JP2001031831A - Crosslinkable flame-retarded resin composition - Google Patents
Crosslinkable flame-retarded resin compositionInfo
- Publication number
- JP2001031831A JP2001031831A JP11205449A JP20544999A JP2001031831A JP 2001031831 A JP2001031831 A JP 2001031831A JP 11205449 A JP11205449 A JP 11205449A JP 20544999 A JP20544999 A JP 20544999A JP 2001031831 A JP2001031831 A JP 2001031831A
- Authority
- JP
- Japan
- Prior art keywords
- polyolefin
- parts
- organosilane
- based polymer
- molded product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Inorganic Insulating Materials (AREA)
- Organic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、電線,ケーブル
の絶縁体,シースなどに用いられるノンハロゲン系の架
橋性難燃樹脂組成物と、この樹脂組成物から架橋成形物
を製造する方法と、この製法によって得られた架橋成形
物に関し、良好な難燃性,耐熱性を有し、燃焼時に有害
物質を発生しないようにしたものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a halogen-free crosslinkable flame-retardant resin composition for use in electric wires, cable insulators, sheaths, and the like, a method for producing a crosslinked molded article from this resin composition, The cross-linked molded article obtained by the production method has good flame retardancy and heat resistance, and does not generate harmful substances during combustion.
【0002】[0002]
【従来の技術】ノンハロゲン系難燃組樹脂成物として
は、ポリエチレン,ポリプロピレン,エチレン−プロピ
レン共重合体,エチレン−酢酸ビニル共重合体,エチレ
ン−エチルアクリレート共重合体などのポリオレフィン
系ポリマーに水酸化マグネシウム,水酸化アルミニウム
などの金属水酸化物を多量に配合したものが知られてい
る。このようなノンハロゲン系難燃樹脂組成物からなる
絶縁体,シースなどの成形物の耐熱性を高める要求があ
る場合には、この樹脂組成物からなる成形物を架橋する
ことが行われる。2. Description of the Related Art Non-halogen flame-retardant resin compositions include polyolefin polymers such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer and ethylene-ethyl acrylate copolymer. It is known that a large amount of a metal hydroxide such as magnesium or aluminum hydroxide is blended. When there is a demand for improving the heat resistance of a molded article such as an insulator or a sheath made of such a non-halogen flame-retardant resin composition, the molded article made of this resin composition is crosslinked.
【0003】この種の樹脂組成物の架橋には、電子線架
橋,架橋剤架橋,シラン架橋などが用いられるが、なか
でもシラン架橋は、大規模な製造設備が不要であり、操
作が簡便である利点がある。シラン架橋により、上述の
ノンハロゲン系の難燃樹脂組成物を架橋させるには、上
記ポリオレフィン系ポリマーにビニルトリメトキシシラ
ンなどのオルガノシラン,ベンゾイルパーオキサイドな
どのラジカル発生剤,水酸化マグネシウムなどの金属水
酸化物,老化防止剤等を配合し、押出機等で混練,成形
し、その成形物を水と接触させて架橋を行う方法が採用
される。[0003] For crosslinking of this kind of resin composition, electron beam crosslinking, crosslinking agent crosslinking, silane crosslinking and the like are used. Among them, silane crosslinking requires no large-scale production equipment, and is easy to operate. There are certain advantages. In order to crosslink the above-mentioned non-halogen flame-retardant resin composition by silane crosslinking, the above-mentioned polyolefin-based polymer is treated with an organosilane such as vinyltrimethoxysilane, a radical generator such as benzoyl peroxide, and a metal water such as magnesium hydroxide. A method in which an oxide, an antioxidant, and the like are blended, kneaded and molded by an extruder or the like, and the molded product is brought into contact with water to perform crosslinking.
【0004】この架橋では、オルガノシランがポリオレ
フィン系ポリマーにグラフト結合し、この結合オルガノ
シランのメトキシ基等が加水分解して水酸基となり、こ
れが縮合して、シラノール結合がポリマー間に形成され
ることによって架橋が形成されるものである。ところ
が、難燃性を高めるために金属水酸化物を増量すると、
オルガノシランが多量に存在する金属水酸化物に吸着さ
れている水分と先に反応し、ポリオレフィン系ポリマー
にグラフト結合する割合が減少し、結果的にシラン架橋
が十分に進行しないと言う大きな欠点があった。また、
ポリオレフィン系ポリマーと金属水酸化物との組成物を
押出機で混練する際に、この混練中の組成物にオルガノ
シラン,ラジカル発生剤,架橋触媒を含む混合物を添加
する方法があるが、この方法ではポリオレフィン系ポリ
マーへのオルガノシランのグラフト化を適切に行うこと
が難しく、架橋不足になったり、過度の架橋が進行して
スコーチが発生したりする欠点がある。In this crosslinking, the organosilane is graft-bonded to the polyolefin-based polymer, and the methoxy group and the like of the bonded organosilane are hydrolyzed to form a hydroxyl group, which is condensed to form a silanol bond between the polymers. Crosslinks are formed. However, when increasing the amount of metal hydroxide to increase flame retardancy,
A major drawback is that organosilanes react first with water adsorbed on metal hydroxides present in large amounts, reducing the rate of graft bonding to polyolefin polymers, and consequently silane crosslinking does not proceed sufficiently. there were. Also,
When a composition of a polyolefin-based polymer and a metal hydroxide is kneaded by an extruder, there is a method of adding a mixture containing an organosilane, a radical generator, and a crosslinking catalyst to the composition being kneaded. In such a case, it is difficult to properly graft the organosilane to the polyolefin-based polymer, and there is a disadvantage that insufficient crosslinking occurs or excessive crosslinking proceeds to generate scorch.
【0005】[0005]
【発明が解決しようとする課題】よって、本発明におけ
る課題は、金属水酸化物が多量に配合されたノンハロゲ
ン系の難燃樹脂組成物をシラン架橋により十分に架橋で
きるようにすることにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to enable a non-halogen flame-retardant resin composition containing a large amount of a metal hydroxide to be sufficiently crosslinked by silane crosslinking.
【0006】[0006]
【課題を解決するための手段】かかる課題は、予めオル
ガノシランをグラフト結合したポリオレフィン系ポリマ
ーと、予め金属水酸化物を多量に配合したポリオレフィ
ン系ポリマーマスターバッチとを用意し、これらを架橋
触媒とともに混練,成形し、得られた成形物を水に接触
させることで解決される。The object of the present invention is to prepare a polyolefin polymer grafted with an organosilane in advance, and a polyolefin polymer masterbatch previously blended with a large amount of a metal hydroxide, and prepare these together with a crosslinking catalyst. The problem is solved by kneading and molding, and bringing the obtained molded article into contact with water.
【0007】[0007]
【発明の実施の形態】以下、本発明を詳しく説明する。
本発明におけるオルガノシランがグラフト結合したポリ
オレフィン系ポリマー(以下、シラングラフトマーと略
記する。)としては、ポリエチレン,ポリプロピレン,
エチレンープロピレン共重合体,エチレン−酢酸ビニル
共重合体,エチレン−エチルアクリレート共重合体,エ
チレン−ブテン−1共重合体などのポリオレフィン系ポ
リマーに対して、ベンゾイルパーオキサイド,アゾビス
イソブチロニトリルなどのラジカル発生剤の存在下にオ
ルガノシランを反応させてオルガノシランをポリマー鎖
にグラフト結合させたものである。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
Examples of the polyolefin-based polymer to which the organosilane is graft-bonded in the present invention (hereinafter, abbreviated as a silane graftmer) include polyethylene, polypropylene, and the like.
For polyolefin polymers such as ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butene-1 copolymer, benzoyl peroxide, azobisisobutyronitrile And the like, in which organosilane is reacted in the presence of a radical generator to graft-bond organosilane to a polymer chain.
【0008】ここでのオルガノシランには、例えばメト
キシ基,エトキシ基などのアルコキシ基などの加水分解
可能な置換基を1個以上有し、かつビニル基,アミノ
基,エポキシ基などの反応性基を1個以上有するオルガ
ノシランが用いられる。具体的にはビニルトリメトキシ
シラン,ビニルトリエトシキシシランなどが挙げられ、
一般にシランカップリング剤として市販されているもの
が用いられいられる。The organosilane has at least one hydrolyzable substituent such as an alkoxy group such as a methoxy group and an ethoxy group, and has a reactive group such as a vinyl group, an amino group and an epoxy group. An organosilane having at least one is used. Specifically, vinyl trimethoxy silane, vinyl triethoxy silane and the like can be mentioned.
Generally, commercially available silane coupling agents are used.
【0009】グラフト結合は、上記ポリマーにラジカル
発生剤とオルガノシランを所定量添加し、押出機,ニー
ダーによって加熱,混練することによって行われる。オ
ルガノシランの添加量は、ポリオレフィン系ポリマー1
00重量部に対して、0.5〜5重量部とされる。シラ
ングラフトマーの形状は、通常のペレット状とされる。[0009] The graft bonding is carried out by adding a predetermined amount of a radical generator and an organosilane to the above-mentioned polymer, followed by heating and kneading with an extruder and a kneader. The addition amount of the organosilane is determined based on the polyolefin-based polymer 1
0.5 to 5 parts by weight with respect to 00 parts by weight. The shape of the silane graftmer is a normal pellet.
