[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001006683A - Active material for lithium battery - Google Patents

Active material for lithium battery

Info

Publication number
JP2001006683A
JP2001006683A JP11176748A JP17674899A JP2001006683A JP 2001006683 A JP2001006683 A JP 2001006683A JP 11176748 A JP11176748 A JP 11176748A JP 17674899 A JP17674899 A JP 17674899A JP 2001006683 A JP2001006683 A JP 2001006683A
Authority
JP
Japan
Prior art keywords
active material
lithium
carbon
carbon material
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11176748A
Other languages
Japanese (ja)
Inventor
Kensuke Takechi
憲典 武市
Toru Shiga
亨 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP11176748A priority Critical patent/JP2001006683A/en
Publication of JP2001006683A publication Critical patent/JP2001006683A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an active material extending the lifetime of a lithium battery by consisting of a carbon material storing/releasing a lithium and a coating film of a silane coupling agent containing a fluorine atom in a molecule for covering the surface of the carbon material. SOLUTION: A carbon material in an active material for a lithium secondary battery is a material capable of storing/releasing a lithium and to be a base of an electromotive reaction. Generally, as a powdered element is used, the powdered element is also used for the active material. When using the powdered element, a coating film of a silane coupling agent covers each of powdered particles. A natural graphite, artificial graphite in a sphere or fiber shape, hardly graphitized carbon and easily graphitized carbon such as a coke are used for the carbon material. The silane coupling agent forms the coating film on at least a part of the surface of the carbon material and easily reacts with a reactive functional group such as a hydroxyl group, vinyl group, amino group, epoxy group, alkoxy group and isocyanate group to form a stable protecting film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムの吸蔵・
放出現象を利用したリチウム電池に使用することのでき
る活物質材料に関する。
TECHNICAL FIELD The present invention relates to a method for storing and storing lithium.
The present invention relates to an active material that can be used for a lithium battery utilizing a release phenomenon.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を活物質
とし、支持電解質たるリチウム塩を有機溶媒に溶解させ
た非水電解液を有する非水電解液電池、いわゆるリチウ
ム電池は、そのエネルギー密度の高さから、パソコン、
携帯電話等の小型化に伴い、情報関連機器、通信機器等
の分野で既に実用化され、広く普及するに至っている。
一方、資源問題、環境問題から、電気自動車への関心が
高まり、リチウム電池をこの電気自動車用電源として用
いることも検討されるに至っている。
2. Description of the Related Art A non-aqueous electrolyte battery having a non-aqueous electrolyte in which lithium or a lithium compound is used as an active material and a lithium salt serving as a supporting electrolyte is dissolved in an organic solvent, that is, a so-called lithium battery, has a high energy density. ,computer,
With the miniaturization of mobile phones and the like, they have already been put to practical use in the fields of information-related equipment and communication equipment, and have come into widespread use.
On the other hand, interest in electric vehicles has increased due to resource problems and environmental problems, and the use of lithium batteries as power sources for electric vehicles has been studied.

【0003】各種のリチウム電池の中でも、正極活物質
にリチウム含有金属複合酸化物を用い、負極活物質に炭
素材料を用いたロッキングチェア型リチウム二次電池
は、4Vという高電圧が得られ、また負極表面へのデン
ドライトの析出という問題が少ない等の理由から、最も
期待されるリチウム電池となっている。
[0003] Among various lithium batteries, a rocking chair type lithium secondary battery using a lithium-containing metal composite oxide as a positive electrode active material and a carbon material as a negative electrode active material can obtain a high voltage of 4 V. This is the most promising lithium battery because it has little problem of dendrite deposition on the negative electrode surface.

【0004】ところが、負極活物質に炭素材料を用いた
リチウム電池では、初期充電時に負極に吸蔵されたリチ
ウムが、負極内にトラップされ、その後の放電によって
そのすべてが正極に戻ることはなく、いわゆる不可逆容
量(リテンション)が存在してしまい、リチウムの利用
率という面で問題を残していた。この不可逆容量の原因
は、炭素材料と電解液との界面で、リチウムと電解液、
炭素表面吸着水、炭素表面官能基等とが反応を起こし、
以後の充放電反応に寄与しなくなることによるものと考
えられている。また、この不可逆容量は、二次電池の場
合、その後の電池の充放電サイクル中にも蓄積されるこ
とから、電池の容量劣化を引き起こし、電池寿命をも短
くするものとなっていた。
However, in a lithium battery using a carbon material as the negative electrode active material, the lithium occluded in the negative electrode during the initial charge is trapped in the negative electrode, and not all of the lithium returns to the positive electrode by the subsequent discharge. Irreversible capacity (retention) was present, leaving a problem in terms of lithium utilization. The cause of this irreversible capacity is that at the interface between the carbon material and the electrolyte, lithium and the electrolyte,
Water reacts with carbon surface adsorbed water, carbon surface functional groups, etc.,
It is considered that this is because it does not contribute to the subsequent charge / discharge reaction. In the case of a secondary battery, the irreversible capacity is also accumulated during a subsequent charge / discharge cycle of the battery, so that the capacity of the battery is deteriorated and the battery life is shortened.

【0005】炭素材料負極に起因する上記不可逆容量の
問題を解決するため、従来、特開平8−111243号
公報に示すように、シランカップリング剤を用いた表面
処理により炭素材料の表面に被膜を形成させることで、
電解液や水分等から炭素材料表面を保護し、電池の充放
電中にその表面に析出する物質を抑制して、電池の容量
劣化を低減するという技術が検討されている。
In order to solve the problem of the irreversible capacity caused by the carbon material negative electrode, conventionally, as shown in JP-A-8-111243, a film is formed on the surface of the carbon material by a surface treatment using a silane coupling agent. By forming
Techniques for protecting the surface of a carbon material from an electrolytic solution, moisture, and the like, suppressing substances deposited on the surface during charging and discharging of the battery, and reducing the capacity deterioration of the battery have been studied.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記特開平8
−111243号公報に示す技術について本発明者が追
試を行ったところ、充分な不可逆容量の低減効果は得ら
れず、有効な問題解決手段とはなり得なかった。そし
て、本発明者は、更なる実験を重ね、被覆剤として用い
るシランカップリング剤を適切なものとすることによ
り、不可逆容量の小さな活物質材料となるとの知見を得
た。
However, Japanese Patent Application Laid-open No.
When the present inventors performed additional tests on the technique disclosed in JP-A-1111143, no sufficient irreversible capacity reduction effect was obtained, and it could not be an effective problem solving means. The inventor has conducted further experiments and found that an active material having a small irreversible capacity can be obtained by using an appropriate silane coupling agent as a coating agent.

【0007】本発明は、この知見に基づくものであり、
リチウムイオン伝導性を損なうことなく炭素材料に生じ
る不可逆容量を抑制することで、容量劣化が低減され、
充放電寿命の長いリチウム電池を構成することのできる
活物質材料を提供することを課題としている。
[0007] The present invention is based on this finding,
By suppressing the irreversible capacity generated in the carbon material without impairing lithium ion conductivity, capacity deterioration is reduced,
It is an object to provide an active material that can form a lithium battery having a long charge and discharge life.

【0008】[0008]

【課題を解決するための手段】本発明のリチウム電池用
活物質材料は、リチウムを吸蔵・放出可能な炭素材料
と、該炭素材料の表面の少なくとも一部を被覆するフッ
素原子を分子内に含むシランカップリング剤による被膜
とからなることを特徴とする。つまり、単なるシランカ
ップリング剤でなく、その分子内にフッ素を原子を含む
シランカップリング剤で炭素材料を被覆するものであ
る。
The active material for a lithium battery according to the present invention comprises a carbon material capable of occluding and releasing lithium and a fluorine atom covering at least a part of the surface of the carbon material in a molecule. And a film made of a silane coupling agent. In other words, the carbon material is coated with a silane coupling agent containing a fluorine atom in its molecule, instead of a mere silane coupling agent.

【0009】シランカップリング剤による被膜は強い疎
水性を示し、電解液や水等の親水成分が直接炭素材料表
面に触れることがなく、不可逆容量が大幅に低減され
る。なお、シランカップリング剤によって形成される被
膜はリチウムイオンの伝導性があるため、電池性能が損
なわれることはない。また、本発明の活物質材料におい
てシランカップリング剤に含まれるフッ素原子は、原子
そのものが強い疎水性を示して親水性分を排斥するとい
った作用を果たす。したがってこのシランカップリング
剤による被膜は、その作用により、従来のシランカップ
リング剤による被膜と比べて、非常に強い疎水作用を示
すという利点を有する。
The film formed by the silane coupling agent exhibits strong hydrophobicity, and the hydrophilic component such as the electrolyte and water does not directly touch the surface of the carbon material, so that the irreversible capacity is greatly reduced. Since the film formed by the silane coupling agent has lithium ion conductivity, the battery performance is not impaired. Further, in the active material of the present invention, the fluorine atom contained in the silane coupling agent has a function such that the atom itself exhibits strong hydrophobicity and excludes a hydrophilic component. Therefore, the film formed by the silane coupling agent has an advantage that due to its action, it exhibits a very strong hydrophobic action as compared with the film formed by the conventional silane coupling agent.

【0010】[0010]

【発明の実施の形態】以下に本発明のリチウム電池用活
物質材料の実施形態について、その構成要素である炭素
材料、シランカップリング剤、被覆方法、およびそれを
用いたリチウムイオン電池という項目に分けて詳しく説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of an active material for a lithium battery according to the present invention will be described in terms of a carbon material, a silane coupling agent, a coating method, and a lithium ion battery using the same. This will be described separately in detail.

【0011】〈炭素材料〉本発明のリチウム二次電池用
活物質材料における炭素材料は、リチウム(リチウムイ
オン)を吸蔵・放出可能な物質であり、起電反応(充放
電反応)の素となる物質である。一般的には、粉状体が
用いられるため、本発明の活物質材料についても粉状体
を用いればよい。なお、粉状体を用いる場合は、下記に
述べるシランカップリング剤による被膜は、粉末粒子の
それぞれを被覆することとなる。
<Carbon Material> The carbon material in the active material for a lithium secondary battery of the present invention is a substance capable of occluding and releasing lithium (lithium ions), and is a source of an electromotive reaction (charge / discharge reaction). Substance. Generally, a powder is used, so that the active material of the present invention may be a powder. In the case of using a powdery material, the coating with the silane coupling agent described below covers each of the powder particles.

【0012】用いることのできる炭素材料には、天然黒
鉛、球状あるいは繊維状の人造黒鉛、難黒鉛化性炭素、
および、フェノール樹脂等の有機化合物焼成体、コーク
ス等の易黒鉛化性炭素等を挙げることができる。これら
の炭素材料にはそれぞれの利点があり、作製しようとす
るリチウム二次電池の特性に応じて選択すればよい。な
お、これらの炭素材料は、1種のものを単独で用いるこ
ともでき、また、2種以上を混合して用いることもでき
る。
Carbon materials that can be used include natural graphite, spherical or fibrous artificial graphite, non-graphitizable carbon,
Further, fired organic compounds such as a phenol resin, and easily graphitizable carbon such as coke can be used. These carbon materials have their respective advantages, and may be selected according to the characteristics of the lithium secondary battery to be manufactured. In addition, these carbon materials can be used individually by 1 type, and can also be used in mixture of 2 or more types.

【0013】これらのもののうち、天然および人造の黒
鉛は、真密度が高くまた導電性に優れるため、容量が大
きく(エネルギー密度の高い)、パワー特性の良好なリ
チウム二次電池を構成できるという利点がある。この利
点を活かしたリチウム二次電池を作製する場合、用いる
黒鉛は、結晶性の高いことが望ましく、(002)面の
面間隔d002が3.4Å以下であり、c軸方向の結晶子
厚みLcが1000Å以上のものを用いるのがよい。な
お、人造黒鉛は、例えば、易黒鉛化性炭素を2800℃
以上の高温で熱処理して製造することができる。この場
合の原料となる易黒鉛化性炭素には、コークス、ピッチ
類を400℃前後で加熱する過程で得られる光学異方性
の小球体(メソカーボンマイクロビーズ:MCMB)等
を挙げることができる。
Of these, natural and artificial graphites have the advantage of being capable of forming a lithium secondary battery having a large capacity (high energy density) and good power characteristics because of its high true density and excellent conductivity. There is. When a lithium secondary battery utilizing this advantage is manufactured, it is desirable that the graphite used has high crystallinity, the (002) plane spacing d 002 is 3.4 ° or less, and the crystallite thickness in the c-axis direction. It is preferable to use one having Lc of 1000 ° or more. In addition, artificial graphite is, for example, 2800 ° C.
It can be manufactured by heat treatment at the above high temperature. In this case, the easily graphitizable carbon as a raw material includes coke and optically anisotropic small spheres (mesocarbon microbeads: MCMB) obtained in the process of heating pitches at about 400 ° C. .

【0014】易黒鉛化性炭素は、一般に石油や石炭から
得られるタールピッチを原料としたもので、コークス、
MCMB、メソフェーズピッチ系炭素繊維、熱分解気相
成長炭素繊維等が挙げられる。また、フェノール樹脂等
の有機化合物焼成体をも用いることができる。易黒鉛化
性炭素は、安価な炭素材料であるため、コスト面で優れ
たリチウム二次電池を構成できる活物質材料となり得
る。これらの中でも、コークスは低コストであり比較的
容量も大きく、構成する二次電池のサイクル特性が良好
となるという利点があり、この点を考慮すれば、コーク
スを用いるのが望ましい。コークスを用いる場合には、
(002)面の面間隔d002が3.4Å以上であり、c
軸方向の結晶子厚みLcが30Å以下のものを用いるの
がよい。
[0014] Graphitizable carbon is generally obtained from tar pitch obtained from petroleum or coal, and includes coke,
MCMB, mesophase pitch-based carbon fiber, pyrolytic vapor growth carbon fiber, and the like. An organic compound fired body such as a phenol resin can also be used. Since graphitizable carbon is an inexpensive carbon material, it can be an active material that can form a lithium secondary battery that is excellent in cost. Among them, coke has the advantages of low cost, relatively large capacity, and good cycle characteristics of the secondary battery that constitutes it. Considering this point, it is desirable to use coke. When using coke,
The (002) plane spacing d 002 is 3.4 ° or more; c
It is preferable to use one having an axial crystallite thickness Lc of 30 ° or less.

【0015】難黒鉛化性炭素とは、いわゆるハードカー
ボンと呼ばれるもので、ガラス状炭素に代表される非晶
質に近い構造をもつ炭素材料である。一般的に熱硬化性
樹脂を炭素化して得られる材料であり、熱処理温度を高
くしても黒鉛構造が発達しない材料である。難黒鉛化性
炭素には安全性が高く、比較的低コストであり、構成す
る二次電池のサイクル特性が良好となるという利点があ
り、この点を考慮すれば、難黒鉛化性炭素を採用するの
が望ましい。具体的には、例えば、フェノール樹脂焼成
体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、
フルフリルアルコール樹脂焼成体等を用いることができ
る。より望ましくは、(002)面の面間隔d002
3.6Å以上であり、c軸方向の結晶子厚みLcが10
0Å以下のものを用いるのがよい。
[0015] The non-graphitizable carbon is a so-called hard carbon, and is a carbon material having a structure close to amorphous such as glassy carbon. Generally, it is a material obtained by carbonizing a thermosetting resin, and does not develop a graphite structure even when the heat treatment temperature is increased. Non-graphitizable carbon has the advantages of high safety, relatively low cost, and good cycle characteristics of the secondary batteries that make it up. It is desirable to do. Specifically, for example, a phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon,
Furfuryl alcohol resin fired bodies and the like can be used. More preferably, the (002) plane spacing d 002 is 3.6 ° or more, and the crystallite thickness Lc in the c-axis direction is 10 °.
It is preferable to use the one having 0 ° or less.

【0016】粉状体の炭素材料を用いる場合、炭素材料
粉末の粒子径は、出力密度、サイクル特性等の電池特性
を左右する。粒子径が大きすぎると、ペーストの塗工性
が著しく悪化するという問題があり、また粒子径が小さ
すぎると、比表面積が大きすぎるためにシランカップリ
ング処理効率が著しく低下するという問題がある。した
がって、負極活物質として用いる炭素材料粉末の粒径
は、平均粒径において、1〜100μmとするのが望ま
しく、5〜60μmとすることがより望ましい。
When a powdery carbon material is used, the particle size of the carbon material powder affects battery characteristics such as output density and cycle characteristics. If the particle size is too large, there is a problem that coatability of the paste is remarkably deteriorated. If the particle size is too small, there is a problem that the silane coupling treatment efficiency is significantly reduced because the specific surface area is too large. Therefore, the average particle diameter of the carbon material powder used as the negative electrode active material is desirably 1 to 100 μm, and more desirably 5 to 60 μm.

【0017】〈シランカップリング剤〉本発明のリチウ
ム電池用活物質材料において、シランカップリング剤は
上記炭素材料の表面の少なくとも一部に被膜を形成す
る。シランカップリング剤は、個体表面の反応性の官能
基、例えば水酸基、ビニル基、アミノ基、エポキシ基、
アルコキシ基、イソシアネート基等と容易に反応して安
定な保護被膜を形成するもので、次式で示される架橋性
の化合物の総称である。
<Silane Coupling Agent> In the active material for a lithium battery of the present invention, the silane coupling agent forms a film on at least a part of the surface of the carbon material. The silane coupling agent is a reactive functional group on the solid surface, such as a hydroxyl group, a vinyl group, an amino group, an epoxy group,
It reacts easily with an alkoxy group, an isocyanate group, etc. to form a stable protective film, and is a general term for a crosslinkable compound represented by the following formula.

【0018】RnSiX4-n (n=1〜2) 式中のXは低級アルコキシ基等の加水分解基を示し、本
発明のリチウム電池用活物質材料において用いるシラン
カップリング剤では、Rは、フッ素原子またはフッ素原
子を含む炭素数1〜16のアルキル基を示す。用いるこ
とのできるフッ素原子を含有したシランカップリング剤
としては、例えば、フルオロトリエトキシシラン、フル
オロトリメトキシシラン、3,3,3−トリフルオロプ
ロピルトリメトキシシラン等を挙げることができる。
R n SiX 4-n (n = 1 to 2) In the formula, X represents a hydrolyzable group such as a lower alkoxy group. In the silane coupling agent used in the active material for a lithium battery of the present invention, R Represents a fluorine atom or an alkyl group having 1 to 16 carbon atoms containing a fluorine atom. Examples of the silane coupling agent containing a fluorine atom that can be used include fluorotriethoxysilane, fluorotrimethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, and the like.

【0019】〈被覆方法〉被膜の形成方法、つまりフッ
素原子を含有したシランカップリング剤を用いて上記炭
素材料の表面を処理する方法としては、例えば、フッ素
原子を含有したシランカップリング剤を水若しくは有機
溶媒中に溶解した溶液に、炭素材料を浸漬若しくは粉状
体であれば懸濁させた後、固形分を取り出し、これを5
0〜200℃で乾燥させることによって架橋反応を行え
ばよい。なお、後に詳しく説明する方法等によって炭素
材料を用いて電極を形成させた後、この電極を上記溶液
に浸漬し、その後乾燥させて、炭素材料の表面を処理す
ることもできる。
<Coating method> As a method of forming a coating, that is, a method of treating the surface of the carbon material with a silane coupling agent containing a fluorine atom, for example, a silane coupling agent containing a fluorine atom is treated with water. Alternatively, the carbon material is immersed in a solution dissolved in an organic solvent or suspended in the case of a powdery material, and then the solid content is taken out.
The crosslinking reaction may be performed by drying at 0 to 200 ° C. After an electrode is formed using a carbon material by a method described in detail below, the electrode may be immersed in the above solution and then dried to treat the surface of the carbon material.

【0020】炭素材料の表面に形成させる保護被膜の量
は、処理を行う上記溶液の濃度によって増減する。処理
を行う溶液中のシランカップリング剤の濃度は、0.5
〜10wt%とするのが好ましい。0.5wt%未満で
は、保護被膜の形成が不充分となる可能性があり、ま
た、10wt%を超える場合は、リチウムイオンの伝導
性を低下させる場合があるからである。
The amount of the protective film formed on the surface of the carbon material varies depending on the concentration of the solution to be treated. The concentration of the silane coupling agent in the solution to be treated is 0.5
It is preferable to set it to 10 wt%. If the amount is less than 0.5 wt%, the formation of the protective film may be insufficient, and if the amount exceeds 10 wt%, the conductivity of lithium ions may be reduced.

【0021】なお、被膜は炭素材料の全体、例えば粒子
状のものであればその粒子全体を被覆するものであって
よい。炭素材料を用いて電極を形成した後に被膜を形成
させる場合は、必ずしも炭素材料の全体を被覆するとは
限られず、炭素材料の表面の一部を被覆するものでもよ
い。活物質材料が電解液と接液する部分が効率的に被覆
されれば、炭素材料に生じる不可逆容量は低減される。
Incidentally, the coating may cover the entire carbon material, for example, the entire particle if it is in the form of particles. When a film is formed after an electrode is formed using a carbon material, the film is not necessarily coated on the entire carbon material, but may be formed on a part of the surface of the carbon material. If the portion of the active material that comes into contact with the electrolyte is efficiently covered, the irreversible capacity generated in the carbon material is reduced.

【0022】〈リチウム二次電池〉本発明のリチウム電
池用活物質材料を使用するリチウム電池は、正極および
負極の一方の電極の活物質として本活物質材料を用い、
他方の電極の活物質としてリチウムまたはリチウム化合
物を用いて構成される。例えば、正極活物質に本発明の
活物質材料を用い、負極活物質として金属リチウムを用
いる態様のリチウム電池とすることができ、また、負極
活物質に本発明の活物質材料を用い、正極活物質にリチ
ウム含有金属複合酸化物を用いる態様のリチウム二次電
池とすることができる。また、本発明の活物質材料と、
他の活物質材料、例えば被膜が形成されていない炭素材
料とを混合した混合物を活物質とするリチウム電池を構
成することも可能である。さらに、リチウム電池は、充
放電が可能な二次電池限られず、一次電池としての用途
であってもよい。
<Lithium rechargeable battery> A lithium battery using the active material for a lithium battery of the present invention uses the present active material as an active material of one of a positive electrode and a negative electrode.
The other electrode is formed using lithium or a lithium compound as an active material. For example, a lithium battery in which the active material of the present invention is used as the positive electrode active material and metallic lithium is used as the negative electrode active material can be obtained. A lithium secondary battery in which a lithium-containing metal composite oxide is used as a substance can be obtained. Further, the active material of the present invention,
It is also possible to configure a lithium battery in which a mixture of another active material, for example, a carbon material having no coating formed thereon is used as an active material. Further, the lithium battery is not limited to a rechargeable secondary battery, and may be used as a primary battery.

【0023】種々の態様が考えられる本発明のリチウム
電池用活物質材料を使用するリチウム電池であるが、こ
れを負極活物質に用い、LiCoO2等のリチウム含有
金属複合酸化物を正極活物質に用いたリチウム二次電池
は、4V級の高エネルギー密度の二次電池となる。以下
に、本発明のリチウム電池用活物質材料を使用するリチ
ウム電池の一実施形態として、この態様の二次電池につ
いて説明する。ただし、決してこの態様のものに限られ
るものではない。
A lithium battery using the active material for a lithium battery of the present invention, in which various aspects can be considered, is used as a negative electrode active material, and a lithium-containing metal composite oxide such as LiCoO 2 is used as a positive electrode active material. The used lithium secondary battery is a secondary battery having a high energy density of 4V class. Hereinafter, a secondary battery of this aspect will be described as one embodiment of a lithium battery using the active material for a lithium battery of the present invention. However, the invention is not limited to this embodiment.

【0024】例として示すリチウム二次電池は、上記活
物質材料を負極活物質として用いた負極と、リチウム含
有金属複合酸化物を正極活物質とした正極と、リチウム
塩を有機溶媒に溶解させた非水電解液とを、主要構成要
素として構成される。
The lithium secondary battery shown as an example has a negative electrode using the above active material as a negative electrode active material, a positive electrode using a lithium-containing metal composite oxide as a positive electrode active material, and a lithium salt dissolved in an organic solvent. A non-aqueous electrolyte is constituted as a main component.

【0025】負極は、負極活物質となる粉末状の上記活
物質材料に、結着剤を混合し、適当な溶剤を加えてペー
スト状にした負極合材を、銅箔製等の集電体の表面に塗
布乾燥し、電極密度を高めるべく圧縮して形成すること
ができる。なお、前述したように、シランカップリング
剤により被覆されていない炭素材料を用いて負極を形成
した後に、シランカップリング剤を溶解した溶液に、こ
の負極を浸漬することで、炭素材料に表面処理を施すも
のであってもよい。
The negative electrode is prepared by mixing the above-mentioned powdery active material material serving as the negative electrode active material with a binder, adding an appropriate solvent, and forming a paste into a negative electrode material. Can be formed by coating and drying on the surface of the substrate and compressing it to increase the electrode density. As described above, after a negative electrode is formed using a carbon material that is not coated with a silane coupling agent, the negative electrode is immersed in a solution in which the silane coupling agent is dissolved, so that the carbon material is surface-treated. May be applied.

【0026】結着剤は、活物質粒子を繋ぎ止める役割を
果たすものでポリテトラフルオロエチレン、ポリフッ化
ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピ
レン、ポリエチレン等の熱可塑性樹脂等を用いることが
できる。これら活物質、結着剤を分散させる溶剤として
は、N−メチル−2−ピロリドン等の有機溶剤を用いる
ことができる。
The binder plays a role of binding the active material particles, and may be a fluorinated resin such as polytetrafluoroethylene, polyvinylidene fluoride or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene. . As a solvent for dispersing the active material and the binder, an organic solvent such as N-methyl-2-pyrrolidone can be used.

【0027】正極は、正極活物質となるリチウム含有金
属複合酸化物の粉状体に導電材および結着剤を混合し、
適当な溶剤を加えてペースト状の正極合材としたもの
を、アルミニウム箔製等の集電体表面に塗布乾燥し、電
極密度を高めるべく圧縮して形成することができる。
The positive electrode is obtained by mixing a conductive material and a binder with a powder of a lithium-containing metal composite oxide serving as a positive electrode active material,
A paste-like positive electrode mixture obtained by adding an appropriate solvent can be applied to the surface of a current collector made of aluminum foil or the like, dried, and then compressed to increase the electrode density.

【0028】正極活物質となるリチウム遷移金属複合酸
化物には、4V級の電池が構成できるものとして、Li
CoO2、LiNiO2、LiMnO2、LiMn24
を用いることができる。この中でも層状岩塩構造のLi
CoO2は、原料コストが高いものの、合成および取り
扱いが容易であり、サイクル特性等の良好な電池を構成
できる正極活物質となる。これに対し、層状岩塩構造の
LiMnO2およびスピネル構造のLiMn24は、原
料コストが安く、大量の活物質を使用する用途、例えば
電気自動車、電力貯蔵システムに用いる二次電池の場合
等に、有利なものとなる。
As the lithium transition metal composite oxide serving as the positive electrode active material, Lithium transition metal
CoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 and the like can be used. Among them, Li with layered rock salt structure
Although CoO 2 has a high raw material cost, it is easy to synthesize and handle, and is a positive electrode active material that can constitute a battery having good cycle characteristics and the like. On the other hand, LiMnO 2 having a layered rock salt structure and LiMn 2 O 4 having a spinel structure have low raw material costs, and are used in applications where a large amount of active materials are used, such as electric vehicles and secondary batteries used in power storage systems. , Which is advantageous.

【0029】導電材は、正極の電気伝導性を確保するた
めのものであり、カーボンブラック、アセチレンブラッ
ク、黒鉛等の炭素物質粉状体の1種又は2種以上を混合
したものを用いることができる。負極の場合と同様、結
着剤には、ポリフッ化ビニリデン等の含フッ素樹脂等を
用いることができ、また、これら活物質、導電材、結着
剤を分散させる溶剤としては、N−メチル−2−ピロリ
ドン等の有機溶剤を用いることができる。
The conductive material is for ensuring the electrical conductivity of the positive electrode, and may be a mixture of one or more powdered carbon materials such as carbon black, acetylene black and graphite. it can. As in the case of the negative electrode, a fluorine-containing resin such as polyvinylidene fluoride can be used as the binder, and N-methyl- as a solvent for dispersing the active material, the conductive material, and the binder is used. An organic solvent such as 2-pyrrolidone can be used.

【0030】リチウム二次電池を形成する場合、上記正
極と負極とを分離し電解液を保持する目的で、正極と負
極との間にセパレータを挟装させる。このセパレータに
は、ポリエチレン、ポリプロピレン等の薄い微多孔膜を
用いることができる。
When a lithium secondary battery is formed, a separator is interposed between the positive electrode and the negative electrode for the purpose of separating the positive electrode and the negative electrode and holding an electrolyte. As this separator, a thin microporous film such as polyethylene or polypropylene can be used.

【0031】非水電解液は、電解質としてのリチウム塩
を有機溶媒に溶解させたものである。リチウム塩は有機
溶媒に溶解することによって解離し、リチウムイオンと
なって電解液中に存在する。使用できるリチウム塩とし
ては、LiBF4、LiPF6、LiClO4、LiCF3
SO3、LiAsF6、LiN(CF3SO22、LiN
(C25SO22等が挙げられる。これらのリチウム塩
は、それぞれ単独で用いてもよく、また、これらのもの
のうち2種以上のものを併用することもできる。
The non-aqueous electrolyte is obtained by dissolving a lithium salt as an electrolyte in an organic solvent. The lithium salt is dissociated by dissolving in an organic solvent and forms lithium ions in the electrolyte. Examples of usable lithium salts include LiBF 4 , LiPF 6 , LiClO 4 , and LiCF 3
SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN
(C 2 F 5 SO 2 ) 2 and the like. Each of these lithium salts may be used alone, or two or more of these lithium salts may be used in combination.

【0032】リチウム塩を溶解させる有機溶媒には、非
プロトン性の有機溶媒を用いる。例えば、環状カーボネ
ート、鎖状カーボネート、環状エステル、環状エーテル
あるいは鎖状エーテルの1種または2種以上からなる混
合溶媒を用いることができる。環状カーボネートの例示
としてはエチレンカーボネート、プロピレンカーボネー
ト、ブチレンカーボネート、ビニレンカーボネート等
が、鎖状カーボネートの例示としてはジメチルカーボネ
ート、ジエチルカーボネート、メチルエチルカーボネー
ト等が、環状エステルの例示としてはガンマブチルラク
トン、ガンマバレルラクトン等が、環状エーテルの例示
としてはテトラヒドロフラン、2−メチルテトラヒドロ
フラン等が、鎖状エーテルの例示としてはジメトキシエ
タン、エチレングリコールジメチルエーテル等がそれぞ
れ挙げられる。
An aprotic organic solvent is used as the organic solvent for dissolving the lithium salt. For example, a mixed solvent of one or more of cyclic carbonate, chain carbonate, cyclic ester, cyclic ether or chain ether can be used. Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate.Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate.Examples of the cyclic ester include gamma butyl lactone and gamma. Examples of barrel lactone include cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, and examples of chain ether include dimethoxyethane and ethylene glycol dimethyl ether.

【0033】以上のもので構成される一実施形態として
のリチウム二次電池であるが、その形状は、コイン型、
円筒型、積層型等、種々のものとすることができる。い
ずれの形状を採る場合であっても、正極および負極にセ
パレータを挟装させ電極体とし、正極集電体および負極
集電体から外部に通ずる正極端子および負極端子までの
間を集電用リード等を用いて接続し、この電極体に非水
電解液を含浸させ、電池ケースに密閉してリチウム二次
電池を完成させることができる。
The lithium secondary battery as one embodiment constituted by the above-mentioned components has a coin shape,
Various types such as a cylindrical type and a laminated type can be used. Regardless of the shape used, a separator is sandwiched between the positive electrode and the negative electrode to form an electrode body, and a current collecting lead extends from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal that lead to the outside. The electrode body is impregnated with a non-aqueous electrolyte and sealed in a battery case to complete a lithium secondary battery.

【0034】[0034]

【実施例】人造黒鉛を炭素材料とし、この人造黒鉛に2
種のフッ素原子を含むシランカップリング剤でそれぞれ
被覆した本発明の活物質材料を実際に製造し、これらの
活物質材料を負極活物質に用いた二次電池を作製した。
また、フッ素原子を含まないシランカップリング剤で被
覆したの活物質材料をも製造し、これを負極活物質に用
いた二次電池をも作製した。これらの二次電池に充放電
サイクル試験を行い、電池容量維持率を比較すること
で、本発明の活物質材料の評価を行った。以下に、実施
例として示す。
[Example] Artificial graphite was used as a carbon material,
Active material materials of the present invention each coated with a silane coupling agent containing a kind of fluorine atom were actually produced, and a secondary battery using these active material materials as a negative electrode active material was produced.
In addition, an active material coated with a silane coupling agent containing no fluorine atom was also manufactured, and a secondary battery using this as a negative electrode active material was also manufactured. A charge / discharge cycle test was performed on these secondary batteries, and the active material of the present invention was evaluated by comparing the battery capacity retention rates. The following is an example.

【0035】〈実施例1〉まず、蒸留水500ml中に
フルオロトリエトキシシラン(チッソ製)を10ml溶
解した溶液に、人造黒鉛である黒鉛化メソフェーズ小球
体(MCMB25−28:大阪ガス化学製)100gを
15分間懸濁させた。濾過により固形分を取り出し、1
50℃で12時間乾燥することにより、被膜を形成させ
た活物質材料を製造した。
Example 1 First, 100 g of graphitized mesophase microspheres (MCMB25-28: manufactured by Osaka Gas Chemical) as artificial graphite were dissolved in a solution of 10 ml of fluorotriethoxysilane (manufactured by Chisso) in 500 ml of distilled water. Was suspended for 15 minutes. Remove the solids by filtration
By drying at 50 ° C. for 12 hours, an active material having a film formed thereon was produced.

【0036】この活物質材料100重量部に対して、ポ
リフッ化ビニリデン粉末(クレハ化学製)10重量部を
N−メチル−2−ピロリドン(和光純薬工業製)100
重量部に溶解させた溶液100重量部を充分混合するこ
とにより、ペースト状の負極合材を得た。この負極合材
を、塗工機を用いて、厚さ10μmの銅箔製負極集電体
の表面に塗布し、乾燥、プレスして、片面に負極合材層
が形成された厚さ60μmの負極シートを作製した。
To 100 parts by weight of this active material, 10 parts by weight of polyvinylidene fluoride powder (manufactured by Kureha Chemical Co., Ltd.) was added to N-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries)
By sufficiently mixing 100 parts by weight of the solution dissolved in parts by weight, a paste-like negative electrode mixture was obtained. This negative electrode mixture was applied to the surface of a 10 μm-thick copper foil negative electrode current collector using a coating machine, dried and pressed to form a 60 μm-thick negative electrode mixture layer having a negative electrode mixture layer formed on one surface. A negative electrode sheet was produced.

【0037】次いで、LiMn24(本荘ケミカル製)
18.5重量部と、アセチレンブラック(東海カーボン
製)1.5重量部と、ポリフッ化ビニリデン粉末(クレ
ハ化学製)8重量部と、N−メチル−2−ピロリドン
(和光純薬工業製)72重量部とを充分混合することに
より、ペースト状の正極合材を得た。この正極合材を、
塗工機を用いて、厚さ20μmのアルミニウム箔製正極
集電体の表面に塗布し、乾燥、プレスして、片面に正極
合材層が形成された厚さ90μmの正極シートを作製し
た。
Next, LiMn 2 O 4 (manufactured by Honjo Chemical)
18.5 parts by weight, acetylene black (Tokai Carbon) 1.5 parts by weight, polyvinylidene fluoride powder (Kureha Chemical) 8 parts by weight, and N-methyl-2-pyrrolidone (Wako Pure Chemical Industries) 72 The mixture was sufficiently mixed with the parts by weight to obtain a paste-like positive electrode mixture. This positive electrode mixture is
Using a coating machine, it was applied to the surface of a 20-μm-thick aluminum foil positive electrode current collector, dried, and pressed to produce a 90-μm-thick positive electrode sheet having a positive electrode mixture layer formed on one surface.

【0038】上記正極シートを直径15mmφの円盤状
に打ち抜いたものを正極とし、上記負極シートを直径1
7mmφに打ち抜いたものを負極とし、この正極と負極
とを、その間に直径19mmφのポリエチレンセパレー
タ(東燃化学製)を挟装して対向させた。そして、コイ
ン型電池ケースに組み込み、エチレンカーボネートとジ
エチルカーボネートとを体積比1:1に混合した有機溶
媒にLiPF6を1Mの濃度で溶解した電解液(三菱化
学製)を含浸させ、コイン型二次電池を完成させた。作
製したコイン型二次電池を実施例1の二次電池とした。
The positive electrode sheet was punched into a disk having a diameter of 15 mmφ to form a positive electrode.
The negative electrode punched into 7 mmφ was used as the negative electrode, and the positive electrode and the negative electrode were opposed to each other with a 19 mmφ polyethylene separator (manufactured by Tonen Chemical) between them. Then, the battery was assembled in a coin-type battery case, and impregnated with an electrolyte (manufactured by Mitsubishi Chemical Corporation) in which LiPF 6 was dissolved at a concentration of 1 M in an organic solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1. The next battery was completed. The manufactured coin-type secondary battery was used as the secondary battery of Example 1.

【0039】なお、実施例1の二次電池と比較するた
め、上記フルオロトリエトキシシランに代えて、3−ア
ミノプロピルトリエトキシシラン(和光純薬工業製)に
て表面を処理した活物質材料を製造し、これを用いてコ
イン型二次電池を作製し、比較例の二次電池とした。シ
ランカップリング剤を除いて、活物質材料の製造方法、
コイン型二次電池の構成は実施例1の二次電池と同様の
ものとした。
For comparison with the secondary battery of Example 1, an active material whose surface was treated with 3-aminopropyltriethoxysilane (manufactured by Wako Pure Chemical Industries) in place of the above-mentioned fluorotriethoxysilane was used. The secondary battery was manufactured, and a coin-type secondary battery was manufactured using the manufactured secondary battery. Except for the silane coupling agent, a method for producing an active material,
The configuration of the coin-type secondary battery was the same as that of the secondary battery of Example 1.

【0040】上記実施例1および比較例の二次電池に対
して、充放電サイクル試験を行った。充放電サイクル試
験は、1mA/cm2の定電流密度で電池電圧4.2V
まで充電し、その後定電圧で総充電時間が6時間となる
まで充電し、続いて0.5mA/cm2の定電流密度で
電池電圧3.0Vまで放電することを1サイクルとし
て、このサイクルを繰り返すものとした。充放電サイク
ル試験の結果として、実施例1および比較例の二次電池
の各サイクルにおける電池容量維持率(各サイクルにお
ける放電容量/1サイクル目の放電容量×100%)を
図1に示す。
The secondary batteries of Example 1 and Comparative Example were subjected to a charge / discharge cycle test. The charge / discharge cycle test was conducted at a constant current density of 1 mA / cm 2 and a battery voltage of 4.2 V.
And then charging at a constant voltage until the total charging time reaches 6 hours, and then discharging at a constant current density of 0.5 mA / cm 2 to a battery voltage of 3.0 V. It was to be repeated. FIG. 1 shows the battery capacity retention ratio (discharge capacity in each cycle / discharge capacity in first cycle × 100%) in each cycle of the secondary batteries of Example 1 and Comparative Example as a result of the charge / discharge cycle test.

【0041】図1から明らかなように、フルオロトリエ
トキシシランにより表面を被覆した炭素材料からなる活
物質材料を用いた実施例1の二次電池は、3−アミノプ
ロピルトリエトキシシランにより表面を被覆した炭素材
料からなる活物質材料を用いた比較例の二次電池と比較
して、容量劣化の抑制された二次電池であることが判
る。
As is apparent from FIG. 1, the secondary battery of Example 1 using an active material composed of a carbon material whose surface is coated with fluorotriethoxysilane has its surface coated with 3-aminopropyltriethoxysilane. It can be seen that this is a secondary battery in which capacity deterioration is suppressed as compared with a secondary battery of a comparative example using an active material made of a carbon material.

【0042】〈実施例2〉実施例1の場合のフルオロト
リエトキシシランに代えて、3,3,3−トリフルオロ
プロピルトリメトキシシラン(チッソ製)にて表面を処
理した活物質材料を製造し、これを用いてコイン型二次
電池を作製し、実施例2の二次電池とした。シランカッ
プリング剤を除いて、活物質材料の製造方法、コイン型
二次電池の構成は実施例1の二次電池と同様のものとし
た。
<Example 2> An active material having a surface treated with 3,3,3-trifluoropropyltrimethoxysilane (manufactured by Chisso) instead of fluorotriethoxysilane in the case of Example 1 was produced. Using this, a coin-type secondary battery was manufactured, and a secondary battery of Example 2 was obtained. Except for the silane coupling agent, the manufacturing method of the active material and the configuration of the coin-type secondary battery were the same as those of the secondary battery of Example 1.

【0043】この実施例2の二次電池に対しても、実施
例1の場合と同様の条件で充放電サイクル試験を行っ
た。サイクル充放電試験の結果として、実施例2の二次
電池の各サイクルにおける電池容量維持率を図2に示
す。なお、比較のため、図2には、上記比較例の二次電
池の容量維持率をも併せて示す。
The secondary battery of Example 2 was also subjected to a charge / discharge cycle test under the same conditions as in Example 1. FIG. 2 shows the battery capacity retention ratio of each cycle of the secondary battery of Example 2 as a result of the cycle charge / discharge test. For comparison, FIG. 2 also shows the capacity retention ratio of the secondary battery of the comparative example.

【0044】図2から明らかなように、3,3,3−ト
リフルオロプロピルトリメトキシシランにより表面を被
覆した炭素材料からなる活物質材料を用いた実施例1の
二次電池は、3−アミノプロピルトリエトキシシランに
より表面を被覆した炭素材料からなる活物質材料を用い
た比較例の二次電池と比較して、容量劣化の抑制された
二次電池であることが判る。
As is apparent from FIG. 2, the secondary battery of Example 1 using an active material composed of a carbon material whose surface is coated with 3,3,3-trifluoropropyltrimethoxysilane has a 3-amino It can be seen that the secondary battery has a suppressed capacity deterioration as compared with the secondary battery of the comparative example using an active material composed of a carbon material whose surface is coated with propyltriethoxysilane.

【0045】上記実施例1および実施例2の試験結果を
総合して判断すれば、フッ素原子を含有するシランカッ
プリング剤により被覆された炭素材料からなる本発明の
活物質材料を用いた二次電池は、フッ素原子を含有しな
いシランカップリング剤により被覆された炭素材料から
なる活物質材料を用いた二次電池と比較して、容量劣化
の小さな、つまりサイクル特性の良好な二次電池である
ことが確認できる。
Judging from the test results of Examples 1 and 2 above, it was found that the secondary material using the active material of the present invention consisting of a carbon material coated with a silane coupling agent containing a fluorine atom was used. The battery is a secondary battery with small capacity degradation, that is, good cycle characteristics, as compared with a secondary battery using an active material made of a carbon material coated with a silane coupling agent that does not contain a fluorine atom. Can be confirmed.

【0046】[0046]

【発明の効果】本発明の活物質材料は、フッ素原子を分
子内に含むシランカップリング剤により被覆された炭素
材料である。このような構成の活物質材料を活物質に用
いたリチウム電池は、炭素材料に起因する不可逆容量が
大幅に低減され、容量劣化が抑制された良好な電池とな
る。
The active material of the present invention is a carbon material coated with a silane coupling agent containing a fluorine atom in the molecule. A lithium battery using an active material having such a configuration as an active material is a good battery in which irreversible capacity due to a carbon material is significantly reduced and capacity deterioration is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 フルオロトリエトキシシランにより表面を被
覆した炭素材料からなる活物質材料を用いた実施例1の
二次電池と、3−アミノプロピルトリエトキシシランに
より表面を被覆した炭素材料からなる活物質材料を用い
た比較例の二次電池との、容量維持率の比較を示す。
FIG. 1 shows a secondary battery of Example 1 using an active material composed of a carbon material whose surface is coated with fluorotriethoxysilane, and an active material composed of a carbon material whose surface is coated with 3-aminopropyltriethoxysilane. 4 shows a comparison of a capacity retention ratio with a secondary battery of a comparative example using a material.

【図2】 3,3,3−トリフルオロプロピルトリメト
キシシランにより表面を被覆した炭素材料からなる活物
質材料を用いた実施例2の二次電池と、3−アミノプロ
ピルトリエトキシシランにより表面を被覆した炭素材料
からなる活物質材料を用いた比較例の二次電池との、容
量維持率の比較を示す。
FIG. 2 shows a secondary battery of Example 2 using an active material made of a carbon material whose surface is coated with 3,3,3-trifluoropropyltrimethoxysilane, and a surface of which is coated with 3-aminopropyltriethoxysilane. 4 shows a comparison of a capacity retention ratio with a secondary battery of a comparative example using an active material made of a coated carbon material.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H003 AA02 AA04 BB04 BC01 BC02 BC05 5H024 AA01 AA02 DD14 DD17 EE09 5H029 AJ03 AJ05 AK03 AL07 AL08 AM03 AM04 AM05 AM07 BJ13 CJ22 DJ08 DJ15 DJ16 EJ11 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H003 AA02 AA04 BB04 BC01 BC02 BC05 5H024 AA01 AA02 DD14 DD17 EE09 5H029 AJ03 AJ05 AK03 AL07 AL08 AM03 AM04 AM05 AM07 BJ13 CJ22 DJ08 DJ15 DJ16 EJ11

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・放出可能な炭素材料
と、該炭素材料の表面の少なくとも一部を被覆するフッ
素原子を分子内に含むシランカップリング剤による被膜
とからなるリチウム電池用活物質材料。
An active material for a lithium battery, comprising: a carbon material capable of occluding and releasing lithium; and a film of a silane coupling agent containing a fluorine atom in a molecule covering at least a part of the surface of the carbon material. .
JP11176748A 1999-06-23 1999-06-23 Active material for lithium battery Pending JP2001006683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11176748A JP2001006683A (en) 1999-06-23 1999-06-23 Active material for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11176748A JP2001006683A (en) 1999-06-23 1999-06-23 Active material for lithium battery

Publications (1)

Publication Number Publication Date
JP2001006683A true JP2001006683A (en) 2001-01-12

Family

ID=16019129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11176748A Pending JP2001006683A (en) 1999-06-23 1999-06-23 Active material for lithium battery

Country Status (1)

Country Link
JP (1) JP2001006683A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313330A (en) * 2001-04-13 2002-10-25 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2003048706A (en) * 2001-08-02 2003-02-21 Sumitomo Bakelite Co Ltd Raw material for carbon material and carbon material obtained by using the same
EP1383187A2 (en) * 2002-07-05 2004-01-21 Denso Corporation Nonaqueous electrolytic solution and nonaqueous secondary battery using the same
JP2005063953A (en) * 2003-07-29 2005-03-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, its manufacturing method, and electrode material for electrolyte secondary battery
US7341804B2 (en) 2002-09-20 2008-03-11 3M Innovative Properties Company Anode compositions having an elastomeric binder and an adhesion promoter
KR101026975B1 (en) * 2002-01-14 2011-04-11 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Microcomposite powder based on flat graphite particles and a fluoropolymer and objects made from same
EP2383822A1 (en) * 2009-01-23 2011-11-02 NEC Energy Devices, Inc. Lithium ion cell
US8110305B2 (en) 2007-02-15 2012-02-07 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US8119283B2 (en) * 2005-10-31 2012-02-21 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery including same
WO2012127763A1 (en) * 2011-03-23 2012-09-27 ヤマハ発動機株式会社 Electrode material, cell, and method for producing electrode material
WO2012133556A1 (en) * 2011-03-28 2012-10-04 国立大学法人静岡大学 Electrolyte solution for lithium secondary batteries, and lithium secondary battery
US8367248B2 (en) 2006-11-22 2013-02-05 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery including the same
US8623552B2 (en) 2007-06-07 2014-01-07 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery, and lithium secondary battery including same
US8835049B2 (en) * 2006-11-22 2014-09-16 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same
WO2015033454A1 (en) * 2013-09-09 2015-03-12 株式会社日立製作所 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary batteries, and method for producing negative electrode for lithium ion secondary batteries
JP2015520921A (en) * 2012-05-30 2015-07-23 エルジー・ケム・リミテッド Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2016006762A (en) * 2014-05-28 2016-01-14 日亜化学工業株式会社 Positive electrode active material for nonaqueous secondary battery
US20160079590A1 (en) * 2014-09-15 2016-03-17 Samsung Electronics Co., Ltd. Cathode, lithium air battery including the same, and method of preparing the cathode
US9812705B2 (en) 2012-05-30 2017-11-07 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
CN113614979A (en) * 2019-03-26 2021-11-05 松下知识产权经营株式会社 Secondary battery
CN113707848A (en) * 2021-08-16 2021-11-26 电子科技大学 Preparation method of Li cathode modified by perfluorosilane coupling agent
WO2023088133A1 (en) * 2021-11-18 2023-05-25 深圳市德方创域新能源科技有限公司 Additive for supplementing lithium to positive electrode, and preparation method therefor and use thereof

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313330A (en) * 2001-04-13 2002-10-25 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2003048706A (en) * 2001-08-02 2003-02-21 Sumitomo Bakelite Co Ltd Raw material for carbon material and carbon material obtained by using the same
KR101026975B1 (en) * 2002-01-14 2011-04-11 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 Microcomposite powder based on flat graphite particles and a fluoropolymer and objects made from same
EP1383187A2 (en) * 2002-07-05 2004-01-21 Denso Corporation Nonaqueous electrolytic solution and nonaqueous secondary battery using the same
EP1383187A3 (en) * 2002-07-05 2006-02-01 Denso Corporation Nonaqueous electrolytic solution and nonaqueous secondary battery using the same
US7169510B2 (en) 2002-07-05 2007-01-30 Denso Corporation Nonaqueous electrolytic solution and nonaqueous secondary battery using the same
US7341804B2 (en) 2002-09-20 2008-03-11 3M Innovative Properties Company Anode compositions having an elastomeric binder and an adhesion promoter
JP4616592B2 (en) * 2003-07-29 2011-01-19 パナソニック株式会社 Non-aqueous electrolyte secondary battery, manufacturing method thereof, and electrode material for electrolyte secondary battery
JP2005063953A (en) * 2003-07-29 2005-03-10 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, its manufacturing method, and electrode material for electrolyte secondary battery
US8920672B2 (en) 2005-10-31 2014-12-30 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery including same
US8119283B2 (en) * 2005-10-31 2012-02-21 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery including same
US8367248B2 (en) 2006-11-22 2013-02-05 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing thereof, and rechargeable lithium battery including the same
US8835049B2 (en) * 2006-11-22 2014-09-16 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same
US8110305B2 (en) 2007-02-15 2012-02-07 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US8623552B2 (en) 2007-06-07 2014-01-07 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery, and lithium secondary battery including same
EP2383822A1 (en) * 2009-01-23 2011-11-02 NEC Energy Devices, Inc. Lithium ion cell
US20110274982A1 (en) * 2009-01-23 2011-11-10 Nec Energy Devices, Ltd. Lithium ion battery
EP2383822A4 (en) * 2009-01-23 2012-12-12 Nec Energy Devices Inc Lithium ion cell
US9343740B2 (en) 2009-01-23 2016-05-17 Nec Energy Devices, Ltd. Lithium ion battery
CN103460452A (en) * 2011-03-23 2013-12-18 雅马哈发动机株式会社 Electrode material, cell, and method for producing electrode material
WO2012127763A1 (en) * 2011-03-23 2012-09-27 ヤマハ発動機株式会社 Electrode material, cell, and method for producing electrode material
JP6019534B2 (en) * 2011-03-28 2016-11-02 国立大学法人静岡大学 ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY, LITHIUM SECONDARY BATTERY, AND METHOD FOR PRODUCING LITHIUM SECONDARY BATTERY
WO2012133556A1 (en) * 2011-03-28 2012-10-04 国立大学法人静岡大学 Electrolyte solution for lithium secondary batteries, and lithium secondary battery
JP2015520921A (en) * 2012-05-30 2015-07-23 エルジー・ケム・リミテッド Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
US9812705B2 (en) 2012-05-30 2017-11-07 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
US9601760B2 (en) 2012-05-30 2017-03-21 Lg Chem, Ltd. Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
WO2015033454A1 (en) * 2013-09-09 2015-03-12 株式会社日立製作所 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary batteries, and method for producing negative electrode for lithium ion secondary batteries
JP2016006762A (en) * 2014-05-28 2016-01-14 日亜化学工業株式会社 Positive electrode active material for nonaqueous secondary battery
US10516159B2 (en) 2014-05-28 2019-12-24 Nichia Corporation Positive electrode active material for nonaqueous secondary battery
US20160079590A1 (en) * 2014-09-15 2016-03-17 Samsung Electronics Co., Ltd. Cathode, lithium air battery including the same, and method of preparing the cathode
US9966644B2 (en) * 2014-09-15 2018-05-08 Samsung Electronics Co., Ltd. Cathode, lithium air battery including the same, and method of preparing the cathode
CN113614979A (en) * 2019-03-26 2021-11-05 松下知识产权经营株式会社 Secondary battery
US20220173399A1 (en) * 2019-03-26 2022-06-02 Panasonic Intellectual Property Management Co., Ltd. Secondary battery
CN113614979B (en) * 2019-03-26 2024-08-20 松下知识产权经营株式会社 Secondary battery
CN113707848A (en) * 2021-08-16 2021-11-26 电子科技大学 Preparation method of Li cathode modified by perfluorosilane coupling agent
WO2023088133A1 (en) * 2021-11-18 2023-05-25 深圳市德方创域新能源科技有限公司 Additive for supplementing lithium to positive electrode, and preparation method therefor and use thereof

Similar Documents

Publication Publication Date Title
RU2412506C1 (en) Active anode material for lithium batteries, having core and cladding, method of producing material and lithium battery containing said material
JP4137350B2 (en) Negative electrode material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode material for lithium secondary battery
JP2001006683A (en) Active material for lithium battery
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
CN105576279B (en) Lithium secondary battery
CN111276674B (en) Modified graphite negative electrode material, preparation method thereof and battery containing modified graphite negative electrode
JP3868231B2 (en) Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR101511822B1 (en) Negative active material for lithium battery and battery comprising the same
EP2113957A1 (en) Positive electrode for lithium secondary cell and lithium secondary cell using the same
JP4752085B2 (en) Negative electrode for lithium secondary battery
JP2000294240A (en) Lithium composite oxide for lithium secondary battery positive electrode active material and lithium secondary battery using this
JPH0831404A (en) Electrode and secondary battery using this electrode
JP2000353525A (en) Nonaqueous electrolyte secondary battery
JP4751502B2 (en) Polymer battery
JP2000340262A (en) Aging treatment method for lithium secondary battery
JP4354723B2 (en) Method for producing graphite particles
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP3769647B2 (en) Composite carbon material for electrode, method for producing the same, and nonaqueous electrolyte secondary battery using the same
JP2000260479A (en) Lithium ion secondary battery
JP2000200624A (en) Nonaqueous electrolyte secondary battery
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JP2000268878A (en) Lithium ion secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2002110233A (en) Non-aqueous electrolyte secondary battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery