[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001023925A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JP2001023925A
JP2001023925A JP11194975A JP19497599A JP2001023925A JP 2001023925 A JP2001023925 A JP 2001023925A JP 11194975 A JP11194975 A JP 11194975A JP 19497599 A JP19497599 A JP 19497599A JP 2001023925 A JP2001023925 A JP 2001023925A
Authority
JP
Japan
Prior art keywords
wiring
plating
copper
semiconductor device
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11194975A
Other languages
Japanese (ja)
Other versions
JP4023955B2 (en
Inventor
Naoaki Kogure
直明 小榑
Kuniaki Horie
邦明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP19497599A priority Critical patent/JP4023955B2/en
Publication of JP2001023925A publication Critical patent/JP2001023925A/en
Application granted granted Critical
Publication of JP4023955B2 publication Critical patent/JP4023955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor device, constituted into such a structure that an embedded wiring consisting of a healthy conductor having not a defect can be formed in a microscopic recessed part and the manufacturing method of the device. SOLUTION: In a semiconductor device of a structure, where a wiring is embeddedly formed in a microscopic recessed part 5 provided in the surface of a semiconductor substrate W, wiring is formed in such a way that the wiring is constituted of a plated metal copper film grown in one direction from the bottom of the recessed part 5 toward the end part of an aperture provided in the recessed part 5. Hereby, while the plated metal copper film constituting the wiring grows in the one direction from the bottom of the recessed part 5 toward the aperture provided in the microscopic recessed part 5 and as the growth of the plated metal copper film 7 from the sidewall part of the recessed part 5 is stopped, an embedded wiring consisting of a healthy conductor having no internal defects, such as voids or seams can be formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置及びそ
の製造方法に係り、特に半導体基板に形成された配線用
の微細な凹部に銅(Cu)等の金属を充填した半導体装
置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly, to a semiconductor device in which fine wiring recesses formed in a semiconductor substrate are filled with a metal such as copper (Cu) and a method of manufacturing the same. About.

【0002】[0002]

【従来の技術】半導体基板上に配線回路を形成するため
の金属材料としては、アルミニウムまたはアルミニウム
合金が一般に用いられているが、近年、銅を用いる動き
が顕著となっている。これは、銅の電気抵抗率は、1.
72μΩcmとアルミニウムの電気抵抗率より40%近
く低いので、信号遅延現象に対して有利となるばかりで
なく、銅のエレクトロマイグレーション耐性が現用のア
ルミニウムより遙かに高く、しかもアルミニウムの場合
よりもデュアルダマシンプロセスを採用し易いので、複
雑で微細な多層配線構造を相対的に安価に製造できる可
能性が高い等の理由による。
2. Description of the Related Art Aluminum or an aluminum alloy is generally used as a metal material for forming a wiring circuit on a semiconductor substrate. In recent years, however, the use of copper has become remarkable. This means that the electrical resistivity of copper is 1.
Since it is 72 μΩcm, which is about 40% lower than the electrical resistivity of aluminum, it is not only advantageous for a signal delay phenomenon, but also has a much higher electromigration resistance of copper than that of current aluminum, and has a dual damascene more than aluminum. This is because the process is easy to adopt, and there is a high possibility that a complicated and fine multilayer wiring structure can be manufactured relatively inexpensively.

【0003】ここで、デュアルダマシン法によって配線
溝とビアホールに同時に銅等の金属を埋込む方法として
は、CVD、スパッタリフロー、めっきの3つの
手法がある。これらの手法のうち、めっき法は、微細な
凹部内への埋込み性が良く、比較的容易で安価なプロセ
スによって健全な埋め込みを可能とする傾向が強いの
で、少なくとも0.18μm世代でこれを半導体量産ラ
インに組み込むことは常識化しつつある。
Here, there are three methods of embedding a metal such as copper in a wiring groove and a via hole at the same time by a dual damascene method: CVD, sputter reflow, and plating. Among these methods, the plating method has a good tendency to embed into fine recesses and has a strong tendency to enable sound embedding by a relatively easy and inexpensive process. Incorporation into mass production lines is becoming commonplace.

