[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001157826A - Anisotropic polyethylene hollow-fiber porous membrane - Google Patents

Anisotropic polyethylene hollow-fiber porous membrane

Info

Publication number
JP2001157826A
JP2001157826A JP2000068852A JP2000068852A JP2001157826A JP 2001157826 A JP2001157826 A JP 2001157826A JP 2000068852 A JP2000068852 A JP 2000068852A JP 2000068852 A JP2000068852 A JP 2000068852A JP 2001157826 A JP2001157826 A JP 2001157826A
Authority
JP
Japan
Prior art keywords
liquid
polyethylene
membrane
pore size
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000068852A
Other languages
Japanese (ja)
Inventor
Noboru Kubota
昇 久保田
Hiroshi Hatayama
博司 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2000068852A priority Critical patent/JP2001157826A/en
Publication of JP2001157826A publication Critical patent/JP2001157826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic polyethylene hollow-fiber porous membrane suitable for a filtering use adapted to the removal of turbidity or the like and having both of dense pores and high water transmitting capacity. SOLUTION: An anisotropic polyethylene hollow-fiber porous membrane has a membrane interior dense type sponge-like anistotropic structure having a minimum pore size layer in its membrane cross section and having an outer surface pore size of 1 μm or more, an inner surface pore size of 1 μm or more and a mean pore size of 0.8 μm or less and the void ratio of the porous membrane is 50-below 90%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、除濁等の濾過用途
に好適な、緻密な細孔と高い透水性能を持つポリエチレ
ン製中空糸状多孔膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyethylene hollow fiber porous membrane having fine pores and high water permeability, which is suitable for filtration such as turbidity.

【0002】[0002]

【従来の技術】精密濾過膜や限外濾過膜等の多孔膜によ
る濾過操作は、自動車産業(電着塗料回収再利用システ
ム)、半導体産業(超純水製造)、医薬食品産業(除
菌、酵素精製)などの多方面にわたって実用化されてい
る。特に近年は河川水等を除濁して飲料水や工業用水を
製造するための手法としても多用されつつある。膜の素
材としては、セルロース系、ポリアクリロニトリル系、
ポリオレフィン系等多種多様のものが用いられている。
中でもポリオレフィン系重合体(ポリエチレン、ポリプ
ロピレン、ポリフッ化ビニリデン等)は、疎水性のため
に耐水性が高いため水系濾過膜の素材として適してお
り、多用されている。これらポリオレフィン系重合体の
中でも、廃棄時に問題となるハロゲン元素を含まず、か
つ化学反応性の高い3級炭素が少ないために膜洗浄時の
薬品劣化が起こりにくく長期使用耐性が期待でき、かつ
安価であるポリエチレンが、今後特に有望と考えられ
る。
2. Description of the Related Art Filtration operations using porous membranes such as microfiltration membranes and ultrafiltration membranes are carried out in the automobile industry (electrodeposition paint recovery and reuse system), the semiconductor industry (ultra pure water production), the pharmaceutical food industry (sterilization, It has been put to practical use in many fields such as enzyme purification. Particularly in recent years, it has been widely used as a method for producing drinking water and industrial water by turbidizing river water and the like. Materials for the membrane include cellulose, polyacrylonitrile,
A wide variety of materials such as polyolefins are used.
Among them, polyolefin-based polymers (polyethylene, polypropylene, polyvinylidene fluoride, etc.) are suitable as a material for aqueous filtration membranes because of their high water resistance due to their hydrophobicity and are widely used. Among these polyolefin polymers, they do not contain halogen elements, which are problematic at the time of disposal, and have a low level of highly reactive tertiary carbon. Is particularly promising in the future.

【0003】ポリエチレン膜としては、特開平3−42
025号公報に開示されているような、均一な3次元の
多孔構造(上記公報第3頁右上欄10−11行目)の膜
が従来より知れられている。この均一な3次元の多孔構
造とは、膜断面方向に孔径変化がほとんどなく、膜断面
部分の任意の2点部分どうしでの孔径(および孔径分
布)がほぼ等しい構造を意味する。
As a polyethylene film, Japanese Patent Application Laid-Open No. 3-42
A film having a uniform three-dimensional porous structure (page 3, upper right column, lines 10-11) as disclosed in Japanese Patent No. 025 is conventionally known. The uniform three-dimensional porous structure means a structure in which there is almost no change in the pore diameter in the membrane cross-sectional direction, and the pore diameters (and the pore diameter distribution) at any two points in the membrane cross-section are almost equal.

【0004】[0004]

【発明が解決しようとする課題】本発明は、除濁等の濾
過用途に好適な、緻密な細孔と高い透水性能を持つポリ
エチレン製中空糸状多孔膜を提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a polyethylene hollow fiber membrane having fine pores and high water permeability, which is suitable for filtration such as turbidity.

【0005】[0005]

【課題を解決するための手段】本発明は、(1)膜断面
内に最小孔径層を持ち、外表面孔径および内表面孔径が
ともに1μm以上でかつ平均孔径が0.8μm以下であ
る、空孔率50%以上95%未満の膜内部緻密型異方性
スポンジ構造ポリエチレン中空糸状多孔膜、(2)平均
孔径が0.03μm以上である、上記(1)記載の膜内
部緻密型異方性スポンジ構造ポリエチレン中空糸状多孔
膜、(3)平均孔径が0.05μm以上0.6μm以下
である、上記(1)記載の膜内部緻密型異方性スポンジ
構造ポリエチレン中空糸状多孔膜、(4)中空糸内径が
0.4mm以上3mm以下でかつ膜厚が0.05mm以
上1mm以下である、上記(1)から(3)に記載の外
面緻密型異方性スポンジ構造ポリエチレン中空糸状多孔
膜、に関する。
According to the present invention, there is provided (1) an empty space having a minimum pore size layer in the membrane cross section, wherein both the outer surface pore size and the inner surface pore size are 1 μm or more and the average pore size is 0.8 μm or less. The dense hollow anisotropic sponge-structured polyethylene hollow fiber porous membrane having a porosity of 50% or more and less than 95%, (2) the dense internal anisotropic membrane according to the above (1), which has an average pore size of 0.03 μm or more Polyethylene hollow fiber-like porous membrane with sponge structure, (3) a dense hollow anisotropic sponge-structured polyethylene hollow fiber-like porous membrane according to (1) above, wherein the average pore size is 0.05 μm or more and 0.6 μm or less, (4) hollow The present invention relates to the above-mentioned (1) to (3), an outer dense anisotropic sponge-structured polyethylene hollow fiber-like porous membrane according to (1) to (3), wherein the inner diameter of the yarn is from 0.4 mm to 3 mm and the film thickness is from 0.05 mm to 1 mm.

【0006】以下、本発明の詳細について記述する。本
発明膜は、ポリエチレンからなる。ポリエチレンは前述
のように、1)化学反応性に富む3級炭素含量が少ない
ため、3級炭素含量の多いポリプロピレン等に比べて薬
品洗浄等による化学劣化が少ない、即ち長期耐久性が期
待できる、2)廃棄時に問題となるハロゲン元素を含ま
ない、3)安価である、といった利点を持つ。ポリエチ
レンには高密度ポリエチレンと低密度ポリエチレンがあ
るが、膜強度の点から高密度ポリエチレンが好ましい。
また、ポリエチレンには種々の分子量のものが存在する
が、膜強度の点から粘度平均分子量10万以上、さらに
は20万以上が好適である。ポリエチレンの粘度平均分
子量(Mv)は、135℃におけるデカリン溶液の固有
粘度([η])を測定して、下記式より求めることがで
きる(J.Brandrup and E.H.Imm
ergut(Editors)、Polymer Ha
ndbook(2nd Ed.)、IV−7頁、Joh
n Wiley & Sons、New York、1
975年、あるいは、岡叡太郎等編、プラスチック材料
講座4ポリエチレン樹脂、48頁表3・4のd、日刊工
業新聞社、1969年)。 [η]=6.8×10-4×(Mv)0.67
Hereinafter, the present invention will be described in detail. The film of the present invention is made of polyethylene. As described above, polyethylene has 1) a low tertiary carbon content, which is rich in chemical reactivity, and therefore less chemical degradation due to chemical washing and the like than polypropylene and the like having a high tertiary carbon content, that is, long-term durability can be expected. It has the advantages of 2) not containing halogen element which is a problem at the time of disposal, and 3) being inexpensive. Polyethylene includes high-density polyethylene and low-density polyethylene, and high-density polyethylene is preferable from the viewpoint of film strength.
Further, polyethylene has various molecular weights, and from the viewpoint of film strength, the viscosity average molecular weight is preferably 100,000 or more, and more preferably 200,000 or more. The viscosity average molecular weight (Mv) of polyethylene can be determined from the following equation by measuring the intrinsic viscosity ([η]) of the decalin solution at 135 ° C. (J. Brandrup and E.H.Imm)
ergut (Editors), Polymer Ha
ndbook (2nd Ed.), page IV-7, Joh
n Wiley & Sons, New York, 1
975, or edited by Eitaro Oka et al., Plastic Materials Course 4 Polyethylene resin, p. 48, Table 3.4 d, Nikkan Kogyo Shimbun, 1969). [Η] = 6.8 × 10 −4 × (Mv) 0.67

【0007】なお、ポリエチレンは、必要に応じて少量
の酸化防止剤、紫外線吸収剤等の安定剤を含んでいても
よい。本発明膜の断面構造は、スポンジ構造である。ス
ポンジ構造とは、膜断面に膜厚の10%を超えるような
径(円形近似直径)の粗大孔(マクロボイド)を実質的
に持たない構造を指す。マクロボイドが膜断面に存在す
ると、膜強度が低下して好ましくない。
[0007] The polyethylene may contain a small amount of a stabilizer such as an antioxidant or an ultraviolet absorber, if necessary. The cross-sectional structure of the film of the present invention is a sponge structure. The sponge structure refers to a structure having substantially no coarse pores (macrovoids) having a diameter (circular approximate diameter) exceeding 10% of the film thickness in the film cross section. When macrovoids exist in the cross section of the film, the film strength is undesirably reduced.

【0008】本発明膜の形状は、中空糸状である。中空
糸膜は、実際に濾過に使用する形態(モジュール)にす
る場合、平膜(シート状膜)に比べて単位体積当たりの
充填膜面積が多くでき、体積当たりの濾過処理能力を高
くできる点で有利である。中空糸膜の内径は、小さすぎ
ると中空糸管内を流れるの液の抵抗(管内厚損)が大き
くなるため不利であり、逆に大きすぎると単位体積当た
りの充填膜面積が低下するため不利である。中空糸膜の
内径は、0.4mm以上3mm以下が好適である。ま
た、中空糸膜の膜厚は、小さすぎると膜強度が低下して
不利であり、逆に大きすぎると濾過抵抗が大きくなって
透水性能が低下するため不利である。中空糸膜の膜厚
は、0.05mm以上1mm以下が好適である。
[0008] The shape of the membrane of the present invention is a hollow fiber. When the hollow fiber membrane is formed into a form (module) that is actually used for filtration, the packed membrane area per unit volume can be increased as compared with a flat membrane (sheet membrane), and the filtration capacity per volume can be increased. Is advantageous. If the inner diameter of the hollow fiber membrane is too small, it is disadvantageous because the resistance of the liquid flowing through the hollow fiber tube (thickness loss in the pipe) increases, and if it is too large, the packed membrane area per unit volume decreases, which is disadvantageous. is there. The inner diameter of the hollow fiber membrane is preferably 0.4 mm or more and 3 mm or less. On the other hand, if the thickness of the hollow fiber membrane is too small, the membrane strength is reduced, which is disadvantageous. On the other hand, if it is too large, the filtration resistance is increased, and the water permeability is reduced, which is disadvantageous. The thickness of the hollow fiber membrane is preferably 0.05 mm or more and 1 mm or less.

【0009】本発明膜は、膜断面内(膜内部)に最小孔
径層(最も緻密な層)を持つ膜内部緻密型の異方性構造
をとることを大きな特徴として有する。膜断面内とは、
膜の外表面および内表面を除いた断面部分を指す。本発
明膜の最小孔径層は、この外表面でも内表面でもない断
面部分に存在する。最小孔径層の厚みは、膜厚全体の5
0%以下、好ましくは20%以下、より好ましくは10
%以下である。異方性構造とは、膜断面方向において孔
径が一様(均一)ではなく、変化する構造を指す。本発
明膜では、膜断面部分のある位置に存在する最小孔径層
部分から外表面および内表面に向けて孔径が連続的に変
化し、その基本的な変化の方向は、膜断面部分のある位
置に存在する最小孔径層部分から外表面および内表面に
向かって孔径が増大する方向である。
The film of the present invention is characterized in that it has a dense anisotropic structure having a minimum pore size layer (the densest layer) in a cross section of the film (inside of the film). What is within the membrane section?
Refers to the cross-sectional portion excluding the outer surface and inner surface of the membrane. The minimum pore size layer of the membrane of the present invention exists in a cross-sectional portion that is neither the outer surface nor the inner surface. The thickness of the minimum pore size layer is 5
0% or less, preferably 20% or less, more preferably 10% or less.
% Or less. The anisotropic structure refers to a structure in which the pore diameter is not uniform (uniform) but changes in the membrane cross-sectional direction. In the membrane of the present invention, the pore diameter continuously changes from the smallest pore diameter layer portion present at a position of the membrane cross section toward the outer surface and the inner surface, and the basic direction of the change is the position of the membrane cross section at a certain position. Is the direction in which the pore size increases from the minimum pore size layer portion existing on the outer surface and the inner surface.

【0010】膜の濾過抵抗(透水性能)は、最小孔径層
の厚みに支配される。最小孔径層が厚いほど膜全体の濾
過抵抗は大きくなり、透水性能は低下する。特開平3−
42025号公報に開示されているような均一な3次元
の多孔構造では、いわば膜断面全体が最小孔径層である
に等しくなり、濾過抵抗が高くなって(透水性能が下が
って)不利である。一方、本発明膜のように、膜断面全
体ではなく膜内部のみに最小孔径層を配置し、最小孔径
層以外の部分は、最小孔径層よりも大孔径にして濾過抵
抗を極力増やさない工夫をすることで、緻密な細孔と高
い透水性能を持つポリエチレン製中空糸状多孔膜の提供
が可能になる。この場合、膜内部の最小孔径層(緻密な
細孔)が膜全体としての濾過(篩い分け)機能を規定
し、最小孔径層以外の部分は、膜の濾過抵抗増大には極
力寄与せずに膜の形態、強度維持のための支持層的機能
を受け持つ。
[0010] The filtration resistance (permeability) of the membrane is governed by the thickness of the minimum pore size layer. As the minimum pore diameter layer is thicker, the filtration resistance of the entire membrane increases, and the water permeability decreases. JP-A-3-
In a uniform three-dimensional porous structure as disclosed in Japanese Patent No. 42025, the whole membrane cross section is equivalent to the minimum pore diameter layer, and filtration resistance is increased (water permeability is reduced), which is disadvantageous. On the other hand, as in the case of the membrane of the present invention, the minimum pore size layer is arranged only in the inside of the membrane instead of the entire membrane cross section, and the portion other than the minimum pore size layer is designed to have a larger pore size than the minimum pore size layer so as to minimize the filtration resistance. By doing so, it becomes possible to provide a polyethylene hollow fiber-like porous membrane having dense pores and high water permeability. In this case, the minimum pore size layer (dense pores) inside the membrane defines the filtration (sieving) function of the entire membrane, and the portions other than the minimum pore size layer do not contribute as much as possible to the increase in filtration resistance of the membrane. Responsible for the function of a support layer for maintaining the form and strength of the membrane.

【0011】さらに、本発明のような膜内部緻密型膜の
場合、外圧式濾過(膜の濾過方向が外表面から内表面)
においては最小孔径層よりも大孔径である最小孔径層よ
りも外表面側の断面部分が、そして内圧式濾過(膜の濾
過方向が内表面から外表面)においては最小孔径層より
も大孔径である最小孔径層よりも内表面側の断面部分
が、それぞれ濁液等の濾過時には最小孔径層に対するプ
レフィルター的役目を果たす効果が期待できる。
Further, in the case of the dense membrane inside the membrane as in the present invention, external pressure filtration (the filtration direction of the membrane is from the outer surface to the inner surface)
In the above, the cross-sectional portion on the outer surface side of the smallest pore diameter layer having a larger pore diameter than the smallest pore diameter layer, and in the internal pressure filtration (the filtration direction of the membrane is from the inner surface to the outer surface), the pore diameter is larger than the smallest pore diameter layer. The cross-section on the inner surface side of a certain minimum pore size layer can be expected to serve as a pre-filter for the minimum pore size layer when filtering a turbid solution or the like.

【0012】プレフィルターとは、孔径の小さなフィル
ターの前段に入れる孔径の大きなフィルターのことで、
プレフィルターを設置することにより、後段の孔径の小
さなフィルターへはプレフィルターによってあらかじめ
大きな濁質等は除去された比較的清澄な液が送られるこ
とになって、濾過運転の安定化と膜の長寿命化が果たさ
れ、前段と後段を含めた全体の膜濾過処理のコストが下
がる効果(プレフィルター効果)が期待できる。本発明
膜の場合、最小孔径層が後段の孔径の小さなフィルター
に相当し、外圧式濾過の場合は最小孔径層よりも外表面
側が、内圧式濾過の場合は最小孔径層よりも内表面側
が、それぞれ前段のプレフィルターに相当することが期
待され、上述のプレフィルター効果の発現が期待でき
る。最小孔径層の存在位置および異方性構造の確認は、
膜断面の電子顕微鏡観察によって実施することができ
る。
A pre-filter is a filter having a large pore size which is placed in front of a filter having a small pore size.
By installing a pre-filter, a relatively clear liquid from which large turbidity etc. has been removed in advance by the pre-filter is sent to the subsequent small-diameter filter, stabilizing the filtration operation and lengthening the membrane. The service life can be prolonged, and an effect (pre-filter effect) of reducing the cost of the entire membrane filtration process including the former stage and the latter stage can be expected. In the case of the membrane of the present invention, the minimum pore size layer corresponds to a filter having a small pore size at the subsequent stage.In the case of external pressure filtration, the outer surface side is smaller than the minimum pore size layer, and in the case of internal pressure filtration, the inner surface side is smaller than the minimum pore size layer. Each is expected to correspond to the pre-filter in the former stage, and the above-mentioned pre-filter effect can be expected to be exhibited. Confirmation of the location of the minimum pore size layer and the anisotropic structure
It can be carried out by observing the cross section of the film with an electron microscope.

【0013】本発明膜の外表面および内表面の孔径は1
μm以上である。内表面および外表面の孔径が大きいほ
ど透水性能的には有利であるが、あまり大きいと膜強度
的に不利になるので、10μm以下が好ましい。外表面
および内表面の孔径は、外表面または内表面の電子顕微
鏡観察像において、外表面または内表面に観察される孔
の孔面積比重50%に相当する孔径で表現する。孔面積
比重50%に相当する孔径とは、表面に観察される(存
在する)各孔に対し、孔径の小さい方から、または大き
い方から順に各孔の孔面積を和してゆき、その和した値
が、各孔の孔面積の総和の50%に達するところの孔の
孔径を指す。観察される孔が円形でない場合(楕円形
等)の孔径は、円形近似した場合の直径(その孔の孔面
積と同面積の円の直径)を用いる。
The pore size of the outer surface and the inner surface of the membrane of the present invention is 1
μm or more. Larger pores on the inner surface and outer surface are more advantageous in terms of water permeability, but too large ones are disadvantageous in terms of membrane strength. The pore diameter of the outer surface and the inner surface is represented by a pore diameter corresponding to a pore area specific gravity of 50% of the pores observed on the outer surface or the inner surface in an electron microscope observation image of the outer surface or the inner surface. The pore diameter corresponding to the pore area specific gravity of 50% is defined as the sum of the pore areas of the pores observed (existing) on the surface in order from the smaller pore diameter or the larger pore diameter in order from the larger pore. The obtained value indicates the hole diameter of the hole at which 50% of the total of the hole area of each hole is reached. When the hole to be observed is not circular (such as an elliptical shape), the diameter in the case of circular approximation (diameter of a circle having the same area as the hole area of the hole) is used.

【0014】膜の平均孔径は0.8μm以下、好ましく
は0.03μm以上0.8μm以下、より好ましくは
0.05μm以上0.6μm以下である。膜の平均孔径
は、ASTM:F316−86記載の方法(別称:ハー
フドライ法)に従って決定できる。なお、このハーフド
ライ法によって決定されるのは、膜の最小孔径層の平均
孔径である。本発明においてハーフドライ法による平均
孔径の測定は、約10cm長の中空糸膜に対し、使用液
体にエタノールを用い、25℃、昇圧速度0.01at
m/秒での測定を標準測定条件とした。平均孔径[μ
m]は下記式より求まる。
The average pore size of the membrane is 0.8 μm or less, preferably 0.03 μm or more and 0.8 μm or less, and more preferably 0.05 μm or more and 0.6 μm or less. The average pore size of the membrane can be determined according to the method described in ASTM: F316-86 (also known as half-dry method). What is determined by the half-dry method is the average pore size of the minimum pore size layer of the membrane. In the present invention, the measurement of the average pore diameter by the half-dry method is carried out by using ethanol as a liquid to be used and measuring the hollow fiber membrane having a length of about 10 cm at 25 ° C. and a pressure increase rate of 0.01 at
The measurement at m / sec was set as a standard measurement condition. Average pore size [μ
m] is obtained from the following equation.

【0015】[0015]

【数1】 (Equation 1)

【0016】エタノールの25℃における表面張力は2
1.97dynes/cmである(日本化学会編、化学
便覧基礎編改訂3版、II−82頁、丸善(株)、19
84年)ので、本発明における標準測定条件の場合は、 平均孔径[μm]=62834/(ハーフドライ空気圧
力[Pa]) にて求めることができる。ハーフドライ法により求まる
膜の平均孔径(膜の最小孔径層の平均孔径)が大きい
と、透過を阻止したい物質、例えば濁質等の透過の阻止
性が低下してしまうため有効な濾過分離ができない。逆
に膜の平均孔径が小さすぎると透水性能が低下して濾過
処理速度が低下するため、この場合も有効な濾過分離が
できない。膜の平均孔径は、0.8μm以下、好ましく
は0.03μm以上0.8μm以下、より好ましくは
0.05μm以上0.6μm以下が好適である。
The surface tension of ethanol at 25 ° C. is 2
1.97 dynes / cm (Chemical Handbook Basic Edition, 3rd revised edition, edited by The Chemical Society of Japan, page II-82, Maruzen Co., Ltd., 19)
1984), the average pore diameter [μm] = 62834 / (half dry air pressure [Pa]) in the case of the standard measurement conditions in the present invention. If the average pore size of the membrane determined by the half-dry method (the average pore size of the minimum pore size layer of the membrane) is large, the ability to prevent permeation of a substance to be prevented from permeating, for example, a turbid substance, is reduced, so that effective filtration and separation cannot be performed. . Conversely, if the average pore size of the membrane is too small, the water permeability will decrease and the filtration rate will decrease, and in this case also, effective filtration and separation will not be possible. The average pore size of the membrane is preferably 0.8 μm or less, preferably 0.03 μm or more and 0.8 μm or less, and more preferably 0.05 μm or more and 0.6 μm or less.

【0017】本発明膜の空孔率は50%以上95%以
下、好ましくは60%以上90%以下である。空孔率が
小さいと透水性能が低くなって不利であり、逆に大きす
ぎると膜強度が低くなって不利である。空孔率は、以下
の式より決定できる。
The porosity of the film of the present invention is from 50% to 95%, preferably from 60% to 90%. If the porosity is small, the water permeability is low, which is disadvantageous. If the porosity is too large, the film strength is low, which is disadvantageous. The porosity can be determined by the following equation.

【0018】[0018]

【数2】 (Equation 2)

【0019】ここに、湿潤膜とは、孔内は水が満たされ
ているが中空部内は水が入っていない状態の膜を指し、
具体的には、10〜20cm長のサンプル膜をエタノー
ル中に浸漬して孔内をエタノールで満たした後に水浸漬
を4〜5回繰り返して孔内を充分に水で置換し、しかる
後に中空糸の一端を手で持って5回程よく振り、さらに
他端に手を持ちかえてまた5回程よく振って中空部内の
水を除去することで得ることができる。乾燥膜は、前記
湿潤膜の重量測定後にオーブン中で例えば80℃で恒量
になるまで乾燥させて得ることができる。膜体積は、 膜体積[cm3]=π{(外径[cm]/2)2−(内径
[cm]/2)2}(膜長[cm]) より求めることができる。膜1本では重量が小さすぎて
重量測定の誤差が大きくなる場合は、複数本の膜を用い
ることができる。
Here, the term “wet membrane” refers to a membrane in which the pores are filled with water but the hollow portions are not filled with water.
Specifically, a sample membrane having a length of 10 to 20 cm is immersed in ethanol to fill the hole with ethanol, and then repeatedly immersed in water 4 to 5 times to sufficiently replace the inside of the hole with water. Can be obtained by holding one end of the hand and shaking it about five times, holding the other end of the hand and shaking it about five times again to remove water in the hollow portion. The dry film can be obtained by drying the wet film in an oven at, for example, 80 ° C. until the weight becomes constant after measuring the weight of the wet film. The film volume can be determined from the film volume [cm 3 ] = π {(outer diameter [cm] / 2) 2 − (inner diameter [cm] / 2) 2 } (film length [cm]). If the weight of one film is too small and the error in weight measurement is large, a plurality of films can be used.

【0020】次に、本発明膜の好適な製造方法例を述べ
る。本発明膜の好適な製造方法例としては、ポリエチレ
ンと有機液体とを高温にて相溶した後、該相溶物を中空
糸成形用紡口から中空部内に中空糸形成流体を注入しつ
つ中空糸状に空気中を経て液浴中に押し出し冷却するこ
とで該相溶物に液液相分離を生起させ孔構造を発生させ
て固化、構造固定し、しかる後に該有機液体を抽出除去
してポリエチレン中空糸状多孔膜を得る方法において、
1)中空部形成流体が、高温にてポリエチレンと液液相
分離する能力を持つ液体であり、かつ2)少なくとも液
浴上層部が高温にてポリエチレンと液液相分離する能力
を持つ液体から成ることを特徴とする方法がある。
Next, an example of a preferred method for producing the film of the present invention will be described. As a preferred example of the production method of the membrane of the present invention, after the polyethylene and the organic liquid are compatible at a high temperature, the compatible material is hollowed out by injecting a hollow fiber forming fluid into the hollow portion from a hollow fiber forming spout. Extruded into a liquid bath through the air in a thread form and cooled, causing liquid-liquid phase separation in the compatible material to generate a pore structure, solidifying and fixing the structure, and then extracting and removing the organic liquid to remove polyethylene. In a method for obtaining a hollow fiber-like porous membrane,
1) The hollow part forming fluid is a liquid capable of liquid-liquid phase separation with polyethylene at a high temperature, and 2) At least the upper part of the liquid bath is composed of a liquid capable of liquid-liquid phase separation with polyethylene at a high temperature. There is a method characterized by the following.

【0021】ここで用いる有機液体は、ポリエチレンと
混合した際に一定の温度およびポリエチレン濃度範囲に
おいて液液相分離状態(ポリエチレン濃厚相液滴/ポリ
エチレン希薄相即ち有機液体濃厚相液滴の2相共存状
態)をとることができ、かつ沸点が液液相分離温度域の
上限温度以上である液体である。単一液体でなく混合液
体であってもよい。このような有機液体とポリエチレン
とを液液相分離の起こる濃度範囲にて混合した場合、温
度をその混合組成における液液相分離状態をとる上限温
度以上に高温にすると、ポリエチレンと有機液体とが均
一に溶解した相溶物を得ることができる。該相溶物を冷
却すると、液液2相(ポリエチレン濃厚相液滴と有機液
体濃厚相液滴)の共存状態(液液相分離状態)が現れて
孔構造が発生し、さらにポリエチレンが固化する温度
(通常100〜150℃)まで冷却することで孔構造が
固定される。
The organic liquid used here is in a liquid-liquid phase separated state at a certain temperature and in a polyethylene concentration range when mixed with polyethylene (two phases of polyethylene rich phase droplets / polyethylene dilute phase, that is, organic liquid rich phase droplets coexist). Is a liquid whose boiling point is not lower than the upper limit temperature of the liquid-liquid phase separation temperature range. It may be a mixed liquid instead of a single liquid. When such an organic liquid and polyethylene are mixed in a concentration range in which liquid-liquid phase separation occurs, when the temperature is raised to a temperature higher than or equal to an upper limit temperature at which a liquid-liquid phase separation state in the mixed composition is obtained, polyethylene and the organic liquid are mixed. A homogeneously dissolved compatible substance can be obtained. When the compatibilized material is cooled, a coexistence state (liquid-liquid phase separation state) of two liquid-liquid phases (polyethylene concentrated phase droplets and organic liquid concentrated phase droplets) appears, a pore structure is generated, and the polyethylene is further solidified. The pore structure is fixed by cooling to a temperature (usually 100 to 150 ° C.).

【0022】この相図の例を図1に示した。図1におい
て、ポリエチレン濃度は、ポリエチレン重量と有機液体
重量の和に対するポリエチレンの重量の割合である。ま
た、液1相領域はポリエチレンと有機液体との相溶領域
を、液液2相領域はポリエチレン濃厚相(液状)とポリ
エチレン希薄相(液体)との共存領域を、固化領域はポ
リエチレンが固化する領域(固体ポリエチレンと有機液
体との共存領域)をそれぞれ示す。
FIG. 1 shows an example of this phase diagram. In FIG. 1, the polyethylene concentration is a ratio of the weight of the polyethylene to the sum of the weight of the polyethylene and the weight of the organic liquid. The liquid 1 phase region is a region where polyethylene and an organic liquid are compatible, the liquid and liquid 2 phase region is a region where a polyethylene rich phase (liquid) and a polyethylene dilute phase (liquid) coexist, and the solidified region is where polyethylene is solidified. The region (region where solid polyethylene and organic liquid coexist) is shown.

【0023】孔構造が固定されたのち、膜より有機液体
を除去することで中空糸状多孔体が得られる。このと
き、液液相分離時のポリエチレン濃厚相部分が冷却固化
されて多孔構造(多孔体骨格)を形成し、ポリエチレン
希薄相(有機液体濃厚相)部分が孔部分となる。このよ
うな有機液体の例として、フタル酸ジブチル、フタル酸
ジヘプチル、フタル酸ジオクチル、フタル酸ジ(2−エ
チルヘキシル)、フタル酸ジイソデシル、フタル酸ジト
リデシル等のフタル酸エステル類、セバシン酸ジブチル
等のセバシン酸エステル類、アジピン酸ジオクチル等の
アジピン酸エステル類、マレイン酸ジオクチル等のマレ
イン酸エステル類、トリメリット酸トリオクチル等のト
リメリット酸エステル類、リン酸トリブチル、リン酸ト
リオクチル等のリン酸エステル類、プロピレングリコー
ルジカプレート、プロピレングリコールジオレエート等
のグリコールエステル類、グリセリントリオレエート等
のグリセリンエステル類などの単独あるいは2種以上の
混合物を挙げることができる。
After the pore structure is fixed, a hollow fiber-like porous body is obtained by removing the organic liquid from the membrane. At this time, the polyethylene rich phase portion at the time of liquid-liquid phase separation is cooled and solidified to form a porous structure (porous skeleton), and the polyethylene dilute phase (organic liquid rich phase) portion becomes a pore portion. Examples of such organic liquids include phthalic acid esters such as dibutyl phthalate, diheptyl phthalate, dioctyl phthalate, di (2-ethylhexyl) phthalate, diisodecyl phthalate, ditridecyl phthalate, and sebacin such as dibutyl sebacate. Acid esters, adipates such as dioctyl adipate, maleates such as dioctyl maleate, trimellitates such as trioctyl trimellitate, phosphates such as tributyl phosphate and trioctyl phosphate, Examples thereof include propylene glycol dicaprate, glycol esters such as propylene glycol dioleate, glycerin esters such as glycerin trioleate, and the like, alone or in combination of two or more.

【0024】さらに、単独ではポリエチレンと高温にて
も相溶しない液体や、流動パラフィンのように単独では
高温でポリエチレンと相溶するものの相溶性が高すぎて
液液2相の相分離状態をとらない液体を、有機液体の定
義(ポリエチレンと混合した際に一定の温度およびポリ
エチレン濃度範囲において液液相分離状態をとることが
できかつ沸点が液液相分離温度域の上限温度以上の液
体)を逸しない範囲内で前記有機液体例(フタル酸エス
テル類等)と混合した混合液体も有機液体の例として挙
げることができる。
Furthermore, a liquid that is incompatible with polyethylene alone at high temperatures even when used alone, or a liquid such as liquid paraffin that is compatible with polyethylene at high temperatures alone is too high in compatibility to capture the phase separation state of liquid-liquid two phases. The definition of an organic liquid (a liquid that can take a liquid-liquid phase separation state at a certain temperature and polyethylene concentration range when mixed with polyethylene and has a boiling point higher than the upper limit of the liquid-liquid phase separation temperature range) A mixed liquid mixed with the above-mentioned organic liquid examples (phthalates and the like) within a range not to be missed can also be mentioned as an example of the organic liquid.