【0010】本発明におけるノンハロゲン系難燃剤配合
ポリオレフィン系ポリマーマスターバッチ(以下、難燃
マスターバッチと略記する。)とは、上述のポリオレフ
ィン系ポリマーにノンハロゲン系難燃剤を高濃度に配合
してペレット状もしくはパウダー状としたものである。
ここでのノンハロゲン系難燃剤としては、水酸化マグネ
シウム,水酸化アルミニウム,水酸化カルシウムなどの
金属水酸化物,これら金属水酸化物を高級脂肪酸,シラ
ンカップリング剤,モリブデン酸塩などで表面処理した
表面処理金属水酸化物,モリブデン酸アンモニウムなど
のモリブデン化合物,ガム状シリコーン,シリコーンパ
ウダーなどのシリコーン化合物などが用いられ、その1
種もしくは2種以上が用いられる。上記表面処理金属水
酸化物は、その表面に水がほとんど吸着されないので、
ここに用いるのにより好ましいものである。The polyolefin polymer masterbatch (hereinafter abbreviated as “flame retardant masterbatch”) containing a halogen-free flame retardant according to the present invention is a pellet-like mixture of the above-mentioned polyolefin polymer and a high concentration of a halogen-free flame retardant. Alternatively, it is in the form of a powder.
As the non-halogen flame retardant, metal hydroxides such as magnesium hydroxide, aluminum hydroxide, and calcium hydroxide, and surface treatment of these metal hydroxides with higher fatty acids, silane coupling agents, molybdates, and the like. Surface-treated metal hydroxides, molybdenum compounds such as ammonium molybdate, silicone compounds such as gum-like silicone and silicone powder are used.
Species or two or more species are used. Since the surface-treated metal hydroxide hardly adsorbs water on its surface,
It is more preferable to use it here.
【0011】このノンハロゲン系難燃剤の配合量は、ポ
リオレフィン系ポリマー100部(重量部、以下同様)
に対して50〜500部の範囲とされる。難燃マスター
バッチの製造は、ポリオレフィン系ポリマーとノンハロ
ゲン系難燃剤を押出機,ニーダーによって混練し、ペレ
ット状もしくはパウダー状とする方法によって行われ
る。また、このマスターバッチには必要に応じて炭酸カ
ルシウム,クレイなどの無機充填剤,老化防止剤,着色
剤,紫外線吸収剤などの添加剤を配合してもよい。The compounding amount of the non-halogen flame retardant is 100 parts by weight of a polyolefin polymer (parts by weight, hereinafter the same).
Is in the range of 50 to 500 parts. The flame-retardant masterbatch is produced by a method in which a polyolefin-based polymer and a non-halogen-based flame retardant are kneaded with an extruder and a kneader to form a pellet or a powder. In addition, additives such as an inorganic filler such as calcium carbonate and clay, an antioxidant, a coloring agent, and an ultraviolet absorber may be added to the masterbatch as needed.
【0012】本発明での架橋触媒には、シブチルジラウ
リル酸錫,ジブチルジ酢酸錫,オクテン酸第一錫,酢酸
第一錫などのスズ化合物や塩酸,酢酸などが用いられ
る。この架橋触媒は、単独で用いてもよいが、上記ポリ
オレフィン系ポリマーに予め練り込んだマスターバッチ
の形態としてもよく、この方法では触媒の無駄な消費が
少なくなる。As the crosslinking catalyst used in the present invention, tin compounds such as tin butyl dilaurate, tin dibutyl diacetate, stannous octenoate and stannous acetate, hydrochloric acid, acetic acid and the like are used. This cross-linking catalyst may be used alone, or may be in the form of a masterbatch kneaded in advance with the above-mentioned polyolefin-based polymer. In this method, wasteful consumption of the catalyst is reduced.
【0013】そして、シラングラフトマーと難燃マスタ
ーバッチと架橋触媒とを混合し、押出機,射出成形機な
どにより混練,成形し、所望の形状の成形物としたの
ち、この成形物を水に接触させてシラングラフトマーを
架橋し、架橋成形物とする。この際の三者の配合量は、
架橋成形物に要求される特性によって定められるが、シ
ラングラフトマーを全量の5〜95重量%、架橋触媒を
0.5〜6重量%,難燃マスターバッチを残量とするこ
とが好ましい。架橋触媒として上述のマスターバッチを
用いたものでは、これに含有される触媒量が上記配合量
となるように換算すればよい。また、架橋成形物の加熱
時の変形量を小さくするためには、シラングラフトマー
の比率を高めることもできる。例えば、温度136℃、
荷重0.5kgでの加熱変形試験時の変形量を50%以
下にするにはシラングラフトマーの比率を30〜95重
量%とすればよい。ここでの比率の上限を95重量%と
したのは、残部を難燃マスターバッチが占める必要があ
るためである。Then, the silane graft mer, the flame-retardant masterbatch, and the crosslinking catalyst are mixed, kneaded and molded by an extruder, an injection molding machine, or the like to obtain a molded product having a desired shape. The silane grafter is cross-linked by contact to form a cross-linked molded article. In this case, the amount of the three
Although determined by the characteristics required for the crosslinked molded product, it is preferable that the silane grafter is 5 to 95% by weight, the crosslinking catalyst is 0.5 to 6% by weight, and the remaining amount of the flame-retardant masterbatch is the remaining amount. In the case where the above-mentioned masterbatch is used as a crosslinking catalyst, the amount of the catalyst contained therein may be converted so as to be the above-mentioned amount. In addition, in order to reduce the amount of deformation of the crosslinked molded article upon heating, the ratio of the silane graftmer can be increased. For example, at a temperature of 136 ° C,
In order to reduce the amount of deformation during the heat deformation test under a load of 0.5 kg to 50% or less, the ratio of the silane graftmer may be set to 30 to 95% by weight. The reason why the upper limit of the ratio is set to 95% by weight is that the remaining portion must be occupied by the flame-retardant master batch.
【0014】水分による架橋は、成形物を大気中に放置
する、温水などの水中に浸漬する、水蒸気中に曝露する
などの方法によって行われる。この水との触媒により、
ポリオレフィン系ポリマーにグラフト結合したオルガノ
シランの加水分解可能基が加水分解して水酸基となり、
この水酸基が架橋触媒の働きにより縮合してポリマー鎖
間にシラノール結合を介した架橋が形成される。The crosslinking with moisture is carried out by leaving the molded article in the air, immersing it in water such as warm water, or exposing it to water vapor. By this catalyst with water,
The hydrolyzable group of the organosilane graft-bonded to the polyolefin-based polymer is hydrolyzed to a hydroxyl group,
The hydroxyl groups are condensed by the action of a crosslinking catalyst to form crosslinks between polymer chains via silanol bonds.
【0015】このようにして得られた架橋成形物中の組
成は、特に限定されるものではないが、ポリオレフィン
系ポリマー100部に対して金属水酸化物5〜300
部、シリコーン化合物5〜40部またはリン系化合物
0.5〜15部、モリブデン化合物0〜40部、炭酸カ
ルシウム0〜50部、クレイ0〜50部、老化防止剤
0.1〜3部の範囲とすることが、難燃性,機械的特
性,電気的特性などの点から好ましい。上記シリコーン
化合物には、シリコーンパウダー,ジメチルシリコーン
(分子量5万〜100万),メチルフェニルシリコーン
(分子量5万〜100万)などが、リン系化合物にはポ
リリン酸アンモニウム,赤リンなどが、モリブデン化合
物にはモリブデン酸アンモニウム,三酸化モリブデンな
どが用いられる。The composition of the crosslinked molded product thus obtained is not particularly limited, but the metal hydroxide is 5 to 300 parts per 100 parts of the polyolefin polymer.
Parts, 5 to 40 parts of a silicone compound or 0.5 to 15 parts of a phosphorus compound, 0 to 40 parts of a molybdenum compound, 0 to 50 parts of calcium carbonate, 0 to 50 parts of clay, and 0.1 to 3 parts of an antioxidant. Is preferred in terms of flame retardancy, mechanical properties, electrical properties, and the like. Examples of the silicone compound include silicone powder, dimethyl silicone (molecular weight of 50,000 to 1,000,000), methylphenyl silicone (molecular weight of 50,000 to 1,000,000), and phosphorus-based compounds such as ammonium polyphosphate and red phosphorus, and molybdenum compound. Used are ammonium molybdate, molybdenum trioxide and the like.
【0016】また、架橋成形物を塩化ビニル製品、例え
ばポリ塩化ビニルからなるシースなどと比重分別するこ
とができるように、その比重を1.14以下とすること
もできる。比重を1.14以下とするには、例えば架橋
成形物の組成を、ポリオレフィン系ポリマー100部に
対して金属水酸化物12〜48部、シリコーン化合物1
〜32部、炭酸カルシウム(炭酸マグネシウム)0〜2
0部、老化防止剤0.4〜1.6部とすればよい。Further, the specific gravity can be set to 1.14 or less so that the cross-linked molded product can be separated from a vinyl chloride product, for example, a sheath made of polyvinyl chloride and the like. In order to set the specific gravity to 1.14 or less, for example, the composition of the crosslinked molded product is 12 to 48 parts of the metal hydroxide and 100 parts of the polyolefin-based polymer, and the silicone compound 1
~ 32 parts, calcium carbonate (magnesium carbonate) 0 ~ 2
0 parts and 0.4 to 1.6 parts of the antioxidant.
【0017】このような架橋性難燃樹脂組成物にあって
は、予めポリオレフィン系ポリマーにオルガノシランを
グラフト結合したシラングラフトマーを用いることおよ
び予めノンハロゲン系難燃剤を多量に配合した難燃マス
ターバッチを用いることによって、オルガノシランが直
接金属水酸化物と接触することがなくなり、これによる
オルガノシランの加水分解が防止できるので、シラン架
橋が効率よく十分に進行する。このため、金属水酸化物
を多量に配合して高難燃化した組成物であっても、十分
に架橋が進行した耐熱性の良好な成型物を得ることがで
きる。In such a crosslinkable flame-retardant resin composition, a silane grafter obtained by grafting an organosilane to a polyolefin-based polymer is used in advance, and a flame-retardant masterbatch containing a large amount of a non-halogen-based flame retardant in advance is used. By using the compound, the organosilane does not come into direct contact with the metal hydroxide, and the hydrolysis of the organosilane can be prevented, whereby the silane crosslinking proceeds efficiently and sufficiently. For this reason, even if the composition is made highly flame-retardant by blending a large amount of a metal hydroxide, it is possible to obtain a molded product having sufficiently advanced crosslinking and excellent heat resistance.
【0018】以下、具体例を示す。 (実施例)エチレン−酢酸ビニル共重合体60部、エチ
レン−エチルアクリレート共重合体40部、ビニルトリ
メトキシシラン5部、ベンゾイルパーオキサイド0.5
部を押出機にて混練し、ペレット状のシラングラフトマ
ーを得た。このシラングラフトマー中のビニルトリメト
キシシランの結合量は約4重量%であった。一方、エチ
レン−酢酸ビニル共重合体40部、エチレン−エチルア
クリレート共重合体60部、水酸化マグネシウム300
部、フェノール系老化防止剤1部を混合し、押出機にて
混練して、ペレット状の難燃マスターバッチを製造し
た。The following is a specific example. (Example) 60 parts of ethylene-vinyl acetate copolymer, 40 parts of ethylene-ethyl acrylate copolymer, 5 parts of vinyltrimethoxysilane, 0.5 parts of benzoyl peroxide
The mixture was kneaded with an extruder to obtain a pellet-like silane graftmer. The binding amount of vinyltrimethoxysilane in this silane graftmer was about 4% by weight. On the other hand, ethylene-vinyl acetate copolymer 40 parts, ethylene-ethyl acrylate copolymer 60 parts, magnesium hydroxide 300 parts
Parts and 1 part of a phenolic antioxidant were mixed and kneaded with an extruder to produce a pellet-shaped flame-retardant masterbatch.
【0019】次に、シラングラフトマー100部、難燃
マスターバッチ100部、シブチルスズジラウレート
0.5部を混合し、押出機に投入し、径0.5mmの導
体上に押出被覆して厚み0.8mmの絶縁体を有する絶
縁電線を得た。この絶縁電線を70℃の温水中に24時
間浸漬して絶縁体を架橋した。かくして得られた架橋絶
縁体のゲル分率は65〜70%であった。また、その引
張強度は1.5kg/mm2で、伸びは300%であっ
た。Next, 100 parts of a silane grafter, 100 parts of a flame-retardant masterbatch, and 0.5 part of cibutyltin dilaurate were mixed, charged into an extruder, and extrusion-coated on a conductor having a diameter of 0.5 mm to obtain a thickness of 0 mm. An insulated wire having an insulator of 0.8 mm was obtained. This insulated wire was immersed in 70 ° C. warm water for 24 hours to crosslink the insulator. The gel fraction of the crosslinked insulator thus obtained was 65 to 70%. The tensile strength was 1.5 kg / mm 2 and the elongation was 300%.
【0020】(比較例)エチレン−酢酸ビニル共重合体
50部、エチレン−エチルアクリレート共重合体50
部、ビニルトリメトキシシラン5部、ベンゾイルパーオ
キサイド0.5部、水酸化マグネシウム150部、フェ
ノール系老化防止剤0.5部を混合し、押出機に投入し
混練し、径0.5mmの導体上に押出被覆して厚み0.
8mmの絶縁体を得た。この絶縁電線を70℃の温水中
に24時間浸漬して絶縁体を架橋した。かくして得られ
た架橋絶縁体のゲル分率は10〜15%であった。ま
た、その引張強度は0.8kg/mm2、伸びは600
%で、目標値(1.05kg/ mm2以上で、150%
以上)に達していなかった。Comparative Example 50 parts of ethylene-vinyl acetate copolymer, 50 parts of ethylene-ethyl acrylate copolymer
Parts, 5 parts of vinyltrimethoxysilane, 0.5 parts of benzoyl peroxide, 150 parts of magnesium hydroxide, and 0.5 part of a phenolic antioxidant, and the mixture was charged into an extruder and kneaded to obtain a conductor having a diameter of 0.5 mm. Extrusion coated on top to a thickness of 0.
An insulator of 8 mm was obtained. This insulated wire was immersed in 70 ° C. warm water for 24 hours to crosslink the insulator. The gel fraction of the crosslinked insulator thus obtained was 10 to 15%. The tensile strength is 0.8 kg / mm 2 and the elongation is 600
Target value (1.05 kg / mm 2 or more, 150%
Above).
【0021】[0021]
【発明の効果】以上説明したように、本発明によればシ
ラングラフトマーと難燃マスターバッチと架橋触媒を混
練し、これを成形して成形物となし、この成形物を水に
接触してシラン架橋するようにしたので、オルガノシラ
ンが直接金属水酸化物に接触することがなくなり、金属
水酸化物に吸着されている水分によってオルガノシラン
が加水分解することがなくなる。このため、多量の金属
水酸化物が配合されていてもオルガノシランの無駄な消
費がなくなり、その大部分が架橋反応に関与することに
なり、成形物の架橋が十分に進行して、高難燃性を有す
るにもかかわらず、機械的特性、耐熱性の良好な成形物
を得ることができる。As described above, according to the present invention, the silane grafter, the flame-retardant masterbatch, and the crosslinking catalyst are kneaded, molded and formed into a molded product, and the molded product is brought into contact with water. Since the silane is crosslinked, the organosilane does not come into direct contact with the metal hydroxide, and the organosilane is not hydrolyzed by the moisture adsorbed on the metal hydroxide. For this reason, even if a large amount of metal hydroxide is blended, wasteful consumption of the organosilane is eliminated, and most of the organosilane is involved in the crosslinking reaction, and the crosslinking of the molded product sufficiently proceeds, and the Despite having flammability, a molded article having good mechanical properties and heat resistance can be obtained.
【0022】また、電子線架橋や架橋剤架橋に比べて大
規模な設備が不要であり、製造工程も少なく、安価に高
難燃化された架橋成形物を得ることができる。In addition, a large-scale facility is not required as compared with electron beam crosslinking or crosslinking agent crosslinking, the number of manufacturing steps is small, and a flame-retardant crosslinked molded product can be obtained at low cost.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 3/00 H01B 3/00 A 3/44 3/44 D F (72)発明者 沢田 広隆 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 鈴木 淳 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 Fターム(参考) 4J002 BB031 BB051 BB061 BB071 BB121 BB151 CP032 CP171 DD017 DE066 DE076 DE146 EF037 EG047 EZ047 FB076 FB236 FD010 FD132 FD136 GQ01 5G303 AA06 AB20 BA12 CA01 CA09 CB17 DA01 5G305 AA02 AA14 AB35 AB36 AB40 BA15 CA01 CA54 CB23 CB26 CC03 CD07 CD13 DA11 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 3/00 H01B 3/00 A 3/44 3/44 DF (72) Inventor Hirotaka Sawada Koto, Tokyo 1-5-1, Kiba-ku, Ward Inside Fujikura Co., Ltd. (72) Inventor Jun Suzuki 1-5-1, Kiba, Koto-ku, Tokyo F-term inside Fujikura Co., Ltd. 4J002 BB031 BB051 BB061 BB071 BB121 BB151 CP032 CP171 DD017 DE066 DE076 DE146 EF037 EG047 EZ047 FB076 FB236 FD010 FD132 FD136 GQ01 5G303 AA06 AB20 BA12 CA01 CA09 CB17 DA01 5G305 AA02 AA14 AB35 AB36 AB40 BA15 CA01 CA54 CB23 CB26 CC03 CD07 CD13 DA11
Claims (3)
オレフィン系ポリマーと、金属水酸化物を主体とするノ
ンハロゲン系難燃剤配合ポリオレフィン系ポリマーマス
ターバッチと、架橋触媒とを混練してなる架橋性難燃樹
脂組成物。1. A crosslinkable flame-retardant resin composition obtained by kneading a polyolefin polymer grafted with an organosilane, a polyolefin polymer master batch containing a non-halogen flame retardant mainly composed of a metal hydroxide, and a crosslinking catalyst. object.
オレフィン系ポリマーと、金属水酸化物を主体とするノ
ンハロゲン系難燃剤配合ポリオレフィン系ポリマーマス
ターバッチと、架橋触媒とを混練,成形して成形物と
し、この成形物を水と接触して架橋する架橋成形物の製
法。2. A molded product obtained by kneading and molding a polyolefin polymer grafted with an organosilane, a polyolefin polymer masterbatch containing a non-halogen flame retardant mainly composed of a metal hydroxide, and a crosslinking catalyst. A method for producing a cross-linked molded product in which the molded product is contacted with water and crosslinked.
が、ポリオレフィン系ポリマー100重量部に対して少
なくとも金属水酸化物5〜300重量部、シリコーン化
合物5〜40重量部および/またはリン系化合物3〜2
0重量部が含まれている組成である架橋成形物。3. The crosslinked molded product obtained by the production method according to claim 2, wherein at least 5 to 300 parts by weight of a metal hydroxide, 5 to 40 parts by weight of a silicone compound and / or phosphorus based on 100 parts by weight of the polyolefin polymer. System compounds 3 and 2
A crosslinked molded product having a composition containing 0 parts by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11205449A JP2001031831A (en) | 1999-07-19 | 1999-07-19 | Crosslinkable flame-retarded resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11205449A JP2001031831A (en) | 1999-07-19 | 1999-07-19 | Crosslinkable flame-retarded resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001031831A true JP2001031831A (en) | 2001-02-06 |
Family
ID=16507074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11205449A Withdrawn JP2001031831A (en) | 1999-07-19 | 1999-07-19 | Crosslinkable flame-retarded resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001031831A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006131720A (en) * | 2004-11-04 | 2006-05-25 | Riken Technos Corp | Flame retardant resin composition for mixing with silane-crosslinkable polyolefin and molding thereof |
JP2007070602A (en) * | 2005-08-10 | 2007-03-22 | Hitachi Cable Ltd | Non-halogen flame retardant thermoplastic elastomer composition, its production method and electric wire/cable using the same |
KR100873576B1 (en) | 2007-11-21 | 2008-12-12 | 제이에스전선 주식회사 | Flame retardent masterbatch compound, flame retardent compound and manufacturing method thereof |
CN102585505A (en) * | 2010-10-12 | 2012-07-18 | 信越化学工业株式会社 | Flame retardant organopolysiloxane composition |
JP2014102291A (en) * | 2012-11-16 | 2014-06-05 | Ricoh Co Ltd | Wide angle lens, imaging lens unit, imaging apparatus, and information device |
WO2014084048A1 (en) * | 2012-11-30 | 2014-06-05 | 古河電気工業株式会社 | Production method for moulded body using heat-resistant silane-cross-linkable resin composition |
WO2014084047A1 (en) * | 2012-11-30 | 2014-06-05 | 古河電気工業株式会社 | Production method for moulded body using heat-resistant silane-cross-linkable resin composition |
CN105219006A (en) * | 2015-10-22 | 2016-01-06 | 同济大学 | Automotive line halogen-free flameproof heat-resisting weather-proof polypropylene nano-composite insulating material and preparation technology thereof |
EP3050921A4 (en) * | 2013-09-27 | 2017-04-19 | Furukawa Electric Co. Ltd. | Heat-resistant silane cross-linked resin molded article and production method for same, heat-resistant silane cross-linking resin composition and production method for same, silane masterbatch, and heat-resistant product employing heat-resistant silane cross-linked resin molded article |
-
1999
- 1999-07-19 JP JP11205449A patent/JP2001031831A/en not_active Withdrawn
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006131720A (en) * | 2004-11-04 | 2006-05-25 | Riken Technos Corp | Flame retardant resin composition for mixing with silane-crosslinkable polyolefin and molding thereof |
JP2007070602A (en) * | 2005-08-10 | 2007-03-22 | Hitachi Cable Ltd | Non-halogen flame retardant thermoplastic elastomer composition, its production method and electric wire/cable using the same |
JP4692372B2 (en) * | 2005-08-10 | 2011-06-01 | 日立電線株式会社 | Non-halogen flame retardant thermoplastic elastomer composition, method for producing the same, and electric wire / cable using the same |
KR100873576B1 (en) | 2007-11-21 | 2008-12-12 | 제이에스전선 주식회사 | Flame retardent masterbatch compound, flame retardent compound and manufacturing method thereof |
CN102585505B (en) * | 2010-10-12 | 2015-08-26 | 信越化学工业株式会社 | flame retardant organopolysiloxane composition |
CN102585505A (en) * | 2010-10-12 | 2012-07-18 | 信越化学工业株式会社 | Flame retardant organopolysiloxane composition |
JP2014102291A (en) * | 2012-11-16 | 2014-06-05 | Ricoh Co Ltd | Wide angle lens, imaging lens unit, imaging apparatus, and information device |
WO2014084048A1 (en) * | 2012-11-30 | 2014-06-05 | 古河電気工業株式会社 | Production method for moulded body using heat-resistant silane-cross-linkable resin composition |
WO2014084047A1 (en) * | 2012-11-30 | 2014-06-05 | 古河電気工業株式会社 | Production method for moulded body using heat-resistant silane-cross-linkable resin composition |
JPWO2014084048A1 (en) * | 2012-11-30 | 2017-01-05 | 古河電気工業株式会社 | Method for producing molded article using heat-resistant silane crosslinkable resin composition |
JPWO2014084047A1 (en) * | 2012-11-30 | 2017-01-05 | 古河電気工業株式会社 | Method for producing molded article using heat-resistant silane crosslinkable resin composition |
EP3050921A4 (en) * | 2013-09-27 | 2017-04-19 | Furukawa Electric Co. Ltd. | Heat-resistant silane cross-linked resin molded article and production method for same, heat-resistant silane cross-linking resin composition and production method for same, silane masterbatch, and heat-resistant product employing heat-resistant silane cross-linked resin molded article |
US10083776B2 (en) | 2013-09-27 | 2018-09-25 | Furukawa Electric Co., Ltd. | Heat-resistant silane crosslinked resin molded body and method of producing the same, heat-resistant silane crosslinkable resin composition and method of producing the same, silane master batch, and heat-resistant product using heat-resistant silane crosslinked resin molded body |
US10304584B2 (en) | 2013-09-27 | 2019-05-28 | Furukawa Electric Co., Ltd. | Heat-resistant silane crosslinked resin molded body and method of producing the same, heat-resistant silane crosslinkable resin composition and method of producing the same, silane master batch, and heat-resistant product using heat-resistant silane crosslinked resin molded body |
CN105219006A (en) * | 2015-10-22 | 2016-01-06 | 同济大学 | Automotive line halogen-free flameproof heat-resisting weather-proof polypropylene nano-composite insulating material and preparation technology thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4270237B2 (en) | Non-halogen flame retardant thermoplastic elastomer composition, method for producing the same, and electric wire / cable using the same | |
JP5640889B2 (en) | Electric wire / cable | |
US20030134969A1 (en) | Moisture-crosslinked and filled cable compounds | |
JPH0113730B2 (en) | ||
JP2525968B2 (en) | Process for producing flame-retardant resin composition, flame-retardant resin composition produced therefrom and insulating tube using the same | |
JP7470552B2 (en) | Crosslinked fluororubber composition, wiring material using same and method for producing same, and catalyst composition for silane crosslinking | |
PT92058A (en) | PROCESS FOR THE PREPARATION OF A COMPOSITION OF SILICONE COPOLYMERS WITH WATER, CONTAINING CHARGES AND ARTICLES BASED ON THAT COMPOSITION | |
WO2017138642A1 (en) | Heat-resistant crosslinked fluororubber molded body and production method therefor, silane masterbatch, masterbatch mixture, molded body thereof, and heat-resistant product | |
JP2000212291A (en) | Preparation of nonhalogen flame-retardant silane- crosslinked polyolefin composition | |
JP2001031831A (en) | Crosslinkable flame-retarded resin composition | |
US4209566A (en) | Method of improving the electrical properties of polymeric insulations containing polar additives, and the improved polymeric insulation product thereof | |
JP2017141384A (en) | Heat-resistant chlorine-containing crosslinked resin molded body and method for producing the same, silane masterbatch, masterbatch mixture and molded body of the same, and heat resistant product | |
JPWO2018180690A1 (en) | Heat-resistant chlorine-containing crosslinked resin molded article and method for producing the same, silane masterbatch and masterbatch mixture, and heat-resistant product | |
JP2021155592A (en) | Heat-resistant flame-retardant crosslinked fluororubber molding, method for producing the same, and heat-resistant product | |
JP6582012B2 (en) | Heat-resistant chlorine-containing crosslinked resin molded body and method for producing the same, silane masterbatch and masterbatch mixture, and heat-resistant product | |
JP7426876B2 (en) | Crosslinked fluororubber composition, wiring material using the same, and manufacturing method thereof | |
WO2023049127A1 (en) | Halogen free flame retardant polymeric compositions | |
JP2001011262A (en) | Non-halogen flame retardant resin composition and flame retardant electric wire and cable using it | |
JP2001011195A (en) | Production of flame-retardant crosslinked molding product | |
JP2015004025A (en) | Non-halogen flame-retardant resin composition and cable using the same | |
JP2003192865A (en) | Non-halogen flame-retardant composition and electric wire or cable using the same | |
JP3224015B2 (en) | Crosslinkable vinyl chloride resin composition for covering electric wires and method for producing crosslinked vinyl chloride resin for covering electric wires | |
JP5351829B2 (en) | Non-halogen flame retardant thermoplastic elastomer composition, method for producing the same, and electric wire / cable using the same | |
JPH04335055A (en) | Production of water-crosslinked resin molding | |
JP2000265013A (en) | Flame-retarded crosslinked resin composition and electric wire/cable therefrom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20061003 |