JP2001033288A - Air flow rate measuring device - Google Patents
Air flow rate measuring deviceInfo
- Publication number
- JP2001033288A JP2001033288A JP11205529A JP20552999A JP2001033288A JP 2001033288 A JP2001033288 A JP 2001033288A JP 11205529 A JP11205529 A JP 11205529A JP 20552999 A JP20552999 A JP 20552999A JP 2001033288 A JP2001033288 A JP 2001033288A
- Authority
- JP
- Japan
- Prior art keywords
- air
- flow
- flow path
- foreign matter
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、空気通路内にバイ
パス流路を配置し、このバイパス流路内に配置された流
量測定素子によって空気の流量を測定する空気流量測定
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air flow measuring device in which a bypass flow path is arranged in an air passage, and the flow rate of air is measured by a flow measuring element arranged in the bypass flow path.
【0002】[0002]
【従来の技術】従来より、この種の空気流量測定装置
は、内燃機関の吸入空気流量を測定するエアフローメー
タとして用いられており、例えば、内燃機関の吸気通路
内に配置されたバイパス流路内に、流量測定素子(発熱
素子)と感温素子とを所定間隔で設置し、流量測定素子
の発熱温度と感温素子の検出温度(吸気温度)との温度
差を一定に保つように、流量測定素子の供給電流を制御
し、その供給電流値によって吸入空気流量を測定するよ
うにしている。2. Description of the Related Art Conventionally, this type of air flow measuring device has been used as an air flow meter for measuring an intake air flow rate of an internal combustion engine. In addition, a flow rate measuring element (heating element) and a temperature sensing element are installed at a predetermined interval, and the flow rate is adjusted so that the temperature difference between the heating temperature of the flow rate measuring element and the detection temperature (intake temperature) of the temperature sensing element is kept constant. The supply current of the measuring element is controlled, and the intake air flow rate is measured based on the supply current value.
【0003】通常、吸気通路の最上流部にはエアクリー
ナが設けられているが、エアクリーナで捕捉できない細
かな塵や油粒子、エアクリーナのフィルタ屑等の異物
が、吸入空気と共に空気流量測定装置内に流入すること
がある。このような異物が流量測定素子に付着すると、
流量測定素子から空気ヘの熱伝達量(放熱量)が小さく
なるため、流量測定素子への異物付着に伴って空気流量
測定装置の出力特性が経時的に変化して吸入空気流量の
測定誤差が大きくなってしまう。[0003] Usually, an air cleaner is provided at the most upstream portion of the intake passage. However, foreign matters such as fine dust and oil particles which cannot be caught by the air cleaner, filter dust of the air cleaner, and the like are taken into the air flow measuring device together with the intake air. May flow in. When such foreign matter adheres to the flow measuring element,
Since the amount of heat transfer (radiation) from the flow measuring element to the air decreases, the output characteristics of the air flow measuring device change with time due to the attachment of foreign matter to the flow measuring element, and the measurement error of the intake air flow rate decreases. It gets bigger.
【0004】そこで、特開平6−18303号公報で
は、空気通路内に配置した副空気通路内に、流量測定素
子と、この流量測定素子の下流側で異物を捕捉する捕捉
手段とを設け、この捕捉手段によって副空気通路内に剥
離渦を発生させると共に、この剥離渦による流路抵抗
が、捕捉手段ヘの異物の付着量が増加するに従って小さ
くなるように構成し、流量測定素子ヘの異物付着による
放熱能力の減少分を捕捉手段ヘの異物付着による流路抵
抗減少(空気流速増大)で補償することで、流量測定素
子への異物付着による出力特性の経時的な変化を防止す
るようにしている。In Japanese Patent Laid-Open Publication No. Hei 6-18303, a flow rate measuring element and a catching means for catching foreign matter on the downstream side of the flow rate measuring element are provided in a sub air passage arranged in the air passage. Separation vortices are generated in the auxiliary air passage by the trapping means, and the flow path resistance due to the separation vortices is configured to decrease as the amount of foreign matter adhering to the trapping means increases. To compensate for the decrease in heat dissipation capability due to the decrease in flow path resistance (increased air flow velocity) due to foreign matter adhering to the capturing means, thereby preventing the output characteristics from changing over time due to foreign matter adhering to the flow rate measuring element. I have.
【0005】また、特開平10−197308号公報で
は、空気通路内で2つの副空気通路を交差させて、その
交差部分に流量測定素子を配置し、2つの副空気通路の
空気の流れを周期的に切り換えて、流量測定素子に異な
る方向から空気を交互に流すことで、流量測定素子に付
着した異物を排除して、流量測定素子への異物付着によ
る出力特性の経時的な変化を防止するようにしている。In Japanese Patent Laid-Open Publication No. Hei 10-197308, two sub air passages are crossed in an air passage, and a flow measuring element is arranged at the crossing portion, and the flow of air in the two sub air passages is periodically changed. By switching the air flow alternately from different directions to the flow measuring element, thereby eliminating foreign substances adhering to the flow measuring element and preventing the output characteristics from changing over time due to foreign substances adhering to the flow measuring element. Like that.
【0006】[0006]
【発明が解決しようとする課題】しかし、前者(特開平
6−18303号公報)では、異物の付着量の予測、そ
れに応じた剥離渦を発生させる捕捉手段の形状及び寸法
の設定等、難しい課題が多いため、異物付着による流量
測定素子の放熱能力減少分を捕捉手段による流路抵抗減
少(空気流速増大)で正確に補償することは非常に困難
である。従って、この技術で、出力特性の経時的な変化
を防止することは非常に困難である。However, the former (Japanese Patent Application Laid-Open No. 6-18303) has difficult problems such as the estimation of the amount of adhered foreign matter and the setting of the shape and size of the trapping means for generating the separation vortex in accordance therewith. Therefore, it is very difficult to accurately compensate for the decrease in the heat radiation capability of the flow rate measuring element due to the adhesion of the foreign matter by the decrease in the flow path resistance (increase in the air flow velocity) by the capturing means. Therefore, it is very difficult to prevent output characteristics from changing with time using this technique.
【0007】一方、後者(特開平10−197308号
公報)では、流量測定素子の空気流の当らない部分に
は、付着物が残ってしまうため、出力特性の変化は避け
られず、空気流量の測定精度が経時的に低下する。On the other hand, in the latter case (JP-A-10-197308), a change in output characteristics is unavoidable because the adhering matter remains in a portion of the flow rate measuring element where the air flow does not hit. Measurement accuracy decreases over time.
【0008】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、空気中の異物が流量
測定素子に付着することを極めて簡単な構造で防止でき
て、異物付着による出力特性の経時的な変化を従来技術
より確実に防止することができ、空気流量の測定精度を
向上させることができる空気流量測定装置を提供するこ
とにある。SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to prevent foreign substances in the air from adhering to the flow rate measuring element with a very simple structure, and to prevent the foreign substances from adhering. It is an object of the present invention to provide an air flow measuring device that can more reliably prevent the output characteristics from changing with time than the conventional technology and can improve the measurement accuracy of the air flow.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の空気流量測定装置は、空気通路
内に設置するバイパス流路を、空気通路内の空気流れ方
向に対して略直角に配置する上流側流路と下流側流路と
を曲り部でつないだ逆U字状の流路に形成し、上流側流
路と下流側流路との間を仕切る隔壁のうちの該上流側流
路の空気流入口に対向する位置又はその近傍に異物通過
口を形成したものである。In order to achieve the above-mentioned object, an air flow measuring device according to a first aspect of the present invention is arranged such that a bypass flow path provided in an air passage is provided with respect to a direction of air flow in the air passage. The upstream flow path and the downstream flow path arranged at a substantially right angle are formed in an inverted U-shaped flow path connected by a bent portion, and the partition wall that separates the upstream flow path and the downstream flow path is formed. A foreign matter passage port is formed at a position facing the air inlet of the upstream flow path or in the vicinity thereof.
【0010】この構成では、空気流入口からバイパス流
路の上流側流路内に流入した空気は空気通路内の空気流
れ方向に対して略直角に方向転換して、バイパス流路
(上流側流路→曲り部→下流側流路)を流れる。この
際、空気流入口から流入した空気中に含まれる塵や油粒
子、エアクリーナのフィルタ屑等の異物は、空気の流れ
と比べて慣性が大きく直線的に流れようとするため、バ
イパス流路の隔壁のうちの空気流入口に対向する位置又
はその近傍(つまり空気の流れが略直角に方向転換する
場所)に異物通過口を形成すれば、空気中の異物が慣性
により一部の空気と共に異物通過口を通ってバイパス流
路をショートカットして下流側流路ヘ流れる。これによ
り、バイパス流路の隔壁に異物通過口を形成するという
極めて簡単な構造で、空気中の異物がバイパス流路内の
流量測定素子に付着することを防止できて、異物付着に
よる出力特性の経時的な変化を従来技術より確実に防止
することができ、空気流量の測定精度を向上させること
ができる。In this configuration, the air that has flowed from the air inlet into the upstream flow path of the bypass flow path changes direction substantially at right angles to the air flow direction in the air flow path, and the air flows into the bypass flow path (the upstream flow path). Flow → bend → downstream flow path). At this time, foreign substances such as dust, oil particles, and filter dust of an air cleaner contained in the air flowing from the air inlet port have a large inertia compared to the air flow and tend to flow linearly. If a foreign substance passage port is formed at or near the air inlet of the partition wall (that is, a place where the air flow changes direction at a substantially right angle), the foreign substances in the air will be removed by the inertia together with some air. Shortcut the bypass flow path through the passage port and flow to the downstream flow path. This makes it possible to prevent foreign matter in the air from adhering to the flow rate measuring element in the bypass flow path, and to achieve an output characteristic due to foreign matter adhesion with a very simple structure in which a foreign matter passage opening is formed in the partition wall of the bypass flow path. The change with time can be more reliably prevented than in the prior art, and the measurement accuracy of the air flow rate can be improved.
【0011】この場合、請求項2のように、バイパス流
路の下流側流路に、異物通過口を通過した空気を該下流
側流路の下流側に向けて案内する案内壁を設けるように
すると良い。このようにすれば、異物通過口を通過した
空気の流れ(ショートカット流)を、下流側流路を流れ
るバイパス流にスムーズに合流させることができて、シ
ョートカット流の合流によるバイパス流の乱れ(流量測
定素子に当たるバイパス流の流速の変動)を少なくする
ことができ、流量測定素子の出力変動を小さくすること
ができる。In this case, a guide wall for guiding air passing through the foreign matter passage port toward the downstream side of the downstream flow path is provided in the downstream flow path of the bypass flow path. Good. In this way, the flow of air (shortcut flow) passing through the foreign matter passage can be smoothly merged with the bypass flow flowing in the downstream flow path, and the turbulence (flow rate) Fluctuation of the flow velocity of the bypass flow hitting the measuring element) can be reduced, and output fluctuation of the flow measuring element can be reduced.
【0012】また、空気流入口から上流側流路内に流入
した空気が流量測定素子側に向かって略直角に方向転換
して流れることを考慮して、請求項3のように、異物通
過口を、空気流入口に対向する位置と、その位置よりも
流量測定素子側の位置とに跨がるように形成すると良
い。このようにすれば、流量測定素子側に向かうバイパ
ス流に乗って空気流入口の対向位置よりも流量測定素子
側に流された異物も、異物通過口を通過させることがで
き、流量測定素子への異物の付着をより確実に防止する
ことができる。In consideration of the fact that the air flowing from the air inlet into the upstream flow path changes direction at a substantially right angle toward the flow measuring element and flows, the foreign matter passage port is provided as in claim 3 Is preferably formed so as to straddle a position facing the air inlet and a position closer to the flow measuring element than the position. In this way, even foreign substances flowing on the flow measurement element side from the position opposite to the air inlet on the bypass flow toward the flow measurement element side can pass through the foreign substance passage port, and Can be more reliably prevented from adhering.
【0013】[0013]
【発明の実施の形態】以下、本発明を内燃機関の空気流
量測定装置(エアフローメータ)に適用した一実施形態
を図面に基づいて説明する。図1に示すように、内燃機
関の吸気管11(空気通路)の所定位置に形成された取
付穴12に空気流量測定装置13がプラグイン方式で組
み付けられている。この空気流量測定装置13は、回路
モジュール14と流量測定ユニット15とから構成され
ている。流量測定ユニット15は、全体として取付穴1
2から吸気管11の中心軸C付近まで延びる角筒状に形
成されている。この流量測定ユニット15は、吸気管1
1の径方向に沿って延びる2本の管を吸気管11の空気
流れ方向に沿って並べて隔壁17で接合することで、上
流側流路18aと下流側流路18cとを曲り部18bで
つないだ逆U字状のバイパス流路18を形成している。
このバイパス流路18の上流側流路18aの流路断面積
A1 は、下流側流路18cの流路断面積A2 よりも小さ
くなるように形成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to an air flow meter (air flow meter) for an internal combustion engine will be described below with reference to the drawings. As shown in FIG. 1, an air flow measuring device 13 is mounted in a mounting hole 12 formed at a predetermined position in an intake pipe 11 (air passage) of an internal combustion engine by a plug-in method. The air flow measuring device 13 includes a circuit module 14 and a flow measuring unit 15. The flow rate measuring unit 15 has the mounting hole 1 as a whole.
It is formed in the shape of a rectangular tube extending from 2 to the vicinity of the central axis C of the intake pipe 11. This flow measurement unit 15 is provided with the intake pipe 1
The two pipes extending in the radial direction of 1 are arranged along the air flow direction of the intake pipe 11 and joined by the partition wall 17, so that the upstream flow path 18a and the downstream flow path 18c are connected by a bent portion 18b. An inverted U-shaped bypass flow path 18 is formed.
The flow path cross-sectional area A1 of the upstream flow path 18a of the bypass flow path 18 is formed to be smaller than the flow path cross-sectional area A2 of the downstream flow path 18c.
【0014】この流量測定ユニット15の上流側の側面
には、吸気管11内を流れる空気(主流)の一部を流量
測定ユニット15内に流入させる空気流入口19が形成
されている。また、流量測定ユニット15の下端部に
は、ベンチュリ管部16が主流方向に平行に一体成形さ
れている。ベンチュリ管部16の下流側には、バイパス
流路18の空気流出口22が形成され、ベンチュリ管部
16の下流側でバイパス流路18の空気の流れ(バイパ
ス流)がベンチュリ管部16を通過した空気の流れ(ベ
ンチュリ流)と合流するようになっている。An air inlet 19 through which a part of the air (main flow) flowing through the intake pipe 11 flows into the flow measurement unit 15 is formed on the upstream side surface of the flow measurement unit 15. At the lower end of the flow measurement unit 15, a Venturi tube 16 is integrally formed in parallel with the main flow direction. An air outlet 22 of the bypass flow path 18 is formed on the downstream side of the Venturi pipe section 16, and the air flow (bypass flow) of the bypass flow path 18 passes through the Venturi pipe section 16 on the downstream side of the Venturi pipe section 16. It merges with the flow of air (venturi flow).
【0015】更に、隔壁17には、空気流入口19の上
側部に対向する部分に、異物通過口23が下流側流路1
8cに連通するように形成されている。この異物通過口
23の上部は、空気流入口19の上端よりも上側(流量
測定素子29側)に突出し、異物通過口23の横幅は、
空気流入口19の横幅と略同一に形成されている(図2
参照)。また、隔壁17の下流側流路18c側の面に
は、異物通過口23を通過した空気の流れ(ショートカ
ット流)を下流側流路18cの下流側に向けて案内する
案内壁24が異物通過口23の上縁部から下方に延びる
ように形成されている。Further, in the partition 17, a foreign substance passage 23 is formed at a portion facing the upper part of the air inlet 19, at the downstream side flow path 1.
8c. The upper part of the foreign substance passage port 23 projects upward (toward the flow measuring element 29) from the upper end of the air inlet 19, and the lateral width of the foreign substance passage port 23 is
The width is substantially the same as the width of the air inlet 19 (FIG. 2).
reference). A guide wall 24 that guides the flow of air (shortcut flow) passing through the foreign matter passage 23 toward the downstream side of the downstream flow passage 18c is provided on the surface of the partition wall 17 on the downstream flow passage 18c side. The mouth 23 is formed to extend downward from the upper edge.
【0016】一方、流量測定ユニット15の上端開口部
は、回路モジュール14で閉鎖されている。この回路モ
ジュール14の下面には、流量測定素子29(発熱素
子)と感温素子30とがそれぞれ支持部材31,32に
よって所定間隔で組み付けられ、これら流量測定素子2
9と感温素子30とがバイパス流路18のうちの上流側
流路18aの上部に設置されている。ここで、流量測定
素子29を上流側流路18aに設置する理由は、上流側
流路18aの流路断面積A1 が、下流側流路18cの流
路断面積A2 よりも小さく、バイパス流の流速が上流側
流路18aの方が速くなるためであり、流量測定精度は
バイパス流の流速が速い方が向上するためである。感温
素子30は、流量測定素子29に触れる空気の温度を測
定するため、流量測定素子29の放熱の影響を受けない
範囲で流量測定素子29の近くに設置することが好まし
い。On the other hand, the opening at the upper end of the flow measuring unit 15 is closed by the circuit module 14. On the lower surface of the circuit module 14, a flow rate measuring element 29 (heating element) and a temperature sensing element 30 are assembled at predetermined intervals by supporting members 31, 32, respectively.
9 and the temperature sensing element 30 are installed above the upstream flow path 18 a of the bypass flow path 18. Here, the reason for installing the flow rate measuring element 29 in the upstream flow path 18a is that the flow path cross-sectional area A1 of the upstream flow path 18a is smaller than the flow path cross-sectional area A2 of the downstream flow path 18c, This is because the flow velocity is higher in the upstream flow path 18a, and the flow measurement accuracy is higher when the flow velocity of the bypass flow is higher. Since the temperature sensing element 30 measures the temperature of the air that comes into contact with the flow measurement element 29, it is preferable that the temperature sensing element 30 is installed near the flow measurement element 29 within a range that is not affected by heat radiation of the flow measurement element 29.
【0017】上記回路モジュール14の内部には、流量
測定素子29と感温素子30ヘの通電を制御する回路基
板(図示せず)が収納され、回路モジュール14の側部
にはワイヤハーネス(図示せず)を接続するためのコネ
クタ34がインサート成形されている。また、回路モジ
ュール14の下面側には、吸気温センサ35(図2参
照)が下方に突出するように配置され、この吸気温セン
サ35が流量測定ユニット15の側方に位置して吸気管
11内を流れる空気の温度(吸気温度)を検出する。A circuit board (not shown) for controlling the flow of electricity to the flow measuring element 29 and the temperature sensing element 30 is housed inside the circuit module 14, and a wire harness (FIG. (Not shown) is insert-molded. An intake air temperature sensor 35 (see FIG. 2) is disposed on the lower surface side of the circuit module 14 so as to protrude downward. Detects the temperature of the air flowing inside (intake air temperature).
【0018】尚、流量測定ユニット15の上端のフラン
ジ部20は、回路モジュール14の下面の嵌合凸部36
に融着又は接着等により接合され、嵌合凸部36の外周
に装着したOリング37によって取付穴12の内周部が
シールされている。そして、回路モジュール14の下面
を取付穴12の周縁部上面に当接させた状態で、図2に
示すように、回路モジュール14の側部の固定片部38
のネジ挿通孔にネジ39を挿通して吸気管11の取付部
40のネジ孔に締め込むことで、空気流量測定装置13
をプラグイン方式で吸気管11の取付穴12に組み付け
ている。The flange 20 at the upper end of the flow measuring unit 15 is fitted with a fitting projection 36 on the lower surface of the circuit module 14.
The inner peripheral portion of the mounting hole 12 is sealed by an O-ring 37 mounted on the outer periphery of the fitting convex portion 36. Then, with the lower surface of the circuit module 14 in contact with the upper surface of the peripheral edge of the mounting hole 12, as shown in FIG.
The screw 39 is inserted into the screw insertion hole of the intake pipe 11 and screwed into the screw hole of the attachment portion 40 of the intake pipe 11, whereby the air flow measuring device 13
Is assembled in the mounting hole 12 of the intake pipe 11 by a plug-in method.
【0019】以上のように構成した空気流量測定装置1
3では、吸気管11内を流れる空気の一部が、空気流入
口19からバイパス流路18の上流側流路18aとベン
チュリ管部16に分かれて流入する。バイパス流路18
の上流側流路18a内に流入した空気は、吸気管11内
の空気流れ方向に対して略直角に方向転換して、バイパ
ス流路18(上流側流路18a→曲り部18b→下流側
流路18c)を流れる。このバイパス流は、ベンチュリ
管部16の下流側で、ベンチュリ管部16を通過した空
気の流れ(ベンチュリ流)と合流する。この合流部で
は、ベンチュリ流によってバイパス流路18の空気流出
口22に吸出し力(負圧)が作用し、バイパス流の流速
を速くする。そして、回路モジュール14によって流量
測定素子29の電流(発熱温度)を感温素子30の検出
温度(吸気温度)との温度差が一定となるように制御
し、そのときの流量測定素子29の電流値によってバイ
パス流量ひいては吸入空気流量を測定する。The air flow measuring device 1 configured as described above
In 3, a part of the air flowing through the intake pipe 11 flows into the upstream flow path 18 a of the bypass flow path 18 and the Venturi pipe part 16 from the air inlet 19 separately. Bypass channel 18
The air that has flowed into the upstream flow path 18a changes direction at a substantially right angle to the air flow direction in the intake pipe 11, and the bypass flow path 18 (the upstream flow path 18a → the bent portion 18b → the downstream flow) Flows along road 18c). This bypass flow merges with the flow of air (Venturi flow) passing through the Venturi tube 16 on the downstream side of the Venturi tube 16. At the junction, a suction force (negative pressure) acts on the air outlet 22 of the bypass passage 18 by the Venturi flow, thereby increasing the flow velocity of the bypass flow. Then, the current (heat generation temperature) of the flow measurement element 29 is controlled by the circuit module 14 so that the temperature difference from the detected temperature (intake air temperature) of the temperature sensing element 30 becomes constant, and the current of the flow measurement element 29 at that time is controlled. The bypass flow rate and thus the intake air flow rate are measured according to the value.
【0020】この場合、空気流入口19の上側部から流
入した空気の多くは、主流方向に対して略直角上方に方
向転換してバイパス流路18の上流側流路18aを流れ
るが、本実施形態では、バイパス流路18の隔壁17の
うちの空気流入口19の上側部に対向する部分に異物通
過口23が形成されているので、空気流入口19の上側
部から流入した空気の一部は、異物通過口23を通って
バイパス流路18をショートカットして下流側流路18
cヘ流れる。空気流入口19から流入した空気に塵や油
粒子、エアクリーナのフィルタ屑等の異物が含まれてい
ると、その異物は、空気の流れと比べて慣性が大きく直
線的に流れようとするため、一部の空気と共に異物通過
口23を通ってバイパス流路18をショートカットして
下流側流路18cヘ流れる。これにより、空気中の異物
が流量測定素子29に到達して付着することが防止され
る。In this case, most of the air that has flowed in from the upper portion of the air inlet 19 turns upward at substantially right angles to the main flow direction and flows through the upstream flow passage 18a of the bypass flow passage 18. In the embodiment, since the foreign matter passage port 23 is formed in a portion of the partition wall 17 of the bypass passage 18 facing the upper side of the air inlet 19, a part of the air flowing from the upper side of the air inlet 19 is formed. Cuts off the bypass passage 18 through the foreign matter passage 23 and makes the downstream passage 18
Flows to c. If foreign matter such as dust, oil particles, and filter dust of an air cleaner is included in the air flowing from the air inlet 19, the foreign matter tends to flow linearly with a large inertia as compared with the flow of air. Along with a part of the air, it flows through the foreign matter passage 23 to the bypass flow path 18 to flow to the downstream flow path 18c. This prevents foreign substances in the air from reaching and adhering to the flow measurement element 29.
【0021】以上の説明から明らかなように、本実施形
態では、バイパス流路18の隔壁17のうちの空気流入
口19の対向部分に異物通過口23を形成するという極
めて簡単な方法で、空気中の異物が流量測定素子29に
付着することを防止することができ、異物付着による出
力特性の経時的な変化を抑えることができて、空気流量
の測定精度を向上させることができる。As is apparent from the above description, in the present embodiment, the air is formed by a very simple method of forming the foreign substance passage 23 in the portion of the partition 17 of the bypass passage 18 opposite to the air inlet 19. Foreign matter in the inside can be prevented from adhering to the flow rate measuring element 29, and a change over time in the output characteristics due to the foreign matter adhering can be suppressed, and the measurement accuracy of the air flow rate can be improved.
【0022】また、本実施形態では、異物通過口23を
通過した空気流(ショートカット流)を案内壁24によ
り下流側流路18cの下流側に向けて案内するようにし
ているので、異物通過口23を通過したショートカット
流を下流側流路18c内のバイパス流にスムーズに合流
させることができる。これにより、ショートカット流の
合流によるバイパス流の乱れを防止して、流量測定素子
29に当たるバイパス流の流速の変動を小さくすること
ができ、流量測定素子29の出力変動を小さくすること
ができる。In this embodiment, the air flow (shortcut flow) passing through the foreign substance passage 23 is guided by the guide wall 24 toward the downstream side of the downstream flow path 18c. The shortcut flow that has passed through 23 can be smoothly merged with the bypass flow in the downstream flow passage 18c. Accordingly, disturbance of the bypass flow due to the merging of the shortcut flows can be prevented, fluctuation in the flow velocity of the bypass flow impinging on the flow measurement element 29 can be reduced, and output fluctuation of the flow measurement element 29 can be reduced.
【0023】本発明者らは、異物通過口23による流量
測定素子29の出力変動を評価するために、本実施形態
の空気流量測定装置13(異物通過口23有り)と従来
の空気流量測定装置(異物通過口23無し)とを用い
て、両者の空気流量に対する出力の変動幅を比較する試
験を行ったので、その試験結果を図3に示す。この試験
は、いずれの場合も流量測定素子29への異物の付着が
無い状態で行った。この試験結果によれば、本実施形態
の空気流量測定装置13(異物通過口23有り)でも、
案内壁24を設けることで、空気流量に対する出力の変
動幅を従来の空気流量測定装置(異物通過口23無し)
とほぼ同じレベルにできることが確認された。In order to evaluate the output fluctuation of the flow rate measuring element 29 caused by the foreign matter passage 23, the present inventors have compared the air flow measurement device 13 of this embodiment (with the foreign matter passage 23) with the conventional air flow measurement device. (Without the foreign matter passage port 23), a test was performed to compare the fluctuation range of the output with respect to the air flow rate of both, and the test result is shown in FIG. This test was performed without any foreign matter adhering to the flow rate measuring element 29 in any case. According to the test results, even in the air flow measuring device 13 of the present embodiment (with the foreign matter passage port 23),
By providing the guide wall 24, the fluctuation range of the output with respect to the air flow rate can be reduced by a conventional air flow rate measuring device (without the foreign substance passage port 23).
It was confirmed that it could be at almost the same level as.
【0024】また、本実施形態では、空気流入口19の
上側部から流入した空気の多くが、上方に方向転換して
バイパス流路18を流れることを考慮して、異物通過口
23の上部を空気流入口19の上端よりも上方に突出さ
せているので、流量測定素子29側に向かうバイパス流
に乗って空気流入口19の対向位置よりも上側(流量測
定素子29側)に流された異物も、異物通過口23を通
過させることができ、流量測定素子29への異物付着を
より確実に防止できる。Also, in the present embodiment, the upper part of the foreign matter passage opening 23 is taken into consideration in consideration that most of the air flowing from the upper part of the air inlet 19 turns upward and flows through the bypass passage 18. Since the projection is made to protrude above the upper end of the air inlet 19, the foreign matter that flows on the bypass flow toward the flow measuring element 29 and flows upward (toward the flow measuring element 29) from the position facing the air inlet 19. Also, the foreign matter can pass through the foreign matter passage port 23, and the foreign matter can be more reliably prevented from adhering to the flow rate measuring element 29.
【0025】尚、本発明は、異物通過口23や案内壁2
4の位置や形状、ベンチュリ管部16の形状等を適宜変
更しても良い。その他、本発明は、内燃機関の吸入空気
量を測定する装置に限定されず、種々の空気通路を流れ
る空気流量を測定する装置として利用できる。It should be noted that the present invention is not limited to the foreign matter passage port 23 or the guide wall 2.
The position and shape of 4 and the shape of the venturi tube section 16 may be changed as appropriate. In addition, the present invention is not limited to a device for measuring an intake air amount of an internal combustion engine, but can be used as a device for measuring an air flow rate flowing through various air passages.
【図1】本発明の一実施形態における空気流量測定装置
の組付状態を示す縦断正面図FIG. 1 is a longitudinal sectional front view showing an assembled state of an air flow measuring device according to an embodiment of the present invention.
【図2】空気流量測定装置の組付状態を示す縦断左側面
図FIG. 2 is a longitudinal left side view showing an assembled state of the air flow measuring device.
【図3】本実施形態の空気流量測定装置の出力変動幅と
従来の空気流量測定装置の出力変動幅とを比較して示す
出力変動幅の特性図FIG. 3 is a characteristic diagram of the output fluctuation width showing a comparison between the output fluctuation width of the air flow measurement device of the present embodiment and the output fluctuation width of the conventional air flow measurement device.
11…吸気管(空気通路)、12…取付穴、13…空気
流量測定装置、14…回路モジュール、15…流量測定
ユニット、16…ベンチュリ管部、17…隔壁、18…
バイパス流路、18a…上流側流路、18b…曲り部、
18c…下流側流路、19…空気流入口、22…空気流
出口、23…異物通過口、24…案内壁、29…流量測
定素子、30…感温素子。DESCRIPTION OF SYMBOLS 11 ... Intake pipe (air passage), 12 ... Mounting hole, 13 ... Air flow measurement device, 14 ... Circuit module, 15 ... Flow measurement unit, 16 ... Venturi pipe part, 17 ... Partition wall, 18 ...
Bypass flow path, 18a ... upstream flow path, 18b ... bent portion,
18c: Downstream flow path, 19: Air inlet, 22: Air outlet, 23: Foreign matter passage, 24: Guide wall, 29: Flow measuring element, 30: Thermosensitive element.
Claims (3)
の一部を流入させるバイパス流路を配置し、このバイパ
ス流路内に配置された流量測定素子によって空気の流量
を測定する空気流量測定装置において、 前記バイパス流路は、前記空気通路内の空気流れ方向に
対して略直角に配置する上流側流路と下流側流路とを曲
り部でつないだ逆U字状の流路に形成され、 前記上流側流路と前記下流側流路との間を仕切る隔壁の
うちの該上流側流路の空気流入口に対向する位置又はそ
の近傍に異物通過口が形成されていることを特徴とする
空気流量測定装置。1. An air flow rate, wherein a bypass flow path through which a part of air flowing through the air flow path flows is arranged in an air flow path, and an air flow rate is measured by a flow rate measuring element disposed in the bypass flow path. In the measurement device, the bypass flow path is an inverted U-shaped flow path in which an upstream flow path and a downstream flow path that are disposed at substantially right angles to the air flow direction in the air passage are connected by a bent portion. A foreign matter passage opening is formed at a position facing the air inlet of the upstream flow path or in the vicinity thereof, of the partition partitioning the upstream flow path and the downstream flow path that is formed. Characteristic air flow measurement device.
通過した空気を該下流側流路の下流側に向けて案内する
案内壁が設けられていることを特徴とする請求項1に記
載の空気流量測定装置。2. A guide wall provided in the downstream flow passage for guiding air passing through the foreign matter passage opening toward a downstream side of the downstream flow passage. An air flow measuring device according to item 1.
向する位置と、その位置よりも前記流量測定素子側の位
置とに跨がるように形成されていることを特徴とする請
求項1又は2に記載の空気流量測定装置。3. The foreign matter passage port is formed so as to straddle a position facing the air inlet and a position closer to the flow measuring element than the position. 3. The air flow measuring device according to 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11205529A JP2001033288A (en) | 1999-07-21 | 1999-07-21 | Air flow rate measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11205529A JP2001033288A (en) | 1999-07-21 | 1999-07-21 | Air flow rate measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001033288A true JP2001033288A (en) | 2001-02-09 |
Family
ID=16508407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11205529A Pending JP2001033288A (en) | 1999-07-21 | 1999-07-21 | Air flow rate measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001033288A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6622555B2 (en) | 2001-10-11 | 2003-09-23 | Visteon Global Technologies, Inc. | Fluid flow meter |
US6938473B2 (en) | 2001-11-19 | 2005-09-06 | Denso Corporation | Apparatus for measuring flow amount |
JP2014040779A (en) * | 2012-08-21 | 2014-03-06 | Denso Corp | Intake device |
-
1999
- 1999-07-21 JP JP11205529A patent/JP2001033288A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6622555B2 (en) | 2001-10-11 | 2003-09-23 | Visteon Global Technologies, Inc. | Fluid flow meter |
US6938473B2 (en) | 2001-11-19 | 2005-09-06 | Denso Corporation | Apparatus for measuring flow amount |
DE10262337B4 (en) * | 2001-11-19 | 2015-04-02 | Denso Corporation | Device for measuring the flow rate |
JP2014040779A (en) * | 2012-08-21 | 2014-03-06 | Denso Corp | Intake device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3193837B2 (en) | Heating resistance type flow measurement device | |
JP3783896B2 (en) | Air flow measurement device | |
US7752908B2 (en) | Equipment for measuring gas flow rate having an adjacent external surface protrusion | |
JP4140553B2 (en) | Air flow measurement device | |
US8590368B2 (en) | Airflow measuring device | |
KR20020047282A (en) | Device for determining at least one parameter of a flowing medium | |
JPH11248504A (en) | Air flow rate measuring device | |
JP5168223B2 (en) | Air flow measurement device | |
JP4106224B2 (en) | Flow measuring device | |
JP2002122453A (en) | Flow measuring device | |
JP2002005713A (en) | Air flow measuring device | |
JP2016205960A (en) | Flow rate measurement device | |
JP7122462B2 (en) | physical quantity detector | |
JP2005315718A (en) | Air flow rate measuring instrument | |
JP2001033288A (en) | Air flow rate measuring device | |
JP4752472B2 (en) | Air flow measurement device | |
US7467546B2 (en) | Equipment for measuring gas flow rate | |
JPH10205415A (en) | Intake manifold for internal combustion engine | |
JPH09287991A (en) | Airflow measuring device | |
JP4132169B2 (en) | Intake device | |
JP2001099688A (en) | Heating resistance type apparatus for measuring air flow rate | |
JP3593011B2 (en) | Heating resistance type flow measurement device | |
JP2000009513A (en) | Flow rate-measuring device and air cleaner | |
JP3593042B2 (en) | Heating resistance type flow measurement device | |
JPH10281836A (en) | Heating resistor type air flow rate measuring equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051004 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080222 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080609 |