【0025】ポリエチレンと上記有機液体とは、例えば
2軸押し出し機を用いて所定の混合比にてその混合比に
おける液液相分離温度域の上限温度以上の温度にて混
合、相溶させることができる。ポリエチレンと有機液体
との混合比は、ポリエチレンの比が小さすぎると得られ
る膜の強度が低くなりすぎて不利であり、逆にポリエチ
レンの比が大きすぎると得られる膜の透水性能が低くな
りすぎて不利である。ポリエチレンと有機液体との混合
比は、ポリエチレン/有機液体の重量比で10/90か
ら40/60、好ましくは15/85から30/70で
ある。
Polyethylene and the above-mentioned organic liquid can be mixed and dissolved at a predetermined mixing ratio at a temperature not lower than the upper limit temperature of the liquid-liquid phase separation temperature range at the mixing ratio by using, for example, a twin screw extruder. it can. The mixing ratio of polyethylene and the organic liquid is disadvantageous because if the ratio of polyethylene is too small, the strength of the obtained membrane is too low, and conversely, if the ratio of polyethylene is too large, the water permeability of the obtained membrane is too low. Disadvantageous. The mixing ratio of the polyethylene and the organic liquid is 10/90 to 40/60, preferably 15/85 to 30/70, by weight of the polyethylene / organic liquid.

【0026】相溶物(溶融物)は、押し出し機先端のヘ
ッドと呼ばれる部分に導かれ、押し出される。このヘッ
ド内の押し出し口に、相溶物を所定の形状に押し出すた
めの口金を装着することで所定の形状に相溶物を成形し
て押し出すことができる。本発明の場合は、中空糸状に
成形するための口金(中空糸成形用紡口)をヘッドの押
し出し口に装着する。中空糸成形用紡口は、相溶物を中
空状(円環状)に押し出すための円環状の穴と、押し出
された中空状物の中空部が閉じて円柱状になってしまわ
ないために押し出された中空状物の中空部に注入してお
く中空部形成流体を吐出するための穴(上記円環状穴の
内側に存在する;形状は円形穴)とを押し出し側の面に
持つ紡口ノズルである。ポリエチレンと有機液体との相
溶物は、上記中空糸成形用紡口の円環穴より、円環穴の
内側の穴から中空部形成流体の注入を中空部内に受けつ
つ空気中(窒素等の不活性ガス中でもよい)に押し出さ
れる。
The compatible material (melt) is guided to a portion called a head at the tip of the extruder and extruded. By mounting a die for extruding the compatible material into a predetermined shape at the extrusion port in the head, the compatible material can be formed into a predetermined shape and extruded. In the case of the present invention, a spinneret for forming into a hollow fiber (hollow fiber forming spinneret) is attached to the extrusion port of the head. The hollow fiber forming spinneret has an annular hole for extruding the compatible material into a hollow shape (annular shape) and an extruded hole for preventing the hollow portion of the extruded hollow material from closing to form a column. Spouting nozzle having a hole (existing inside the above-mentioned annular hole; the shape is a circular hole) for discharging a hollow part forming fluid to be injected into the hollow part of the hollow material formed on the extrusion side surface It is. The miscible material of polyethylene and the organic liquid is injected into the hollow portion of the hollow fiber through a hole formed inside the hole through the hole inside the hole for forming the hollow fiber through the hole of the above-described hole for forming a hollow fiber. (Even in an inert gas).

【0027】中空部形成流体としては、高温でポリエチ
レンと液液相分離する能力を持つ液体、即ちポリエチレ
ンと混合した際に一定の温度およびポリエチレン濃度範
囲において液液相分離状態(ポリエチレン濃厚相液滴/
ポリエチレン希薄相即ち有機液体濃厚相液滴の2相共存
状態)をとることができる液体を用いる。ただし、中空
糸成形用紡口から吐出されるときの中空部形成流体の温
度は、必ずしもポリエチレンと液液相分離状態となる温
度である必要はなく、液液相分離状態をとる温度域より
高くてもよいし、低くてもよい。このような中空部形成
用流体の例としては、前記の有機液体の例と同じ例を挙
げることができる。なお、中空部形成流体の沸点は、前
記の有機液体とは異なり、紡口温度以上であれば液液相
分離温度域の上限温度以下であってもよい。中空部形成
流体としてこのようにポリエチレンと液液相分離状態を
とることができる液体を用いることで、内表面側を本発
明の好適な構造にすることができる。
The fluid forming the hollow portion is a liquid capable of liquid-liquid phase separation from polyethylene at a high temperature, that is, a liquid-liquid phase separated state (polyethylene dense phase droplets) at a certain temperature and polyethylene concentration range when mixed with polyethylene. /
A liquid capable of forming a polyethylene dilute phase, that is, a two-phase coexistence state of an organic liquid concentrated phase droplet is used. However, the temperature of the hollow-portion forming fluid when discharged from the spinning nozzle for forming a hollow fiber is not necessarily required to be a temperature at which the liquid-liquid phase separation state occurs with polyethylene, and is higher than a temperature range at which the liquid-liquid phase separation state is obtained. Or lower. Examples of such a fluid for forming a hollow portion include the same examples as those of the above-described organic liquid. The boiling point of the hollow part forming fluid is different from the above-mentioned organic liquid, and may be equal to or lower than the upper limit temperature of the liquid-liquid phase separation temperature range as long as it is equal to or higher than the spinning temperature. By using a liquid capable of forming a liquid-liquid phase separation state with polyethylene as the hollow portion forming fluid, the inner surface side can have a suitable structure of the present invention.

【0028】空気中に押し出された相溶物は、次いで液
浴に導かれ、押し出し物中のポリエチレンが固化する温
度まで冷却される。こうして紡口から押し出された相溶
物は、紡口出口から液浴中通過の間に冷却されることで
液液相分離が生起されて孔構造が発生し、次いで固化
し、孔構造が固定される。液浴の組成は、少なくとも、
紡口より押し出されてくる押し出し物が最初に触れる部
分である液浴の上層部は、高温でポリエチレンと液液相
分離する能力を持つ液体、即ちポリエチレンと混合した
際に一定の温度およびポリエチレン濃度範囲において液
液相分離状態(ポリエチレン濃厚相液滴/ポリエチレン
希薄相、即ち有機液体濃厚相液滴の2相共存状態)をと
ることができる液体を用いることが、外表面側を本発明
の好適な構造にするために必要である。ただし、液浴の
温度はポリエチレンと液液相分離状態となる温度より低
い温度(即ち、ポリエチレンの固化温度以下)であるこ
とが必要である。このような少なくとも液浴上層部を形
成する組成物の例としては、前記の有機液体の例と同じ
ものを挙げることができる。なお、液浴組成物の沸点
は、前記の有機液体とは異なり、液液相分離温度域の上
限温度以下であってもよい。
The extrudate which has been extruded into the air is then led to a liquid bath and cooled to a temperature at which the polyethylene in the extrudate solidifies. The compatibilized material extruded from the spinneret is cooled while passing through the liquid bath from the spinneret outlet, causing liquid-liquid phase separation to occur, and a pore structure is generated, and then solidified, and the pore structure is fixed. Is done. The composition of the liquid bath is at least
The upper part of the liquid bath, which is the part that the extrudate extruded from the spinner first touches, is a liquid capable of liquid-liquid phase separation with polyethylene at high temperature, that is, a certain temperature and polyethylene concentration when mixed with polyethylene. It is preferable to use a liquid capable of forming a liquid-liquid phase separated state (polyethylene concentrated phase droplet / polyethylene diluted phase, that is, a two-phase coexistence state of organic liquid concentrated phase droplet) in the range of the present invention on the outer surface side. It is necessary to make a simple structure. However, the temperature of the liquid bath needs to be lower than the temperature at which the liquid and the liquid phase separate from the polyethylene (that is, the solidification temperature of the polyethylene or lower). Examples of such a composition forming at least the upper layer portion of the liquid bath include the same ones as the examples of the organic liquid described above. The boiling point of the liquid bath composition may be lower than the upper limit of the liquid-liquid phase separation temperature range, unlike the above-mentioned organic liquid.

【0029】液浴全体の組成は、少なくとも液浴上層部
には存在する必要がある高温でポリエチレンと液液相分
離する能力を持つ液体のみで全体が構成されていてもよ
いが、この少なくとも液浴上層部に存在する必要がある
高温でポリエチレンと液液相離する能力を持つ液体が、
水と非混合性でかつ水よりも比重が小さい場合は、液浴
の上層部が該高温でポリエチレンと液液相分離する能力
を持つ液体で、下層部が水である、2層構造の液浴とす
ることができる。高温でポリエチレンと液液相分離する
能力を持つ液体は通常有機化合物液体である。有機化合
物液体は通常、水より比熱が小さいために水より冷却能
力が劣る。冷却能力が弱いと、緻密な細孔の多孔膜は得
られにくい。
The composition of the entire liquid bath may be at least in the upper layer of the liquid bath, and may be entirely composed of only a liquid capable of liquid-liquid phase separation with polyethylene at a high temperature. A liquid that has the ability to liquid-liquid separate from polyethylene at high temperatures that must be present in the upper layer of the bath,
If it is immiscible with water and has a lower specific gravity than water, a two-layer liquid in which the upper part of the liquid bath is a liquid capable of liquid-liquid phase separation with polyethylene at the high temperature and the lower part is water. Can be a bath. Liquids capable of liquid-liquid phase separation with polyethylene at high temperatures are usually organic compound liquids. An organic compound liquid usually has a lower cooling capacity than water because it has a lower specific heat than water. If the cooling capacity is weak, it is difficult to obtain a porous film having fine pores.

【0030】従って、液浴の重要な機能の1つである冷
却能力確保の観点から、液浴は、高温でポリエチレンと
液液相分離する能力を持つ有機化合物液体のみで構成さ
れているよりは、高温でポリエチレンと液液相分離する
能力を持ちかつ水と非混合性でかつ水より比重が小さい
有機化合物液体を上層とし、水を下層とする、2層構造
の液浴の方が好ましい。このような、高温でポリエチレ
ンと液液相分離する能力を持ちかつ水と非混合性でかつ
水より比重が小さい有機化合物液体の例としては、フタ
ル酸ジ(2−エチルヘキシル)やフタル酸ジイソデシル
等、前記有機液体の例を挙げることができる。このよう
な2層構造の液浴を用いることにより、下層の水層の存
在により液浴での冷却能力が確保されるとともに、上層
の有機化合物液体層の存在により本発明の好適な膜構造
の形成も確保される。
Therefore, from the viewpoint of securing the cooling capacity, which is one of the important functions of the liquid bath, the liquid bath is made up of only an organic compound liquid capable of liquid-liquid phase separation from polyethylene at a high temperature. A liquid bath having a two-layer structure in which an organic compound liquid having an ability to separate liquid and liquid phases from polyethylene at a high temperature, being immiscible with water and having a lower specific gravity than water is used as an upper layer, and water is used as a lower layer is preferable. Examples of such an organic compound liquid having the ability to separate liquid and liquid phases from polyethylene at a high temperature, being immiscible with water, and having a lower specific gravity than water include di (2-ethylhexyl) phthalate and diisodecyl phthalate. And examples of the organic liquid. By using such a liquid bath having a two-layer structure, the cooling ability in the liquid bath is ensured by the presence of the lower aqueous layer, and the preferred film structure of the present invention is provided by the presence of the upper organic compound liquid layer. Formation is also ensured.

【0031】このような2層構造の液浴において、上層
(有機化合物液体層)の厚みは、膜構造を本発明の好適
な構造にするための観点から、1mm以上、好ましくは
5mm以上必要であり、同時に、液浴の冷却能力を低下
させない観点から30cm以下、好ましくは10cm以
下、さらに好ましくは2cm以下である。一方、下層
(水層)の厚みは、冷却能力確保の観点から5cm以
上、好ましくは10cm以上必要である。このような2
層構造の液浴を用いた場合の製膜フローの一例の概念図
を図2に示した。
In such a two-layer liquid bath, the thickness of the upper layer (organic compound liquid layer) is required to be 1 mm or more, preferably 5 mm or more from the viewpoint of making the film structure suitable for the present invention. Yes, at the same time, it is 30 cm or less, preferably 10 cm or less, and more preferably 2 cm or less from the viewpoint of not lowering the cooling capacity of the liquid bath. On the other hand, the thickness of the lower layer (water layer) needs to be 5 cm or more, preferably 10 cm or more, from the viewpoint of securing the cooling capacity. Such 2
FIG. 2 shows a conceptual diagram of an example of a film forming flow when a liquid bath having a layer structure is used.

【0032】液浴から出てきた中空糸状物は、冷却途中
で生起した液液相分離時のポリエチレン濃厚相部分が冷
却固化されて多孔構造(多孔体骨格)を形成し、液液相
分離時のポリエチレン希薄相(有機液体濃厚相)部分が
有機液体の詰まった孔部分となっている。この孔部分に
詰まっている有機液体を除去すれば、本発明開示の多孔
膜が得られる。膜中の有機液体の除去は、ポリエチレン
を溶解または劣化させず、かつ除去したい有機液体を溶
解する揮発性液体で抽出除去し、その後乾燥して膜中に
残存する上記揮発性液体を揮発除去することで実施でき
る。このような有機液体抽出用の揮発性液体の例として
は、ヘキサン、ヘプタン等の炭化水素、塩化メチレン、
四塩化炭素等の塩素化炭化水素、メチルエチルケトンな
どを挙げることができる。
In the hollow fiber-like material coming out of the liquid bath, the polyethylene thick phase portion generated during liquid-liquid phase separation during cooling is solidified by cooling to form a porous structure (porous skeleton). The polyethylene dilute phase (organic liquid rich phase) portion is a pore portion filled with the organic liquid. By removing the organic liquid clogging the pores, the porous membrane disclosed in the present invention can be obtained. The removal of the organic liquid in the film does not dissolve or degrade the polyethylene, and extracts and removes the organic liquid to be removed with a volatile liquid that dissolves, and then, after drying, volatilizes and removes the volatile liquid remaining in the film. Can be implemented. Examples of such volatile liquids for organic liquid extraction include hydrocarbons such as hexane and heptane, methylene chloride,
Chlorinated hydrocarbons such as carbon tetrachloride, methyl ethyl ketone and the like can be mentioned.

【0033】[0033]

【発明の実施の形態】以下に本発明の実施例を示すが、
本発明はこれに限定されるものではない。なお、純水透
水率、破断強度および破断伸度は以下の測定方法より決
定した。また、外表面および内表面の孔径は、倍率10
00倍あるいは5000倍にて撮影した後、縦横それぞ
れ2倍に拡大した外表面および内表面の電子顕微鏡写真
コピーの上に透明シートを重ねて置き、表面に存在する
孔部分を透明シート上に黒く塗りつぶして黒白2値化し
た後(孔部分が黒)、CCDカメラを用いてコンピュー
ターに取り込み、Leica社製画像解析ソフトQua
ntimet500を用いることで得た各孔の孔面積値
および孔径値(円形近似直径値)に基づいて決定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
The present invention is not limited to this. The pure water permeability, breaking strength and breaking elongation were determined by the following measuring methods. Further, the pore diameter of the outer surface and the inner surface is 10 magnifications.
After photographing at 00x or 5000x, place the transparent sheet on top of the electron micrograph copy of the outer and inner surfaces, which were enlarged twice in length and width, respectively, and placed the holes on the surface black on the transparent sheet. After black-and-white binarization by painting (holes are black), the images were taken into a computer using a CCD camera, and image analysis software Qua manufactured by Leica was used.
The determination was made based on the pore area value and pore diameter value (circular approximate diameter value) of each pore obtained by using nitimet 500.

【0034】純水透水率:エタノール浸漬したのち数回
純水浸漬を繰り返した約10cm長の湿潤中空糸膜の一
端を封止し、他端の中空部内へ注射針を入れ、25℃の
環境下にて注射針から0.1MPaの圧力にて25℃の
純水を中空部内へ注入し、外表面から透過してくる純水
の透過水量を測定し、以下の式より純水透水率を決定し
た。
Pure water permeability: One end of a wet hollow fiber membrane having a length of about 10 cm, which was immersed in ethanol and then immersed in pure water several times, was sealed at one end, and an injection needle was inserted into the hollow at the other end. Under the injection needle, pure water at 25 ° C. is injected into the hollow portion at a pressure of 0.1 MPa, and the amount of pure water permeating from the outer surface is measured, and the pure water permeability is calculated from the following equation. Were determined.

【0035】[0035]

【数3】 (Equation 3)

【0036】ここに膜有効長とは、注射針が挿入されて
いる部分を除いた、正味の膜長を指す。 破断強度および破断伸度:引っ張り試験機(島津製作所
製オートグラフAG−A型)を用い、中空糸をチャック
間距離50mm、引っ張り速度200mm/分にて引っ
張り、破断時の荷重と変位から、以下の式により破断強
度および破断伸度を決定した。
Here, the effective membrane length refers to the net membrane length excluding the portion where the injection needle is inserted. Breaking strength and breaking elongation: Using a tensile tester (Autograph AG-A type manufactured by Shimadzu Corporation), the hollow fiber was pulled at a distance between chucks of 50 mm and a pulling speed of 200 mm / min. The breaking strength and the breaking elongation were determined by the following equations.

【0037】[0037]

【数4】 (Equation 4)

【0038】ここに、 膜断面積[cm2]=π{(外径[cm]/2)2−(内
径[cm]/2)2} である。 破断伸度[%]=100(破断時変位[mm])/50
Here, the film cross-sectional area [cm 2 ] = π {(outer diameter [cm] / 2) 2 − (inner diameter [cm] / 2) 2 }. Elongation at break [%] = 100 (displacement at break [mm]) / 50

【0039】[0039]

【実施例1】高密度ポリエチレン(三井化学製:ハイゼ
ックスミリオン030S、粘度平均分子量:45万)2
0重量部と、フタル酸ジイソデシル(DIDP)とフタ
ル酸ジ(2−エチルヘキシル)(DOP)との重量比に
て3対1(DIDP/DOP=3/1)の混合有機液体
80重量部とを、2軸混練押し出し機(東芝機械製TE
M−35B−10/1V)で加熱混練して相溶させ(2
30℃)、押し出し機先端のヘッド(230℃)内の押
し出し口に装着した中空糸成形用紡口の押し出し面にあ
る外径1.58mm/内径0.83mmの相溶物押し出
し用の円環穴から上記相溶物を押し出し、そして相溶物
押し出し用円環穴の内側にある0.6mmφの中空部形
成流体吐出用の円形穴から中空部形成流体としてDOP
を吐出させ、中空糸状押し出し物の中空部内に注入し
た。
Example 1 High-density polyethylene (manufactured by Mitsui Chemicals, Hyzex Million 030S, viscosity average molecular weight: 450,000) 2
0 parts by weight and 80 parts by weight of a mixed organic liquid having a weight ratio of diisodecyl phthalate (DIDP) to di (2-ethylhexyl) phthalate (DOP) of 3 to 1 (DIDP / DOP = 3/1). , Twin screw extruder (TE manufactured by Toshiba Machine Co., Ltd.)
(M-35B-10 / 1V) and mixed by heating.
30 ° C.), a ring for extruding a compatible material with an outer diameter of 1.58 mm / inner diameter of 0.83 mm on the extrusion surface of the spinning hole for hollow fiber molding attached to the extrusion opening in the head (230 ° C.) at the tip of the extruder. The above-mentioned compatible material is extruded from the hole, and DOP is formed as a hollow-portion forming fluid from the circular hole for discharging the hollow-portion forming fluid having a diameter of 0.6 mm inside the annular hole for extruding the compatible material.
Was discharged and injected into the hollow portion of the hollow fiber extrudate.

【0040】紡口から空気中に押し出した中空糸状押し
出し物を、1.7cmの空中走行距離を経て、上層がD
OP(1.5cm厚み、41℃)、下層が水(15cm
厚み、29℃)の液浴中に入れ、約2m液浴中を通過さ
せて冷却固化させた後、中空糸状物に張力をかけること
なく16m/分の速度で液浴中から液浴外へ巻き取っ
た。このときの製膜フローの概略は、図2と同様であ
る。次いで得られた中空糸状物を室温の塩化メチレン中
で30分間の浸漬を5回繰り返して中空糸状物内のDI
DPとDOPを抽出除去し、次いで50℃にて半日乾燥
させて残存塩化メチレンを揮発除去させることにより、
ポリエチレン中空糸状多孔膜を得た。
The hollow fiber extrudate extruded from the spinneret into the air passes through a 1.7 cm air travel distance, and the upper layer is D-shaped.
OP (1.5cm thickness, 41 ° C), lower layer is water (15cm)
(Thickness: 29 ° C.), and after passing through a liquid bath of about 2 m to solidify by cooling, the hollow fiber is moved out of the liquid bath at a speed of 16 m / min without applying tension. Wound up. The outline of the film forming flow at this time is the same as that of FIG. Then, the obtained hollow fiber was repeatedly immersed in methylene chloride at room temperature for 30 minutes five times to obtain DI in the hollow fiber.
By extracting and removing DP and DOP, and then drying at 50 ° C. for half a day to volatilize and remove residual methylene chloride,
A polyethylene hollow fiber porous membrane was obtained.

【0041】得られた膜の諸物性(外表面孔径、内表面
孔径、平均孔径、空孔率、糸径、純水透水率、破断強
度、破断伸度)を表1に、電子顕微鏡写真を図3に示
す。各写真に観察される孔の大きさの比較観察より、こ
の膜は、断面の外表面側の外表面より少し断面内部側に
最小孔径層が存在することが観察される。
The physical properties (outer surface pore size, inner surface pore size, average pore size, porosity, yarn diameter, pure water permeability, breaking strength, breaking elongation) of the obtained membrane are shown in Table 1, and electron micrographs. As shown in FIG. From the comparative observation of the size of the pores observed in each photograph, it is observed that this film has a minimum pore diameter layer slightly inside the cross section than on the outer surface on the outer surface side of the cross section.

【0042】[0042]

【実施例2】ポリエチレンとして旭化成工業製の高密度
ポリエチレン(サンテックSH800、粘度平均分子量
25万)を18重量部、有機液体としてDIDPとDO
Pとの重量比にて3対1(DIDP/DOP=3/1)
の混合物を82重量部用い、空中走行距離を2.0c
m、上層がDOP(1.0cm厚み、44℃)、下層が
水(15cm厚み、25℃)の液浴を用いた以外は実施
例1と同様にしてポリエチレン中空糸状多孔膜を得た。
得られた膜の断面を電子顕微鏡で観察したところ、最小
孔径層が膜内部に存在する異方性の膜であった。また、
膜の諸物性(外表面孔径、内表面孔径、平均孔径、空孔
率、糸径、純水透水率、破断強度、破断伸度)を表1に
示す。
Example 2 18 parts by weight of high-density polyethylene (Suntech SH800, viscosity average molecular weight 250,000) manufactured by Asahi Kasei Corporation as polyethylene, and DIDP and DO as organic liquids
3: 1 in weight ratio with P (DIDP / DOP = 3/1)
Using 82 parts by weight of a mixture of
m, a polyethylene hollow fiber porous membrane was obtained in the same manner as in Example 1 except that a liquid bath of DOP (1.0 cm thickness, 44 ° C.) for the upper layer and water (15 cm thickness, 25 ° C.) for the lower layer was used.
When the cross section of the obtained film was observed with an electron microscope, it was an anisotropic film in which the minimum pore size layer was present inside the film. Also,
Table 1 shows the physical properties (outer surface pore size, inner surface pore size, average pore size, porosity, fiber diameter, pure water permeability, breaking strength, breaking elongation) of the membrane.

【0043】[0043]

【比較例1】特開平3−42025号公報明細書実施例
3に準拠して(SH800/疎水性シリカ/DBP/D
OPの容量比を24/14/43/19にした以外は同
様にして)、ポリエチレンとして実施例2と同じサンテ
ックSH800を用いて中空糸状多孔膜を得た。得られ
た膜の諸物性(外表面孔径、内表面孔径、平均孔径、空
孔率、糸径、純水透水率、破断強度、破断伸度)を表1
に示す。得られた膜の断面を電子顕微鏡で観察したとこ
ろ、異方性を持たない均一な3次元の多孔構造を有して
いた。当比較例膜は実施例2膜に比べて、同等の平均孔
径でありながら純水透水率が低く、濾過膜としての性能
が低くなっている。
Comparative Example 1 According to Example 3 of JP-A-3-42025 (SH800 / hydrophobic silica / DBP / D)
A hollow fiber porous membrane was obtained using the same Suntech SH800 as in Example 2 as polyethylene, except that the OP volume ratio was changed to 24/14/43/19. Table 1 shows various physical properties (pore diameter of outer surface, pore diameter of inner surface, average pore diameter, porosity, yarn diameter, water permeability of pure water, breaking strength, elongation at break) of the obtained membrane.
Shown in When the cross section of the obtained film was observed with an electron microscope, it had a uniform three-dimensional porous structure without anisotropy. Compared with the membrane of Example 2, the membrane of this comparative example has the same average pore diameter, but low pure water permeability, and low performance as a filtration membrane.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】本発明により、除濁等の濾過用途に好適
な、緻密な細孔と高い透水性能を併せ持つポリエチレン
製中空糸状多孔膜の提供が可能になった。
According to the present invention, it has become possible to provide a polyethylene hollow fiber-like porous membrane having both fine pores and high water permeability, which is suitable for filtration applications such as turbidity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ポリエチレンと有機液体との相図の概念図であ
る。
FIG. 1 is a conceptual diagram of a phase diagram of polyethylene and an organic liquid.

【図2】本発明膜を製造するための製膜フローの一例を
示す概念図である。
FIG. 2 is a conceptual diagram showing an example of a film forming flow for manufacturing the film of the present invention.

【図3】実施例1にて得られた膜の電子顕微鏡写真印刷
である。
FIG. 3 is an electron micrograph print of the film obtained in Example 1.

【符号の説明】[Explanation of symbols]

イ ・・・ 紡口吐出時点の相溶物 ロ ・・・ 空中走行部および液浴中での冷却過程 ハ ・・・ 液浴出の固化物 1 ・・・ ポリエチレンホッパー 2 ・・・ ポリエチレン供給口 3 ・・・ 有機液体供給流路 4 ・・・ 有機液体供給口 5 ・・・ 2軸混練押出機 6 ・・・ 導管 7 ・・・ ヘッド 8 ・・・ 定量ギアポンプ駆動部 9 ・・・ 定量ギアポンプ 10・・・ 中空糸成形用紡口 11・・・ 中空部形成流体供給流路 12・・・ ポリエチレンと有機液体の混合押し出し物 13・・・ 中空部形成流体 14・・・ 空中走行部分 15・・・ 液浴上層 16・・・ 液浴下層(水) 17・・・ 液浴上層厚み 18・・・ 液浴下層厚み 19・・・ ロール 20・・・ 巻き取りロール B: Compatible material at the time of spout ejection B: Cooling process in the aerial traveling section and liquid bath C: Solidified material from liquid bath 1: Polyethylene hopper 2: Polyethylene supply port DESCRIPTION OF SYMBOLS 3 ... Organic liquid supply flow path 4 ... Organic liquid supply port 5 ... Biaxial kneading extruder 6 ... Conduit 7 ... Head 8 ... Constant gear pump drive part 9 ... Constant gear pump DESCRIPTION OF SYMBOLS 10 ... Spout for hollow fiber formation 11 ... Hollow part forming fluid supply flow path 12 ... Mixed extrudate of polyethylene and organic liquid 13 ... Hollow part forming fluid 14 ... Airborne traveling part 15. .. Upper layer of liquid bath 16 ... Lower layer of liquid bath (water) 17 ... Upper layer thickness of liquid bath 18 ... Lower layer thickness of liquid bath 19 ... Roll 20 ... Winding roll

フロントページの続き Fターム(参考) 4D006 GA06 GA07 HA01 MA01 MA22 MA24 MB02 MB10 MC22X NA05 NA10 PB02 PB06 PB13 PC02 PC21 PC41 4L035 AA05 AA09 BB31 BB58 BB66 DD03 DD07 DD14 EE08 EE20 FF01 HH01 HH05 JJ15 KK05 MA01 Continued on the front page F term (reference) 4D006 GA06 GA07 HA01 MA01 MA22 MA24 MB02 MB10 MC22X NA05 NA10 PB02 PB06 PB13 PC02 PC21 PC41 4L035 AA05 AA09 BB31 BB58 BB66 DD03 DD07 DD14 EE08 EE20 FF01 HH01 HH05 JJ15 KK

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 膜断面内に最小孔径層を持ち、外表面孔
径および内表面孔径がともに1μm以上でかつ平均孔径
が0.8μm以下である、空孔率50%以上95%未満
の膜内部緻密型異方性スポンジ構造ポリエチレン中空糸
状多孔膜。
1. A film having a minimum pore size layer in a cross section of the film, having an outer surface pore size and an inner surface pore size of 1 μm or more and an average pore size of 0.8 μm or less, and having a porosity of 50% or more and less than 95%. Dense anisotropic sponge structure polyethylene hollow fiber-like porous membrane.
JP2000068852A 1999-09-21 2000-03-13 Anisotropic polyethylene hollow-fiber porous membrane Pending JP2001157826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000068852A JP2001157826A (en) 1999-09-21 2000-03-13 Anisotropic polyethylene hollow-fiber porous membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26779199 1999-09-21
JP11-267791 1999-09-21
JP2000068852A JP2001157826A (en) 1999-09-21 2000-03-13 Anisotropic polyethylene hollow-fiber porous membrane

Publications (1)

Publication Number Publication Date
JP2001157826A true JP2001157826A (en) 2001-06-12

Family

ID=26548034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000068852A Pending JP2001157826A (en) 1999-09-21 2000-03-13 Anisotropic polyethylene hollow-fiber porous membrane

Country Status (1)

Country Link
JP (1) JP2001157826A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227932A (en) * 2005-10-13 2010-10-14 Asahi Kasei Chemicals Corp Porous multilayered hollow-fiber membrane and process for producing the same
WO2017164019A1 (en) * 2016-03-22 2017-09-28 東レ株式会社 Hollow fiber membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010227932A (en) * 2005-10-13 2010-10-14 Asahi Kasei Chemicals Corp Porous multilayered hollow-fiber membrane and process for producing the same
WO2017164019A1 (en) * 2016-03-22 2017-09-28 東レ株式会社 Hollow fiber membrane
KR20180122623A (en) * 2016-03-22 2018-11-13 도레이 카부시키가이샤 Hollow fiber membrane
CN109070011A (en) * 2016-03-22 2018-12-21 东丽株式会社 Hollow fiber membrane
JPWO2017164019A1 (en) * 2016-03-22 2019-01-24 東レ株式会社 Hollow fiber membrane
KR102219541B1 (en) 2016-03-22 2021-02-24 도레이 카부시키가이샤 Hollow fiber membrane

Similar Documents

Publication Publication Date Title
JP5717987B2 (en) Porous multilayer hollow fiber membrane
JP5893093B2 (en) Amorphous porous hollow fiber membrane, method for producing a shaped porous hollow fiber membrane, module using the shaped porous hollow fiber membrane, filtration device, and water treatment method
JP5305296B2 (en) Polyamide hollow fiber membrane and method for producing the same
JP5546992B2 (en) Method for producing porous hollow fiber membrane, porous hollow fiber membrane, module using porous hollow fiber membrane, filtration device using porous hollow fiber membrane, and water treatment method using porous hollow fiber membrane
US11654400B2 (en) Porous hollow fiber membrane and method for producing porous hollow fiber membrane
JP3781679B2 (en) Suspension water membrane purification method
JP2001157827A (en) Polyethylene hollow-fiber porous membrane
JP5546993B2 (en) Manufacturing method of irregular porous hollow fiber membrane, irregular porous hollow fiber membrane, module using irregular porous hollow fiber membrane, filtration device using irregular porous hollow fiber membrane, and filtration using irregular porous hollow fiber membrane Method
JP6097818B2 (en) Porous hollow fiber membrane and method for producing porous hollow fiber membrane
JP4775984B2 (en) Method for melting and forming hollow fiber porous membrane
JP2001190940A (en) Method of manufacturing polyethylene hollow fiber porous membrane
JP2001157826A (en) Anisotropic polyethylene hollow-fiber porous membrane
JP2008093503A (en) Manufacturing method of porous hollow fiber membrane
CN116457077A (en) Porous membrane
JP2001087636A (en) Method for production of hollow fiber porous membrane made of polyethylene
JP4623780B2 (en) Melt casting method
JP4605840B2 (en) Method for forming hollow fiber porous membrane
JP2001190939A (en) Method of manufacturing polyethylene hollow fiber porous membrane