[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001152842A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine

Info

Publication number
JP2001152842A
JP2001152842A JP33165199A JP33165199A JP2001152842A JP 2001152842 A JP2001152842 A JP 2001152842A JP 33165199 A JP33165199 A JP 33165199A JP 33165199 A JP33165199 A JP 33165199A JP 2001152842 A JP2001152842 A JP 2001152842A
Authority
JP
Japan
Prior art keywords
cylinder
engine
cylinders
exhaust
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33165199A
Other languages
Japanese (ja)
Inventor
Masatoshi Hoshino
雅俊 星野
Minoru Osuga
大須賀  稔
Hiroshi Kimura
博史 紀村
Shinji Nakagawa
慎二 中川
Yoichi Iiboshi
洋一 飯星
Shiro Yamaoka
士朗 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP33165199A priority Critical patent/JP2001152842A/en
Publication of JP2001152842A publication Critical patent/JP2001152842A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress rotating variation making ignition timing, injection timing, and torque generating in each cylinder using EGR coincide, and to enhance operativeness by in an engine in which an air/fuel ratio different each cylinder is set. SOLUTION: An EGR passage is installed independently in a lean operation cylinder and a rich operation cylinder, and EGR, ignition timing, and injection timing are controlled so as to evaluate rotation variations, based on data from a rotating sensor for measuring a rotating signal of the engine and reduce the rotating variation, and the workability of the engine is enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は排気中の規制対象
成分を抑えるため一部の気筒の空燃比をリーンにし、そ
の他の気筒はリッチ条件で運転するようにしたエンジン
のトルク変動を軽減する内燃機関の排気浄化装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine in which the air-fuel ratio of some of the cylinders is made lean and the other cylinders are operated under rich conditions in order to reduce the regulated components in the exhaust gas. The present invention relates to an exhaust gas purification device for an engine.

【0002】[0002]

【従来の技術】自動車の燃費や排気ガスに対する法規制
は各国で年々、厳しさを増してきている。従来からNO
x,CO,HCを三元触媒で浄化するときの浄化効率を
上げるため、空燃比を理想空燃比(14.7)になるべく
近づけるようにその時々の空気量に対して燃料噴射料を
制御する技術が開発されてきた。また、燃費向上に対し
ては、空燃比をリーンにしてポンプ損失を減らす方法が
多数開発されている。しかし、これらの方法では三元触
媒を使用した場合、特にNOx浄化率が著しく低下して
しまう。
2. Description of the Related Art Laws and regulations on fuel efficiency and exhaust gas of automobiles are becoming stricter year by year in each country. Conventionally NO
In order to increase the purification efficiency when purifying x, CO and HC with the three-way catalyst, the fuel injection rate is controlled with respect to the respective air amount so that the air-fuel ratio approaches the ideal air-fuel ratio (14.7) as much as possible. Technology has been developed. In order to improve fuel economy, many methods have been developed to reduce the pump loss by making the air-fuel ratio lean. However, in these methods, when a three-way catalyst is used, in particular, the NOx purification rate is significantly reduced.

【0003】特開平4−365920 号では例えば、4気筒エ
ンジンで3つの気筒はリーンで運転し、残りの1つの気
筒は理想空燃比よりややリッチで運転する制御方式が開
示されている。この方式ではリッチで運転する気筒の排
気はアンモニア生成触媒を通し、発生したアンモニアと
リーン運転の気筒から発生したNOxを脱硝触媒に作用
させNOx排出量を抑えることができる。また、エンジ
ンは平均的にはリーン領域で運転されるため燃費をほと
んど悪化させることなく排気を浄化できる。
Japanese Patent Application Laid-Open No. 4-365920 discloses a control system in which, for example, in a four-cylinder engine, three cylinders are operated lean, and the other one is operated slightly richer than the ideal air-fuel ratio. In this method, the exhaust of the cylinder operating in a rich manner passes through the ammonia generation catalyst, and the generated ammonia and NOx generated from the cylinder in the lean operation act on the denitration catalyst to reduce the NOx emission amount. Further, since the engine is operated in the lean region on average, it is possible to purify exhaust gas without substantially deteriorating fuel efficiency.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開平
4−365920 号の方式では同一のエンジンで混合気がリー
ンの気筒とリッチの気筒が混在することになるので、気
筒毎の発生トルクが異なりサージトルクや回転変動が生
じ、運転性が悪化することがある。通常の、全気筒に対
して同一の制御を適用して空燃比を一致させる運転条件
であっても、気筒毎に噴射系や点火系あるいは燃焼が若
干異なり、気筒間の発生トルクに差が生じ回転変動の原
因となる。このため運転性を確保するため、燃料噴射装
置の特性を予め求めて気筒毎に補正することで全気筒の
空燃比を一致させる方法や、気筒毎に空燃比を求めてフ
ィードバック制御をする方式などが使われている。気筒
毎に空燃比が異なるエンジンではサージトルクや回転変
動の抑制は不可欠の技術である。
SUMMARY OF THE INVENTION
In the system of 4-365920, the same engine mixes lean and rich cylinders, resulting in different torques for each cylinder, resulting in surge torque and rotational fluctuation, resulting in poor drivability. There is. Even under normal operating conditions in which the same control is applied to all cylinders to make the air-fuel ratio equal, the injection system, ignition system, or combustion differs slightly for each cylinder, causing a difference in the generated torque between cylinders. It causes rotation fluctuation. For this reason, in order to ensure drivability, the characteristics of the fuel injection device are determined in advance and corrected for each cylinder so that the air-fuel ratios of all cylinders match, or the air-fuel ratio is determined for each cylinder and feedback control is performed. Is used. In engines with different air-fuel ratios for each cylinder, suppression of surge torque and rotation fluctuation is an indispensable technology.

【0005】本発明は混合気の空燃比がリーンである気
筒とリッチである気筒が混在するエンジンにおいて回転
変動を抑え、運転性を向上する内燃機関の排気浄化装置
を提供することにある。
An object of the present invention is to provide an exhaust gas purifying apparatus for an internal combustion engine which suppresses rotational fluctuations and improves operability in an engine having a mixture of a lean cylinder and a rich cylinder.

【0006】[0006]

【課題を解決するための手段】本発明によれば、上記目
的は以下のいずれかの手段を採用することにより達成さ
れる。
According to the present invention, the above object is attained by employing any of the following means.

【0007】第一の発明は複数の気筒を備えたエンジン
で吸気マニホールドおよび排気マニホールドを一部の気
筒に対するものとそれ以外の気筒に対するものに分離
し、一部の気筒に対しては排気マニホールドから吸気マ
ニホールドへ排気ガスが環流する通路を設けることを特
徴とする内燃機関の排気浄化装置により達成できる。
A first invention is an engine having a plurality of cylinders, in which the intake manifold and the exhaust manifold are separated into those for some cylinders and those for other cylinders. This can be achieved by an exhaust gas purification device for an internal combustion engine, wherein a passage through which exhaust gas circulates is provided in the intake manifold.

【0008】第二の発明は複数の気筒を備えたエンジン
で吸気マニホールドおよび排気マニホールドを一部の気
筒に対するものとそれ以外の気筒に対するものに分離
し、筒内圧を検出する手段と、検出した筒内圧信号から
各気筒が発生するトルクを気筒別に計算する手段を有
し、この評価指標に基づいてエンジンの燃焼状態を制御
することを特徴とする内燃機関の排気浄化装置により達
成できる。
The second invention is an engine having a plurality of cylinders, in which the intake manifold and the exhaust manifold are separated into those for some cylinders and those for other cylinders, and means for detecting in-cylinder pressure, This can be achieved by an exhaust gas purification device for an internal combustion engine having means for calculating the torque generated by each cylinder from the internal pressure signal for each cylinder, and controlling the combustion state of the engine based on the evaluation index.

【0009】第三の発明は複数の気筒を備えたエンジン
で吸気マニホールドおよび排気マニホールドを一部の気
筒に対するものとそれ以外の気筒に対するものに分離
し、クランク軸の回転を検出する手段と、検出した回転
信号からエンジンが発生するトルクの変動を計算する手
段を有し、この評価指標に基づいてエンジンの燃焼状態
を制御することを特徴とする内燃機関の排気浄化装置に
より達成できる。
A third aspect of the present invention is an engine having a plurality of cylinders, in which an intake manifold and an exhaust manifold are separated into one for some cylinders and another for other cylinders, and means for detecting rotation of a crankshaft; The exhaust gas purifying apparatus for an internal combustion engine has means for calculating a fluctuation in torque generated by the engine from the rotation signal thus obtained, and controls a combustion state of the engine based on the evaluation index.

【0010】[0010]

【発明の実施の形態】以下、本発明による内燃機関の排
気浄化装置について図を用いて詳細に説明する。図1は
本発明の一実施例で4気筒エンジン11に本発明を適用
した場合の構成を示している。第一の気筒から第三の気
筒までの3つの気筒と第四の気筒とは吸気マニホールド
と排気マニホールドが分離している。第四の気筒に対す
る吸気・排気マニホールドには排気ガスを吸気マニホー
ルドに環流させる通路12があり、環流ガス量はEGR
弁13で調整する。EGR弁はEGR弁駆動回路14に
より駆動される。第四の気筒の排気側には理想空燃比よ
りややリッチ条件で運転した場合、アンモニアを生成す
る触媒15があり、さらに全気筒の排気が集合する下流
に脱硝触媒16がある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an exhaust gas purifying apparatus for an internal combustion engine according to the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration in which the present invention is applied to a four-cylinder engine 11 in one embodiment of the present invention. The intake manifold and the exhaust manifold are separated from the three cylinders from the first cylinder to the third cylinder and the fourth cylinder. The intake / exhaust manifold for the fourth cylinder has a passage 12 for recirculating exhaust gas to the intake manifold.
Adjust with valve 13. The EGR valve is driven by the EGR valve drive circuit 14. On the exhaust side of the fourth cylinder, there is a catalyst 15 that produces ammonia when operated under conditions slightly richer than the ideal air-fuel ratio, and further there is a denitration catalyst 16 downstream where exhaust from all cylinders is collected.

【0011】点火装置17と噴射装置18は各気筒にあ
り、それぞれ点火装置駆動回路19,噴射装置駆動回路
20から駆動される。スロットル弁21はそれぞれの吸
気マニホールドに設けられており、スロットル駆動回路
22から駆動される。エンジンのクランク軸には回転セ
ンサ23があり、第四の気筒の排気側には酸素センサ2
4があって、演算装置25の入力となっている。特開平
4−365920 号の方式に従って、演算装置は第一の気筒か
ら第三の気筒(以下リーン気筒という)までの空燃比が
リーンで、第四の気筒(以下リッチ気筒という)がやや
リッチになるようにスロットル弁と噴射装置を制御する
信号を出力する。これにより燃費の悪化を防ぎながらの
排気浄化が可能になるが、気筒間の空燃比の違いに起因
するエンジンの回転変動が問題になる。図2は排気ガス
を環流する通路が第一の気筒から第三の気筒までに対す
る吸気および排気マニホールドに設けられた例である。
このとき気筒間の発生トルクの差から生じる回転変動を
回転センサで検出し、これを抑制するように点火装置,
噴射装置,EGR弁を制御する。なお、図1や図2で噴
射装置は吸気管に配置されているが、気筒内に配置され
ていても本発明の方法は同様に適用可能である。
An ignition device 17 and an injection device 18 are provided in each cylinder, and are driven by an ignition device drive circuit 19 and an injection device drive circuit 20, respectively. The throttle valves 21 are provided in the respective intake manifolds, and are driven by a throttle drive circuit 22. A rotation sensor 23 is provided on the crankshaft of the engine, and an oxygen sensor 2 is provided on the exhaust side of the fourth cylinder.
4, which is an input of the arithmetic unit 25. JP
According to the method of 4-365920, the arithmetic unit operates such that the air-fuel ratio from the first cylinder to the third cylinder (hereinafter, referred to as lean cylinder) is lean, and the fourth cylinder (hereinafter, referred to as rich cylinder) becomes slightly rich. And outputs a signal for controlling the throttle valve and the injection device. This makes it possible to purify exhaust gas while preventing deterioration of fuel efficiency, but causes a problem of engine rotation fluctuation caused by a difference in air-fuel ratio between cylinders. FIG. 2 shows an example in which a passage for recirculating exhaust gas is provided in the intake and exhaust manifolds for the first to third cylinders.
At this time, the rotation sensor detects a rotation fluctuation caused by a difference in generated torque between the cylinders, and an ignition device,
The injection device and the EGR valve are controlled. Although the injection device is arranged in the intake pipe in FIGS. 1 and 2, the method of the present invention can be similarly applied even if it is arranged in the cylinder.

【0012】リッチ気筒またはリーン気筒の点火時期を
適当に調整し、各気筒の発生トルクの大きさをそろえれ
ば、図3に示すように回転変動を許容範囲に抑えること
ができる。図4に点火装置を用いて回転変動を抑制する
処理のフローチャートを示す。回転変動と点火時期との
関係は単調ではないので回転変動が減少する方向に点火
時期を調整する方法を採る。この処理はエンジンの回転
変動が許容範囲以上になると起動する。ステップ41で
点火時期の変化幅を1度とする。回転センサから回転変
動を計算し、ステップ42で回転変動が許容範囲内であ
ればこの処理は終了する。そうでない場合は点火時期を
1度進める。ステップ43では、点火時期を進めても回
転変動の変化がほとんどないときには回転変動が許容値
以上であっても、点火時期制御では効果がないとして終
了とする。この場合は別の、後述の方法により回転変動
を少なくする。ステップ44では点火時期を進めた結
果、回転変動が増加した場合、点火時期の変化幅を−1
として次回から点火時期を遅らせるようにする。各気筒
のトルクは点火時期の他に噴射時期によっても調整可能
であり、噴射時期に対しても図3と同様の関係がある。
したがって、噴射時期の調整方法も図4と全く同じ処理
で可能である。
If the ignition timing of the rich cylinder or the lean cylinder is appropriately adjusted and the magnitude of the generated torque of each cylinder is made uniform, the rotational fluctuation can be suppressed to an allowable range as shown in FIG. FIG. 4 shows a flowchart of a process for suppressing the rotation fluctuation using the ignition device. Since the relationship between the rotation fluctuation and the ignition timing is not monotonous, a method of adjusting the ignition timing in a direction in which the rotation fluctuation decreases is employed. This process is started when the rotation fluctuation of the engine exceeds the allowable range. In step 41, the change width of the ignition timing is set to 1 degree. The rotation fluctuation is calculated from the rotation sensor, and if the rotation fluctuation is within the allowable range in step 42, this processing ends. If not, the ignition timing is advanced once. In step 43, when there is almost no change in the rotation fluctuation even if the ignition timing is advanced, even if the rotation fluctuation is equal to or more than the allowable value, it is determined that the ignition timing control has no effect, and the process is ended. In this case, the rotation fluctuation is reduced by another method described later. In step 44, if the rotation timing increases as a result of advancing the ignition timing, the range of change of the ignition timing is set to -1.
The ignition timing is delayed from the next time. The torque of each cylinder can be adjusted not only by the ignition timing but also by the injection timing, and the injection timing has the same relationship as in FIG.
Therefore, the method of adjusting the injection timing can be performed by the same processing as that in FIG.

【0013】排気ガスを吸気マニホールドに環流させる
EGR(Exhaust Gas Recirculation)を、図1や図2の
構成でリッチ気筒またはリーン気筒に作用させれば回転
変動の調整手段として使用できる。EGR弁を開くと空
気に加えて排気ガスが気筒に流入し、その気筒の燃焼状
態が変化し発生するトルクも変化する。したがって、図
5に示すように適当なEGR弁開度を選べば各気筒が発
生するトルクがほぼ同じになり回転変動は許容値以下に
なる。図6にはEGR弁を調整する方法を記述したフロ
ーチャートであり、点火時期の調整方法と同様に回転変
動が減少する方向にEGR弁を動かすものである。回転
変動が許容値M以上になったときこの処理が起動し、ス
テップ51ではEGR弁の一回の変化幅を1度とする。
ステップ52では回転変動を評価し、許容範囲M以下で
あれば処理を中止し、そうでなければ続行する。ステッ
プ53ではEGR弁を先に設定した変化幅だけ開く。設
定幅が負のときですでにEGR弁が全閉のときはそれ以
上閉弁できないので、ステップ54で処理を中止する。
また、EGR弁を動かした後、回転変動の変化がほとん
どないときはそれ以上動かしても効果のないばかりか燃
焼が悪化するおそれもあるのでステップ55で処理は終
了する。ステップ56ではEGR弁を設定した量だけ開
いた(閉じた)ときその前と比べて回転変動が増加して
いたら設定量をいままでと逆の方向に設定する。これら
の処理を回転変動が許容値以下になるまで繰り返す。
If EGR (Exhaust Gas Recirculation) for recirculating exhaust gas to the intake manifold is applied to a rich cylinder or a lean cylinder in the configuration shown in FIGS. 1 and 2, it can be used as a means for adjusting rotation fluctuation. When the EGR valve is opened, exhaust gas flows into the cylinder in addition to air, the combustion state of the cylinder changes, and the generated torque also changes. Therefore, if an appropriate EGR valve opening is selected as shown in FIG. 5, the torque generated by each cylinder becomes substantially the same, and the rotation fluctuation becomes less than the allowable value. FIG. 6 is a flowchart describing a method of adjusting the EGR valve, and moves the EGR valve in a direction in which the rotational fluctuation decreases, similarly to the method of adjusting the ignition timing. This process is started when the rotation fluctuation becomes equal to or more than the allowable value M, and in step 51, the width of one change of the EGR valve is set to 1 degree.
In step 52, the rotation fluctuation is evaluated. If the rotation fluctuation is equal to or smaller than the allowable range M, the processing is stopped. Otherwise, the processing is continued. In step 53, the EGR valve is opened by the previously set change width. If the set width is negative and the EGR valve is already fully closed, it cannot be closed any more, so the process is stopped in step 54.
Further, if there is almost no change in the rotation fluctuation after the EGR valve is moved, even if it is moved further, there is a possibility that the combustion may be deteriorated, and the process ends in step 55. In step 56, when the EGR valve is opened (closed) by the set amount and the rotational fluctuation has increased as compared to before, the set amount is set in the opposite direction. These processes are repeated until the rotation fluctuation becomes equal to or smaller than the allowable value.

【0014】以上の方法は回転変動をエンジンのクラン
ク軸に取り付けた回転センサによって検出する方法であ
るが、図7にその構成を示すように各気筒に備えた筒内
圧センサ26によって各気筒が発生するトルクを直接測
定する方法も可能である。この場合、点火,噴射,EG
Rを利用して各気筒のトルクをそろえることで回転変動
を減少することになる。
The above-mentioned method is a method of detecting rotation fluctuation by a rotation sensor attached to a crankshaft of an engine. As shown in FIG. 7, each cylinder is generated by an in-cylinder pressure sensor 26 provided for each cylinder. A method of directly measuring the applied torque is also possible. In this case, ignition, injection, EG
By using R to equalize the torque of each cylinder, rotation fluctuations are reduced.

【0015】図8は噴射装置を気筒内に設置したエンジ
ンで本発明の方式を適用した場合の点火時期と噴射時期
の調整方法を示す概念図である。リッチ気筒では吸気行
程で燃料を噴射するがリーン気筒では圧縮行程での噴射
となる。図8の(a)に示すように点火時期がリッチ気
筒とリーン気筒でそれぞれ設定されるが、各気筒のトル
クは異なっていることがある。そこで、まず点火時期を
気筒別に調整してトルクをなるべく一致させ、残ったト
ルクのばらつきを図8の(b)のように噴射時期を気筒
別に制御してトルクの一致をはかる。この方法は回転セ
ンサで回転変動を測定する方法とは異なり、トルクが不
足あるいは過剰な気筒を直接検出し、その気筒のトルク
を調節できる利点がある。
FIG. 8 is a conceptual diagram showing a method of adjusting the ignition timing and the injection timing when the system of the present invention is applied to an engine having an injection device installed in a cylinder. In a rich cylinder, fuel is injected in an intake stroke, whereas in a lean cylinder, fuel is injected in a compression stroke. As shown in FIG. 8A, the ignition timing is set for each of the rich cylinder and the lean cylinder, but the torque of each cylinder may be different. Therefore, first, the ignition timing is adjusted for each cylinder so that the torques are matched as much as possible, and the remaining torque variation is controlled by controlling the injection timing for each cylinder as shown in FIG. This method is different from the method of measuring rotation fluctuations by a rotation sensor, and has the advantage that a cylinder with insufficient or excessive torque can be directly detected and the torque of that cylinder can be adjusted.

【0016】この方法をフローチャートで記述したのが
図9である。この処理は回転変動が許容範囲を超えたと
きに起動するものとする。ステップ91とステップ92
で、トルク調整は第一の気筒から始め4つの気筒全部を
調整するようにしている。ステップ93では各気筒のト
ルクを各気筒の筒内圧センサに基づいて計算する。続い
て、ステップ94では各気筒が発生するトルクの平均値
を求める。現在問題にしている第i気筒のトルクと先に
求めた平均トルクとの差が所定値より小さいときは、ス
テップ95で次の気筒の処理に移る。そうでないときは
ステップ96で点火時期の調整を、さらにステップ97
では噴射時期の調整をする。第i気筒のトルク調整が終
了したらステップ98で次の気筒を処理するようにす
る。
FIG. 9 is a flowchart illustrating this method. This process is started when the rotation fluctuation exceeds the allowable range. Step 91 and step 92
Thus, the torque adjustment starts from the first cylinder and adjusts all four cylinders. In step 93, the torque of each cylinder is calculated based on the in-cylinder pressure sensor of each cylinder. Subsequently, in step 94, the average value of the torque generated by each cylinder is determined. When the difference between the torque of the i-th cylinder in question at present and the previously obtained average torque is smaller than a predetermined value, the process proceeds to step 95 at the next cylinder. If not, the ignition timing is adjusted in step 96 and further in step 97
Then, the injection timing is adjusted. When the torque adjustment of the i-th cylinder is completed, the next cylinder is processed in step 98.

【0017】図9の処理の中で点火時期の調整方法を図
10に示す。噴射時期の調整も同様の処理で可能であ
る。ステップ101で一回の処理で点火時期を調整する
変化幅を1度とする。ステップ102で各気筒の平均ト
ルクと該当気筒のトルクとの差が所定値より小さくなれ
ば処理を終了する。ステップ103で点火時期を先に設
定した値だけ変化させる。この結果変化したトルクが所
定値以下ならこの条件ではトルク調整の効果がほとんど
ないのでステップ104で処理を終了する。そうでなけ
ればステップ105で各気筒の平均トルクと現在問題に
している第i気筒のトルクとの差を評価し、今回の点火
時期調整でその差が拡大した場合はステップ106で調
整する方向を反転する。
FIG. 10 shows a method of adjusting the ignition timing in the process of FIG. The adjustment of the injection timing can be performed by the same processing. In step 101, the change width for adjusting the ignition timing in one process is set to 1 degree. If the difference between the average torque of each cylinder and the torque of the corresponding cylinder is smaller than a predetermined value in step 102, the process ends. In step 103, the ignition timing is changed by the previously set value. As a result, if the changed torque is equal to or less than the predetermined value, the effect of the torque adjustment is hardly obtained under this condition. Otherwise, in step 105, the difference between the average torque of each cylinder and the torque of the i-th cylinder in question is evaluated. If the difference is increased by the current ignition timing adjustment, the direction of adjustment in step 106 is changed. Invert.

【0018】[0018]

【発明の効果】この発明によれば気筒毎に空燃比を変化
させるエンジンで、点火時期,噴射時期,EGR弁開度
を気筒別に調節し、各気筒が発生するトルクを一致さ
せ、エンジンのトルク変動や回転変動を抑制することが
できる。また、これにより燃費向上にも効果がある。こ
れらの効果はエンジンや気筒の個体差や経年変化に対し
ても有効である。
According to the present invention, in an engine in which the air-fuel ratio is changed for each cylinder, the ignition timing, the injection timing, and the opening of the EGR valve are adjusted for each cylinder so that the torque generated by each cylinder is matched, and the torque of the engine is adjusted. Fluctuations and rotation fluctuations can be suppressed. This is also effective in improving fuel efficiency. These effects are also effective against individual differences and aging of engines and cylinders.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるエンジンの排気浄化装置の一実施
形態で排気環流通路をリッチ気筒に設けた例を示すブロ
ック構成図。
FIG. 1 is a block diagram showing an example in which an exhaust gas recirculation passage is provided in a rich cylinder in an embodiment of an engine exhaust gas purification apparatus according to the present invention.

【図2】排気環流通路をリッチ気筒に設けた例を示すブ
ロック構成図。
FIG. 2 is a block diagram showing an example in which an exhaust recirculation passage is provided in a rich cylinder.

【図3】点火時期と回転変動との関係を示すグラフ。FIG. 3 is a graph showing a relationship between ignition timing and rotation fluctuation.

【図4】点火時期によって回転変動を抑制する手順を説
明するフローチャート。
FIG. 4 is a flowchart illustrating a procedure for suppressing rotation fluctuations according to ignition timing.

【図5】EGRと回転変動との関係を示すグラフ。FIG. 5 is a graph showing a relationship between EGR and rotation fluctuation.

【図6】EGRによって回転変動を抑制する手順を説明
するフローチャート。
FIG. 6 is a flowchart illustrating a procedure for suppressing rotation fluctuation by EGR.

【図7】筒内圧センサを各気筒に備えた本発明の一実施
形態。
FIG. 7 shows an embodiment of the present invention in which an in-cylinder pressure sensor is provided in each cylinder.

【図8】点火時期と噴射時期によるトルク調整法を示す
概念図。
FIG. 8 is a conceptual diagram showing a torque adjustment method based on ignition timing and injection timing.

【図9】筒内圧センサに基づくトルク調整法の手順を説
明するフローチャート。
FIG. 9 is a flowchart illustrating a procedure of a torque adjustment method based on an in-cylinder pressure sensor.

【図10】点火時期によるトルク調整法の手順を説明す
るフローチャート。
FIG. 10 is a flowchart illustrating a procedure of a torque adjustment method based on ignition timing.

【符号の説明】[Explanation of symbols]

11…エンジン、12…環流通路、13…EGR弁、1
4…EGR弁駆動回路、15…触媒、16…脱硝触媒、
17…点火装置、18…噴射装置、19…点火装置駆動
回路、20…噴射装置駆動回路、21…スロットル弁、
22…スロットル駆動回路、23…回転センサ、24…
酸素センサ、25…演算装置、26…筒内圧センサ。
11 ... engine, 12 ... recirculation passage, 13 ... EGR valve, 1
4: EGR valve drive circuit, 15: catalyst, 16: denitration catalyst,
17: ignition device, 18: injection device, 19: ignition device drive circuit, 20: injection device drive circuit, 21: throttle valve,
22 ... Throttle drive circuit, 23 ... Rotation sensor, 24 ...
Oxygen sensor, 25: arithmetic unit, 26: in-cylinder pressure sensor.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/02 301 F02D 41/02 301E 41/34 41/34 E 43/00 301 43/00 301B 301K 301H 301J 301N 45/00 368 45/00 368S F02M 25/07 550 F02M 25/07 550R 580 580B (72)発明者 紀村 博史 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 中川 慎二 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 飯星 洋一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山岡 士朗 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 3G062 AA06 BA05 BA08 ED10 ED11 GA04 GA05 GA06 GA15 GA18 GA21 GA26 3G084 BA05 BA13 BA15 BA17 BA20 DA11 DA22 FA21 FA33 FA38 3G091 AA02 AA11 AA12 AA13 AA17 AA23 AA28 AB01 AB05 BA14 CA13 CA17 CB02 CB03 CB05 CB07 DB10 DB13 EA01 EA12 EA31 EA34 FB10 FB11 FB12 HA01 HA08 HA36 HB02 HB03 HB05 3G092 AA01 AA05 AA09 AA13 AA17 BA09 BB01 BB06 DC02 DC03 DC09 DC14 DC15 DF01 DF02 EA05 EA07 FA05 FA24 FA36 FA48 HB01X HB02X HC01Z HC09X HD05Z HD07X HE02Z HE05Z HE07Z 3G301 HA13 HA18 JA04 JA15 LA00 LA01 MA01 MA11 MA18 PC01Z PE01Z PE02Z PE03Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 41/02 301 F02D 41/02 301E 41/34 41/34 E 43/00 301 43/00 301B 301K 301H 301J 301N 45/00 368 45/00 368S F02M 25/07 550 F02M 25/07 550R 580 580B (72) Inventor Hiroshi Kimura 7-1-1, Omikacho, Hitachi City, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Shinji Nakagawa 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Research Laboratory Co., Ltd. (72) Inventor Youichi Iiboshi 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. (72) Inventor Shiro Yamaoka 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi, Ltd.Hitachi Research Laboratory (Reference) 3G062 AA06 BA05 BA08 ED10 ED11 GA04 GA05 GA06 GA15 GA18 GA21 GA26 3G084 BA05 BA13 BA15 BA17 BA20 DA11 DA22 FA21 FA33 FA38 3G091 AA02 AA11 AA12 AA13 AA13 AB14 AB CB02 CB03 CB05 CB07 DB10 DB13 EA01 EA12 EA31 EA34 FB10 FB11 FB12 HA01 HA08 HA36 HB02 HB03 HB05 3G092 AA01 AA05 AA09 AA13 AA17 BA09 BB01 BB06 DC02 DC03 DC09 DC14 DC15 DF01 FA02X05 FA01X02 3G301 HA13 HA18 JA04 JA15 LA00 LA01 MA01 MA11 MA18 PC01Z PE01Z PE02Z PE03Z

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】複数の気筒を備えたエンジンで吸気マニホ
ールドおよび排気マニホールドを一部の気筒に対するも
のとそれ以外の気筒に対するものに分離し、一部の気筒
に対しては排気マニホールドから吸気マニホールドへ排
気ガスが環流する通路を設けることを特徴とする内燃機
関の排気浄化装置。
In an engine having a plurality of cylinders, an intake manifold and an exhaust manifold are separated into those for some cylinders and those for other cylinders, and for some cylinders, an exhaust manifold is changed from an intake manifold to an intake manifold. An exhaust gas purification device for an internal combustion engine, comprising a passage through which exhaust gas flows.
【請求項2】複数の気筒を備えたエンジンで吸気マニホ
ールドおよび排気マニホールドを一部の気筒に対するも
のとそれ以外の気筒に対するものに分離し、筒内圧を検
出する手段と、検出した筒内圧信号から各気筒が発生す
るトルクを気筒別に評価する手段を有し、この評価指標
に基づいてエンジンの燃焼状態を制御することを特徴と
する内燃機関の排気浄化装置。
2. An engine having a plurality of cylinders, wherein an intake manifold and an exhaust manifold are separated into those for some cylinders and those for other cylinders, and means for detecting an in-cylinder pressure; An exhaust purification system for an internal combustion engine, comprising: means for evaluating the torque generated by each cylinder for each cylinder, and controlling the combustion state of the engine based on the evaluation index.
【請求項3】複数の気筒を備えたエンジンで吸気マニホ
ールドおよび排気マニホールドを一部の気筒に対するも
のとそれ以外の気筒に対するものに分離し、クランク軸
の回転を検出する手段と、検出した回転信号からエンジ
ンが発生するトルクの変動を評価する手段を有し、この
評価指標に基づいてエンジンの燃焼状態を制御すること
を特徴とする内燃機関の排気浄化装置。
3. An engine having a plurality of cylinders, wherein an intake manifold and an exhaust manifold are separated into one for some cylinders and another for other cylinders, and means for detecting rotation of a crankshaft; An exhaust purification device for an internal combustion engine, comprising: means for evaluating a change in torque generated by an engine from the engine, and controlling a combustion state of the engine based on the evaluation index.
【請求項4】請求項1において、筒内圧を検出する手段
と、検出した筒内圧信号から各気筒が発生するトルクを
気筒別に評価する手段を有し、この評価指標に基づいて
エンジンの燃焼状態を制御することを特徴とする内燃機
関の排気浄化装置。
4. The engine according to claim 1, further comprising: means for detecting an in-cylinder pressure; and means for evaluating a torque generated by each cylinder from the detected in-cylinder pressure signal for each cylinder. An exhaust gas purifying apparatus for an internal combustion engine, comprising:
【請求項5】請求項1において、クランク軸の回転を検
出する手段と、検出した回転信号からエンジンが発生す
るトルクの変動を評価する手段を有し、この評価指標に
基づいてエンジンの燃焼状態を制御することを特徴とす
る内燃機関の排気浄化装置。
5. The engine according to claim 1, further comprising: means for detecting rotation of the crankshaft; and means for evaluating a change in torque generated by the engine based on the detected rotation signal. An exhaust gas purifying apparatus for an internal combustion engine, comprising:
【請求項6】請求項2または4において、スロットル
弁,排気環流量,点火時期,噴射時期および噴射量を制
御することで各気筒に対する評価指標のばらつきを所定
値以下にする内燃機関の排気浄化装置。
6. An exhaust purification system for an internal combustion engine according to claim 2, wherein a variation of an evaluation index for each cylinder is controlled to a predetermined value or less by controlling a throttle valve, an exhaust ring flow rate, an ignition timing, an injection timing, and an injection amount. apparatus.
【請求項7】請求項3または5においてスロットル弁,
排気環流量,点火時期,噴射時期および噴射量を制御す
ることで評価指標を所定値以下にする内燃機関の排気浄
化装置。
7. The throttle valve according to claim 3, wherein
An exhaust gas purification device for an internal combustion engine that controls an exhaust flow rate, an ignition timing, an injection timing, and an injection amount to set an evaluation index to a predetermined value or less.
JP33165199A 1999-11-22 1999-11-22 Exhaust emission control device of internal combustion engine Pending JP2001152842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33165199A JP2001152842A (en) 1999-11-22 1999-11-22 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33165199A JP2001152842A (en) 1999-11-22 1999-11-22 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2001152842A true JP2001152842A (en) 2001-06-05

Family

ID=18246061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33165199A Pending JP2001152842A (en) 1999-11-22 1999-11-22 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2001152842A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297949A (en) * 2006-04-28 2007-11-15 Toyota Motor Corp Control device for internal combustion engine
US9010113B2 (en) 2009-09-24 2015-04-21 Toyota Jidosha Kabushiki Kaisha Control apparatus of an internal combustion engine
CN109139278A (en) * 2014-11-10 2019-01-04 图拉技术公司 Control the method and engine controller of internal combustion engine
CN110410238A (en) * 2014-08-12 2019-11-05 康明斯公司 System and method for using the aftertreatment regeneration of dedicated EGR
US11236689B2 (en) 2014-03-13 2022-02-01 Tula Technology, Inc. Skip fire valve control

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297949A (en) * 2006-04-28 2007-11-15 Toyota Motor Corp Control device for internal combustion engine
JP4591403B2 (en) * 2006-04-28 2010-12-01 トヨタ自動車株式会社 Control device for internal combustion engine
US9010113B2 (en) 2009-09-24 2015-04-21 Toyota Jidosha Kabushiki Kaisha Control apparatus of an internal combustion engine
US11236689B2 (en) 2014-03-13 2022-02-01 Tula Technology, Inc. Skip fire valve control
CN110410238A (en) * 2014-08-12 2019-11-05 康明斯公司 System and method for using the aftertreatment regeneration of dedicated EGR
CN110410238B (en) * 2014-08-12 2022-04-26 康明斯公司 System and method for aftertreatment regeneration using dedicated EGR
CN109139278A (en) * 2014-11-10 2019-01-04 图拉技术公司 Control the method and engine controller of internal combustion engine

Similar Documents

Publication Publication Date Title
JP3878398B2 (en) Engine self-diagnosis device and control device
US7171960B1 (en) Control apparatus for an internal combustion engine
JPH03271544A (en) Control device of internal combustion engine
JP2001152842A (en) Exhaust emission control device of internal combustion engine
JPH11159356A (en) Valve timing control device for internal combustion engine
JP2000097088A (en) Fuel injection amount control device of internal- combustion engine
JP2008267253A (en) Control device for internal combustion engine
JP2673492B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0783148A (en) Control device for internal combustion engine
Burkhard Individual cylinder fuel control for a turbocharged engine
JP2004108204A (en) Control device for internal combustion engine
WO2023223504A1 (en) Device and method for controlling oxygen storage amount in three-way catalyst
JP4604361B2 (en) Control device for internal combustion engine
JP3161248B2 (en) Air-fuel ratio control device for internal combustion engine with EGR device
JP2001041077A (en) Internal combustion engine with exhaust emission controlling catalyst
JP2004190592A (en) Controller for internal combustion engine
JP2002106390A (en) Control device for multicylinder engine
JP2024005172A (en) Method and device for controlling warming-up of three-way catalyst
JP2001152946A (en) Exhaust emission control device for internal combustion engine
JPS59162333A (en) Control method of fuel injection in multi-cylinder internal-combustion engine
JPH03949A (en) Control device for air-fuel ratio of engine
JP3513882B2 (en) Engine fuel control device
JP2022059350A (en) Controller of internal combustion engine
JP2022059349A (en) Controller of internal combustion engine
JP3325680B2 (en) Engine air-fuel ratio control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050802