【0004】図3は、半導体基板の表面に銅めっきを施
して、銅からなる配線が形成された半導体装置を得るの
に使用される基本工程を示す。即ち、半導体基板Wに
は、図3(a)に示すように、半導体素子が形成された
半導体基材1上の導電層1aの上にSiOからなる絶
縁膜2が堆積され、リソグラフィ・エッチング技術によ
りコンタクトホール3と配線用の溝4とからなる微細な
凹部5が形成され、その上にTaN等からなる拡散抑制
(バリア)層6が形成されている。
FIG. 3 shows a basic process used for obtaining a semiconductor device in which a copper wiring is formed by plating a surface of a semiconductor substrate with copper. That is, the semiconductor the substrate W, as shown in FIG. 3 (a), an insulating film 2 made of SiO 2 is deposited on a conductive layer 1a on a semiconductor substrate 1 on which semiconductor devices are formed, lithography etching A fine concave portion 5 composed of a contact hole 3 and a wiring groove 4 is formed by a technique, and a diffusion suppressing (barrier) layer 6 made of TaN or the like is formed thereon.

【0005】そして、図3(b)に示すように、前記半
導体基板Wの表面に銅めっきを施すことによって、半導
体基材1の凹部5内に銅7を充填すると共に、拡散抑制
(バリヤ)層6上に銅7を堆積する。その後、化学機械
研摩(CMP)により、拡散抑制(バリヤ)層6上の銅
7、及び該拡散抑制(バリヤ)層6を除去して、コンタ
クトホール3および配線用の溝4に充填した銅7の表面
と絶縁膜2の表面とをほぼ同一平面にする。これによ
り、図3(c)に示すように銅7からなる埋込配線を形
成する。
[0005] Then, as shown in FIG. 3 (b), by plating the surface of the semiconductor substrate W with copper, the recesses 5 of the semiconductor substrate 1 are filled with copper 7 and diffusion is suppressed (barrier). Deposit copper 7 on layer 6. Thereafter, the copper 7 on the diffusion suppression (barrier) layer 6 and the diffusion suppression (barrier) layer 6 are removed by chemical mechanical polishing (CMP), and the copper 7 filled in the contact hole 3 and the wiring groove 4 is removed. And the surface of the insulating film 2 are made substantially flush with each other. Thus, an embedded wiring made of copper 7 is formed as shown in FIG.

【0006】ここに、半導体基板Wの表面に設けた微細
な凹部5の内部に、例えば電解めっき法で銅7を埋込む
場合には、図4(a)に示すように、銅めっきに先だっ
て、半導体基板Wに形成した拡散抑制層6の表面に給電
(シード)層となる下地膜8を形成することが広く行わ
れている。この下地膜(給電層)8の主たる目的は、給
電層の表面を電気的カソードとして液中金属イオンを還
元し、金属として析出するために十分な電流を供給する
ことにある。また、無電解めっき法にあっては、下地膜
8として給電層の代わりに触媒層を設けることが広く行
われている。
Here, when copper 7 is buried in the fine concave portion 5 provided on the surface of the semiconductor substrate W by, for example, electrolytic plating, as shown in FIG. On the surface of the diffusion suppressing layer 6 formed on the semiconductor substrate W, a base film 8 serving as a power supply (seed) layer is widely formed. The main purpose of the base film (power supply layer) 8 is to use the surface of the power supply layer as an electric cathode to reduce metal ions in the liquid and supply a sufficient current to precipitate as metal. In the electroless plating method, a catalyst layer is widely provided as the base film 8 instead of the power supply layer.

【0007】[0007]

【発明が解決しようとする課題】ところで、前記下地膜
8の形成は、一般にスパッタリングによって行うことが
多いが、スパッタリングによる成膜では、凹部5の幅が
狭く、かつ深くなるに従って、凹部5の全表面を覆う下
地膜8の形成が困難となる。例えば、凹部5の開口部の
幅Wが0.25μmの場合、凹部5の全表面に健全な
下地膜8を形成するための限界深さDは、1.25μm
程度であるといわれている。
The base film 8 is generally formed by sputtering, but in the case of film formation by sputtering, as the width of the concave portion 5 becomes narrower and deeper, the entirety of the concave portion 5 becomes larger. It becomes difficult to form the base film 8 covering the surface. For example, when the width W 1 of the opening of the recess 5 is 0.25 [mu] m, the limit depth D to form a sound base film 8 on the entire surface of the recess 5, 1.25 .mu.m
It is said that it is about.

【0008】このため、この限界深さを超えると、図4
(a)に示すように、基板Wの表面に設けられた微細な
凹部5の側壁面の一部に下地膜8が欠落しているか、又
は、不完全な形態を呈している部分Uが生じてしまう。
そして、この状態で電解銅めっき操作を施すと、めっき
金属は下地膜8の表面から等方向的に等速度で成長し、
下地膜8の欠陥部分Uからはめっき金属の成長が抑制又
は阻止される結果、U部分のめっき膜の堆積は隣接部か
ら側方向に成長してきたものによるだけとなる。すなわ
ち、当該部分では、健全な下地膜8からのめっき金属の
成長に比べて所定時間内の成長量が少なくなる。この結
果、図4(b)に示すように、凹部5内に埋め込まれた
銅7の内部にボイド(空洞)9が生じてしまう。
For this reason, when the depth exceeds this limit depth, FIG.
As shown in (a), a portion U where the base film 8 is missing or has an incomplete form occurs on a part of the side wall surface of the fine concave portion 5 provided on the surface of the substrate W. Would.
Then, when an electrolytic copper plating operation is performed in this state, the plating metal grows in the same direction from the surface of the base film 8 at a uniform speed.
As a result, the growth of the plating metal from the defective portion U of the base film 8 is suppressed or prevented. As a result, the deposition of the plating film in the U portion depends only on the growth from the adjacent portion in the lateral direction. That is, in this portion, the growth amount within a predetermined time is smaller than the growth of the plating metal from the sound underlying film 8. As a result, as shown in FIG. 4B, voids (cavities) 9 are generated inside the copper 7 embedded in the concave portions 5.

【0009】これを防止するため、図5(a)に示すよ
うに、下地膜8の膜厚を通常よりも極端に厚くし該下地
膜8で被覆する面積率を大幅に高めようとすると、凹部
5の開口部の肩部に形成される、いわゆるオーバーハン
グ部Oの張出し量が著しく大きくなる。そして、この状
態で、銅めっきを施すと、めっきの進行に伴って凹部5
の内部へ補給される銅イオンがめっき過程中に枯渇して
しまうので、図5(b)に示すように、凹部5内に埋込
んだ銅7の内部に細いスリット状の欠陥であるシーム1
0を生じることが多い。
In order to prevent this, as shown in FIG. 5A, when the thickness of the base film 8 is made extremely thicker than usual and the area ratio covered by the base film 8 is greatly increased, The so-called overhang portion O formed at the shoulder of the opening of the recess 5 has a remarkably large overhang. Then, when copper plating is performed in this state, the recess 5
5B, the copper ions supplied to the inside of the recess are depleted during the plating process. Therefore, as shown in FIG.
Often produces 0.

【0010】これらめっき欠陥であるボイド9及びシー
ム10は、どちらも導電路としては極めて有害なものな
ので、これらの欠陥を根絶して、連続した一体導電路を
形成することによって十分な電流容量を確保し、信号の
遅延を抑制するとともに、エレクトロマイグレーション
耐性を改善することが望まれている。なお、このこと
は、前記電解めっきにおける給電層の代わりに触媒層を
下地膜として、無電解めっきを行う時も同様である。
[0010] Since these plating defects, void 9 and seam 10, are both extremely harmful as conductive paths, by eliminating these defects and forming a continuous integrated conductive path, sufficient current capacity can be obtained. It is desired to secure the delay, suppress the signal delay, and improve the electromigration resistance. This is the same when electroless plating is performed using a catalyst layer as a base film instead of the power supply layer in the electrolytic plating.

【0011】本発明は上記事情に鑑みて為されたもの
で、微細な凹部に欠陥のない健全な導電体からなる埋込
み配線を形成できるようにした半導体装置及びその製造
方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor device capable of forming a buried wiring made of a sound conductor having no defects in fine recesses, and a method of manufacturing the same. And

【0012】[0012]

【課題を解決するための手段】本発明の半導体装置は、
半導体基板の表面に設けた微細な凹部に配線を埋込んで
形成した半導体装置において、前記配線は、前記凹部の
底部から開口端部に向けて一方向に成長しためっき金属
で構成していることを特徴とする。
According to the present invention, there is provided a semiconductor device comprising:
In a semiconductor device formed by embedding wiring in a fine recess provided on the surface of a semiconductor substrate, the wiring is formed of a plating metal grown in one direction from the bottom of the recess toward the opening end. It is characterized by.

【0013】微細な凹部の底部から開口端部に向けて一
方向に成長しためっき金属で配線を構成することによっ
て、この配線の内部にボイドやシーム等の欠陥が生じる
ことを回避できる。
By forming the wiring with a plated metal grown in one direction from the bottom of the fine recess toward the opening end, it is possible to avoid the occurrence of defects such as voids and seams inside the wiring.

【0014】本発明の半導体装置の製造方法は、微細な
凹部を有する半導体基板の表面に拡散抑制層と給電層ま
たは触媒層となる下地膜を順次形成し、この下地膜の前
記凹部の底部を除く表面に絶縁性物質の薄膜を形成した
後、半導体基板の表面にめっきを施すことを特徴とす
る。
According to the method of manufacturing a semiconductor device of the present invention, a diffusion suppressing layer and a base film serving as a power supply layer or a catalyst layer are sequentially formed on a surface of a semiconductor substrate having fine recesses. After a thin film of an insulating substance is formed on the surface except for the surface, plating is performed on the surface of the semiconductor substrate.

【0015】これにより、微細な凹部の底部に露出した
下地膜からだけめっき金属が成長し、底部以外は絶縁性
物質の薄膜で被覆してあるので、その部分からのめっき
金属の成長は停止する。つまり常法と異なって、めっき
は凹部の側壁からの成長を阻止されて凹部の底部から開
口部に向かって一方向に限って成長するので、この内部
にボイドやシーム等の欠陥が生じることを防止できる。
As a result, the plating metal grows only from the base film exposed at the bottom of the fine concave portion, and the portion other than the bottom is covered with the thin film of the insulating material, so that the growth of the plating metal from that portion stops. . That is, unlike the usual method, the plating is prevented from growing from the side wall of the concave portion and grows only in one direction from the bottom of the concave portion toward the opening, so that defects such as voids and seams are generated inside the plating. Can be prevented.

【0016】また、前記拡散抑制層は金属窒化物で、前
記下地膜は銅、パラジウム、金属触媒材料の内のいずれ
か一つまたは複数種で構成されていることを特徴とす
る。電解めっきを施す場合には、下地膜を銅やパラジウ
ムで構成して給電(シード)層とし、無電解めっきを施
す場合には、下地膜を金属触媒材料で構成して触媒層と
する。
Further, the invention is characterized in that the diffusion suppressing layer is a metal nitride, and the underlayer is made of one or more of copper, palladium, and a metal catalyst material. When performing electrolytic plating, the base film is formed of copper or palladium to form a power supply (seed) layer. When performing electroless plating, the base film is formed of a metal catalyst material to form a catalyst layer.

【0017】また、前記金属窒化物は、窒化タンタルで
あることを特徴とする。また、前記絶縁性物質の薄膜
は、前記拡散抑制層と同じ材質、他の化合物または絶縁
性の単体元素のいずれかで構成されていることを特徴と
する。更に、前記めっきは、銅めっきであることを特徴
とする。
Further, the metal nitride is tantalum nitride. Further, the thin film of the insulating material is characterized by being formed of the same material as the diffusion suppressing layer, another compound, or an insulating elemental element. Further, the plating is copper plating.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は、本発明の実施の形態の半
導体装置の製造方法を工程順に示すものである。先ず、
図1(a)に示すように、半導体基板Wの半導体基材上
に堆積したSiOからなる絶縁膜2に、リソグラフィ
・エッチング技術により配線用の微細な凹部5を形成
し、この表面に、例えば窒化タンタル(TaN)等から
なる拡散抑制(バリア)層6を形成する。更に、この拡
散抑制層6の表面に、例えば銅や銀等から構成されて給
電(シード)層となる下地膜8を形成する。なお、この
例は、電解めっきを施すようにした例を示すもので、無
電解めっきを行う時には、給電層の代わりに金属触媒材
料で構成された触媒層を形成して、これを下地膜とす
る。因に前述の銅はパラジウム、白金等と共に触媒金属
としての作用を有している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a method of manufacturing a semiconductor device according to an embodiment of the present invention in the order of steps. First,
As shown in FIG. 1A, fine recesses 5 for wiring are formed on an insulating film 2 made of SiO 2 deposited on a semiconductor base material of a semiconductor substrate W by lithography and etching technology. For example, a diffusion suppression (barrier) layer 6 made of tantalum nitride (TaN) or the like is formed. Further, on the surface of the diffusion suppressing layer 6, a base film 8 made of, for example, copper, silver or the like and serving as a power supply (seed) layer is formed. Note that this example shows an example in which electrolytic plating is performed.When performing electroless plating, a catalyst layer made of a metal catalyst material is formed instead of the power supply layer, and this is used as an underlayer. I do. Incidentally, the above-mentioned copper has a function as a catalytic metal together with palladium, platinum and the like.

【0019】そして、図1(b)に示すように、前記下
地膜8の前記凹部5の底部を除く表面のみに絶縁性物質
の薄膜11を形成する。即ち、前記凹部5の底部におい
てのみ下地膜8が外部に露出し、それ以外では下地膜8
を絶縁性物質の薄膜11で被覆する。
Then, as shown in FIG. 1B, a thin film 11 of an insulating material is formed only on the surface of the base film 8 excluding the bottom of the recess 5. That is, the underlying film 8 is exposed to the outside only at the bottom of the concave portion 5, and otherwise the underlying film 8 is exposed.
Is covered with a thin film 11 of an insulating material.

【0020】この状態で、凹部5の内部に電解めっき液
を流入し、電界を印加して半導体基板Wの表面に電解銅
めっきを施す。すると、給電は凹部5の最深部の底面に
限定されるので、図1(c)に示すように、凹部5の底
面にほぼ平行の状態でめっきによる銅7の堆積が進行し
て、凹部5に銅7が埋め込まれる。つまり、めっきによ
る銅7の埋込みの成長は、凹部5の底部から開口部への
一方向に限って生じる。このように、凹部5の最深部か
ら順次銅7の埋込みが完了し、凹部5の側壁部から中央
に向かう成長が完全に阻止されるので、微細な凹部5内
に埋込まれて配線を構成する銅7の内部にボイドやシー
ル等の欠陥が生じることを完璧に防止できる。
In this state, an electrolytic plating solution flows into the recess 5 and an electric field is applied to perform electrolytic copper plating on the surface of the semiconductor substrate W. Then, since power supply is limited to the bottom surface of the deepest portion of the concave portion 5, as shown in FIG. 1C, the deposition of copper 7 by plating proceeds in a state substantially parallel to the bottom surface of the concave portion 5, and Is filled with copper 7. That is, the buried growth of the copper 7 by plating occurs only in one direction from the bottom of the recess 5 to the opening. As described above, the embedding of the copper 7 is completed sequentially from the deepest portion of the concave portion 5 and the growth from the side wall portion toward the center of the concave portion 5 is completely prevented, so that the wiring is formed by being embedded in the fine concave portion 5. It is possible to completely prevent defects such as voids and seals from being generated inside the copper 7.

【0021】なお、前記薄膜11を形成する絶縁性物質
の材質としては、バルクの導電性が低く、銅に対する拡
散抑制性や密着性の強いセラミックスや金属間化合物が
適している。前記拡散抑制層6と同じ材質の窒化タンタ
ルを充当するようにしても良い。
As the material of the insulating material forming the thin film 11, a ceramic or an intermetallic compound having a low bulk conductivity and a high diffusion suppressing property and adhesion to copper is suitable. Tantalum nitride of the same material as the diffusion suppressing layer 6 may be applied.

