JP2001006750A - Battery inspecting device - Google Patents
Battery inspecting deviceInfo
- Publication number
- JP2001006750A JP2001006750A JP11179501A JP17950199A JP2001006750A JP 2001006750 A JP2001006750 A JP 2001006750A JP 11179501 A JP11179501 A JP 11179501A JP 17950199 A JP17950199 A JP 17950199A JP 2001006750 A JP2001006750 A JP 2001006750A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- terminal voltage
- abnormality
- determination
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 25
- 230000005856 abnormality Effects 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 21
- 238000007689 inspection Methods 0.000 claims description 13
- 230000002159 abnormal effect Effects 0.000 claims description 7
- 238000007599 discharging Methods 0.000 abstract description 10
- 230000007613 environmental effect Effects 0.000 abstract description 7
- 230000008569 process Effects 0.000 description 14
- 230000008859 change Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 229910052987 metal hydride Inorganic materials 0.000 description 7
- 238000012937 correction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 101001125854 Homo sapiens Peptidase inhibitor 16 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102100029324 Peptidase inhibitor 16 Human genes 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Hybrid Electric Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、所定個数の電池群
が複数直列に接続された組電池を有し、エンジンにより
駆動される発電機により電池の充電状態を制御するハイ
ブリッド車において、電池の微短絡などの異常を検出す
るための装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid vehicle having a battery pack in which a predetermined number of battery groups are connected in series and controlling the state of charge of the battery by a generator driven by an engine. The present invention relates to a device for detecting an abnormality such as a slight short circuit.
【0002】[0002]
【従来の技術】エンジンと電気モータとを組み合わせて
動力源として用いるハイブリッド車両が普及しつつあ
る。ハイブリッド車両では、例えば低速走行時や高負荷
時などのエンジン効率が低い領域ではモータでエンジン
を補助することにより駆動系全体でのエネルギー効率を
高めている。モータの電源には、例えばニッケル水素
(Ni-MH)電池などの2次電池が用いられる。2次
電池への充電は、例えば減速・制動時などの回生発電な
どにより充電が行われ、商用電力からの充電作業を基本
的に不要にしている。2. Description of the Related Art Hybrid vehicles using a combination of an engine and an electric motor as a power source are becoming widespread. In a hybrid vehicle, for example, in a region where the engine efficiency is low, such as when the vehicle is running at a low speed or under a heavy load, the motor assists the engine to increase the energy efficiency of the entire drive train. A secondary battery such as a nickel-metal hydride (Ni-MH) battery is used as a power source for the motor. The charging of the secondary battery is performed by regenerative power generation at the time of deceleration or braking, for example, and the charging operation from commercial power is basically unnecessary.
【0003】ハイブリッド車両では、2次電池が充電状
態が高すぎる(100%に近い)と過充電を避けるため
に回生発電などによる発生電力を捨てなければならず、
逆に充電状態が低すぎる(0%に近い)と発進時などに
十分なモータ駆動を行うことができないので、このよう
なことを避けるために常に2次電池の充電状態を監視
し、適正値から大きく外れないように制御している。こ
の制御は、電池特性に応じて予めSOCの上限値と下限
値を定め、SOCが例えばこれら上限値と下限値の中央
値付近になるように充電・放電の指示を出すことにより
実現している。In a hybrid vehicle, if the state of charge of a secondary battery is too high (close to 100%), power generated by regenerative power generation or the like must be discarded to avoid overcharging.
Conversely, if the state of charge is too low (close to 0%), sufficient motor drive cannot be performed at the time of starting or the like, so in order to avoid such a situation, always monitor the state of charge of the secondary battery and set an appropriate value. Is controlled so that it does not greatly deviate from This control is realized by setting an upper limit value and a lower limit value of the SOC in advance in accordance with the battery characteristics, and issuing a charge / discharge instruction so that the SOC is, for example, near the median of the upper limit value and the lower limit value. .
【0004】ハイブリッド車両の2次電池は、300V
近い高い電圧の出力を得るため、1.2V程度のセル
(単電池)を多数直列接続した組電池として構成するこ
とが一般的である。例えば、従来のあるハイブリッド車
両の組電池は、ニッケル水素電池のセルを5、6個を直
列接続して1つのモジュール電池を構成し、このモジュ
ール電池を2個直列接続して1つの電池ブロックを構成
し、この電池ブロックを例えば18個直列接続した組電
池として構成されている。The secondary battery of a hybrid vehicle is 300 V
In order to obtain a near high voltage output, it is common to configure a large number of cells (unit cells) of about 1.2 V as an assembled battery connected in series. For example, in a conventional battery pack of a hybrid vehicle, five or six nickel-metal hydride batteries are connected in series to form one module battery, and two module batteries are connected in series to form one battery block. The battery block is configured as an assembled battery in which, for example, 18 battery blocks are connected in series.
【0005】ハイブリッド車両の電源電池の異常の一つ
に微短絡がある。微短絡とは、モジュール電池内の隣接
するセル間にて、わずかな液漏れなどによって自己放電
が生じ、この結果無放電状態でもセルの端子電圧が徐々
に低下する現象である。微短絡が生じると、SOC制御
において、セルの自己放電によるエネルギー損失の分だ
け余計に充電を行うことになり、燃費向上というハイブ
リッド車両の大目的に反することになる。また、微短絡
は、電池の過熱などの問題も引き起こす。また、微短絡
以外でも、過放電などの繰り返しが起こると電解液喪失
などの故障が生じてしまう。適切な運用のためには、こ
のような微短絡等の故障を素早く検知して電池交換など
の対策を講じる必要がある。One of the abnormalities in the power supply battery of a hybrid vehicle is a slight short circuit. A slight short-circuit is a phenomenon in which self-discharge occurs between adjacent cells in a module battery due to slight liquid leakage or the like, and as a result, the terminal voltage of the cells gradually decreases even in a non-discharged state. When a short circuit occurs, in the SOC control, extra charging is performed by an amount corresponding to the energy loss due to the self-discharge of the cell, which is contrary to the main purpose of the hybrid vehicle of improving fuel efficiency. Also, the short circuit causes a problem such as overheating of the battery. In addition to the short circuit, if repetition such as overdischarge occurs, a failure such as loss of the electrolyte occurs. For proper operation, it is necessary to quickly detect a failure such as a micro short circuit and take measures such as battery replacement.
【0006】電池に微短絡などの故障が起こると、一般
に電池の端子電圧が異常に低下するので、原理的には個
々のセルの端子電圧を監視することにより故障を検知す
ることができる。しかしながら、ハイブリッド車両に搭
載される組電池のセル数は200個を超えており、これ
らすべてのセルの端子電圧を監視するのは、回路規模が
莫大なものになりコスト面からみて現実的ではない。そ
こで、従来は、直列接続された各電池ブロックごとにそ
の端子電圧を検出し、それら各端子電圧を相互に比較す
ることにより異常を検出していた。[0006] When a failure such as a slight short circuit occurs in the battery, the terminal voltage of the battery generally drops abnormally. Therefore, in principle, the failure can be detected by monitoring the terminal voltage of each cell. However, the number of cells of the assembled battery mounted on the hybrid vehicle exceeds 200, and monitoring the terminal voltages of all these cells is enormous in circuit scale and is not realistic in terms of cost. . Therefore, conventionally, an abnormality has been detected by detecting the terminal voltage of each battery block connected in series and comparing the terminal voltages with each other.
【0007】図5は、従来の組電池の電圧検出回路の一
例であり、この例では、メインバッテリ100は、複数
の電池ブロック110−1から110−nが直列接続さ
れて構成されている。各電池ブロック110は、それぞ
れニッケル水素電池6セルを直列接続したモジュール電
池を2モジュール直列接続して構成されている。各電池
ブロック110−1から110−nの両極端子は、順番
に電池ECU200の端子電圧検出器210−1から2
10−nの端子に接続される。端子電圧検出器210−
i(iは整数)は、電池ブロック110−iの端子電圧
を出力する。判定部220は、各端子電圧検出器210
の出力を受け取り、その出力同士を比較して異常判定を
行う。この従来回路では、各端子電圧検出器210の出
力端子電圧のうちの最小値が、他のすべての端子電圧と
1.2V以上の差となったときに異常と判定していた。
この判定ルーチンは、基本的に車両が走行可能状態にあ
る間一定時間ごとなどに定期的に実行していた。FIG. 5 shows an example of a conventional battery pack voltage detecting circuit. In this example, the main battery 100 is configured by connecting a plurality of battery blocks 110-1 to 110-n in series. Each battery block 110 is configured by connecting two module batteries each having six nickel-metal hydride batteries connected in series. The bipolar terminals of each of the battery blocks 110-1 to 110-n are sequentially connected to the terminal voltage detectors 210-1 to 210-2 of the battery ECU 200.
10-n. Terminal voltage detector 210-
i (i is an integer) outputs the terminal voltage of the battery block 110-i. The judging section 220 is connected to each terminal voltage detector 210
And compares the outputs with each other to determine the abnormality. In this conventional circuit, when the minimum value of the output terminal voltages of the terminal voltage detectors 210 has a difference of 1.2 V or more from all other terminal voltages, it is determined to be abnormal.
This determination routine has been basically executed periodically at regular time intervals while the vehicle is in a runnable state.
【0008】この異常判定のしきい値1.2Vは、各種
の誤差を見込んで決められている。すなわち、電池ブロ
ック110が正常な場合でも、電池や検出器などの誤差
で端子電圧の検出値にある程度のばらつきが生じうるの
で、従来はそのような正常範囲内で考え得るばらつき
(誤差)の上限を判定しきい値とし、電池ブロック11
0の端子電圧がそのしきい値を超えて初めて異常と判定
していた。この誤差には、個々の電池ブロック110の
ばらつきによる誤差、各端子電圧検出器210の特性の
ばらつきによる誤差、などが含まれる。例えば、電池ブ
ロック110は個々に特性が微妙に違うため、個々の電
池ブロックが正常であっても充放電を繰り返すうちに各
々の端子電圧はある程度ばらばらになる。従来、この電
池ブロック自体の端子電圧の誤差として0.7Vを見込
んでいた。これは、充電、放電の両方の場合を考慮した
値である。また、検出器210にも製造誤差などにより
特性にばらつきがでる。従来、この検出器誤差として、
0.4Vを見込んでいた。これら電池ブロック誤差、検
出器誤差に更に0.1Vの余裕を見込んで定めたのが、
従来の1.2Vの異常判定しきい値であった。[0008] The threshold value 1.2V for this abnormality determination is determined in consideration of various errors. In other words, even when the battery block 110 is normal, the detected value of the terminal voltage may vary to some extent due to errors in the battery, the detector, and the like. Is the determination threshold, and the battery block 11
Only when the terminal voltage of 0 exceeded the threshold value was judged to be abnormal. This error includes an error due to variations in individual battery blocks 110, an error due to variations in characteristics of each terminal voltage detector 210, and the like. For example, since the characteristics of the battery blocks 110 are slightly different from each other, even if the individual battery blocks are normal, the terminal voltages of the battery blocks 110 vary to some extent during repeated charging and discharging. Conventionally, 0.7 V was expected as an error in the terminal voltage of the battery block itself. This is a value in consideration of both charging and discharging. The characteristics of the detector 210 also vary due to manufacturing errors and the like. Conventionally, as this detector error,
0.4V was expected. The battery block error and the detector error were determined with an additional allowance of 0.1 V.
It was the conventional 1.2V abnormality determination threshold.
【0009】[0009]
【発明が解決しようとする課題】電池の端子電圧の検出
値は、充放電状態(充電、放電のいずれであるか)、S
OC(充電状態)、温度その他の環境状態などによって
変わってくる。上述のしきい値1.2Vは、このような
起こりうる様々な状態における誤差を考慮して定めた値
であった。したがって、実際には微短絡などの故障が起
こっていても、それが誤差範囲に埋もれる程度の範囲に
ある間はその故障が検出できず、その結果故障検出に遅
れが出る可能性があった。また、別の見方をすれば、従
来の微短絡等の異常判定は、様々な誤差を考慮に入れて
いたため精度があまりよくなかったと言える。The detected value of the terminal voltage of the battery includes a charge / discharge state (charge or discharge), S
It depends on the OC (charge state), temperature, and other environmental conditions. The above-mentioned threshold value of 1.2 V is a value determined in consideration of such errors in various possible states. Therefore, even if a fault such as a slight short-circuit actually occurs, the fault cannot be detected as long as the fault is buried in the error range, and as a result, the fault detection may be delayed. From another viewpoint, it can be said that the accuracy of the conventional abnormality determination such as a slight short-circuit was not so good because various errors were taken into account.
【0010】また、従来は、2個のモジュール電池を1
電池ブロックとし、この1電池ブロックに対して1個の
端子電圧検出器210を設けて端子電圧の異常を検出し
ていたので、合計36個のモジュール電池(すなわち2
16セル)に対して18個の端子電圧検出器210が必
要であった。電池ECU200のコストを下げるには、
端子電圧検出器210やその付属回路の数を減らすこと
が一つの方法であるが、そのためには例えば1電池ブロ
ックを3モジュールにするなど、ブロック当たりのモジ
ュール数を増やすことになる。しかしながら、このよう
に1ブロック当たりのモジュール数を単純に増やしただ
けでは、従来と同等の判定精度が確保できない。すなわ
ち、例えば、2モジュール1ブロックにつき端子電圧検
出器1個という従来構成を、3モジュール1ブロックに
つき端子電圧検出器1個という構成に変えると、1セル
が微短絡を起こしたときの電圧降下が電池ブロック全体
の電圧降下に寄与する割合が2/3になるので、従来と
同じ1ブロック当たり1.2Vの誤差を見込んでいたの
では、微短絡がその誤差に埋もれて検出できなくなる可
能性がある。従来と同等の精度で微短絡等の異常を検出
するには、検出系全体の誤差(ばらつき)を改善する必
要がある。[0010] Conventionally, two module batteries are connected to one another.
Since one battery block was provided with one terminal voltage detector 210 to detect abnormal terminal voltage, a total of 36 module batteries (that is, 2 battery cells) were used.
18 terminal voltage detectors 210 were required for 16 cells). To reduce the cost of battery ECU 200,
One method is to reduce the number of terminal voltage detectors 210 and their associated circuits. For this purpose, for example, the number of modules per block is increased, for example, one battery block is replaced with three modules. However, simply increasing the number of modules per block in this way cannot ensure the same determination accuracy as in the past. That is, for example, if the conventional configuration of one terminal voltage detector per two modules and one block is changed to a configuration of one terminal voltage detector per three modules and one block, the voltage drop when one cell is slightly short-circuited is reduced. Since the ratio contributing to the voltage drop of the entire battery block is 2/3, if an error of 1.2 V per block is expected as in the conventional case, there is a possibility that a slight short circuit is buried in the error and cannot be detected. is there. In order to detect an abnormality such as a micro short circuit with the same accuracy as in the past, it is necessary to improve the error (variation) of the entire detection system.
【0011】本発明は、上記問題を解決するためになさ
れたものであり、ハイブリッド車両における微短絡など
の組電池の一部に起因する異常の検出精度を高めること
を目的とし、ひいてはそのために必要となる端子電圧検
出器の数を減らして異常検出のための回路規模を小さく
することを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and has as its object to improve the accuracy of detecting an abnormality caused by a part of a battery pack such as a micro short circuit in a hybrid vehicle. It is an object to reduce the number of terminal voltage detectors to reduce the circuit scale for abnormality detection.
【0012】[0012]
【課題を解決するための手段】上記目的を達成するた
め、本発明に係る電池検査装置は、ハイブリッド車両に
搭載された組電池の異常を検出する電池検査装置であっ
て、前記ハイブリッド車両が停車状態にあるか否かを判
定する停車判定手段と、前記停車判定手段で停車状態と
判定された場合に、前記組電池を構成する各電池ブロッ
クの端子電圧を検出し、この検出結果に基づき組電池の
異常有無の判定を行う異常判定手段とを有する。To achieve the above object, a battery inspection device according to the present invention is a battery inspection device for detecting an abnormality of an assembled battery mounted on a hybrid vehicle, wherein the hybrid vehicle is stopped. A stop determining means for determining whether or not the vehicle is in a state, and when the stop determining means determines that the vehicle is in a stopped state, a terminal voltage of each battery block constituting the assembled battery is detected. Abnormality determination means for determining the presence or absence of an abnormality in the battery.
【0013】この構成では、停車状態という電池の充放
電が行われる可能性の低い環境で、各電池ブロックの端
子電圧を調べ、微短絡等の異常判定を行うので、電池ブ
ロックの端子電圧のばらつきが従来の判定の場合より小
さくなり、判定誤差が改善される。In this configuration, the terminal voltage of each battery block is checked and an abnormality such as a slight short-circuit is determined in an environment in which the battery is unlikely to be charged or discharged, that is, in a stopped state. Is smaller than in the case of the conventional determination, and the determination error is improved.
【0014】好適な態様では、組電池に対して所定電流
で充電している状態で異常判定を行う。所定の大きさの
電流で充電している状態では、すべての電池ブロックに
流れる内部電流の値が等しくなるため、各電池ブロック
の端子電圧のばらつき(誤差)が小さくなり、異常検出
の精度が向上する。In a preferred embodiment, the abnormality is determined while the battery pack is being charged with a predetermined current. In the state where the battery is charged with a predetermined amount of current, the values of the internal currents flowing through all the battery blocks are equal, so that the variation (error) of the terminal voltage of each battery block is reduced, and the accuracy of abnormality detection is improved. I do.
【0015】また本発明では、各電池ブロックに対応し
て設けられた各端子電圧検出手段それぞれの初期誤差を
オフセット値として記憶手段に記憶しておき、それら手
段による実際の検出値をそのオフセット値で補正し、こ
の補正後の端子電圧値を用いて異常判定を行う。In the present invention, the initial error of each terminal voltage detecting means provided corresponding to each battery block is stored as an offset value in the storage means, and the actual detection value by those means is stored in the offset value. And an abnormality is determined using the corrected terminal voltage value.
【0016】この構成によれば、端子電圧の検出値の精
度が向上するため、異常判定の精度の向上が図れる。According to this configuration, the accuracy of the detected value of the terminal voltage is improved, so that the accuracy of the abnormality determination can be improved.
【0017】[0017]
【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)について、図面に基づいて説明する。Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.
【0018】図1は、本発明に係る電圧検査装置の概略
構成を示す図である。図において、メインバッテリ10
は、ハイブリッド車両の駆動モータその他に電力を供給
する主たる電池である。このメインバッテリ10は、m
個の電池ブロック12−1〜12−mを直列に接続した
組電池として構成される。各電池ブロック12は、3個
のモジュール電池を直列接続して1つのパッケージに収
容したものであり、それら各モジュール電池は1.2V
のニッケル水素電池セルを例えば6個直列接続して1パ
ッケージとしたものである。図5に示した従来のメイン
バッテリ110との相違は、1つの電池ブロックを構成
するモジュール数を3個に増やした点であり、これによ
り(メインバッテリ全体の端子電圧を変えなければ)電
池ブロック12の数が従来構成の2/3になっている。FIG. 1 is a diagram showing a schematic configuration of a voltage testing apparatus according to the present invention. In the figure, the main battery 10
Is a main battery that supplies power to the drive motor and the like of the hybrid vehicle. This main battery 10
It is configured as an assembled battery in which the battery blocks 12-1 to 12-m are connected in series. Each battery block 12 includes three module batteries connected in series and accommodated in one package.
Are connected in series to form one package. The difference from the conventional main battery 110 shown in FIG. 5 is that the number of modules constituting one battery block is increased to three, thereby (unless the terminal voltage of the entire main battery is changed). The number of twelve is / of the conventional configuration.
【0019】電池ECU20は、メインバッテリ10の
SOC(充電状態:ステート・オブ・チャージ)が適切
な値になるように充放電等の制御を行うとともに、メイ
ンバッテリ10の温度や電圧などを監視し、異常を検出
した場合には充放電の制限や停止、警報出力などの動作
を行う。本実施形態では、電池ECU20のこれら諸機
能のうち、微短絡等による電池ブロック12の電圧異常
を検査する機能に注目しているので、図1及び以下の説
明では、その機能を実現する構成に焦点を当てて説明す
る。The battery ECU 20 controls charging and discharging so that the SOC (state of charge) of the main battery 10 becomes an appropriate value, and monitors the temperature and voltage of the main battery 10. When an abnormality is detected, operations such as limiting and stopping charge / discharge and outputting an alarm are performed. In the present embodiment, among these various functions of the battery ECU 20, attention is paid to a function of inspecting a voltage abnormality of the battery block 12 due to a slight short circuit or the like. Therefore, in FIG. The explanation is focused on.
【0020】電池ECU20には、電池ブロック12と
同数のm個の端子電圧検出器22−1〜22−mが設け
られる。各端子電圧検出器22−i(iは1〜mの整
数)はオペアンプを含み、それぞれ電池ブロック10−
iの両極端子の電圧の差分、すなわち当該電池ブロック
の端子電圧に応じた信号を出力する。本実施形態では、
電池ブロック数が従来構成の2/3になったのに応じ、
端子電圧検出器22の数も従来の2/3に低減してい
る。各端子電圧検出器22−iの出力信号(端子電圧)
は、判定部24に入力される。The battery ECU 20 is provided with m terminal voltage detectors 22-1 to 22-m in the same number as the battery block 12. Each terminal voltage detector 22-i (i is an integer of 1 to m) includes an operational amplifier, and each of the battery blocks 10-i.
A signal corresponding to the difference between the voltages of the bipolar terminals i, that is, the terminal voltage of the battery block is output. In this embodiment,
As the number of battery blocks becomes 2/3 of the conventional configuration,
The number of terminal voltage detectors 22 is also reduced to 2/3 of the conventional one. Output signal (terminal voltage) of each terminal voltage detector 22-i
Is input to the determination unit 24.
【0021】判定部24は、入力されたm個の各電池ブ
ロック12の端子電圧の信号をA/D変換し、これらを
比較して、微短絡等で電圧が異常に低下した電池ブロッ
ク12がないかを検査する。The determination unit 24 performs A / D conversion of the input terminal voltage signals of the m battery blocks 12 and compares them to determine if the battery block 12 whose voltage has abnormally dropped due to a slight short circuit or the like. Inspect for any.
【0022】不揮発性メモリ30は、各端子電圧検出器
22のオフセット値を記憶している。オフセット値は、
端子電圧検出器22の出力の正しい電圧値からのずれで
あり、端子電圧検出器22のオペアンプや周辺の抵抗な
どの製造誤差等に起因する。このオフセット値は、工場
出荷時等の検査時に求めておく。すなわち、検査時に各
端子電圧検出器22に一定の電圧を印加し、そのときに
各検出器22の出力値と真値との誤差を求め、これをオ
フセット値として不揮発性メモリ30に記憶しておく。
なお、不揮発性メモリ30は、電池ECU20専用のも
のであってもよいし、他のECU(ハイブリッドECU
など)と共用のものを用いてもよい。The non-volatile memory 30 stores the offset value of each terminal voltage detector 22. The offset value is
This is a deviation of the output of the terminal voltage detector 22 from a correct voltage value, and is caused by a manufacturing error of the operational amplifier of the terminal voltage detector 22 or a peripheral resistor. This offset value is obtained at the time of inspection at the time of factory shipment or the like. That is, a constant voltage is applied to each terminal voltage detector 22 at the time of inspection, an error between the output value of each detector 22 and a true value is obtained at that time, and this is stored in the nonvolatile memory 30 as an offset value. deep.
The nonvolatile memory 30 may be dedicated to the battery ECU 20 or may be another ECU (hybrid ECU).
) May be used.
【0023】次に、本実施形態における微短絡等の電池
異常の検出手順を説明する。なお、以下に説明する手順
は、微短絡など一部のセルの異常に起因する電池の電圧
低下を検出するためのものであり、電池ブロックの電極
がグラウンド(GND)に短絡するなどという大短絡を
検出するためのものではない。大短絡の場合、その電池
ブロックの電圧がほぼ0Vになるので容易に検出するこ
とができ(微短絡の場合0Vまで下がることはない)、
この大短絡の検査ルーチンは別途実行されており、ここ
では触れない。Next, a procedure for detecting a battery abnormality such as a slight short-circuit in the present embodiment will be described. The procedure described below is for detecting a voltage drop of the battery due to an abnormality of some cells such as a slight short circuit, and a large short circuit in which the electrode of the battery block is short-circuited to ground (GND). It is not for detecting. In the case of a large short circuit, the voltage of the battery block becomes almost 0 V, so that it can be easily detected (in the case of a slight short circuit, the voltage does not drop to 0 V).
The inspection routine for this large short circuit is separately executed and will not be described here.
【0024】本実施形態の判定部24が実行する異常検
査ルーチンは、2つのフェーズから構成される。第1の
フェーズは、現在の環境・状態が微短絡等の電圧異常の
判定に適したものであるかを判断するフェーズであり、
第2のフェーズは各端子電圧検出器22で求められた各
電池ブロック12の端子電圧の情報に基づき、いずれか
の電池ブロック12で微短絡等が起こっているか否かを
判断するフェーズである。本実施形態では、第1フェー
ズで現在の環境が判定に適したものであると確認された
場合にのみ、第2フェーズでの判定処理を行う。The abnormality inspection routine executed by the determination unit 24 of the present embodiment includes two phases. The first phase is a phase for determining whether the current environment and state are suitable for determining a voltage abnormality such as a slight short circuit,
The second phase is a phase in which it is determined whether or not a slight short circuit or the like has occurred in any one of the battery blocks 12 based on information on the terminal voltage of each battery block 12 obtained by each terminal voltage detector 22. In the present embodiment, the determination process in the second phase is performed only when it is confirmed in the first phase that the current environment is suitable for the determination.
【0025】図2は、異常検査ルーチンの第1フェーズ
の手順を示す図である。この第1フェーズでは、まずメ
インバッテリ10のSOCが20〜80(満充電の20
〜80%の範囲)にあるか否かが判定される(S1
0)。SOCは、電池ECU20が常に検出・算出して
いる。SOCの算出機構は従来より公知のものなので、
ここでは説明を省略する。20≦SOC≦80の領域
は、ニッケル水素電池の電圧が安定化する領域として知
られている。FIG. 2 shows the procedure of the first phase of the abnormality inspection routine. In the first phase, first, the SOC of the main battery 10 is 20 to 80 (20 when fully charged).
Is determined (S1).
0). The SOC is always detected and calculated by the battery ECU 20. Since the SOC calculation mechanism is conventionally known,
Here, the description is omitted. The region where 20 ≦ SOC ≦ 80 is known as a region where the voltage of the nickel-metal hydride battery is stabilized.
【0026】図4は、環境温度摂氏25度の状態におけ
る、ニッケル水素電池の電池ブロック12の端子電圧の
SOCに対する変化を示す図である。このグラフは、実
験により求めたものである。各点に示した数値は端子電
圧の値であり、括弧内の数値は従来における2モジュー
ル1ブロック構成の場合の端子電圧である。この図に示
すように、ニッケル水素電池では、充電状態SOCが2
0から80に変わったとしても電池ブロック12(3モ
ジュール)の端子電圧は0.4V程度しか変化しない。
なお、この図では省略しているが、SOCが20以下及
び80以上の領域では、端子電圧は急激に減少(20以
下)あるいは上昇(80以上)する。FIG. 4 is a diagram showing a change in the terminal voltage of the battery block 12 of the nickel-metal hydride battery with respect to the SOC at an environmental temperature of 25 degrees Celsius. This graph is obtained by an experiment. Numerical values shown at the respective points are terminal voltage values, and numerical values in parentheses are terminal voltages in a conventional two-module one-block configuration. As shown in this figure, in the nickel hydrogen battery, the state of charge SOC is 2
Even if the voltage changes from 0 to 80, the terminal voltage of the battery block 12 (3 modules) changes only by about 0.4V.
Although not shown in this figure, in the region where the SOC is 20 or less and 80 or more, the terminal voltage sharply decreases (20 or less) or increases (80 or more).
【0027】このようにS10では、現在のSOCが、
電池の電圧が安定する(ほぼ一定となる)領域であるか
否かを判定している。ニッケル水素電池の場合、この領
域は20≦SOC≦80であったが、電池の種類が変わ
ればそれに合わせてこの領域の範囲を変える必要があ
る。この判定で、SOCが電池電圧が安定する領域にあ
る(判定結果Y)と判定されれば、各電池ブロック12
同士の端子電圧の差はそれほど大きくないと考えられる
ので、微短絡等による電圧異常が見つけやすい環境と判
断できる。As described above, in S10, the current SOC is:
It is determined whether or not the battery voltage is in a stable (substantially constant) region. In the case of a nickel-metal hydride battery, this region satisfies 20 ≦ SOC ≦ 80, but if the type of battery changes, the range of this region must be changed accordingly. In this determination, if it is determined that the SOC is in the region where the battery voltage is stable (determination result Y), each battery block 12
Since it is considered that the difference between the terminal voltages is not so large, it can be determined that the environment is easy to find a voltage abnormality due to a slight short circuit or the like.
【0028】逆にS10の判定結果が否定(N)の場
合、SOCは、各電池ブロック12の端子電圧が急激に
上昇または下降する領域にある。このような領域では、
電池ブロック自体が正常でもその端子電圧同士の差は大
きくなりがちなので、仮に微短絡等が起こっていたとし
ても、正常な範囲での電圧低下と区別しがたい。そこ
で、本実施形態では、そのような場合には異常判定を行
わないようにするため、判定可否フラグを“0”にセッ
トする(S19)。なお、判定可否フラグとは、端子電
圧に基づく異常判定処理を有効化するか否かを示すフラ
グであり、判定部24が管理している。異常判定処理
は、判定可否フラグの値が“1”のときに有効化され、
“0”のときには無効化される。Conversely, if the determination result in S10 is negative (N), the SOC is in a region where the terminal voltage of each battery block 12 rises or falls sharply. In these areas,
Even if the battery block itself is normal, the difference between the terminal voltages tends to be large. Therefore, even if a slight short-circuit or the like occurs, it is difficult to distinguish from a voltage drop in a normal range. Therefore, in the present embodiment, in order to prevent the abnormality determination from being performed in such a case, the determination availability flag is set to “0” (S19). Note that the determination availability flag is a flag indicating whether or not to enable the abnormality determination process based on the terminal voltage, and is managed by the determination unit 24. The abnormality determination process is activated when the value of the determination availability flag is “1”,
When it is "0", it is invalidated.
【0029】S10の判定が肯定(Y)の場合、次に判
定部24は、現在ハイブリッド車両が停車状態であるか
否かを判定する(S12)。ここでいう「停車状態」
は、単に車両が停止しているだけでなく、更にメインバ
ッテリ10の充放電が行われていないと判断できる状態
のことである。「停止状態」の判定は、(1)車両が走
行可能状態(READY ON)である、(2)パーキ
ングブレーキがセットされている(PARKING O
N)、(3)エンジン回転数がほぼ0である、の3条件
により行う。これら3条件がすべて満たされたとき、
「停止状態」であると判定する。条件(1)の走行可能
状態とは、メインバッテリ10の電力の車両各部への供
給・遮断を切り換えるSMR(システム・メイン・リレ
ー)がON(接続状態)となっている状態である。した
がって、条件(1)が満たされていれば、車両は、電力
を各部に供給して様々な制御動作を行うことができる状
態にある。条件(2)が満足されていれば、現在車両が
停止しており、すぐには発進しないと判断できる。した
がってこの場合、メインバッテリ10は基本的に放電し
ていないものと想定できる。条件(3)が満足されれ
ば、現在エンジンが停止していると判断でき、メインバ
ッテリ10に対する充電が行われていないと想定でき
る。これら3つの条件が満たされれば、現在メインバッ
テリ10の充放電が行われておらず、しかもすぐには充
放電が行われない(走行など充放電が始まる原因がな
い)と想定できる。このような状態では、メインバッテ
リ10の各電池の端子電圧が通常の走行時などよりも安
定するので、端子電圧の誤差要因が低減される。また、
後述するように本実施形態では、判定部24の指示でメ
インバッテリ10に一定電流での充電を行い、この状態
で電池電圧の異常判定を行うようにしている(図3のS
24、S26)が、このように(判定部24からの指示
を除き)充放電の要因がない状態であれば、そのような
一定電流での充電状態の実現が容易となるという利点も
ある。したがって、S12の判定結果が否定(N)の場
合は判定可否フラグを“0”にセットし(S19)、肯
定(Y)の場合は次のS14に進む。例えば、出勤時な
どに車両を始動した際や、長い信号待ちなどでパーキン
グブレーキをかけた場合に、このS12の判定結果が肯
定(Y)となる。なお、このS12では、更にエアコン
ディショナーその他の動作状態を検査して、バッテリの
放電のないことを確認するようにしてもよい。If the determination in S10 is affirmative (Y), the determination unit 24 determines whether the hybrid vehicle is currently stopped (S12). "Stopped state" here
Means a state where it can be determined that not only the vehicle is stopped but also the main battery 10 is not charged or discharged. The determination of the "stop state" is (1) the vehicle is in a runnable state (READY ON), and (2) the parking brake is set (PARKING O).
N) and (3) the engine speed is almost 0. When all three conditions are met,
It is determined that the state is “stop state”. The runnable state of the condition (1) is a state in which an SMR (system main relay) for switching between supply and cutoff of power of the main battery 10 to various parts of the vehicle is ON (connected state). Therefore, if the condition (1) is satisfied, the vehicle is in a state where it is possible to supply power to each unit and perform various control operations. If the condition (2) is satisfied, it can be determined that the vehicle is currently stopped and does not start immediately. Therefore, in this case, it can be assumed that the main battery 10 is basically not discharged. If the condition (3) is satisfied, it can be determined that the engine is currently stopped, and it can be assumed that the main battery 10 is not charged. If these three conditions are satisfied, it can be assumed that charging and discharging of the main battery 10 are not currently performed, and that charging and discharging are not performed immediately (there is no cause for starting charging and discharging such as running). In such a state, the terminal voltage of each battery of the main battery 10 is more stable than during normal driving, so that error factors of the terminal voltage are reduced. Also,
As will be described later, in the present embodiment, the main battery 10 is charged with a constant current in response to an instruction from the determination unit 24, and in this state, the battery voltage is determined to be abnormal (S in FIG. 3).
24, S26), if there is no charge / discharge factor (except for the instruction from the determination unit 24), there is an advantage that it is easy to realize such a charge state with a constant current. Therefore, if the determination result of S12 is negative (N), the determination possibility flag is set to "0" (S19), and if affirmative (Y), the process proceeds to the next S14. For example, when the vehicle is started at the time of going to work, or when the parking brake is applied for a long signal, the determination result in S12 is affirmative (Y). In step S12, the operation state of the air conditioner and other components may be further checked to confirm that the battery is not discharged.
【0030】S14では、メインバッテリ10周辺の環
境温度t0と各電池ブロック12個々の温度ti(iは1
〜m)とを求め、「t0及び全tiが摂氏0度以上40度
以下」という条件が満たされるかどうかを判定する。こ
れら各種温度t0、tiは従来のバッテリ制御でも用いら
れていたデータであり、そのための温度センサは既に設
けられているので、本実施形態のために新たに温度セン
サを設ける必要はない。この条件が満足されなければ
(判定結果N)、バッテリ電圧が安定せず、個々の電池
ブロック12の電圧が大幅にずれることもあり得るの
で、判定可否フラグを“0”にセットする(S19)。In S14, the environmental temperature t0 around the main battery 10 and the temperature ti (i is 1
To m), and it is determined whether or not the condition that “t0 and all ti are 0 ° C. or more and 40 ° C. or less” is satisfied. These various temperatures t0 and ti are data used in the conventional battery control, and a temperature sensor for that is already provided. Therefore, it is not necessary to newly provide a temperature sensor for this embodiment. If this condition is not satisfied (judgment result N), the battery voltage is not stabilized, and the voltages of the individual battery blocks 12 may be greatly shifted. Therefore, the judgment possibility flag is set to “0” (S19). .
【0031】S14の判定結果が肯定(Y)の場合、過
去10秒間のバッテリ環境温度t0の変化幅Δt0が3度
以内であるかを判定する(S16)。この判定結果が否
定(N)の場合、バッテリ環境温度の変化が激しいとい
うことであり、メインバッテリの端子電圧の安定性が保
証できない(すなわち正常な電池ブロックでも端子電圧
が大きく上昇または低下している可能性がある)ので、
判定可否フラグを“0”にセットする(S19)。If the result of the determination in S14 is affirmative (Y), it is determined whether the change width Δt0 of the battery environment temperature t0 for the past 10 seconds is within 3 degrees (S16). If the determination result is negative (N), it means that the battery environmental temperature changes greatly, and it is not possible to guarantee the stability of the terminal voltage of the main battery (that is, the terminal voltage greatly increases or decreases even in a normal battery block). May be)
The judgment possibility flag is set to "0" (S19).
【0032】このようにして、S10〜S16の4つの
条件判定がすべて(Y)となると、充放電が行われてお
らず各電池ブロック12の端子電圧が安定していると見
なせ、各電池ブロック12の端子電圧のばらつき(誤
差)が少ないと想定できる。本実施形態では、このよう
な状態であると判定できたときに、判定可否フラグを
“1”にセットする(S18)。なお、S10〜S14
の判定の順序は任意であり、図示例はあくまで一例であ
る。In this manner, when all of the four condition determinations of S10 to S16 become (Y), it is considered that charging and discharging have not been performed and the terminal voltage of each battery block 12 is stable, and each battery block 12 has a stable voltage. It can be assumed that variations (errors) in the terminal voltages of the block 12 are small. In the present embodiment, when it is determined that such a state exists, the determination possibility flag is set to “1” (S18). Note that S10 to S14
May be determined in any order, and the illustrated example is merely an example.
【0033】このようにして判定可否フラグのセットが
終わると第1フェーズが終了し、次に第2フェーズに移
る。ただし、本実施形態では、可否判定フラグが“1”
の場合のみ次の第2フェーズの処理に移るものとし、フ
ラグが“0”の場合は、S19で処理を中止する。この
第1フェーズの処理は、車両の電源がON状態にある
間、一定時間間隔ごとに定期的に行われる。When the determination flag is set as described above, the first phase ends, and then the process proceeds to the second phase. However, in this embodiment, the availability determination flag is “1”.
Only in the case of, the process proceeds to the next second phase. If the flag is "0", the process is stopped in S19. The process of the first phase is periodically performed at regular time intervals while the vehicle is powered on.
【0034】次に、第2フェーズについて図3を参照し
て説明する。第2フェーズでは、まず判定部24は、不
揮発性メモリ30から各端子電圧検出器22のオフセッ
ト値を読み出し(S20)、このオフセット値により各
々対応する端子電圧検出器22の出力電圧値を補正す
る。この結果得られた補正値は、端子電圧検出器22の
製造誤差等による静的な誤差成分がほとんど除去された
値となっている。次に、S22で判定可否フラグが
“1”であることを確認する。なお、この確認結果が否
定(N)の場合は処理を終了する。Next, the second phase will be described with reference to FIG. In the second phase, first, the determination unit 24 reads the offset value of each terminal voltage detector 22 from the nonvolatile memory 30 (S20), and corrects the output voltage value of each corresponding terminal voltage detector 22 based on this offset value. . The correction value obtained as a result is a value from which a static error component due to a manufacturing error or the like of the terminal voltage detector 22 is almost eliminated. Next, in S22, it is confirmed that the determination possibility flag is "1". If the result of this check is negative (N), the process ends.
【0035】判定可否フラグが“1”であることが確認
されると、次に判定部24は、ハイブリッド車両のエン
ジン、モータ、発電機の制御を行うハイブリッドECU
(図示省略)に対し、「充電電流(Ic)=−1C」で
の充電を指示する(S24)。ここで、1Cの充電電流
は、充電状態が0のバッテリを均一電流で充電して1時
間で満充電となる電流量であり、例えばバッテリ容量が
6.5Ah(アンペア時間)である場合、1Cは6.5
Aとなる。なお、「−1C」と負の値にしているのは、
放電を正、充電を負の値で表現するためであり、上記充
電指示は1Cの電流で充電するという意味である。ハイ
ブリッドECUは、この充電指示に他の諸入力を勘案し
て、発電機に対して充電用の電力発生を指示する。この
時点では、車両は「停車状態」なので、ハイブリッドE
CUには、S24での充電指示以外に充電の要因となる
入力が与えられることはほとんどないと考えられる。し
たがって、大きな状況の変化がなければ、S24の指示
により、ハイブリッドECUはエンジンを動作させて発
電機を回し、メインバッテリ10に対し大きさ1Cの電
流により充電を行うことになる。S26では、メインバ
ッテリが実際に「Ic=−1C」で充電されているかど
うかを判定する。この判定結果が否定(N)の場合はこ
の判定ルーチンを終了し、判定結果が肯定(Y)の場合
のみ次に進む。When it is confirmed that the determination flag is "1", the determination unit 24 then controls the hybrid ECU that controls the engine, motor, and generator of the hybrid vehicle.
(Not shown) to instruct charging with "charging current (Ic) =-1C" (S24). Here, the charging current of 1C is the amount of current that charges a battery having a charging state of 0 with a uniform current to be fully charged in one hour. For example, when the battery capacity is 6.5 Ah (ampere hours), 1C Is 6.5
A. It should be noted that the negative value "-1C" is
This is for expressing the discharge with a positive value and the charge with a negative value, and the charging instruction means charging with a current of 1C. The hybrid ECU instructs the generator to generate electric power for charging in consideration of other inputs in the charging instruction. At this point, the vehicle is in the “stopped state”, so the hybrid E
It is conceivable that the CU is rarely given an input that causes charging other than the charging instruction in S24. Therefore, if there is no significant change in the situation, the hybrid ECU operates the engine to rotate the generator, and charges the main battery 10 with the current having the magnitude of 1C according to the instruction in S24. In S26, it is determined whether or not the main battery is actually charged at "Ic = -1C". If the result of this determination is negative (N), this determination routine ends, and the process proceeds only if the result of determination is positive (Y).
【0036】本実施形態では、このようにメインバッテ
リ10を1Cという一定電流での充電状態とした上で、
微短絡等の異常判定を行う。このように一定電流で充電
している状態では、各電池ブロック12に対して同じ大
きさの電流が流れ、各電池ブロック12の端子電圧が安
定するからである。従来は、バッテリが充電、放電のい
ずれの状態にあるかにかかわらず、端子電圧に基づき異
常判定を行っていたため、正常状態での端子電圧の誤差
(ばらつき)を、(2モジュール1ブロックで)0.7
Vと大きい値に想定しておく必要があったが、本実施形
態では異常判定を一定電流で充電中に限ったため、正常
状態での端子電圧のばらつきとして(3モジュール1ブ
ロックの本構成でも)0.4Vを想定すればよい。この
ように本実施形態では、走行その他の充放電の要因のな
い「停車状態」で、強制的に一定電流で充電する状態を
作ったことにより、各電池ブロックの端子電圧の想定誤
差を大幅に縮小することができた。なお、1Cという充
電電流量は、バッテリ充電の際の基準になる電流量であ
り、一般的にバッテリは1Cでの充電を考慮して開発さ
れているものが多いため、1Cでの充電状態では端子電
圧の安定性がよくなる。また、1Cはバッテリ出荷時の
検査で用いる充電電流の値であり、この1C充電時に端
子電圧が0.4Vのばらつきに入る電池ブロックのみを
正常製品として出荷している。In the present embodiment, after the main battery 10 is charged at a constant current of 1 C as described above,
Perform an abnormality determination such as a slight short circuit. This is because, in the state where the battery is charged with a constant current, a current of the same magnitude flows to each battery block 12, and the terminal voltage of each battery block 12 is stabilized. Conventionally, the abnormality is determined based on the terminal voltage regardless of whether the battery is in a charge state or a discharge state. Therefore, the error (variation) of the terminal voltage in a normal state is determined (in two modules and one block). 0.7
Although it was necessary to assume a large value as V, in this embodiment, the abnormality determination is limited to charging during a constant current, so that the terminal voltage variation in a normal state (even in this configuration of three modules and one block) 0.4 V may be assumed. As described above, in the present embodiment, a state in which the vehicle is forcibly charged with a constant current in the "stopped state" in which there is no cause of running or other charging / discharging is made, so that an assumed error of the terminal voltage of each battery block is greatly reduced. Could be reduced. Note that the charging current amount of 1C is a reference current amount when charging the battery. Generally, many batteries have been developed in consideration of charging at 1C. Terminal voltage stability is improved. 1C is the value of the charging current used in the inspection at the time of shipping the battery. Only the battery block whose terminal voltage enters a variation of 0.4 V at the time of this 1C charging is shipped as a normal product.
【0037】S26の判定結果が肯定(Y)の場合、次
に判定部24は、この第2フェーズに入ってからの各電
池ブロック12の端子電圧(オフセット補正後)の変化
(上昇)幅がそれぞれ0.4V以内であるかどうかを判
定する(S28)。これは、この時点でもSOCが20
〜80の範囲にあるかを確認するためのステップであ
る。図4の特性からすると、電圧上昇幅が0.4以下で
あれば、SOCが20〜80にあると推定できる。この
判定の結果が肯定(Y)の場合のみ次のステップに進
み、否定(N)の場合は第2フェーズのルーチンを終了
する。If the result of the determination in S26 is affirmative (Y), then the determination unit 24 determines that the change (increase) in the terminal voltage (after offset correction) of each battery block 12 since entering the second phase is It is determined whether each is within 0.4 V (S28). This means that even at this point the SOC is 20
This is a step for confirming whether it is within the range of ~ 80. According to the characteristics of FIG. 4, if the voltage rise width is 0.4 or less, it can be estimated that the SOC is in the range of 20 to 80. The process proceeds to the next step only when the result of this determination is affirmative (Y), and ends the routine of the second phase when it is negative (N).
【0038】S30では、この第2フェーズに入ってか
ら、判定可否フラグが“1”、かつ「Ic=−1C」で
の充電状態、かつ各端子電圧の上昇幅が0.4V以下、
という状態が10秒間続いたかどうかを判定する。その
状態が10秒に達しない場合は、S22に戻る。そし
て、その状態の持続時間が10秒に達する(S30の判
定結果がY)と、次に進む。ここでの10秒間は、「I
c=−1C」の充電を開始してから各電池ブロック12
の電圧が許容可能な程度まで安定化するのに要する時間
である。したがって、S30の判定結果が肯定(Y)と
なると、各電池ブロック12の端子電圧は安定化し、ば
らつきの少ない状態となっている。本実施形態では、こ
のような状態になって初めて各電池ブロック12の端子
電圧同士の比較を行う。In step S30, after entering the second phase, the charge state with the determination enable / disable flag set to "1" and "Ic = -1C", the increase in each terminal voltage is 0.4V or less,
Is determined for 10 seconds. If the state does not reach 10 seconds, the process returns to S22. Then, when the duration of the state reaches 10 seconds (the determination result in S30 is Y), the process proceeds to the next step. For 10 seconds here, "I
c = −1C ”and then start charging each battery block 12.
Is the time it takes to stabilize the voltage to an acceptable level. Therefore, when the determination result of S30 is affirmative (Y), the terminal voltage of each battery block 12 is stabilized, and there is little variation. In the present embodiment, the terminal voltages of the battery blocks 12 are compared with each other only after such a state is reached.
【0039】すなわち、まずm個の電池ブロック12の
各端子電圧(オフセット補正後)のうちの最小値Vmin
を求める(S32)。そして、その最小値Vminを他の
(m−1)個の各電池ブロックの端子電圧(オフセット
補正後)と比較し、電圧異常条件を満足しているか否か
を調べる(S34)。電圧異常条件とは、(m−1)個
の各端子電圧とVminとの差がすべて所定のしきい値以
上となっているという条件であり、本実施形態ではこの
条件が満たされた場合に、微短絡等による電圧異常が起
こっていると判定する。なお、2以上の電池ブロック1
2で同時に微短絡等の電圧異常が生じる確率は極めて低
いと考えられるので、S34の条件で異常の起こった電
池ブロック12を検出できる。したがって、S34の判
定結果が肯定(Y)の場合は、微短絡等の電圧異常の判
定が確定(S36)され、この判定に応じて充放電の停
止や警報出力などの必要な処置がとられる。S34の判
定結果が否定(N)の場合は、微短絡等の異常は発生し
ていないものと判定され、この判定ルーチンを終了す
る。That is, first, the minimum value Vmin of the terminal voltages (after offset correction) of the m battery blocks 12 is
(S32). Then, the minimum value Vmin is compared with the terminal voltage (after offset correction) of each of the other (m-1) battery blocks, and it is checked whether or not the voltage abnormal condition is satisfied (S34). The voltage anomaly condition is a condition that the difference between each of the (m-1) terminal voltages and Vmin is equal to or greater than a predetermined threshold, and in the present embodiment, when this condition is satisfied. It is determined that a voltage abnormality has occurred due to a slight short circuit or the like. In addition, two or more battery blocks 1
Since the probability that a voltage abnormality such as a slight short-circuit occurs at the same time in Step 2 is considered to be extremely low, the battery block 12 in which the abnormality has occurred can be detected under the condition of S34. Therefore, if the determination result in S34 is affirmative (Y), the determination of a voltage abnormality such as a slight short-circuit is determined (S36), and necessary measures such as stopping charging and discharging and outputting an alarm are taken in accordance with this determination. . If the result of the determination in S34 is negative (N), it is determined that no abnormality such as a slight short-circuit has occurred, and this determination routine ends.
【0040】本実施形態では、バッテリの端子電圧が安
定する環境条件のよいとき(判定可否フラグ“1”かつ
1Cで充電中のとき)にのみ異常判定処理(第2フェー
ズ)を行うので、各電池ブロック12自体の端子電圧の
ばらつきが小さい。また、各端子電圧検出器22の検出
結果を予め記憶しておいたオフセット値で補正している
ので、検出器22間の静的な誤差はほとんど無視でき
る。また、直列接続された全電池ブロック12に同一電
流(1C)で充電している状態なので、充電中に生じる
動的な誤差は全電池ブロック12でほぼ同じとみなすこ
とができ(同じ条件で充電中なので温度変化もほぼ同じ
とみなすことができ、それによる回路抵抗やオペアンプ
特性の変化の方向性、大きさも同じとみなせる)、S3
4でのブロック間の端子電圧の差分を求めた際にその動
的な誤差はほとんど無視できる程度となる。したがっ
て、正常状態での端子電圧検出値について想定すべき誤
差(ばらつき)が小さくなるため、3モジュールで1つ
の電池ブロック12を構成したとしても、従来(2モジ
ュール1ブロック)よりかえって電池ブロック12の端
子電圧検出値のばらつきが小さくなり、S34の判定に
用いるしきい値も従来より小さくすることができる。例
えば、従来のしきい値である1.2Vに対して、本実施
形態では同等の精度を確保すべくしきい値を0.8V
(=1.2V×2/3)としたとしても、微短絡等の異
常を検出することができる。なぜなら、本実施形態では
前述のごとく電池ブロック12の端子電圧のばらつきは
0.4Vであり、個々の検出器22に起因する検出時の
ばらつきは実質上無視できるので、更に0.1Vの余裕
をみたとしても、正常状態で想定すべき端子電圧検出値
のばらつきは0.5V程度であり、0.8Vのしきい値
を超えるような電圧降下が起こった場合は確実に異常と
判定できる。In the present embodiment, the abnormality determination processing (second phase) is performed only when the environmental conditions for stabilizing the terminal voltage of the battery are good (when the determination possibility flag is “1” and the battery is being charged at 1 C). The variation in terminal voltage of the battery block 12 itself is small. In addition, since the detection result of each terminal voltage detector 22 is corrected with the offset value stored in advance, a static error between the detectors 22 can be almost ignored. Further, since all the battery blocks 12 connected in series are charged with the same current (1 C), the dynamic error occurring during charging can be regarded as substantially the same in all the battery blocks 12 (charging under the same conditions). Since the temperature change is medium, the temperature change can be regarded as substantially the same, and the direction and magnitude of the change in the circuit resistance and the operational amplifier characteristics can be regarded as the same.)
When the difference between the terminal voltages between the blocks is obtained in step 4, the dynamic error is almost negligible. Therefore, an error (variation) to be assumed with respect to the terminal voltage detection value in a normal state is reduced. Therefore, even if one battery block 12 is configured with three modules, the battery block 12 is replaced with the conventional one (two modules and one block). Variations in the terminal voltage detection value are reduced, and the threshold value used for the determination in S34 can be made smaller than before. For example, in contrast to the conventional threshold value of 1.2 V, in the present embodiment, the threshold value is set to 0.8 V to secure the same accuracy.
(= 1.2V × 2/3), an abnormality such as a slight short circuit can be detected. Because, in the present embodiment, as described above, the variation in the terminal voltage of the battery block 12 is 0.4 V, and the variation at the time of detection caused by the individual detectors 22 is substantially negligible. Even if it is seen, the variation of the terminal voltage detection value to be assumed in the normal state is about 0.5 V, and if a voltage drop exceeding the 0.8 V threshold occurs, it can be reliably determined to be abnormal.
【0041】したがって、本実施形態では、メインバッ
テリ10全体の電圧を変えずに3モジュールを1電池ブ
ロックとして端子電圧検出器22の数を従来の2/3に
減らしても、従来と同等の精度で、微短絡等に起因する
電池ブロックの電圧降下を検出することができる。した
がって、本実施形態によれば、電池ECU20の回路規
模を縮小してコストの低減を図ることができる。また、
バッテリ10と電池ECU20との間のワイヤハーネス
や部品点数を減らすことができるので、全体的な故障率
の低下を図ることもできる。Therefore, in the present embodiment, even if the number of terminal voltage detectors 22 is reduced to two thirds of the conventional case by using three modules as one battery block without changing the voltage of the main battery 10 as a whole, the same accuracy as the conventional one is obtained. Thus, it is possible to detect a voltage drop of the battery block due to a slight short circuit or the like. Therefore, according to the present embodiment, the circuit scale of the battery ECU 20 can be reduced, and the cost can be reduced. Also,
Since the number of wire harnesses and the number of parts between the battery 10 and the battery ECU 20 can be reduced, the overall failure rate can be reduced.
【0042】以上説明したように、本実施形態によれ
ば、各電池ブロックの端子電圧が安定する(すなわち、
ばらつきが小さい)、環境条件のよいときにのみ異常判
定処理(第2フェーズ)を行うので、判定の基礎となる
端子電圧検出値の精度が高くなり、異常判定の判定精度
が向上する。また、本実施形態では、各端子電圧検出器
の初期誤差(オフセット値)を予め求めておき、これに
より実際の端子電圧検出値を補正するので、端子電圧検
出値の精度は更に向上し、判定精度の更なる向上が図れ
る。また、このように端子電圧検出値の精度が高くなる
結果、異常判定のしきい値自体を従来より小さくでき、
微短絡等の電池異常を早期に発見することができる。そ
して、これらの結果、端子電圧検出器の数を減らしても
従来と同等の判定精度が確保でき、電池ECU及びその
周辺回路のコストを低減することができる。As described above, according to the present embodiment, the terminal voltage of each battery block is stabilized (that is, the terminal voltage is stable).
Since the abnormality determination process (second phase) is performed only when the environmental conditions are good, the accuracy of the terminal voltage detection value serving as the basis for the determination is increased, and the accuracy of the abnormality determination is improved. Further, in the present embodiment, the initial error (offset value) of each terminal voltage detector is obtained in advance, and the actual terminal voltage detection value is corrected thereby, so that the accuracy of the terminal voltage detection value is further improved, and The accuracy can be further improved. In addition, as a result of the increased accuracy of the terminal voltage detection value, the threshold value of the abnormality determination itself can be made smaller than before, and
Battery abnormality such as a slight short circuit can be detected at an early stage. As a result, even if the number of terminal voltage detectors is reduced, the same determination accuracy as that of the related art can be ensured, and the cost of the battery ECU and its peripheral circuits can be reduced.
【図1】 実施形態の電池異常判定機構の概略構成を示
す図である。FIG. 1 is a diagram illustrating a schematic configuration of a battery abnormality determination mechanism according to an embodiment.
【図2】 実施形態の処理ルーチンの第1フェーズの手
順を示す図である。FIG. 2 is a diagram illustrating a procedure of a first phase of a processing routine according to the embodiment.
【図3】 実施形態の処理ルーチンの第2フェーズの手
順を示す図である。FIG. 3 is a diagram illustrating a procedure of a second phase of a processing routine according to the embodiment.
【図4】 ニッケル水素電池の電池ブロックのSOC−
端子電圧特性を示す図である。FIG. 4 SOC- of a battery block of a nickel-metal hydride battery
FIG. 4 is a diagram showing terminal voltage characteristics.
【図5】 従来の電池異常判定機構の構成を示す図であ
る。FIG. 5 is a diagram illustrating a configuration of a conventional battery abnormality determination mechanism.
10 メインバッテリ、12−1〜12−m 電池ブロ
ック、20 電池ECU、22−1〜22−m 端子電
圧検出器、24 判定部、30 不揮発性メモリ。Reference Signs List 10 main battery, 12-1 to 12-m battery block, 20 battery ECU, 22-1 to 22-m terminal voltage detector, 24 determination unit, 30 nonvolatile memory.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/00 H02J 7/00 P 7/02 H 7/02 B60K 9/00 C Fターム(参考) 5G003 AA07 BA03 EA09 FA06 GC05 5H030 AA06 AA09 AS08 BB10 DD20 FF43 5H115 PG04 PI16 PI29 PI30 PU01 PU25 QA01 QN03 QN12 SE06 TI01 TI05 TI10 TR19 TU04 TU16 TW10 TZ07 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02J 7/00 H02J 7/00 P 7/02 H 7/02 B60K 9/00 CF term (Reference) 5G003 AA07 BA03 EA09 FA06 GC05 5H030 AA06 AA09 AS08 BB10 DD20 FF43 5H115 PG04 PI16 PI29 PI30 PU01 PU25 QA01 QN03 QN12 SE06 TI01 TI05 TI10 TR19 TU04 TU16 TW10 TZ07
Claims (4)
異常を検出する電池検査装置であって、 前記ハイブリッド車両が停車状態にあるか否かを判定す
る停車判定手段と、 前記停車判定手段で停車状態と判定された場合に、前記
組電池を構成する各電池ブロックの端子電圧を検出し、
この検出結果に基づき組電池の異常有無の判定を行う異
常判定手段と、 を有する電池検査装置。1. A battery inspection device for detecting an abnormality of an assembled battery mounted on a hybrid vehicle, comprising: a stop determination unit that determines whether the hybrid vehicle is in a stopped state; When it is determined that the state, the terminal voltage of each battery block constituting the battery pack is detected,
An abnormality determining unit that determines whether there is an abnormality in the battery pack based on the detection result.
て所定の充電電流での充電を指示する手段を有し、この
所定充電電流での充電状態において異常有無の判定を行
うことを特徴とする請求項1記載の電池検査装置。2. The method according to claim 1, wherein the abnormality determining means includes means for instructing the battery pack to be charged with a predetermined charging current, and determines whether there is an abnormality in the charged state at the predetermined charging current. The battery inspection device according to claim 1, wherein
電池ブロック各々の端子電圧を検出する複数の端子電圧
検出手段と、 前記各端子電圧検出手段について予め求められたオフセ
ット値を保持する記憶手段と、 を有し、前記各端子電圧検出手段の検出値をそれぞれ当
該端子電圧検出手段に対応する前記オフセット値で補正
した値に基づき、異常有無の判定を行うことを特徴とす
る請求項1又は請求項2に記載の電池検査装置。3. The abnormality determination means is provided for each of the battery blocks, a plurality of terminal voltage detection means for detecting a terminal voltage of each of the battery blocks, and a plurality of terminal voltage detection means which are previously obtained for each of the terminal voltage detection means. Storage means for holding the offset value, and determining whether there is an abnormality based on a value obtained by correcting the detection value of each of the terminal voltage detection means with the offset value corresponding to the terminal voltage detection means. The battery inspection device according to claim 1 or 2, wherein:
異常を検出する電池検査装置であって、 前記各電池ブロックに対してそれぞれ設けられ、それら
電池ブロック各々の端子電圧を検出する複数の端子電圧
検出手段と、 前記各端子電圧検出手段について予め求められたオフセ
ット値を保持する記憶手段と、 前記各端子電圧検出手段による各電池ブロックの端子電
圧の検出値から各電池ブロックの異常有無の判定を行う
異常判定手段であって、前記各端子電圧検出手段の検出
値を当該端子電圧検出手段に対応する前記オフセット値
で補正した上で前記判定を行う異常判定手段と、 を有する電池検査装置。4. A battery inspection device for detecting an abnormality of an assembled battery mounted on a hybrid vehicle, wherein a plurality of terminal voltages are provided for each of the battery blocks and detect a terminal voltage of each of the battery blocks. Detecting means, storing means for holding an offset value obtained in advance for each of the terminal voltage detecting means, and determining whether or not each battery block is abnormal from the detected terminal voltage of each battery block by each of the terminal voltage detecting means. A battery inspection apparatus comprising: an abnormality determination unit that performs the determination after correcting a detection value of each of the terminal voltage detection units with the offset value corresponding to the terminal voltage detection unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17950199A JP3654058B2 (en) | 1999-06-25 | 1999-06-25 | Battery inspection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17950199A JP3654058B2 (en) | 1999-06-25 | 1999-06-25 | Battery inspection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001006750A true JP2001006750A (en) | 2001-01-12 |
JP3654058B2 JP3654058B2 (en) | 2005-06-02 |
Family
ID=16066929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17950199A Expired - Lifetime JP3654058B2 (en) | 1999-06-25 | 1999-06-25 | Battery inspection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3654058B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006280161A (en) * | 2005-03-30 | 2006-10-12 | Mitsubishi Fuso Truck & Bus Corp | Regenerative controller for hybrid electric vehicle |
JP2008159298A (en) * | 2006-12-21 | 2008-07-10 | Matsushita Electric Ind Co Ltd | Power source system |
JP2010137783A (en) * | 2008-12-12 | 2010-06-24 | Toyota Motor Corp | Device for outputting power, vehicle, and method for determining abnormality |
JP2010256335A (en) * | 2009-04-03 | 2010-11-11 | Sanyo Electric Co Ltd | Battery system, electric vehicle, and battery control device |
JP2011135656A (en) * | 2009-12-22 | 2011-07-07 | Sanyo Electric Co Ltd | Battery system, vehicle with the same, and method for detecting internal short circuit in the battery system |
JP2011154016A (en) * | 2010-01-26 | 2011-08-11 | Sb Limotive Co Ltd | Battery management system and driving method thereof |
US8384345B2 (en) | 2008-08-01 | 2013-02-26 | Toyota Jidosha Kabushiki Kaisha | Control method for lithium ion secondary battery, and lithium ion secondary battery system |
JP2013195408A (en) * | 2012-03-23 | 2013-09-30 | Denso Corp | Battery pack voltage detection device and method of manufacturing the same |
JP2017001498A (en) * | 2015-06-09 | 2017-01-05 | トヨタ自動車株式会社 | Hybrid vehicle |
WO2017130258A1 (en) * | 2016-01-28 | 2017-08-03 | パナソニックIpマネジメント株式会社 | Management device and power storage system |
CN109962299A (en) * | 2017-12-25 | 2019-07-02 | 丰田自动车株式会社 | The inspection method and manufacturing method of electric energy storage device |
JP2019212484A (en) * | 2018-06-05 | 2019-12-12 | トヨタ自動車株式会社 | Failure detection system |
JP2020027071A (en) * | 2018-08-16 | 2020-02-20 | 株式会社ケーヒン | Voltage detecting device and voltage detecting system |
WO2021033480A1 (en) * | 2019-08-22 | 2021-02-25 | パナソニックIpマネジメント株式会社 | Management device and power storage system |
-
1999
- 1999-06-25 JP JP17950199A patent/JP3654058B2/en not_active Expired - Lifetime
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006280161A (en) * | 2005-03-30 | 2006-10-12 | Mitsubishi Fuso Truck & Bus Corp | Regenerative controller for hybrid electric vehicle |
JP2008159298A (en) * | 2006-12-21 | 2008-07-10 | Matsushita Electric Ind Co Ltd | Power source system |
US8384345B2 (en) | 2008-08-01 | 2013-02-26 | Toyota Jidosha Kabushiki Kaisha | Control method for lithium ion secondary battery, and lithium ion secondary battery system |
JP2010137783A (en) * | 2008-12-12 | 2010-06-24 | Toyota Motor Corp | Device for outputting power, vehicle, and method for determining abnormality |
JP2010256335A (en) * | 2009-04-03 | 2010-11-11 | Sanyo Electric Co Ltd | Battery system, electric vehicle, and battery control device |
JP2011135656A (en) * | 2009-12-22 | 2011-07-07 | Sanyo Electric Co Ltd | Battery system, vehicle with the same, and method for detecting internal short circuit in the battery system |
US8643332B2 (en) | 2009-12-22 | 2014-02-04 | Sanyo Electric Co., Ltd. | Battery system and method for detecting internal short circuit in battery system |
JP2011154016A (en) * | 2010-01-26 | 2011-08-11 | Sb Limotive Co Ltd | Battery management system and driving method thereof |
US8463563B2 (en) | 2010-01-26 | 2013-06-11 | Samsung Sdi Co., Ltd. | Battery management system and driving method thereof |
JP2013195408A (en) * | 2012-03-23 | 2013-09-30 | Denso Corp | Battery pack voltage detection device and method of manufacturing the same |
JP2017001498A (en) * | 2015-06-09 | 2017-01-05 | トヨタ自動車株式会社 | Hybrid vehicle |
CN107923949A (en) * | 2016-01-28 | 2018-04-17 | 松下知识产权经营株式会社 | Managing device and accumulating system |
US10493848B2 (en) | 2016-01-28 | 2019-12-03 | Panasonic Intellectual Property Management Co., Ltd. | Management device and power storage system |
JPWO2017130258A1 (en) * | 2016-01-28 | 2018-11-22 | パナソニックIpマネジメント株式会社 | Management device and power storage system |
WO2017130258A1 (en) * | 2016-01-28 | 2017-08-03 | パナソニックIpマネジメント株式会社 | Management device and power storage system |
CN107923949B (en) * | 2016-01-28 | 2021-07-09 | 松下知识产权经营株式会社 | Management device and power storage system |
US11193980B2 (en) | 2017-12-25 | 2021-12-07 | Toyota Jidosha Kabushiki Kaisha | Inspection method and manufacturing method of electrical storage device |
JP2019113450A (en) * | 2017-12-25 | 2019-07-11 | トヨタ自動車株式会社 | Power storage device inspection method and manufacturing method |
CN109962299A (en) * | 2017-12-25 | 2019-07-02 | 丰田自动车株式会社 | The inspection method and manufacturing method of electric energy storage device |
JP7000847B2 (en) | 2017-12-25 | 2022-01-19 | トヨタ自動車株式会社 | Inspection method and manufacturing method of power storage device |
CN109962299B (en) * | 2017-12-25 | 2022-03-11 | 丰田自动车株式会社 | Method for inspecting electric storage device and method for manufacturing electric storage device |
JP2019212484A (en) * | 2018-06-05 | 2019-12-12 | トヨタ自動車株式会社 | Failure detection system |
JP2020027071A (en) * | 2018-08-16 | 2020-02-20 | 株式会社ケーヒン | Voltage detecting device and voltage detecting system |
US11513156B2 (en) | 2018-08-16 | 2022-11-29 | Hitachi Astemo, Ltd. | Voltage determinator and voltage determination system |
WO2021033480A1 (en) * | 2019-08-22 | 2021-02-25 | パナソニックIpマネジメント株式会社 | Management device and power storage system |
JP7511164B2 (en) | 2019-08-22 | 2024-07-05 | パナソニックIpマネジメント株式会社 | Management device and power storage system |
Also Published As
Publication number | Publication date |
---|---|
JP3654058B2 (en) | 2005-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3870577B2 (en) | Variation determination method for battery pack and battery device | |
EP2770606B1 (en) | Battery system monitoring device and charge storage device equipped with same | |
JP5753764B2 (en) | Battery system monitoring device and power storage device including the same | |
JP4186916B2 (en) | Battery pack management device | |
JP5050325B2 (en) | Battery control device | |
US8125187B2 (en) | Method of controlling battery charging and discharging in a hybrid car power source | |
US9680320B2 (en) | Battery control apparatus | |
JP4560825B2 (en) | Assembled battery | |
KR101073277B1 (en) | Method and apparatus of balancing cell in battery pack of hev | |
US20160118819A1 (en) | Security system for an accumulator battery module and corresponding method for balancing a battery module | |
JP2008092656A (en) | Power supply for vehicle | |
KR20130081215A (en) | Power supply device | |
CN110462969B (en) | Monitoring device and power storage system | |
JP2001006750A (en) | Battery inspecting device | |
CN109964138B (en) | Method and apparatus for classifying voltage fault conditions in an electrical storage system | |
JP6251136B2 (en) | Battery system monitoring device and power storage device including the same | |
US7612540B2 (en) | Lithium-ion battery diagnostic and prognostic techniques | |
JP2001313087A (en) | Degradation detection method of battery pack | |
CN112083342B (en) | Method and apparatus for monitoring battery | |
JP2006185685A (en) | Disconnection detecting device and disconnection detecting method | |
KR20180026948A (en) | Power suplly circuit, and battery pack including the same | |
US20190275889A1 (en) | Electrified vehicle and control method for electrified vehicle | |
JP2001186682A (en) | Method of controlling discharge of battery | |
JP2023018758A (en) | Storage battery control device, power storage system and storage battery control method | |
US20240030727A1 (en) | Overdischarge Preventing Apparatus And Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040702 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040928 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050221 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3654058 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090311 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100311 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110311 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110311 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120311 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120311 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130311 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130311 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140311 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |