JP2001153913A - Method for diagnosing insulation deterioration of cv cable - Google Patents
Method for diagnosing insulation deterioration of cv cableInfo
- Publication number
- JP2001153913A JP2001153913A JP33660299A JP33660299A JP2001153913A JP 2001153913 A JP2001153913 A JP 2001153913A JP 33660299 A JP33660299 A JP 33660299A JP 33660299 A JP33660299 A JP 33660299A JP 2001153913 A JP2001153913 A JP 2001153913A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- cable
- reflected wave
- deterioration
- water tree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Testing Relating To Insulation (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、CVケーブルの絶
縁劣化、特に、水トリーの局所的に極度劣化している領
域区間を評定し、この劣化程度を評価する方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating insulation deterioration of a CV cable, in particular, a section of a water tree where a local tree is extremely deteriorated, and evaluating the degree of deterioration.
【0002】[0002]
【従来の技術】CVケーブルが湿潤下にて長時間使用さ
れる場合、ケーブル絶縁体中に水トリーが発生すること
がある。水トリーは絶縁性能の低下をもたらすので、電
力の安定供給のためには、CVケーブルの絶縁劣化状態
を診断し、把握することが必要となる。2. Description of the Related Art When a CV cable is used for a long time under wet conditions, water trees may be generated in a cable insulator. Since the water tree causes the insulation performance to deteriorate, it is necessary to diagnose and grasp the insulation deterioration state of the CV cable for stable power supply.
【0003】この水トリー劣化を診断する方法について
は従来から多くの方法が提案されている。Many methods have been proposed for diagnosing the water tree deterioration.
【0004】CVケーブルの水トリー劣化を検出できる
絶縁劣化診断方法として残留電荷測定がある。従来行わ
れている残留電荷測定法は、直流電圧を印加し、その後
に接地して直流印加電圧を除去し、続いて単一の交流課
電電圧を印加し、これにより生じた直流電流成分を検出
し、これにより得られた電流信号を積分することで残留
電荷量を計算するものである。[0004] There is a residual charge measurement as a method of diagnosing insulation deterioration capable of detecting water tree deterioration of a CV cable. The conventional method of measuring residual charge is to apply a DC voltage, then ground and remove the DC applied voltage, and then apply a single AC applied voltage, and then generate the resulting DC current component. The residual electric charge is calculated by detecting and integrating the obtained current signal.
【0005】[0005]
【発明が解決しようとする課題】上記残留電荷測定法は
水トリー劣化程度や破壊電圧との相関がよく、絶縁劣化
診断法として注目されているが、従来の残留電荷測定法
による絶縁劣化診断はケーブル全体から検出される総電
荷量を評価対象とするものであり、測定量はケーブル全
体の平均量となり、局所的極度に劣化しているのか、一
様に軽微な劣化しているのかを判断することはできない
という問題がある。一方、絶縁性能に最も影響を及ぼす
のは、極度に劣化した水トリーであり、これを正確に検
出する必要がある。The residual charge measurement method described above has a good correlation with the degree of water tree deterioration and breakdown voltage, and is attracting attention as an insulation deterioration diagnosis method. The total charge detected from the entire cable is to be evaluated, and the measured amount is the average amount of the entire cable, and it is determined whether the deterioration is extremely local or extremely slight There is a problem that you can not. On the other hand, the most influential on the insulation performance is extremely deteriorated water trees, which need to be accurately detected.
【0006】[0006]
【課題を解決するための手段】本発明のCVケーブルの
絶縁劣化診断方法は、CVケーブルに直流電圧を課電し
た後に接地し、その後に交流電圧Vaを課電し、後に交
流電圧Vb(Vb>Va)を課電し、各交流電圧課電時
における残留電荷を測定することにより絶縁劣化診断を
する方法において、前記直流電圧課電前に、ケーブル片
端よりパルス状電圧を入力するとともにその反射波を測
定する第1の反射波測定と、前記直流電圧課電後に、ケ
ーブル片端より前記パルス状電圧を入力するとともにそ
の反射波を測定する第2の反射波測定と、前記交流電圧
Vaを課電した後に、ケーブル片端より前記パルス状電
圧を入力するとともにその反射波を測定する第3の反射
波測定とを行い、前記第1,第2及び第3の反射波測定
にて測定した反射波情報に基づいて、極度劣化水トリー
発生領域を検出することを特徴とする。According to the method of diagnosing deterioration of insulation of a CV cable according to the present invention, a DC voltage is applied to a CV cable, then grounded, an AC voltage Va is applied, and then an AC voltage Vb (Vb > Va) and measuring the residual charge at the time of applying each AC voltage to diagnose insulation deterioration, wherein a pulsed voltage is input from one end of the cable and reflected before the DC voltage is applied. A first reflected wave measurement for measuring a wave; a second reflected wave measurement for measuring the reflected wave while inputting the pulsed voltage from one end of the cable after applying the DC voltage; and applying the AC voltage Va. After the power is supplied, the pulsed voltage is input from one end of the cable and a third reflected wave measurement for measuring the reflected wave is performed, and the reflection measured by the first, second, and third reflected wave measurements is performed. Based on the information, and detecting the extreme degradation water tree generation region.
【0007】また、前記交流電圧課電時における測定残
留電荷量と、上記の方法から求められた劣化水トリー発
生領域とに基づいて、この水トリー発生領域の劣化程度
を評価することを特徴とする。[0007] Further, the degree of deterioration of the water tree generation area is evaluated based on the measured residual charge amount at the time of applying the AC voltage and the deteriorated water tree generation area obtained by the above method. I do.
【0008】上記の本発明によれば、CVケーブル中に
水トリーが発生している場合、これに起因して水トリー
発生領域のインピーダンスがケーブルのそれに比較して
変化するために、ケーブル片端よりパルス状電圧を入力
すると、インピーダンス変化が生じる個所で反射波が生
じる。According to the present invention, when water tree is generated in the CV cable, the impedance of the water tree generation area changes as compared with that of the cable due to the water tree. When a pulsed voltage is input, a reflected wave is generated at a place where an impedance change occurs.
【0009】残留電荷測定における前課電として直流課
電を行う際に、水トリー内部で分極が生じ、水トリー内
部に電荷が蓄積される。この電荷蓄積により、水トリー
部の抵抗は、電荷が蓄積していない場合に比較して変化
する。すなわち、CVケーブル内において電荷蓄積が生
じた水トリーが存在することにより、直流電圧を印加す
る前に比較してケーブルインピーダンスがその個所にて
変化する。このとき、ケーブル片端よりパルス状電圧を
入力した場合には、前記課電前における反射波と異なる
反射波が生じる。[0009] When DC power is applied as a pre-application in the residual charge measurement, polarization occurs inside the water tree, and electric charges are accumulated inside the water tree. Due to this charge accumulation, the resistance of the water tree section changes as compared with the case where no charge is accumulated. That is, due to the presence of the water tree in which the charge accumulation has occurred in the CV cable, the cable impedance changes at that point as compared to before the DC voltage is applied. At this time, when a pulsed voltage is input from one end of the cable, a reflected wave different from the reflected wave before the power application is generated.
【0010】一方、残留電荷測定においては、直流電圧
の課電に続いて印加する交流課電において、ある電圧V
aを課電した後にVb(Vb>Va)を課電した場合に
も残留電荷信号が検出される。この時に検出される残留
電荷は、極度に劣化した水トリー領域に起因するもので
ある。よって、Vaを印加した後には、Vaにより生じ
た残留電荷に起因する水トリー劣化領域のインピーダン
スは、直流課電前のインピーダンスへと戻る。一方で、
このとき、極度劣化が生じている個所のみに電荷が残存
するために、この領域でのインピーダンスはそのままの
大きさとなる。したがって、Vaを印加する前およびV
aを印加した後に、パルス状電圧を入力し、その反射波
を両者で比較することにより、Vbの交流電圧にて放出
されるべき電荷が蓄積している領域(極度劣化領域)を
検出することが可能となる。つまり、局所的に極度に劣
化した領域を検出することが可能となる。On the other hand, in the residual charge measurement, a certain voltage V
Even when Vb (Vb> Va) is applied after a is applied, a residual charge signal is also detected. The residual charge detected at this time is due to the extremely deteriorated water tree region. Therefore, after applying Va, the impedance of the water tree deterioration region caused by the residual charge generated by Va returns to the impedance before DC application. On the other hand,
At this time, since the electric charge remains only at the location where the extreme deterioration has occurred, the impedance in this region remains the same. Therefore, before applying Va and V
After applying a, a pulsed voltage is input, and the reflected wave is compared between the two to detect a region where the charge to be released at the AC voltage of Vb is accumulated (extremely deteriorated region). Becomes possible. That is, it is possible to detect an extremely deteriorated region locally.
【0011】また、Vbの交流電圧にて放出される電荷
量を測定して、上記で求めた領域で徐することにより、
この領域の劣化程度を評価することができる。Further, by measuring the amount of charge released at the AC voltage of Vb, and decreasing the amount of charge in the region obtained above,
The degree of deterioration of this region can be evaluated.
【0012】[0012]
【発明の実施の形態】以下に、本発明の実施態様を図面
を参照しつつ説明する。図3は本発明に係る残留電荷測
定回路のブロック図である。図3において、まず最初に
切り替えスイッチ5を接点5a側に接続して供試CVケ
ーブル1に直流課電装置2からの直流電圧VDCを所定時
間印加する。この後に切り替えスイッチ5を接点5bに
切り替えて、供試CVケーブル1を接地する。次に、切
り替えスイッチ5を接点5cに切り替えて、交流課電用
の試験用変圧器3に接続され、残留電荷測定と交流課電
が可能な回路状態にする。なお、試験用変圧器3の一次
巻線側には誘導電圧調整器4が接続されており、これに
よって試験用変圧器3の二次側の出力電圧を零からVAC
までに変化させる。また、試験用変圧器3の低圧端子V
と供試CVケーブル1の遮へい層間には接地を介して残
留電荷測定装置6が接続される。Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a block diagram of the residual charge measuring circuit according to the present invention. In FIG. 3, first, the changeover switch 5 is connected to the contact 5a side, and the DC voltage VDC from the DC power supply device 2 is applied to the test CV cable 1 for a predetermined time. Thereafter, the changeover switch 5 is switched to the contact 5b, and the test CV cable 1 is grounded. Next, the changeover switch 5 is switched to the contact 5c to be connected to the test transformer 3 for AC power application, thereby establishing a circuit state in which measurement of residual charge and AC power application are possible. An induction voltage regulator 4 is connected to the primary winding side of the test transformer 3 so that the output voltage on the secondary side of the test transformer 3 is changed from zero to VAC.
Change by. The low-voltage terminal V of the test transformer 3
The residual charge measuring device 6 is connected between the shielding layer of the test CV cable 1 and ground.
【0013】上述した残留電荷測定回路を用いて本発明
のCVケーブル絶縁劣化診断を行う。The CV cable insulation deterioration diagnosis of the present invention is performed using the above-described residual charge measuring circuit.
【0014】先ず直流電圧課電前の第1の反射波測定を
行う。First, a first reflected wave measurement before DC voltage application is performed.
【0015】図1において、CVケーブル1中に水トリ
ーが発生している場合、これに起因して水トリー発生領
域のインピーダンスがケーブルのインピーダンスに比較
して変化(Z0→Za,Zb)するために、ケーブル片端
よりパルス状電圧を入力すると、インピーダンス変化点
A,B、及びC点で反射波A、反射波B、反射波Cが生
じる。この反射波は入力端にて観測することができる。
パルス状電圧のケーブル内での伝播速度は既知の値であ
るので、入力波と反射波の入力端での時間差tdによ
り、水分が混入した領域までの距離Ldを特定すること
ができる。すなわち、パルス状電圧のケーブル内での伝
播速度をcpとすると、Ld=1/2×td×cpとな
る。In FIG. 1, when water tree is generated in the CV cable 1, the impedance of the water tree generation area changes (Z0 → Za, Zb) compared to the impedance of the cable due to the water tree. When a pulsed voltage is input from one end of the cable, reflected waves A, B, and C are generated at impedance change points A, B, and C. This reflected wave can be observed at the input end.
Since the propagation speed of the pulsed voltage in the cable is a known value, the distance Ld to the region where moisture is mixed can be specified by the time difference td between the input end of the input wave and the input end of the reflected wave. That is, assuming that the propagation speed of the pulse voltage in the cable is cp, Ld = d × td × cp.
【0016】次に第2の反射波測定を行う。直流課電後
にケーブル片端より(上記と同一の)パルス状電圧を入
力すると、図1(b)に示すように、反射波A*、反射
波B*、反射波C*が生じる。この反射波は上記直流課電
前における反射波とは異なる、すなわち、CVケーブル
中において電荷蓄積が生じた水トリーが存在することに
より、直流電圧を印加する前に比較してケーブルインピ
ーダンスがその個所にて変化するためである。Next, a second reflected wave measurement is performed. When a pulsed voltage (same as above) is input from one end of the cable after DC power application, a reflected wave A * , a reflected wave B * , and a reflected wave C * are generated as shown in FIG. This reflected wave is different from the reflected wave before the DC application, that is, due to the presence of the water tree in which the charge accumulation occurs in the CV cable, the cable impedance is lower at that point than before the DC voltage is applied. It is because it changes at.
【0017】次に第3の反射波測定を行う。残留電荷測
定においては、直流電圧課電に続いて図2に示す課電パ
ターンの2回の交流電圧課電が行なわれる。1回目の電
圧Vaを課電した後に、ケーブル片端より上記と同一の
パルス状電圧を入力すると、図1(c)に示すように、
反射波A、反射波B*、反射波C*が生ずる。この反射波
Aは直流課電前の第1の反射波測定時の反射波Aであ
る。すなわち、電圧Vaを印加した後には、直流課電に
より生じた残留電荷に起因する水トリー劣化領域の軽微
なところのインピーダンスは、直流電圧課電前のインピ
ーダンスZaへと戻る。一方で、このとき、極度劣化が
生じている個所のみに電荷が残存するために、この領域
でのインピーダンスはZb*のままとなる。Next, a third reflected wave measurement is performed. In the residual charge measurement, the application of the DC voltage is followed by the application of the AC voltage twice in the application pattern shown in FIG. After the first voltage Va is applied, when the same pulsed voltage is input from one end of the cable, as shown in FIG.
A reflected wave A, a reflected wave B * , and a reflected wave C * are generated. This reflected wave A is the reflected wave A at the time of the first reflected wave measurement before DC power application. That is, after the application of the voltage Va, the slight impedance of the water tree deterioration region caused by the residual charge generated by the DC application returns to the impedance Za before the application of the DC voltage. On the other hand, at this time, since the electric charge remains only in the place where extreme deterioration has occurred, the impedance in this region remains Zb * .
【0018】したがって、電圧Vaを印加する前および
Vaを印加した後に、ケーブル片端よりパルス状電圧を
入力し、その反射波を両者で比較することにより、2回
目の印加電圧Vbにて放出されるべき電荷が蓄積してい
る領域(極度劣化領域)を検出することが可能となる。Therefore, before applying the voltage Va and after applying the voltage Va, a pulse-like voltage is input from one end of the cable, and the reflected waves are compared with each other to be emitted at the second applied voltage Vb. It is possible to detect a region where the electric charge is accumulated (extremely deteriorated region).
【0019】また、上記の反射波測定によって求められ
た局所的に水トリー劣化した領域の区間距離と第1回目
の交流課電時に測定された残留電荷量Q1と第2回目の
交流課電時に測定された残留電荷量Q2とに基づいて各
領域区間ごとの劣化程度を評価することが可能となる。Further, the section distance of the locally water-tree-deteriorated region obtained by the above-mentioned reflected wave measurement, the residual charge amount Q1 measured during the first AC power application, and the second AC power application. Based on the measured residual charge amount Q2, it is possible to evaluate the degree of deterioration for each region section.
【0020】[0020]
【発明の効果】以上説明したように、本発明のCVケー
ブルの絶縁劣化診断方法によれば、局所的に水トリー劣
化した領域を、その区間距離も含めて正確に評価するこ
とが可能となり、これによりCVケーブルの水トリー劣
化診断を精度良く行うことができる。As described above, according to the method for diagnosing insulation deterioration of a CV cable according to the present invention, it is possible to accurately evaluate an area in which water tree is locally deteriorated, including its section distance. Thereby, the water tree deterioration diagnosis of the CV cable can be accurately performed.
【図1】本発明の絶縁劣化診断方法の実施態様を説明す
る図である。FIG. 1 is a diagram illustrating an embodiment of an insulation deterioration diagnosis method according to the present invention.
【図2】本発明に係る残留電荷測定における課電方法を
示す説明図である。FIG. 2 is an explanatory view showing a power application method in residual charge measurement according to the present invention.
【図3】本発明に係る残留電荷測定を実施するための回
路図である。FIG. 3 is a circuit diagram for performing a residual charge measurement according to the present invention.
1 CVケーブル 2 直流課電装置 3 交流課電変圧器 4 誘導電圧調整器 5 切り替えスイッチ 6 残留電荷測定装置 Reference Signs List 1 CV cable 2 DC charging device 3 AC charging transformer 4 Induction voltage regulator 5 Changeover switch 6 Residual charge measuring device
Claims (2)
接地し、その後に交流電圧Vaを課電し、後に交流電圧
Vb(Vb>Va)を課電し、各交流電圧課電時におけ
る残留電荷を測定することにより絶縁劣化診断をする方
法において、 前記直流電圧課電前に、ケーブル片端よりパルス状電圧
を入力するとともにその反射波を測定する第1の反射波
測定と、 前記直流電圧課電後に、ケーブル片端より前記パルス状
電圧を入力するとともにその反射波を測定する第2の反
射波測定と、 前記交流電圧Vaを課電した後に、ケーブル片端より前
記パルス状電圧を入力するとともにその反射波を測定す
る第3の反射波測定とを行い、 前記第1,第2及び第3の反射波測定にて測定した反射
波情報に基づいて、極度劣化水トリー発生領域を検出す
ることを特徴とするCVケーブルの絶縁劣化診断方法。An AC voltage Va is applied to a CV cable after applying a DC voltage to the CV cable, and then an AC voltage Vb (Vb> Va) is applied to the CV cable. In the method for diagnosing insulation deterioration by measuring electric charge, a first reflected wave measurement for inputting a pulsed voltage from one end of a cable and measuring a reflected wave thereof before applying the DC voltage; After the charging, the pulsed voltage is inputted from one end of the cable and the second reflected wave measurement for measuring the reflected wave thereof. After applying the AC voltage Va, the pulsed voltage is inputted from one end of the cable and Performing a third reflected wave measurement for measuring the reflected wave, and detecting an extremely deteriorated water tree generation region based on the reflected wave information measured in the first, second, and third reflected wave measurements. CV insulation degradation diagnosis method of the cable characterized by.
により絶縁劣化診断をする方法において、 前記交流電圧の課電時における測定残留電荷量と、請求
項1記載の方法から求められた劣化水トリー発生領域と
に基づいて、この劣化水トリー発生領域の劣化程度を評
価することを特徴とするCVケーブルの絶縁劣化診断方
法。2. A method for diagnosing deterioration of insulation by measuring residual charge according to claim 1, wherein the amount of residual charge measured when the AC voltage is applied and the deterioration obtained from the method according to claim 1. A method of diagnosing insulation deterioration of a CV cable, comprising: evaluating a degree of deterioration of the deteriorated water tree generation area based on the water tree generation area.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33660299A JP2001153913A (en) | 1999-11-26 | 1999-11-26 | Method for diagnosing insulation deterioration of cv cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33660299A JP2001153913A (en) | 1999-11-26 | 1999-11-26 | Method for diagnosing insulation deterioration of cv cable |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001153913A true JP2001153913A (en) | 2001-06-08 |
Family
ID=18300863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33660299A Pending JP2001153913A (en) | 1999-11-26 | 1999-11-26 | Method for diagnosing insulation deterioration of cv cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001153913A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009186334A (en) * | 2008-02-06 | 2009-08-20 | Chubu Electric Power Co Inc | Power cable deterioration position locating method and its device |
EP2930522A1 (en) | 2014-04-11 | 2015-10-14 | Seba-Dynatronic Mess- und Ortungstechnik GmbH | Method and device for spatially resolved diagnosis |
-
1999
- 1999-11-26 JP JP33660299A patent/JP2001153913A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009186334A (en) * | 2008-02-06 | 2009-08-20 | Chubu Electric Power Co Inc | Power cable deterioration position locating method and its device |
EP2930522A1 (en) | 2014-04-11 | 2015-10-14 | Seba-Dynatronic Mess- und Ortungstechnik GmbH | Method and device for spatially resolved diagnosis |
DE102014005698A1 (en) | 2014-04-11 | 2015-10-15 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Method and device for spatially resolved diagnosis |
US9880212B2 (en) | 2014-04-11 | 2018-01-30 | Friedrich-Alexander-Universitaet Erlangen Nuernberg | Method and apparatus for spatially resolved diagnosis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4841166B2 (en) | Low current AC partial discharge diagnostic system for wiring diagnosis | |
CN104090214B (en) | A kind of Cable fault examination and aging analysis method | |
US10605853B2 (en) | Method and device for extended insulation fault location in an ungrounded power supply system and method for status monitoring of the power supply system | |
AU2010366614A1 (en) | Locating of partial-discharge-generating faults | |
US9880212B2 (en) | Method and apparatus for spatially resolved diagnosis | |
US6686746B2 (en) | Method and apparatus for monitoring integrity of wires or electrical cables | |
JPH09115979A (en) | Method for evaluating semiconductor device for testing | |
JP2011242206A (en) | Insulation deterioration diagnosis method and insulation deterioration diagnosis device of power cable | |
JP2001349924A (en) | Remaining life estimating method of cv cable | |
JP2001153913A (en) | Method for diagnosing insulation deterioration of cv cable | |
JP5086119B2 (en) | Deterioration location method and apparatus for power cable | |
US20050212524A1 (en) | Electric power line on-line diagnostic method | |
Boggs | The case for frequency domain PD testing in the context of distribution cable | |
JP4057182B2 (en) | Partial discharge judgment method | |
RU2539736C2 (en) | Method and device for diagnostics of electric power supply cable line faults | |
CA2637487C (en) | Diagnostic method for electrical cables utilizing axial tomography technique | |
JP3308157B2 (en) | Cable detector | |
JPH1090337A (en) | Method for deterioration measurement of cable | |
JP2011047766A (en) | Method and device for diagnosing insulation deterioration of power cable | |
JP2001349922A (en) | Degradation diagnosing method of cv cable | |
Sallem et al. | Wire arc defect localization and mathematical characterization by MCTDR reflectometry | |
RU2413234C1 (en) | Method to detect location of insulation damage in power transmission line | |
Touaibia et al. | Cable fault location in medium voltage of Sonelgaz underground network | |
JP5083679B2 (en) | Degradation diagnosis method of CV cable by residual charge measurement method | |
Ragusa et al. | Exploring Electromagnetic Time-Reversal as a Method to Monitor Cable Temperature in Medium-Voltage Networks |