【0022】その後、化学機械研摩(CMP)により、
絶縁膜2上の銅7を除去して、凹部5に充填した銅7の
表面と絶縁膜2の表面とをほぼ同一平面にすることによ
って、図1(d)に示すように銅7からなる配線を形成
する。
Then, by chemical mechanical polishing (CMP),
By removing the copper 7 on the insulating film 2 and making the surface of the copper 7 filled in the concave portion 5 and the surface of the insulating film 2 almost coplanar, the copper 7 is formed as shown in FIG. Form wiring.

【0023】図2は、前記下地膜8の前記凹部5の底部
を除く表面のみに絶縁性物質の薄膜11を形成する例を
示す。先ず、図2(a)に示すように、下地膜8の表面
にスパッタリングにより絶縁性物質の薄膜11を形成す
る。次に、図2(b)に示すように、基板側をターゲッ
トとしたArイオンによるスパッタエッチングを施すこ
とによって、凹部5の底面上に堆積した薄膜11を除去
する。
FIG. 2 shows an example in which a thin film 11 of an insulating material is formed only on the surface of the base film 8 excluding the bottom of the recess 5. First, as shown in FIG. 2A, a thin film 11 of an insulating material is formed on the surface of the base film 8 by sputtering. Next, as shown in FIG. 2B, the thin film 11 deposited on the bottom surface of the recess 5 is removed by performing sputter etching using Ar ions with the substrate side as a target.

【0024】尚、凹部5の底面上に堆積した薄膜11を
除去する方法には、種々の方法が考えられる。薄膜(絶
縁層)11の材質は、一般に半導体プロセスで用いるハ
ロゲン系のガスとの化学反応性が殆どないので、主とし
て物理的スパッタリングによってエッチングを進めるこ
とが望ましい。そこで、この例は、基板側をターゲット
とした不活性ガスによるスパッタエッチングを採用して
いる。
Various methods can be considered for removing the thin film 11 deposited on the bottom surface of the concave portion 5. Since the material of the thin film (insulating layer) 11 generally has little chemical reactivity with a halogen-based gas used in a semiconductor process, it is desirable to mainly carry out etching by physical sputtering. Therefore, this example employs sputter etching using an inert gas with the substrate side as a target.

【0025】厳密には用いる装置や運転条件、対象とす
る薄膜11の材質等によって変化するが、Arイオンに
よるスパッタエッチングの速度は、最低でも30〜60
Å/min程度になると考えられる。
Strictly, it depends on the equipment used, the operating conditions, the material of the target thin film 11 and the like, but the sputter etching speed by Ar ions is at least 30 to 60.
It is considered to be about Å / min.

【0026】ここで、Arイオンは、基板表面に対して
垂直に入射する傾向が強いので、凹部5の底面だけにA
rイオンが衝突する確率が側壁面に対する確率より遥か
に高くなる(選択性エッチング)。つまり、一定時間A
rイオンを照射すれば、凹部5の底面上の薄膜11だけ
を選択的に除去することができる。従って、底面上に堆
積した薄膜11の厚さを5nm程度とすれば、必要なス
パッタエッチング時間は1min程度以内となる。
Here, since Ar ions have a strong tendency to be incident perpendicular to the substrate surface, A
The probability of collision with r ions is much higher than the probability for the side wall surface (selective etching). In other words, A
By irradiating with r ions, only the thin film 11 on the bottom surface of the concave portion 5 can be selectively removed. Therefore, if the thickness of the thin film 11 deposited on the bottom surface is about 5 nm, the required sputter etching time is within about 1 min.

【0027】なお、側壁面を被覆する薄膜11の膜厚
は、導電線路の断面積の減少を最小限に留める上からは
薄い方が良いが、その反面、一定の電気絶縁性を確保す
る上からは厚い方が都合がよい。そこで、実用的な薄膜
11の膜厚としては、ほぼ5nm程度(平均値の目安と
して)が適すると考えられる。
The thickness of the thin film 11 covering the side wall surface is preferably thinner from the viewpoint of minimizing the reduction of the cross-sectional area of the conductive line, but on the other hand, it is necessary to secure a certain electric insulation. Thicker is more convenient. Therefore, it is considered that a practical film thickness of the thin film 11 of about 5 nm (as an average value guide) is suitable.

【0028】また、Arイオンによってスパッタされ
て、空中に叩き出された薄膜構成原子または分子の一部
は真空ポンプ側に排出され、残りは周囲の側壁面や基板
表面等に再付着することになるが、再付着する量自体が
非常に少ないので、それによる悪影響は無視できる。
Some of the atoms or molecules constituting the thin film sputtered into the air and sputtered by Ar ions are discharged to the vacuum pump side, and the rest is reattached to the surrounding side wall surface, substrate surface, or the like. However, since the amount of redeposition itself is very small, the adverse effect due to it is negligible.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
配線を構成するめっき金属は微細な凹部内に該凹部の底
部から開口部に向かって一方向に成長する一方で、凹部
の側壁部からのめっき金属の成長は阻止されるので、ボ
イドやシーム等の内部欠陥のない健全な導電体からなる
埋込み配線を形成することができる。
As described above, according to the present invention,
The plating metal forming the wiring grows in the fine recess in one direction from the bottom of the recess toward the opening, while the growth of the plating metal from the side wall of the recess is prevented. Buried wiring made of a sound conductor without internal defects can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の半導体装置の製造方法を
工程順に示す断面図である。
FIG. 1 is a cross-sectional view showing a method of manufacturing a semiconductor device according to an embodiment of the present invention in the order of steps.

【図2】同じく、下地層の凹部の底部を除く表面に絶縁
性物質の薄膜を形成する例を工程順に示す断面図であ
る。
FIG. 2 is a cross-sectional view showing an example of forming a thin film of an insulating material on the surface of the underlayer except for the bottom of the concave portion in the order of steps.

【図3】従来の半導体装置の製造方法を工程順に示す断
面図である。
FIG. 3 is a cross-sectional view showing a conventional method for manufacturing a semiconductor device in the order of steps.

【図4】従来の半導体装置の製造方法におけるボイドの
発生の説明に付する断面図である。
FIG. 4 is a cross-sectional view for explaining generation of voids in a conventional method for manufacturing a semiconductor device.

【図5】従来の半導体装置の製造方法におけるシームの
発生の説明に付する断面図である。
FIG. 5 is a cross-sectional view for explaining generation of a seam in a conventional method of manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

2 絶縁膜 5 凹部 6 拡散抑制層 7 銅 8 下地膜 11 薄膜 W 半導体基板 2 Insulating film 5 Depression 6 Diffusion suppressing layer 7 Copper 8 Base film 11 Thin film W Semiconductor substrate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面に設けられた微細な凹
部に配線を埋め込んで形成した半導体装置において、 前記配線は、前記凹部の底部から開口端部に向けて一方
向に成長させためっき金属で構成されていることを特徴
とする半導体装置。
1. A semiconductor device formed by embedding a wiring in a fine recess provided on a surface of a semiconductor substrate, wherein the wiring is a plated metal grown in one direction from a bottom of the recess toward an opening end. A semiconductor device characterized by comprising:
【請求項2】 微細な凹部を有する半導体基板の表面に
拡散抑制層と給電層または触媒層となる下地膜を順次形
成し、この下地膜の前記凹部の底部を除く表面に絶縁性
物質の薄膜を形成した後、半導体基板の表面にめっきを
施すことを特徴とする半導体装置の製造方法。
2. A diffusion suppressing layer and a base film serving as a power supply layer or a catalyst layer are sequentially formed on a surface of a semiconductor substrate having fine recesses, and a thin film of an insulating material is formed on a surface of the base film excluding the bottom of the recesses. Forming a semiconductor substrate, and then plating the surface of the semiconductor substrate.
【請求項3】 前記拡散抑制層は金属窒化物で、前記下
地膜は銅、パラジウム、金属触媒材料の内のいずれか一
つまたは複数種で構成されていることを特徴とする請求
項2記載の半導体装置の製造方法。
3. The method according to claim 2, wherein the diffusion suppressing layer is made of a metal nitride, and the base film is made of one or more of copper, palladium, and a metal catalyst material. Of manufacturing a semiconductor device.
【請求項4】 前記金属窒化物は、窒化タンタルである
ことを特徴とする請求項3記載の半導体装置の製造方
法。
4. The method according to claim 3, wherein the metal nitride is tantalum nitride.
【請求項5】 前記絶縁性物質の薄膜は、前記拡散抑制
層と同じ材質、他の化合物または絶縁性の単体元素のい
ずれかで構成されていることを特徴とする請求項2記載
の半導体装置の製造方法。
5. The semiconductor device according to claim 2, wherein the thin film of the insulating material is made of the same material as the diffusion suppressing layer, another compound, or an insulating single element. Manufacturing method.
【請求項6】 前記めっきは、銅めっきであることを特
徴とする請求項2記載の半導体装置の製造方法。
6. The method according to claim 2, wherein said plating is copper plating.
JP19497599A 1999-07-08 1999-07-08 Manufacturing method of semiconductor device Expired - Fee Related JP4023955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19497599A JP4023955B2 (en) 1999-07-08 1999-07-08 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19497599A JP4023955B2 (en) 1999-07-08 1999-07-08 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2001023925A true JP2001023925A (en) 2001-01-26
JP4023955B2 JP4023955B2 (en) 2007-12-19

Family

ID=16333470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19497599A Expired - Fee Related JP4023955B2 (en) 1999-07-08 1999-07-08 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4023955B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009027157A (en) * 2007-06-22 2009-02-05 Commissariat A L'energie Atomique Method for manufacturing carbon nanotube-based electrical connection
JP2011082231A (en) * 2009-10-05 2011-04-21 Renesas Electronics Corp Semiconductor device and method of manufacturing the semiconductor device
CN102683270A (en) * 2011-03-17 2012-09-19 瑞萨电子株式会社 Semiconductor device manufacturing method and semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009027157A (en) * 2007-06-22 2009-02-05 Commissariat A L'energie Atomique Method for manufacturing carbon nanotube-based electrical connection
JP2011082231A (en) * 2009-10-05 2011-04-21 Renesas Electronics Corp Semiconductor device and method of manufacturing the semiconductor device
CN102683270A (en) * 2011-03-17 2012-09-19 瑞萨电子株式会社 Semiconductor device manufacturing method and semiconductor device
JP2012195488A (en) * 2011-03-17 2012-10-11 Renesas Electronics Corp Semiconductor device manufacturing method and semiconductor device
CN102683270B (en) * 2011-03-17 2017-08-08 瑞萨电子株式会社 Method, semi-conductor device manufacturing method and semiconductor devices

Also Published As

Publication number Publication date
JP4023955B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
US7550386B2 (en) Advanced seed layers for interconnects
US7105434B2 (en) Advanced seed layery for metallic interconnects
TWI406361B (en) Structure and method for creating reliable via contacts for interconnect applications
US6924226B2 (en) Methods for making multiple seed layers for metallic interconnects
US20060076244A1 (en) Barrier enhancement process for copper interconnects
JP2004063556A (en) Semiconductor device fabricating process
JP2000150647A (en) Wiring structure and its manufacture
US8058164B2 (en) Methods of fabricating electronic devices using direct copper plating
JP2002075994A (en) Semiconductor device and its manufacturing method
US6303498B1 (en) Method for preventing seed layer oxidation for high aspect gap fill
JP4339152B2 (en) Method for forming wiring structure
JP2004153162A (en) Method of forming wiring structure
JP2005044910A (en) Method and device for forming wiring
JP2001053077A (en) Semiconductor integrated circuit device and its manufacture
JP4023955B2 (en) Manufacturing method of semiconductor device
US20070077755A1 (en) Method of forming metal wiring in a semiconductor device
US20020090814A1 (en) Method for forming interconnects and semiconductor device
JP3542326B2 (en) Method for manufacturing multilayer wiring structure
JPH11283979A (en) Manufacture of semiconductor device
US20040248403A1 (en) Method for forming electroless metal low resistivity interconnects
KR100421913B1 (en) Method for forming interconnect structures of semiconductor device
KR100749367B1 (en) Metalline of Semiconductor Device and Method of Manufacturing The Same
KR100451767B1 (en) Method for forming interconnect structures of semiconductor device
US20070264815A1 (en) Method for fabricating semiconductor device
KR100720402B1 (en) Method for forming metal line using the dual damascene process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees