally reflected on the incident surface 102, exits the emission surface 104, and travels toward the solid-state imaging device 111B.
【0033】透過面103を透過した光は、空気間隙1
05を通って第2プリズムの入射面106より入射す
る。第2プリズムの透過面107に施した赤反射ダイク
ロイック膜は、赤色光のみを反射し、残った緑色光を透
過させる。反射した赤色光は、空気間隙105と接する
第2プリズムの入射面106面にて全反射し、出射面1
08を射出して固体撮像素子111Rに向かう。The light transmitted through the transmission surface 103 passes through the air gap 1
The light is incident on the incident surface 106 of the second prism through 05. The red reflecting dichroic film applied to the transmission surface 107 of the second prism reflects only red light and transmits remaining green light. The reflected red light is totally reflected on the entrance surface 106 of the second prism in contact with the air gap 105, and the exit surface 1
08 to the solid-state imaging device 111R.
【0034】透過面107を透過した緑色光は、第3プ
リズムの入射面109に入射し、出射面110を射出
し、固体撮像素子111Gに向かう。このようにして、
色分解プリズムは光束を分解する。第3プリズムの入射
面109は第2プリズムの透過面107と接して配置さ
れており、その傾斜面に第2プリズムの透過面107と
接している。The green light transmitted through the transmission surface 107 enters the entrance surface 109 of the third prism, exits the exit surface 110, and travels toward the solid-state image pickup device 111G. In this way,
The color separation prism separates the light beam. The entrance surface 109 of the third prism is disposed in contact with the transmission surface 107 of the second prism, and the inclined surface thereof is in contact with the transmission surface 107 of the second prism.
【0035】また、第1プリズムの透過面103と第2
プリズムの入射面106とは空気間隙105を介してほ
ぼ平行して面している。そして、第1プリズムの透過面
103は青色の波長成分だけを反射し、入射面102で
全反射して出射面104から青色成分を出射する角度で
形成され、入射面102と透過面103との角度を角θ
1とする形状としている。また、第2プリズムにおいて
も、入射面106と透過面107との角度を角θ2とす
る形状としている。The transmission surface 103 of the first prism and the second
It faces substantially parallel to the entrance surface 106 of the prism via the air gap 105. Then, the transmission surface 103 of the first prism is formed at an angle at which only the blue wavelength component is reflected, totally reflected by the incident surface 102, and the blue component is emitted from the emission surface 104. Angle to angle θ
1. Also, the second prism is shaped so that the angle between the incident surface 106 and the transmitting surface 107 is an angle θ2.
【0036】図2は、F1.4における屈折率nの1.
54〜1.64と、(θ1max−θ1min)の関係
をグラフ化したものである。(θ1max−θ1mi
n)の値がマイナスになる屈折率の範囲においては、図
1のプリズムの頂角θ1がF1.4を実現するための実
範囲を持たないことを表わす。したがって、第1のプリ
ズムと第2のプリズムの間にエアギャップを持つ色分解
プリズムの場合、屈折率をn=1.6より小さくするこ
とで、F1.4という大口径を実現できる。FIG. 2 shows that the refractive index n at F1.4 is 1.
It is a graph of the relationship between 54 to 1.64 and (θ1max−θ1min). (Θ1max-θ1mi
In the range of the refractive index where the value of n) is negative, it indicates that the apex angle θ1 of the prism in FIG. 1 does not have a real range for realizing F1.4. Therefore, in the case of a color separation prism having an air gap between the first prism and the second prism, a large aperture of F1.4 can be realized by making the refractive index smaller than n = 1.6.
【0037】図3は、プリズムのe線に対する屈折率を
1.574(実施例1)と、1.551(実施例2)と
して、ゴースト等を考慮して設計したプリズムと、従来
例の屈折率1.612のプリズムの主な数値を表にした
ものである。FIG. 3 shows a prism designed in consideration of a ghost and the like, with the refractive index of the prism at e-line being 1.574 (Embodiment 1) and 1.551 (Embodiment 2). The main numerical values of a prism having a ratio of 1.612 are shown in a table.
【0038】図3において、実施例1,2のそれぞれの
プリズムの光路長はともに34.5mmとすることがで
きた。従来例で示した屈折率1.612のプリズムの光
路長34.0と比較してプリズムの長さが0.5ほど大
きくなっている。しかし、FBrは、屈折率1.612
の従来例を基準にすると、その変化量はそれぞれ約−
0.5と約−0.8と、FBrを小さくすることができ
る。In FIG. 3, the optical path length of each of the prisms of Examples 1 and 2 was 34.5 mm. Compared with the optical path length 34.0 of the prism having a refractive index of 1.612 shown in the conventional example, the length of the prism is increased by about 0.5. However, FBr has a refractive index of 1.612.
Based on the conventional example, the amount of change is about-
FBr can be reduced to 0.5 and about -0.8.
【0039】従来例で示した屈折率1.612のプリズ
ムの光路長が34.0より1割程度小さく、従来例のプ
リズムの光路長が34.5より1割程度大きく設計され
ても、屈折率1.612のプリズムの光路長の分は、実
施例の屈折率(実施例1では1.574、実施例2では
1.551)に置き換わるので、FBrを小さくできる
ことには変わりはない。Even if the optical path length of the prism having a refractive index of 1.612 shown in the conventional example is designed to be about 10% smaller than 34.0, and the optical path length of the conventional prism is designed to be about 10% larger than 34.5, the refraction will not occur. Since the optical path length of the prism having the ratio of 1.612 is replaced with the refractive index of the embodiment (1.574 in the first embodiment and 1.551 in the second embodiment), there is no change in that the FBr can be reduced.
【0040】図3の表中に、e線の分散を示している
が、実施例1、実施例2共に実施例で示す従来例の分散
(46.5)の近傍に設定し、レンズの色収差に与える
影響は従来例と変えないことが可能となっている。The dispersion of e-ray is shown in the table of FIG. 3. In both the first and second embodiments, the chromatic aberration of the lens is set near the dispersion (46.5) of the conventional example shown in the embodiment. Can be kept unchanged from the conventional example.
【0041】そして、好ましくは、プリズムの屈折率n
eを、1.55<ne<1.575、として、その分散
νeを、42.5<νe<50.5、の硝子材を用いる
ことが望ましい。また、前述の実施例のように、第1プ
リズムと第2プリズムの両頂角を、θ1=26.5度、
θ2=39.75度とするとよい。Then, preferably, the refractive index n of the prism
It is desirable to use a glass material with e being 1.55 <ne <1.575 and a dispersion νe of 42.5 <νe <50.5. Further, as in the above-described embodiment, both apex angles of the first prism and the second prism are set to θ1 = 26.5 degrees,
It is preferable to set θ2 = 39.75 degrees.
【0042】また図3の表の最後に、第1プリズムの頂
角(θ1)と第2プリズムの頂角(θ2)を示した。こ
れらは、条件式(1),(2),(3)を考慮し、実施
例と従来例で異なったものである。The apex angle (θ1) of the first prism and the apex angle (θ2) of the second prism are shown at the end of the table of FIG. These are different between the embodiment and the conventional example in consideration of the conditional expressions (1), (2) and (3).
【0043】上述したように、本実施形態では、屈折率
nを1.60より小さい値とすることが好ましいとした
が、あまりに小さいと色分解プリズムレンズの形態サイ
ズが大きくなるなるので、小さい値にも限度があること
は技術常識的に判断すればよい。As described above, in the present embodiment, it is preferable that the refractive index n be smaller than 1.60. However, if the refractive index n is too small, the size of the color separation prism lens becomes large. It is only necessary to judge that there is a limit based on technical common sense.
【0044】[0044]
【発明の効果】以上説明してきたように、本発明のプリ
ズムを使用することで、F1.4という大口径を実現し
つつ、フランジ面から撮像面までの距離を小さく保つこ
とができる。これにより、高解像度の撮像素子が多大な
熱を出すようになっても、電気基板との距離を十分に保
つことが可能であり、結果的にテレビカメラシステムの
大型化を防止することができる。As described above, by using the prism of the present invention, the distance from the flange surface to the imaging surface can be kept small while realizing a large aperture of F1.4. Thereby, even if the high-resolution image sensor emits a large amount of heat, it is possible to keep a sufficient distance from the electric board, and as a result, it is possible to prevent the TV camera system from being enlarged. .
【図1】本発明の高解像度の撮像カメラの要部概略図で
ある。FIG. 1 is a schematic diagram of a main part of a high-resolution imaging camera according to the present invention.
【図2】本発明の屈折率とプリズム頂角の存在範囲の関
係図である。FIG. 2 is a diagram showing the relationship between the refractive index and the existence range of the prism apex angle according to the present invention.
【図3】本発明の実施例の屈折率を指標とする特性表で
ある。FIG. 3 is a characteristic table in which a refractive index of an example of the present invention is used as an index.
【図4】従来の技術を説明する要部概略図である。FIG. 4 is a schematic diagram of a main part for explaining a conventional technique.
【図5】従来例におけるFnoとプリズム頂角の関係図
である。FIG. 5 is a diagram showing a relationship between Fno and a prism apex angle in a conventional example.
【図6】従来例におけるFnoとプリズム光路長の関係
図である。FIG. 6 is a relationship diagram between Fno and a prism optical path length in a conventional example.
【図7】従来例におけるFnoとフランジ面と結像面の
実距離の関係図である。FIG. 7 is a diagram showing a relationship between Fno and a real distance between a flange surface and an image forming surface in a conventional example.
【図8】従来例の条件を説明する図である。FIG. 8 is a diagram illustrating conditions of a conventional example.
101,1001 プリズム 102,1002 入射面 103,1003 透過面 104,1004 出射面 105,1005 空気間隙 106,1006 入射面 107,1007 透過面 108,1008 出射面 109,1009 入射面 110,1010 出射面 111B,R,G 撮像部 Le 結像レンズ MT マウント部 F 接触部 101, 1001 prism 102, 1002 entrance plane 103, 1003 transmission plane 104, 1004 exit plane 105, 1005 air gap 106, 1006 entrance plane 107, 1007 transmission plane 108, 1008 exit plane 109, 1009 entrance plane 110, 1010 exit plane 111B , R, G imaging unit Le imaging lens MT mount F contact
Claims (10)
テレビカメラ装置に内蔵され、対物レンズと固体撮像素
子の間に配置し、前記対物レンズ側から第1のプリズ
ム、第2のプリズム、第3のプリズムの順に3つのプリ
ズムより構成されて3色を分解し、第1と第2のプリズ
ムはそれぞれ入射面と出射面と透過面の3面を備え空気
層を介して配置され、ほぼF1.4の前記対物レンズの
光束を通す能力を有する色分解プリズムであって、前記
3つのプリズムの屈折率neはそれぞれ1.6より小さ
いことを特徴とする色分解光学系。1. A high-definition television camera device having more than 625 scanning lines, is disposed between an objective lens and a solid-state imaging device, and includes a first prism, a second prism, The third prism is composed of three prisms in this order and separates the three colors. The first and second prisms each have three surfaces of an entrance surface, an exit surface, and a transmission surface, and are arranged via an air layer. A color separating optical system having a capability of transmitting the light beam of the objective lens of F1.4, wherein the refractive indices ne of the three prisms are each smaller than 1.6.
記入射面と前記透過面との頂角(θ1)が26.5度で
あることを特徴とする請求項3記載の色分解光学系。4. The color separation optical system according to claim 3, wherein a vertex angle (θ1) between the incident surface and the transmission surface of the first prism of the color separation prism is 26.5 degrees.
記入射面と前記透過面との頂角(θ2)が39.75度
であることを特徴とする請求項4記載の色分解光学系。5. The color separation optical system according to claim 4, wherein a vertex angle (θ2) between the incident surface and the transmission surface of the second prism of the color separation prism is 39.75 degrees.
625本を超える高解像度のテレビカメラ装置に内蔵さ
れ、対物レンズと固体撮像素子の間に配置し、対物レン
ズ側から第1のプリズム、第2のプリズム、第3のプリ
ズムの3つのプリズムより構成されて3色分解とし、前
記第1と前記第2のプリズムはそれぞれ入射面と出射面
と透過面の3面を備え空気層を介して配置され、ほぼF
1.4のレンズの光束を通す能力を有するプリズムであ
って、前記3つのプリズムの屈折率neはそれぞれ1.
6より小さいことを特徴とする色分解光学系が内蔵され
たテレビカメラ。6. A high-resolution television camera device having more than 625 scanning lines, while maintaining the interchangeability of the interchangeable lens, disposed between the objective lens and the solid-state image sensor, and the first lens from the objective lens side. The first and second prisms are each composed of three prisms of a prism, a second prism, and a third prism, and each of the first and second prisms has an entrance surface, an exit surface, and a transmission surface. And is arranged approximately through F
A prism having the ability to transmit the light beam of the lens of 1.4, wherein the refractive indices ne of the three prisms are each 1.
A television camera incorporating a color separation optical system, wherein the color separation optical system is smaller than 6.
内蔵されたテレビカメラ。7. The television camera according to claim 6, wherein the dispersion νe of the color separation prism satisfies 42.5 ≦ νe ≦ 50.5.
内蔵されたテレビカメラ。8. The television camera having a built-in color separation optical system according to claim 7, wherein the refractive index ne of the color separation prism satisfies 1.55 <ne <1.575.
記入射面と前記透過面との頂角(θ1)が26.5度で
あることを特徴とする請求項8記載の色分解光学系が内
蔵されたテレビカメラ。9. The color separation optical system according to claim 8, wherein a vertex angle (θ1) between the incident surface and the transmission surface of the first prism of the color separation prism is 26.5 degrees. Built-in TV camera.
ムの前記入射面と前記透過面との頂角(θ2)が39.
75度であることを特徴とする請求項9記載の色分解光
学系が内蔵されたテレビカメラ。10. A vertex angle (θ2) between the entrance surface and the transmission surface of the second prism of the color separation prism is 39.
10. A television camera having a built-in color separation optical system according to claim 9, wherein the angle is 75 degrees.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34359199A JP4378004B2 (en) | 1999-12-02 | 1999-12-02 | Color separation optical system and television camera using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34359199A JP4378004B2 (en) | 1999-12-02 | 1999-12-02 | Color separation optical system and television camera using the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001159705A true JP2001159705A (en) | 2001-06-12 |
JP2001159705A5 JP2001159705A5 (en) | 2007-02-01 |
JP4378004B2 JP4378004B2 (en) | 2009-12-02 |
Family
ID=18362720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34359199A Expired - Fee Related JP4378004B2 (en) | 1999-12-02 | 1999-12-02 | Color separation optical system and television camera using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4378004B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007072078A (en) * | 2005-09-06 | 2007-03-22 | Canon Inc | Imaging system and imaging device having the same |
JP2007110402A (en) * | 2005-10-13 | 2007-04-26 | Canon Inc | Imaging unit and imaging apparatus with same |
JP2013105122A (en) * | 2011-11-16 | 2013-05-30 | Canon Inc | Color separation optical system and imaging apparatus including the same |
CN103747186A (en) * | 2013-12-30 | 2014-04-23 | 华中科技大学 | Time-division three-path image acquisition device and calibration method for same |
CN103780844A (en) * | 2013-12-30 | 2014-05-07 | 华中科技大学 | Time-sharing two-path image acquiring device and calibration method thereof |
-
1999
- 1999-12-02 JP JP34359199A patent/JP4378004B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007072078A (en) * | 2005-09-06 | 2007-03-22 | Canon Inc | Imaging system and imaging device having the same |
JP2007110402A (en) * | 2005-10-13 | 2007-04-26 | Canon Inc | Imaging unit and imaging apparatus with same |
JP2013105122A (en) * | 2011-11-16 | 2013-05-30 | Canon Inc | Color separation optical system and imaging apparatus including the same |
CN103747186A (en) * | 2013-12-30 | 2014-04-23 | 华中科技大学 | Time-division three-path image acquisition device and calibration method for same |
CN103780844A (en) * | 2013-12-30 | 2014-05-07 | 华中科技大学 | Time-sharing two-path image acquiring device and calibration method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4378004B2 (en) | 2009-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180106979A1 (en) | Optical image capturing system | |
US20180052305A1 (en) | Optical image capturing system | |
JP4336409B2 (en) | Beam splitting prism system or imaging device | |
JP2008294819A (en) | Image pick-up device | |
JP2010160312A (en) | Lens adapter for visible light/infrared light photography | |
GB2173610A (en) | Dichroic beam splitter having four prisms | |
US7515818B2 (en) | Image capturing apparatus | |
JP2002229125A (en) | Projection type picture display device and picture display system | |
JP4579384B2 (en) | Color synthesizing optical system and projection display apparatus having the color synthesizing optical system | |
JP4378004B2 (en) | Color separation optical system and television camera using the same | |
JPH08275182A (en) | Television camera in common use for color mode and infrared ray mode | |
JPS6396618A (en) | Image pickup device | |
JP3125182B2 (en) | Color separation prism assembly for C-mount color TV | |
JP2002365413A (en) | Color separation optical system | |
JP2010102281A (en) | Lens adapter for visible light/infrared light photography | |
US20220342226A1 (en) | Beam Splitter Plate, Beam Splitter Apparatus, Beam Splitter Lens Module, Camera, and Electronic Device | |
US8659833B2 (en) | Color separating optical system and image pickup apparatus including the same | |
JPS6221313B2 (en) | ||
JPH08220585A (en) | Electronic camera | |
WO2012053220A1 (en) | Camera device and method for producing camera device | |
JPH02135301A (en) | Color separation optical system | |
JP4144816B2 (en) | TV lens with still shooting function | |
JP2011107285A (en) | Light quantity splitting prism and imaging apparatus | |
JP2004258497A (en) | Color separation optical system for television camera | |
JPH08304611A (en) | Beam splitting prism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061130 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061130 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20090324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090901 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090914 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120918 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130918 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |