[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001022443A - Autonomously traveling work vehicle - Google Patents

Autonomously traveling work vehicle

Info

Publication number
JP2001022443A
JP2001022443A JP11195803A JP19580399A JP2001022443A JP 2001022443 A JP2001022443 A JP 2001022443A JP 11195803 A JP11195803 A JP 11195803A JP 19580399 A JP19580399 A JP 19580399A JP 2001022443 A JP2001022443 A JP 2001022443A
Authority
JP
Japan
Prior art keywords
distance
wall
sensor
traveling direction
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11195803A
Other languages
Japanese (ja)
Other versions
JP4165965B2 (en
Inventor
Nobukazu Kawagoe
宣和 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figla Co Ltd
Original Assignee
Figla Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figla Co Ltd filed Critical Figla Co Ltd
Priority to JP19580399A priority Critical patent/JP4165965B2/en
Publication of JP2001022443A publication Critical patent/JP2001022443A/en
Application granted granted Critical
Publication of JP4165965B2 publication Critical patent/JP4165965B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To considerably improve the linearity of an autonomously traveling work vehicle executing work while it travels on a floor along a wall face. SOLUTION: An autonomously traveling vehicle 1 has a distance sensor S1 measuring a distance to an obstacle at a side and a gyro sensor S2 detecting a travel direction and has a function which linearly travels while it holds a distance with a flat wall to be constant. A controller for selecting and adopting a first travel direction control system for controlling the direction so that the vehicle travels by following the wall based on the measurement value of the distance sensor S1 when a difference between travel direction change quantity calculated based on time sequential data from the distance sensor S1 and travel direction change quantity obtained from the gyro sensor S2 is within a prescribed rage, and a second travel direction control system for executing linear control based on the measurement value of the gyro sensor S2 without executing wall following travel direction controlled based on the measurement value of the distance sensor S1 when a difference between travel change quantity calculated based on time sequential data from the distance sensor S1 and travel direction change quantity obtained from the gyro sensor S2 is out of the prescribed range is installed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は自律走行作業車に
関し、特に清掃やワックス塗布等, 作業領域を隈なく走
行し作業を行う自律走行作業車に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an autonomous traveling work vehicle, and more particularly to an autonomous traveling work vehicle that travels all over a work area and performs work such as cleaning and wax application.

【0002】[0002]

【従来の技術】この種の自律走行作業車として種々のも
のがすでに開発されている。例えば、特開平8 −286747
号公報に記載されているものは、距離センサで側方の壁
までの距離を周期的に測定し、壁に平行に直進する自律
走行車で、壁との距離の変化が所定値以上になった場合
に、超音波距離センサの距離デ一夕に基づく制御を一時
中止し、車輪回転数測定値に基づく直進走行制御に切り
替えて走行し、壁までの距離の変化が所定値以内になっ
たら、再度超音波距離センサの距離データに基づく制御
を開始するようにして、壁の凹凸によらず、平らな壁に
平行な直進走行を行うものである。
2. Description of the Related Art Various types of autonomous traveling work vehicles have already been developed. For example, JP-A-8-286747
In this publication, an autonomous vehicle that measures the distance to a side wall periodically with a distance sensor and travels in a straight line parallel to the wall, and the change in the distance from the wall exceeds a predetermined value In the case where the control based on the distance data of the ultrasonic distance sensor is temporarily stopped, the vehicle is switched to the straight running control based on the measured wheel rotation speed and the vehicle travels, and the change in the distance to the wall is within a predetermined value. Then, the control based on the distance data of the ultrasonic distance sensor is started again, and the vehicle travels in a straight line parallel to a flat wall regardless of the unevenness of the wall.

【0003】この装置における距離センサとして超音波
距離センサを使用した場合、超音波距離センサは指向性
が比較的広いため、段差を鋭角的に検出できず、曲面的
に測定してしまうという特性がある。そのため、四角い
柱などで実際の距離が急変している場合でも、距離デ一
夕は緩やかな変化となり、所定値に達せず、誤って方向
修正をしてしまうという問題点が有り、この傾向は壁か
ら離れるほど影響は大きくなる。
When an ultrasonic distance sensor is used as a distance sensor in this apparatus, the ultrasonic distance sensor has a relatively wide directivity, so that a step cannot be detected at an acute angle and the characteristic is measured on a curved surface. is there. Therefore, even if the actual distance is suddenly changed due to a square pillar or the like, there is a problem that the distance is a gradual change, does not reach the predetermined value, and the direction is erroneously corrected. The further away from the wall, the greater the effect.

【0004】また、特開平 8−234838号公報に記載され
ているものは、超音波距離センサの指向性が広いため、
段差を鋭角的に検出できず、曲面的に測定してしまうと
いうことから生じる壁倣いの誤誘導の解決策として、壁
までの距離が基準値よりも大きい場合は、走行距離が所
定の値に達するまでの間、複数回距離測定を行い、その
うち最小の距離データを採用して壁倣い走行制御にフィ
ードバックし、壁までの距離が基準値よりも小さい場合
は、すぐに壁倣い走行制御にフイードバックするように
構成されている。
[0004] Further, the one described in Japanese Patent Application Laid-Open No. H8-234838 has a wide directivity of an ultrasonic distance sensor.
If the distance to the wall is larger than the reference value, the travel distance may be set to a predetermined value. Until the distance is reached, distance measurement is performed multiple times, and the minimum distance data is adopted and fed back to the wall tracing control, and if the distance to the wall is smaller than the reference value, feedback is immediately applied to the wall tracing control. It is configured to be.

【0005】しかしながら、この装置は、複数回の距離
デ一夕測定値から最小のものを選ぶため、走行制御へフ
イ―ドバックする周期が長くなり、その間、倣い走行制
御は行われず、蛇行やカーブが生じてしまう。また、同
じサイズの柱が一定間隔で並んでいるような場合には距
離の最小値を用いることも有効であるが、壁においてあ
る棚などはサイズが一定でなく、このような場合には有
効ではない。
However, in this apparatus, since a minimum value is selected from the measured values of the distance data a plurality of times, the period for feeding back to the travel control becomes longer, during which the copying travel control is not performed, and Will occur. In addition, when columns of the same size are arranged at regular intervals, it is effective to use the minimum value of the distance. However, the size of a certain shelf on a wall is not constant, and is effective in such a case. is not.

【0006】さらに、特開平 8−84696 号公報に記載さ
れているものは、壁までの距離を測定する距離センサ
と、方位を検出する方位センサを有し、壁際を壁に沿っ
て走行する場合には、距離センサにより検出された壁ま
での距離が基準距離を維持するように走行させ、壁まで
の距離が基準距離に対して所定値以上に大きい場合は、
方位センサにより検出された方位に基づいて直進走行す
るように制御方法を切り替えるようになっている。
Further, Japanese Patent Application Laid-Open No. 8-84696 has a distance sensor for measuring the distance to a wall and an azimuth sensor for detecting an azimuth. In the case where the vehicle travels such that the distance to the wall detected by the distance sensor maintains the reference distance, and when the distance to the wall is larger than a predetermined value with respect to the reference distance,
The control method is switched so that the vehicle travels straight based on the direction detected by the direction sensor.

【0007】この装置は、壁から所定距離以上はなれて
走行する場合には、方位センサ( ジャイロセンサ) の測
定値のみに基づいて直進走行するため、走行距離が長く
なるにしたがって、直進走行開始時の壁との微小な角度
誤差に起因する壁との距離の誤差が大きくなり、またジ
ャイロセンサのドリフトによる方位誤差も無視できなく
なるため、清掃作業やワックス塗布作業などの場合に清
掃残りや塗布残りが発生する原因となるという問題点が
ある。
When the vehicle travels a predetermined distance or more from the wall, the vehicle travels straight based on only the measurement value of the azimuth sensor (gyro sensor). The error in the distance from the wall due to a small angle error with the wall of the wall becomes large, and the azimuth error due to the drift of the gyro sensor cannot be ignored. There is a problem that this may cause the occurrence of.

【0008】[0008]

【本発明が解決しようとする課題】この種の自律走行作
業車は、床面における作業漏れ箇所が生じないように、
直進性を保持して走行する必要があるが、従来のものは
いずれも十分な直進性が保証できるものではなかった。
そこで本発明は、上記従来公知の装置の問題点を改良
し、壁に凹凸が有る場合でも、超音波距離センサの指向
性の広さに起因する壁の凹凸部分での距離測定値誤差に
よる誤誘導を防止し、かつ、走行方向修正制御の周期を
短くすることによって、直進性を大幅に改善すること、
及び、壁の凹凸のサイズが一定でなく、いろいろなサイ
ズの凹凸が含まれる場合においても、壁倣い走行の直進
性を改善することを課題としている。
This type of autonomous traveling work vehicle is designed to prevent a work leak from occurring on the floor.
It is necessary to travel while maintaining straightness, but none of the conventional ones can guarantee sufficient straightness.
Therefore, the present invention solves the above-described problems of the conventionally known device, and even when a wall has irregularities, an error due to a distance measurement value error in the irregularities of the wall caused by the wide directivity of the ultrasonic distance sensor. By preventing guidance and shortening the cycle of travel direction correction control, significantly improving straightness,
It is another object of the present invention to improve the straightness of the wall following running even when the size of the unevenness of the wall is not constant and includes various sizes of unevenness.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、本発明は次のような構成を採用した。すなわち、本
発明に係る自律走行作業車は、壁までの距離を測定する
距離センサと、角速度を検出するジャイロセンサとを有
し、超音波距離センサから得られる壁までの距離の時系
列デ―タと、ジャイロセンサから得られる角速度や角度
のデータとを比較することにより、壁までの距離の変化
が壁の凹凸に起因するものであるか、または壁と走行方
向との角度のズレに起因するものであるかを判断し、壁
の凹凸による直進性の低下を改善することを特徴として
いる。具体的には、壁までの距離の変化から計算した走
行方向の変化値と、ジャイロセンサの角速度データとが
一致した場合には、距離デ一夕の変化が、壁と走行方向
との角度のズレに起因するものとみなして距離デ一夕に
基づく壁倣い走行制御を行い、両者が―致しない場合に
は、距離データの変化が壁の凹凸に起因するものとみな
して、距離データに基づく壁倣い走行制御を行わなず、
ジャイロセンサのみによる走行制御を行う。
In order to solve the above problems, the present invention employs the following configuration. That is, the autonomous traveling work vehicle according to the present invention includes a distance sensor for measuring a distance to a wall and a gyro sensor for detecting an angular velocity, and a time-series data of a distance to the wall obtained from an ultrasonic distance sensor. By comparing the data with the angular velocity and angle data obtained from the gyro sensor, the change in the distance to the wall is due to the unevenness of the wall or due to the misalignment of the angle between the wall and the running direction It is characterized in that it is determined whether or not the straightness is to be reduced, and a decrease in straightness due to unevenness of the wall is improved. Specifically, when the change value in the traveling direction calculated from the change in the distance to the wall and the angular velocity data of the gyro sensor match, the change in the distance deceases, the change in the angle between the wall and the traveling direction. Based on the distance data, it performs wall copying running control based on the distance data assuming that it is caused by deviation, and if both do not match, it is assumed that the change in distance data is due to unevenness of the wall and based on the distance data Without performing wall copying travel control,
The running control is performed only by the gyro sensor.

【0010】[0010]

【発明の実施の形態】図1は、本発明の実施の形態を例
示するもので、この自律走行作業車1は、モータによっ
て駆動される駆動車輪2a,2bと、変向自在な従動車
輪3a,3bとを備えた車体5に、駆動装置、センサ、
制御装置等が搭載されている。車体5の後部には図示を
省略した作業装置、例えば洗浄液吐出用のノズル、清掃
用ブラシ、汚水を吸引する吸引装置等を有する作業部W
が装着されている。作業部Wは、床面上を移動しつつ清
掃、ワックス掛けその他の作業を行うもので、従来種々
のものが公知となっている。したがって、作業部Wの詳
細な構造と作用については省略する。
FIG. 1 illustrates an embodiment of the present invention. An autonomous traveling work vehicle 1 includes a drive wheel 2a, 2b driven by a motor and a steerable driven wheel 3a. , 3b, a driving device, a sensor,
A control device and the like are mounted. At the rear of the vehicle body 5, a working unit W having a working device (not shown), for example, a nozzle for discharging a cleaning liquid, a brush for cleaning, a suction device for sucking dirty water, and the like.
Is installed. The work unit W performs cleaning, waxing, and other operations while moving on the floor, and various types of work are conventionally known. Therefore, the detailed structure and operation of the working unit W will be omitted.

【0011】左右の駆動車輪2a,2bにはそれぞれに
対応させて駆動モータ4a,4bが設けられており、該
モータにはそれぞれモータドライバ6a,6bが設けら
れている。モータドライバ6a,6bは、制御装置(C
PU)10からの制御信号に応じて駆動モータを駆動す
るようになっている。駆動モータ4a,4b、作業部
W、制御装置10等には図示を省略した電池(バッテ
リ)から電力が供給される。左右の駆動車輪にはそれぞ
れエンコーダ7a,7bが設けられ、これらエンコーダ
によって回転量が検出される。なお、左右の駆動車輪2
a,2bは互いに独立に回転制御される構成で、左右の
車輪の回転速度の差によってカーブ制御が行われる。
Drive motors 4a and 4b are provided for the left and right drive wheels 2a and 2b, respectively, and the motors are provided with motor drivers 6a and 6b, respectively. The motor drivers 6a and 6b are connected to the control device (C
The drive motor is driven in accordance with a control signal from the PU 10. Electric power is supplied to the drive motors 4a and 4b, the working unit W, the control device 10, and the like from a battery (battery) not shown. Encoders 7a and 7b are provided on the left and right drive wheels, respectively, and the amount of rotation is detected by these encoders. The left and right drive wheels 2
a and 2b are configured to be rotationally controlled independently of each other, and curve control is performed based on the difference between the rotational speeds of the left and right wheels.

【0012】上記駆動車輪用の駆動モータ4a,4bは
パルス制御(PWM制御)の直流モータであり、通電パ
ルスのデューテイ比を増減させることによって回転量が
制御される。各モータの回転量は、それぞれのエンコー
ダ7a,7bによって検出され、制御装置10に入力さ
れる。制御装置10は、エンコーダ7a,7b、超音波
距離センサS1、ジャイロセンサS2等から入力される
データに基づいて以下に示す演算を行うとともに、制御
用の指令信号をモータドライバ6a,6bに出力する。
The drive motors 4a and 4b for the drive wheels are pulse control (PWM control) DC motors, and the amount of rotation is controlled by increasing or decreasing the duty ratio of energizing pulses. The amount of rotation of each motor is detected by the respective encoders 7a and 7b and input to the control device 10. The control device 10 performs the following calculation based on data input from the encoders 7a and 7b, the ultrasonic distance sensor S1, the gyro sensor S2, and the like, and outputs a control command signal to the motor drivers 6a and 6b. .

【0013】次に、走行制御について説明する。本発明
では、2種類の走行制御が選択的に採用される。制御用
のセンサーとしては、超音波距離センサS1とジャイロ
センサS2とロータリーエンコーダ7a,7bが設けら
れている。これら超音波距離センサS1もジャイロセン
サS2も公知の市販品を利用できる。例えば、上記ジャ
イロセンサとしては、コリオリ効果を利用して物体が回
転する時の角速度を検出する振動ジャイロセンサ等が使
用される。上記両センサのうち、超音波距離センサS1
は所定周期で繰り返し側方の壁までの距離を測定し、ジ
ャイロセンサS2は所定の周期で走行車の角速度値を測
定する。走行距離はエンコーダ7a,7bで車輪回転数
を検出し、これを積算することによって求められる。
Next, the traveling control will be described. In the present invention, two types of traveling control are selectively adopted. As the control sensor, an ultrasonic distance sensor S1, a gyro sensor S2, and rotary encoders 7a and 7b are provided. Known commercial products can be used for both the ultrasonic distance sensor S1 and the gyro sensor S2. For example, as the gyro sensor, a vibration gyro sensor that detects an angular velocity when an object rotates using the Coriolis effect is used. Of the above two sensors, the ultrasonic distance sensor S1
Measures the distance to the side wall repeatedly at a predetermined cycle, and the gyro sensor S2 measures the angular velocity value of the traveling vehicle at a predetermined cycle. The traveling distance is obtained by detecting the wheel rotation speed by the encoders 7a and 7b and integrating the detected wheel rotation speed.

【0014】走行制御方法について具体的に説明すれば
以下のとおりである。まず、変数を下記の如く設定す
る。 i : 測定回数 Do : 壁との基準距離 D(i) : 壁までの距離測定値。 As(i) : 壁までの距離測定値から計算した角速度。 A(i) : 角速度測定値。 V : 走行速度 T : 測定周期 L : 測定周期間に進む走行距離。 θ(i) : 壁と走行方向とのなす角度。 M(i) : 走行方向の修正量 C1、C2、C3 : 定数
The driving control method is specifically described as follows. First, variables are set as follows. i: Number of measurements Do: Reference distance to wall D (i): Measured distance to wall. As (i): Angular velocity calculated from the measured distance to the wall. A (i): Angular velocity measurement value. V: Travel speed T: Measurement cycle L: Travel distance that advances during the measurement cycle. θ (i): The angle between the wall and the traveling direction. M (i): the corrected traveling direction amount C 1, C 2, C 3 : constant

【0015】ここで、 L = V ・T ・・・(1) θ(i)=sin -1((D(i) -D(i-1))/ L) ・・・(2) As(i)= (θ(i)-θ(i-1))/T ・・・(3) である。Here, L = V · T (1) θ (i) = sin −1 ((D (i) −D (i−1)) / L) (2) As ( i) = (θ (i) −θ (i−1)) / T (3)

【0016】走行方向の修正量は、下記の(4) 式を基本
とし、 M(i)= C1(D(i)-Do)+C2・θ(i)+C3・A(i) ・・・(4) As(i) とA(i)との比較結果に応じて、下記の二通り
の計算方式のどちらかを選択する。
The correction amount of the traveling direction is based on the following equation (4), and M (i) = C 1 (D (i) -Do) + C 2 · θ (i) + C 3 · A (i ) (4) One of the following two calculation methods is selected according to the comparison result between As (i) and A (i).

【0017】 As(i) とA(i)の差の絶対値が所定値N
(作業条件等に応じてあらかじめ設定しておけばよい
が、通常はほぼ0とする)を超える場合は、C1=C2=OC3
≠Oとした下記の(5) 式で、距離測定値に基づく走行方
向修正量をゼロにして、角速度測定値のみに基づいて方
向修正を行う。 M(i) = C3 ・A(i) ・・・(5)
The absolute value of the difference between As (i) and A (i) is a predetermined value N
If it exceeds (the value may be set in advance according to the working conditions, etc., but is usually set to almost 0), C 1 = C 2 = OC 3
In the following equation (5) with ≠ O, the traveling direction correction amount based on the distance measurement value is set to zero, and the direction correction is performed based only on the angular velocity measurement value. M (i) = C 3 · A (i) (5)

【0018】 As(i) とA(i)の差の絶対値が所定値以
内である場合は、 C1≠O C2≠0 C3≠O とし、(4) 式に基づいて、距離測定値による走行方向修
正と角速度測定値による走行方向修正を行うか、また
は、 C1≠O C2≠O C3= 0 として、距離測定値のみに基づいて走行方向修正を行っ
ても良い。
When the absolute value of the difference between As (i) and A (i) is within a predetermined value, C 1 ≠ OC 2 ≠ 0 C 3 ≠ O, and the distance measurement value is calculated based on the equation (4). The traveling direction may be corrected based on the measured value of the angular velocity and the traveling direction may be modified based on the measured value of the angular velocity, or the traveling direction may be corrected based on only the distance measurement value with C 1 ≠ OC 2 ≠ OC 3 = 0.

【0019】また、の状態において、壁からどれだけ
離れて平行に走行するかを決定する基準距離Doは、ま
ず、走行開始時に、走行開始持の距離測定値 D(0) を基
準距離としてD0に代入し、 Do = D(0) それ以後は、の状態からの状態へ移行した直後の距
離測定値D(i)を基準距離として、Doに代入する。 Do = D(i)
In the condition (1), the reference distance Do that determines how far away from the wall the vehicle travels in parallel is determined at the start of travel by using the measured distance D (0) of the start of travel as the reference distance. Substituting 0 into Do = D (0) Thereafter, the distance measurement value D (i) immediately after the transition from the state to the state is substituted into Do as the reference distance. Do = D (i)

【0020】図2は、壁には凹凸が無く、スリッフや床
の凹凸、左右の車輪径の差などの影響により、走行方向
が徐々に傾いている場合の例である。この場合は、(1)
(2)(3) 式で計算した角速度値As(i) の値と、ジャイロ
センサの測定値A(i)とがほぼ等しくなるので、前記の
場合に相当し、距離測定値に基づいた壁倣い制御が行わ
れる。
FIG. 2 shows an example in which there is no unevenness on the wall, and the traveling direction is gradually inclined due to the influence of the unevenness of the slip or floor, the difference between the left and right wheel diameters, and the like. In this case, (1)
(2) Since the value of the angular velocity value As (i) calculated by the equation (3) is substantially equal to the measurement value A (i) of the gyro sensor, it corresponds to the above case, and the wall based on the distance measurement value Copying control is performed.

【0021】図3は、やはり壁には凹凸が無い場合で、
直進はしているが走行開始時の向きが壁と平行でなかっ
たために、徐々に壁から離れている場合の例である。こ
の場合、(1)(2)(3) 式で計算した角速度値As(i) の値
と、ジャイロセンサによる角速度測定値A(i)は、どちら
もほばゼロとなり、ほば一致するので、やはり前記の
場合に相当し、距離測定値に基づいた壁倣い制御が行わ
れ、壁との平行度および壁までの距離が維持されるよう
に制御が行われる。なお、上記特開平8 −84696号記載
の装置では、壁から所定距離以上離れると壁倣い制御が
行われず、ジャイロセンサのみでの制御となるので、壁
との距離を一定値に保つことができなくなる恐れがあ
る。
FIG. 3 shows a case where the wall has no irregularities.
This is an example of a case where the vehicle is traveling straight, but the direction at the start of traveling is not parallel to the wall, so that the vehicle gradually moves away from the wall. In this case, the value of the angular velocity value As (i) calculated by the equations (1), (2), and (3) and the measured value of the angular velocity A (i) by the gyro sensor are almost zero and almost coincide with each other. This also corresponds to the above-described case, and wall tracing control based on the distance measurement value is performed, and control is performed so that the parallelism with the wall and the distance to the wall are maintained. In the apparatus described in JP-A-8-84696, the wall profiling control is not performed when the apparatus is separated from the wall by a predetermined distance or more, and the control is performed only by the gyro sensor. There is a risk of disappearing.

【0022】図4は、壁に凹凸がある場合の例である。
この場合、D(i)を測定するまでは壁倣い制御を実行し壁
と平行に直進しているが、壁に段差があるため、D(i)以
降で、距離測定値に変化を生じている。この時、壁は図
示する通り急峻に変化しているが、超音波距離センサの
指向性が比較的広いために、測定値は図の破線で示す曲
線となり、図のD(i)の如く緩やかに変化する場合が生じ
る。この変化をそのまま壁倣い走行制御にフイードバッ
クすると、直進性を損ねる結果となる。この時、ジャイ
ロセンサによる角速度測定値A(i)は、ほばゼロで有るに
もかかわらず、(1)(2)(3) 式で計算した角速度値As(i)
はゼロとならないため、前記の場合に相当し、距離測
定値に基づく壁倣い制御を中止し、ジャイロセンサのみ
での制御を行う制御に切り替えることにより、直進性の
低下を防止する。
FIG. 4 shows an example in which the wall has irregularities.
In this case, the wall tracing control is executed until the measurement of D (i), and the vehicle goes straight in parallel with the wall.However, since the wall has a step, the distance measurement value changes after D (i). I have. At this time, the wall changes steeply as shown in the figure, but because the directivity of the ultrasonic distance sensor is relatively wide, the measured value becomes a curve shown by a broken line in the figure, and is gentle as shown by D (i) in the figure. In some cases. If this change is fed back to the wall copying travel control as it is, the straightness is impaired. At this time, the angular velocity measured value A (i) by the gyro sensor is almost zero, but the angular velocity value As (i) calculated by the equations (1), (2), and (3).
Does not become zero, which corresponds to the case described above, in which the wall tracking control based on the distance measurement value is stopped, and the control is switched to control in which only the gyro sensor is used, thereby preventing a decrease in straightness.

【0023】そして、D(i+3)を測定した後、再び、As(i
+3) とA(i+3)の差が所定範囲内に納まるので、その時点
の距離測定値D(i+3)を壁との基準距離として採用し、以
後、壁との距離が基準距離を維持するように壁倣い走行
制御を行う。
After measuring D (i + 3), As (i + 3) is measured again.
+3) and A (i + 3) fall within a predetermined range, so the distance measurement D (i + 3) at that time is used as the reference distance to the wall, and thereafter, the distance to the wall is used as the reference. Wall copy running control is performed to maintain the distance.

【0024】図5に方向修正量演算サブルーチンフログ
ラムのフローチャートを例示する。
FIG. 5 illustrates a flowchart of a direction correction amount calculation subroutine flowchart.

【0025】一定周期のタイマー割り込みにより、方向
修正量演算サブルーチンを実行する。まず、#1、#2で壁
までの距離D(i)と角速度A(i)を測定し、次に#3で(1)(2)
(3)式を用いて角速度計算値As(i) を計算し、#4で前記
の場合であるかの場合であるかを判別する。の場
合であれば#8に進み、(5) 式を用いて走行方向修正量M
(i)を計算して#9へ進む。#4の判別結果がの場合に
は、#5へ進み、前回、(4)式によって方向修正量を計算
したか否かを判別し、肯定であればそのまま#7へ進み、
否定であれば、今回の距離測定値D(i)を基準距離Doに代
入して#7へ進む。#7では(4) 式に基づいて壁との距離を
Doに維持するための方向修正量を計算して#9へ進む。#9
では、計算されたM(i)に基づき、左右の車輪の回転速度
を変更し、サブルーチンを終了する。
A direction correction amount calculation subroutine is executed by a timer interrupt at a fixed period. First, the distance D (i) to the wall and the angular velocity A (i) were measured in # 1 and # 2, and then in # 3 (1) (2)
The calculated angular velocity value As (i) is calculated by using the equation (3), and it is determined at # 4 whether the case is the above case. If it is the case, proceed to # 8 and use the formula (5) to calculate the traveling direction correction amount M
Calculate (i) and proceed to # 9. If the determination result of # 4 is, the process proceeds to # 5, and it is determined whether or not the direction correction amount was calculated by the formula (4) last time.If the determination is affirmative, the process directly proceeds to # 7,
If not, the current distance measurement D (i) is substituted for the reference distance Do , and the process proceeds to # 7. In # 7, the distance to the wall is calculated based on equation (4).
The direction correction amount for maintaining Do is calculated, and the process proceeds to # 9. # 9
Then, the rotational speeds of the left and right wheels are changed based on the calculated M (i), and the subroutine ends.

【0026】この自律走行作業車1は上記の制御により
壁に沿って直進するが、作業範囲の端部に到達した時は
Uターンして再度逆向きに直進走行させる(必要な場合
は後進も可能である)。このようにして作業対象の床面
全体に対し漏れなく作業を行うのである。上記の実施形
態では、左右2輪独立制御の走行車に付いて例示した
が、駆動輪とは別に操舵輪を持つ形式の走行車でも良
い。その場合はフローチャートの#9において、左右の車
輪の回転速度を修正する変わりに、操舵輪の角度を修正
すれば良い。
The autonomous traveling work vehicle 1 travels straight along the wall under the above-described control. When it reaches the end of the work range, it makes a U-turn and travels straight again in the reverse direction (if necessary, it also travels backward). Is possible). In this way, the work is performed without omission on the entire floor surface to be worked. In the above-described embodiment, the traveling vehicle of the left and right two-wheel independent control is exemplified. However, a traveling vehicle having steering wheels separately from the driving wheels may be used. In that case, in step # 9 of the flowchart, the angle of the steered wheel may be corrected instead of correcting the rotational speeds of the left and right wheels.

【0027】[0027]

【発明の効果】以上に説明したように、本発明に係る自
律走行作業車は、超音波距離センサとジャイロセンサを
併せ持ち、壁との距離が一定になるように平らな壁に平
行に直進走行する機能を有するものであって、超音波距
離センサから得られる壁までの距離の時系列データと、
ジャイロセンサから得られる角速度データや角度データ
とを比較することにより、壁までの距離の変化が壁の凹
凸に起因するものか、方位誤差に起因するものかを判断
して直進性を維持することにより、壁の段差等による直
進性の低下を改善することが可能となった。
As described above, the autonomous traveling work vehicle according to the present invention has both an ultrasonic distance sensor and a gyro sensor and travels straight in parallel with a flat wall so that the distance from the wall is constant. Having a function to perform, and time-series data of the distance to the wall obtained from the ultrasonic distance sensor,
By comparing angular velocity data and angle data obtained from the gyro sensor to determine whether the change in the distance to the wall is due to unevenness of the wall or an azimuth error, and maintain straightness Thereby, it is possible to improve a decrease in straightness due to a step on a wall or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】自律走行作業車の構成を説明する平面図であ
る。
FIG. 1 is a plan view illustrating a configuration of an autonomous traveling work vehicle.

【図2】走行制御方法の説明図である。FIG. 2 is an explanatory diagram of a traveling control method.

【図3】走行制御方法の説明図である。FIG. 3 is an explanatory diagram of a traveling control method.

【図4】走行制御方法の説明図である。FIG. 4 is an explanatory diagram of a traveling control method.

【図5】方向修正量演算サブルーチンプログラムを表す
フローチャートである。
FIG. 5 is a flowchart illustrating a direction correction amount calculation subroutine program.

【符号の説明】[Explanation of symbols]

1 自律走行作業車 2(a,b) 駆動車輪 3(a,b) 従動車輪 4(a,b) 駆動モータ 5 車体 6(a,b) モータードライバ 7(a,b) エンコーダ 10 制御装置 S1 超音波距離センサ S2 ジャイロセンサ W 作業装置 Reference Signs List 1 autonomous traveling work vehicle 2 (a, b) driving wheel 3 (a, b) driven wheel 4 (a, b) driving motor 5 body 6 (a, b) motor driver 7 (a, b) encoder 10 control device S1 Ultrasonic distance sensor S2 Gyro sensor W Working device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 側方の障害物までの距離を測定する距離
センサと、走行方向を検出するジャイロセンサとを有
し、平らな壁との距離を―定に保ちながら直進する機能
を有する自律走行作業車において、前記距離センサから
の時系列デ―タを基に計算した走行方向変化量と、前記
ジャイロセンサから得られる走行方向変化量との差が所
定範囲以内であれば、距離センサの測定値に基づき壁に
倣って走行するように方向制御を行う第1の走行方向制
御方式と、距離センサからの時系列デ一夕を基に計算し
た走行方向変化量と、ジャイロセンサから得られる走行
方向変化量との差が所定範囲外の場合は、距離センサの
測定値に基づく壁倣い走行方向制御を行わず、ジャイロ
センサの測定値に基づく直進制御を行う第2の走行方向
制御方式とを選択採用する制御装置を設けたことを特徴
とする自律走行作業車。
1. An autonomous device having a distance sensor for measuring a distance to a side obstacle and a gyro sensor for detecting a traveling direction, and having a function of traveling straight while keeping a constant distance from a flat wall. In the traveling work vehicle, if the difference between the traveling direction change amount calculated based on the time series data from the distance sensor and the traveling direction change amount obtained from the gyro sensor is within a predetermined range, the distance sensor A first traveling direction control method that performs direction control so as to follow the wall based on the measured value, a traveling direction change amount calculated based on time series data from a distance sensor, and a gyro sensor. When the difference from the traveling direction change amount is out of the predetermined range, the second traveling direction control method that does not perform the wall following traveling direction control based on the measurement value of the distance sensor but performs the straight traveling control based on the measurement value of the gyro sensor; Select adopt An autonomous traveling work vehicle provided with a control device that performs operation.
【請求項2】 前記、第1の走行方向制御方式におい
て、壁からどれだけ離れて走行するかを決定する距離基
準値として、第2の走行方向制御方式から第1の走行方
向制御方式に切り替わった直後の壁との距離測定値を用
いて制御を行う請求項1に記載の自律走行作業車。
2. The method according to claim 1, wherein the first traveling direction control method switches from the second traveling direction control method to a first traveling direction control method as a distance reference value for determining how far away from the wall the vehicle travels. The autonomous traveling work vehicle according to claim 1, wherein control is performed using a measured distance to a wall immediately after the operation.
JP19580399A 1999-07-09 1999-07-09 Autonomous work vehicle Expired - Lifetime JP4165965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19580399A JP4165965B2 (en) 1999-07-09 1999-07-09 Autonomous work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19580399A JP4165965B2 (en) 1999-07-09 1999-07-09 Autonomous work vehicle

Publications (2)

Publication Number Publication Date
JP2001022443A true JP2001022443A (en) 2001-01-26
JP4165965B2 JP4165965B2 (en) 2008-10-15

Family

ID=16347248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19580399A Expired - Lifetime JP4165965B2 (en) 1999-07-09 1999-07-09 Autonomous work vehicle

Country Status (1)

Country Link
JP (1) JP4165965B2 (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007310866A (en) * 2006-05-16 2007-11-29 Samsung Electronics Co Ltd Robot using absolute azimuth and map creation method using it
JP2009534737A (en) * 2006-04-18 2009-09-24 マースランド エヌ・ヴィ Unmanned autonomous vehicle for feed movement
JP2012064240A (en) * 2001-06-12 2012-03-29 Irobot Corp Mobile robot cleaner
JP2012094027A (en) * 2010-10-28 2012-05-17 Toyota Motor Corp Mobile body
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
JP6951539B1 (en) * 2020-12-07 2021-10-20 株式会社ユアテック Self-propelled equipment, measurement methods, and programs
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8478442B2 (en) 2000-01-24 2013-07-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8761935B2 (en) 2000-01-24 2014-06-24 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US8686679B2 (en) 2001-01-24 2014-04-01 Irobot Corporation Robot confinement
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8659255B2 (en) 2001-01-24 2014-02-25 Irobot Corporation Robot confinement
US8659256B2 (en) 2001-01-24 2014-02-25 Irobot Corporation Robot confinement
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
JP2012064240A (en) * 2001-06-12 2012-03-29 Irobot Corp Mobile robot cleaner
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8671507B2 (en) 2002-01-03 2014-03-18 Irobot Corporation Autonomous floor-cleaning robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8763199B2 (en) 2002-01-03 2014-07-01 Irobot Corporation Autonomous floor-cleaning robot
US8516651B2 (en) 2002-01-03 2013-08-27 Irobot Corporation Autonomous floor-cleaning robot
US8656550B2 (en) 2002-01-03 2014-02-25 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8781626B2 (en) 2002-09-13 2014-07-15 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8749196B2 (en) 2004-01-21 2014-06-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US8598829B2 (en) 2004-01-28 2013-12-03 Irobot Corporation Debris sensor for cleaning apparatus
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8782848B2 (en) 2005-02-18 2014-07-22 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US10470629B2 (en) 2005-02-18 2019-11-12 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8661605B2 (en) 2005-12-02 2014-03-04 Irobot Corporation Coverage robot mobility
US10524629B2 (en) 2005-12-02 2020-01-07 Irobot Corporation Modular Robot
US8950038B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Modular robot
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
JP2009534737A (en) * 2006-04-18 2009-09-24 マースランド エヌ・ヴィ Unmanned autonomous vehicle for feed movement
JP2007310866A (en) * 2006-05-16 2007-11-29 Samsung Electronics Co Ltd Robot using absolute azimuth and map creation method using it
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US8572799B2 (en) 2006-05-19 2013-11-05 Irobot Corporation Removing debris from cleaning robots
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US8370985B2 (en) 2007-05-09 2013-02-12 Irobot Corporation Compact autonomous coverage robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US8726454B2 (en) 2007-05-09 2014-05-20 Irobot Corporation Autonomous coverage robot
US11072250B2 (en) 2007-05-09 2021-07-27 Irobot Corporation Autonomous coverage robot sensing
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US8347444B2 (en) 2007-05-09 2013-01-08 Irobot Corporation Compact autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
JP2012094027A (en) * 2010-10-28 2012-05-17 Toyota Motor Corp Mobile body
US9939529B2 (en) 2012-08-27 2018-04-10 Aktiebolaget Electrolux Robot positioning system
US10219665B2 (en) 2013-04-15 2019-03-05 Aktiebolaget Electrolux Robotic vacuum cleaner with protruding sidebrush
US10448794B2 (en) 2013-04-15 2019-10-22 Aktiebolaget Electrolux Robotic vacuum cleaner
US10149589B2 (en) 2013-12-19 2018-12-11 Aktiebolaget Electrolux Sensing climb of obstacle of a robotic cleaning device
US10433697B2 (en) 2013-12-19 2019-10-08 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
US9946263B2 (en) 2013-12-19 2018-04-17 Aktiebolaget Electrolux Prioritizing cleaning areas
US9811089B2 (en) 2013-12-19 2017-11-07 Aktiebolaget Electrolux Robotic cleaning device with perimeter recording function
US10209080B2 (en) 2013-12-19 2019-02-19 Aktiebolaget Electrolux Robotic cleaning device
US10045675B2 (en) 2013-12-19 2018-08-14 Aktiebolaget Electrolux Robotic vacuum cleaner with side brush moving in spiral pattern
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
US10231591B2 (en) 2013-12-20 2019-03-19 Aktiebolaget Electrolux Dust container
US10518416B2 (en) 2014-07-10 2019-12-31 Aktiebolaget Electrolux Method for detecting a measurement error in a robotic cleaning device
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US10499778B2 (en) 2014-09-08 2019-12-10 Aktiebolaget Electrolux Robotic vacuum cleaner
US10877484B2 (en) 2014-12-10 2020-12-29 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
US10678251B2 (en) 2014-12-16 2020-06-09 Aktiebolaget Electrolux Cleaning method for a robotic cleaning device
US10534367B2 (en) 2014-12-16 2020-01-14 Aktiebolaget Electrolux Experience-based roadmap for a robotic cleaning device
US11099554B2 (en) 2015-04-17 2021-08-24 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
US10874274B2 (en) 2015-09-03 2020-12-29 Aktiebolaget Electrolux System of robotic cleaning devices
US11712142B2 (en) 2015-09-03 2023-08-01 Aktiebolaget Electrolux System of robotic cleaning devices
US11169533B2 (en) 2016-03-15 2021-11-09 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
US11474533B2 (en) 2017-06-02 2022-10-18 Aktiebolaget Electrolux Method of detecting a difference in level of a surface in front of a robotic cleaning device
US11921517B2 (en) 2017-09-26 2024-03-05 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device
JP6951539B1 (en) * 2020-12-07 2021-10-20 株式会社ユアテック Self-propelled equipment, measurement methods, and programs
JP2022090251A (en) * 2020-12-07 2022-06-17 株式会社ユアテック Self-propelled device, measurement method, and program

Also Published As

Publication number Publication date
JP4165965B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP4165965B2 (en) Autonomous work vehicle
JP3135587B2 (en) Wall cleaning device
JP3660042B2 (en) Cleaning robot control method
JPH10240343A (en) Autonomously traveling vehicle
JPH0895638A (en) Travel controller for mobile working robot
JP3025604B2 (en) Unmanned vehicle steering control method
JPH0884696A (en) Cleaning robot control method and device therefor
KR100619750B1 (en) Position error correction apparatus and method for robot cleaner
JP2004318721A (en) Autonomous travel vehicle
JP3628405B2 (en) Direction correction method and apparatus for traveling vehicle
JP3609200B2 (en) Travel control method and travel control device for autonomous vehicle
KR101449177B1 (en) Active cruise control system
JP2863361B2 (en) Unmanned vehicle control method
JP3166250B2 (en) Cleaning robot
JP2609890B2 (en) Self-propelled work vehicle
JP3277980B2 (en) Control method for unmanned vehicles
JP3401067B2 (en) Car wash machine
JP2786516B2 (en) Work vehicle traveling method
JPH0962354A (en) Traveling vehicle control method
JP3241182B2 (en) Independent traveling vehicle
JP3144122B2 (en) Automated guided vehicle steering speed controller
JPH09185411A (en) Traveling direction detecting method for unmanned vehicle
JP2609891B2 (en) Self-propelled work vehicle
JPH06242825A (en) Autonomously travelling vehicle
JP3003260B2 (en) Carpet detection device and mobile work robot having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4165965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

EXPY Cancellation because of completion of term