[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001093577A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2001093577A
JP2001093577A JP26619699A JP26619699A JP2001093577A JP 2001093577 A JP2001093577 A JP 2001093577A JP 26619699 A JP26619699 A JP 26619699A JP 26619699 A JP26619699 A JP 26619699A JP 2001093577 A JP2001093577 A JP 2001093577A
Authority
JP
Japan
Prior art keywords
electrode body
lithium
secondary battery
positive electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26619699A
Other languages
Japanese (ja)
Inventor
Naruaki Okuda
匠昭 奥田
Hideyuki Nakano
秀之 中野
Itsuki Sasaki
厳 佐々木
Yuichi Ito
勇一 伊藤
Yoshio Ukiyou
良雄 右京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP26619699A priority Critical patent/JP2001093577A/en
Publication of JP2001093577A publication Critical patent/JP2001093577A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery using a layered rock structure lithium-transition metal composite oxide as a positive electrode active substance, which has improved cycle characteristic by maintaining a pressure for pressing an electrode body at a suitable level. SOLUTION: The lithium secondary battery includes an electrode body 10, which is formed by depositing a sheet-shaped positive electrode containing lithium-transition metal composite oxide of a layered rock structure, on a sheet- shaped negative electrode, while interposing a separator therebetween. Also, the lithium secondary battery includes electrode body-pressing means serving to press the electrode body 10 toward the deposited direction of the positive electrode and the negative electrode at a pressure of 5 kg/cm2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンの
吸蔵・離脱現象を利用したリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery utilizing a phenomenon of inserting and extracting lithium ions.

【0002】[0002]

【従来の技術】パソコン、ビデオカメラ、携帯電話等の
小型化等に伴い、高性能の電池が必要ととされ、高エネ
ルギー密度であるという理由から、情報関連機器、通信
機器等の分野では、リチウム二次電池が既に実用化さ
れ、広く普及するに至っている。二次電池は、一般に、
繰り返される充放電によってもその容量があまり低下し
ないという良好なサイクル特性が求められ、特に高価な
リチウム二次電池では、より高いサイクル特性が要求さ
れる。
2. Description of the Related Art With the downsizing of personal computers, video cameras, mobile phones, and the like, high-performance batteries are required, and because of their high energy density, in the fields of information-related equipment and communication equipment, Lithium secondary batteries have already been put to practical use and have come into widespread use. Rechargeable batteries are generally
Good cycle characteristics are required in which the capacity is not significantly reduced even by repeated charging and discharging, and particularly high cost lithium secondary batteries require higher cycle characteristics.

【0003】リチウム二次電池では、リチウム遷移金属
複合酸化物等を正極活物質とした正極と、炭素材料等を
負極活物質とした負極とを、セパレータを介して積層し
た電極体を有するのが一般的な構成となっている。そし
て、電極体には、リチウム塩を有機溶媒に溶解した非水
電解液が含浸させられ、充電時には、正極活物質からリ
チウムイオンが離脱して負極活物質内に吸蔵され、逆に
放電時には、負極活物質からリチウムイオンが離脱して
正極活物質内に吸蔵される。
A lithium secondary battery has an electrode body in which a positive electrode using a lithium transition metal composite oxide or the like as a positive electrode active material and a negative electrode using a carbon material or the like as a negative electrode active material are laminated with a separator interposed therebetween. It has a general configuration. The electrode body is impregnated with a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent. During charging, lithium ions are separated from the positive electrode active material and occluded in the negative electrode active material. Lithium ions are released from the negative electrode active material and occluded in the positive electrode active material.

【0004】正極活物質となるリチウム遷移金属複合酸
化物等や負極活物質となる炭素材料等は、リチウムの吸
蔵・離脱に伴い、膨張・収縮といった体積変化を繰り返
す。この体積変化により、活物質の電極からの脱落等の
現象が発生するばかりか、特に、リチウム遷移金属複合
酸化物では、この体積変化により、2次粒子の微細化等
が生じ、正極内部の導電性が阻害されてしまう。これら
のことが原因となって、リチウム二次電池は、その容量
を低下させる。
A lithium transition metal composite oxide or the like serving as a positive electrode active material or a carbon material or the like serving as a negative electrode active material repeatedly undergoes volume changes such as expansion and contraction as lithium is absorbed and desorbed. Due to this volume change, not only a phenomenon such as dropping of the active material from the electrode occurs, but in particular, in the case of the lithium transition metal composite oxide, the secondary particles become finer due to this volume change, and the conductive material inside the positive electrode becomes conductive. Sex is hindered. For these reasons, the capacity of the lithium secondary battery is reduced.

【0005】リチウム二次電池のサイクル特性を良好に
保つ技術として、例えば、特開平4−294071号公
報に示すように、電極体をその積層方向に加圧して、活
物質の脱落、微細化による導電性低下を防止する技術が
検討されている。
As a technique for maintaining good cycle characteristics of a lithium secondary battery, for example, as disclosed in Japanese Patent Application Laid-Open No. H4-294071, an electrode body is pressurized in its laminating direction to remove active material and to make it finer. Techniques for preventing a decrease in conductivity have been studied.

【0006】[0006]

【発明が解決しようとする課題】上記公報に示された技
術は、スピネル構造を有するLiV38を正極活物質に
用いた場合の技術であり、1kg/cm2以上という比
較的小さな圧力で加圧するものとなっている。現在で
は、結晶構造が層状岩塩構造を有するLiCoO2等の
リチウム遷移金属複合酸化物を正極活物質として用いる
リチウム二次電池が主流となっており、層状岩塩構造リ
チウム遷移金属複合酸化物を正極活物質とするリチウム
二次電池に対して行った本発明者による追試によれば、
1kg/cm 2程度の加圧力では、サイクル特性改善の
効果が充分に得られていない。
The technique disclosed in the above publication
The operation is LiV with spinel structure.ThreeO8As positive electrode active material
It is a technique when it is used, 1kg / cmTwoRatio of above
Pressurization is performed with a relatively small pressure. At present
Is a LiCoO crystal having a layered rock salt structure.TwoEtc.
Using lithium transition metal composite oxide as positive electrode active material
Lithium secondary batteries are the mainstream, with layered rock salt structures
Lithium using a transition metal composite oxide as a positive electrode active material
According to a re-test conducted by the present inventors on the secondary battery,
1kg / cm TwoWith a moderate pressure, the cycle characteristics
The effect has not been sufficiently obtained.

【0007】層状岩塩構造リチウム遷移金属複合酸化物
の結晶構造は、リチウム原子からなるリチウム層と、遷
移金属原子からなる遷移金属層と、酸素原子からなる2
つの酸素層から構成され、リチウム層は酸素層に挟まれ
ている。充電に伴いこの結晶構造中からリチウムが離脱
すると、リチウム層の両側に存在する酸素層の静電斥力
により、酸素層間の間隔が広がることになる。これによ
ってリチウム遷移金属複合酸化物は体積膨張を起こすこ
ととなる。つまり、スピネル構造のリチウム遷移金属複
合酸化物と異なり、極めて大きな体積膨張・収縮を繰り
返すことになり、2次粒子の微細化が激しいものとな
る。したがって、層状岩塩構造リチウム遷移金属複合酸
化物を正極活物質とするリチウム二次電池では、1kg
/cm2以上という比較的小さな圧力では、微細化した
2次粒子を充分密着させることはできず、サイクル特性
もさほど改善されないこととなる。
The crystal structure of the layered rock-salt structure lithium transition metal composite oxide is as follows: a lithium layer composed of lithium atoms, a transition metal layer composed of transition metal atoms, and a lithium layer composed of oxygen atoms.
The lithium layer is sandwiched between two oxygen layers. When lithium is released from the crystal structure due to charging, the distance between the oxygen layers increases due to electrostatic repulsion of the oxygen layers present on both sides of the lithium layer. As a result, the lithium transition metal composite oxide undergoes volume expansion. That is, unlike the lithium-transition metal composite oxide having a spinel structure, extremely large volume expansion and contraction are repeated, and the fineness of the secondary particles becomes severe. Therefore, in a lithium secondary battery using a layered rock salt structure lithium transition metal composite oxide as a positive electrode active material, 1 kg
At a relatively small pressure of at least / cm 2 , the finely divided secondary particles cannot be sufficiently adhered to each other, and the cycle characteristics are not significantly improved.

【0008】また、上述したように、層状岩塩構造の場
合、リチウム二次電池の充電によって膨張する。負極活
物質に炭素材料を用いた場合、炭素材料も充電によって
膨張する。したがって、充電時には、正極、負極とも膨
張し、電極体の膨張は著しいものとなる。正極と負極と
の間にはセパレレータが介在し、一般的にセパレータは
多孔質のシートを用いるため、正極および負極の膨張に
よってセパレータは圧縮を受けて薄くなり、その結果電
極体自身の積層厚さも薄くなる。上記公報記載の技術で
は、加圧部材に通常の板バネを用いるという構造から、
加圧力を当初1kg/cm2に設定しても、電極体の積
層厚さが小さくなることで、充放電を繰り返した後に
は、当初設定の1kg/cm2を下回る加圧力しかえら
れなくなり、この点でもサイクル特性改善の効果は不充
分であった。
Further, as described above, in the case of the layered rock salt structure, it expands due to charging of the lithium secondary battery. When a carbon material is used for the negative electrode active material, the carbon material also expands due to charging. Therefore, during charging, both the positive electrode and the negative electrode expand, and the expansion of the electrode body becomes remarkable. Since a separator is interposed between the positive electrode and the negative electrode, and the separator generally uses a porous sheet, the separator is compressed and thinned by expansion of the positive electrode and the negative electrode, and as a result, the lamination thickness of the electrode body itself is also reduced. Become thin. In the technology described in the above publication, from the structure of using a normal leaf spring for the pressing member,
Even if the pressing force is initially set to 1 kg / cm 2 , since the lamination thickness of the electrode body becomes small, after repeating the charging and discharging, only the pressing force lower than the initially set 1 kg / cm 2 can be obtained. Also in this respect, the effect of improving the cycle characteristics was insufficient.

【0009】本発明は、リチウム二次電池の抱える上記
問題を解決すべくなされたものであり、層状岩塩構造リ
チウム遷移金属複合酸化物を正極活物質とするリチウム
二次電池において、電極体を加圧する加圧力を適正なも
のとすることにより、サイクル特性の良好なリチウム二
次電池を提供することを課題としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems of a lithium secondary battery. In a lithium secondary battery using a layered rock salt structure lithium transition metal composite oxide as a positive electrode active material, an electrode assembly is added. It is an object of the present invention to provide a lithium secondary battery having good cycle characteristics by making the pressure to be applied appropriate.

【0010】[0010]

【課題を解決するための手段】本発明のリチウム二次電
池は、結晶構造が層状岩塩構造であるリチウム遷移金属
複合酸化物を正極活物質として含むシート状の正極とシ
ート状の負極とをセパレータを介し積層して形成した電
極体と、該電極体を前記正極および前記負極の積層方向
に常時5kg/cm2以上の圧力で加圧する電極体加圧
手段とを備えてなることを特徴とする。
The lithium secondary battery of the present invention comprises a sheet-shaped positive electrode containing a lithium transition metal composite oxide having a layered rock salt structure as a positive electrode active material, and a sheet-shaped negative electrode. And an electrode body pressing means for constantly pressing the electrode body with a pressure of 5 kg / cm 2 or more in the stacking direction of the positive electrode and the negative electrode. .

【0011】つまり、本発明のリチウム二次電池では、
従来のリチウム二次電池と異なり、電極体を加圧する圧
力を5kg/cm2以上という比較的大きなものとし、
かつ、その圧力を常時電極体の積層方向に加えること
で、膨張・収縮に伴う活物質の脱落、正極活物質である
リチウム遷移金属複合酸化物の2次粒子の微細化が原因
する正極内部の導電性低下をより充分に抑制することが
でき、サイクル特性が極めて良好になる。
That is, in the lithium secondary battery of the present invention,
Unlike a conventional lithium secondary battery, the pressure for pressing the electrode body is set to a relatively large value of 5 kg / cm 2 or more,
In addition, by constantly applying the pressure in the stacking direction of the electrode body, the active material falls off due to expansion and contraction, and the inside of the positive electrode due to the miniaturization of the secondary particles of the lithium transition metal composite oxide as the positive electrode active material is caused. The decrease in conductivity can be suppressed more sufficiently, and the cycle characteristics become extremely good.

【0012】なお本発明は、電極体加圧手段を有するリ
チウム二次電池であるが、表現を変えれば、結晶構造が
層状岩塩構造であるリチウム遷移金属複合酸化物を正極
活物質として含むシート状の正極とシート状の負極とを
セパレータを介し積層して形成した電極体を有するリチ
ウム二次電池の充放電方法であって、該電極体を前記正
極および前記負極の積層方向に常時5kg/cm2以上
の圧力で加圧しつつ充放電を行うリチウム二次電池の充
放電方法とすることもできる。
Although the present invention relates to a lithium secondary battery having an electrode body pressurizing means, in other words, a sheet-like material containing a lithium transition metal composite oxide having a layered rock-salt structure as a positive electrode active material has a crystalline structure. A method for charging and discharging a lithium secondary battery having an electrode body formed by laminating a positive electrode and a sheet-shaped negative electrode with a separator interposed therebetween, wherein the electrode body is always 5 kg / cm in the laminating direction of the positive electrode and the negative electrode. A charging / discharging method for a lithium secondary battery in which charging / discharging is performed while applying pressure at two or more pressures may also be used.

【0013】[0013]

【発明の実施の形態】本発明のリチウム二次電池は、電
極体とその電極体を加圧する電極体加圧手段を主要構成
要素として含んで構成される。電極体は、シート状の正
極および負極と、それらの間に挟装されるセパレータと
からなる。本リチウム二次電池では、正極活物質および
電極体加圧手段を除き、構成要素を特に限定するもので
はなく、既に公知の構成要素を組み合わせて種々の態様
のリチウム二次電池とすることができる。以下に、本発
明のリチウム二次電池の一実施形態について、各構成要
素ごとに、項目を分けて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The lithium secondary battery of the present invention comprises an electrode body and an electrode body pressurizing means for pressing the electrode body as main components. The electrode body includes a sheet-like positive electrode and a sheet-like negative electrode, and a separator sandwiched therebetween. In the present lithium secondary battery, components other than the positive electrode active material and the electrode body pressurizing means are not particularly limited, and various types of lithium secondary batteries can be obtained by combining already known components. . Hereinafter, one embodiment of the lithium secondary battery of the present invention will be described with respect to each component.

【0014】〈正極〉正極は、層状岩塩構造を有するリ
チウム遷移金属複合酸化物を正極活物質として含むよう
に構成する。この層状岩塩構造リチウム遷移金属複合酸
化物は、遷移金属をCo、Ni、Mn等とすることによ
り、基本組成がLiCoO2、LiNiO2、LiMnO
2等で表されるリチウムコバルト複合酸化物、リチウム
ニッケル複合酸化物、リチウムマンガン複合酸化物等を
用いることができる。また、これら基本組成のものの
他、正極活物質としての特性を改善するために、遷移金
属のサイトを他の元素で置換したもの、Liサイトをア
ルカリ金属等の元素で置換したもの等を用いることもで
きる。また、これらの層状岩塩構造リチウム遷移金属複
合酸化物は、正極活物質として、1種のものを単独で用
いてもよく、2種以上ののものを混合して用いてもよ
い。
<Positive Electrode> The positive electrode is configured to include a lithium transition metal composite oxide having a layered rock salt structure as a positive electrode active material. This layered rock salt structure lithium transition metal composite oxide has a basic composition of LiCoO 2 , LiNiO 2 , LiMnO by using transition metals such as Co, Ni, and Mn.
Lithium-cobalt composite oxide, lithium-nickel composite oxide, lithium-manganese composite oxide, etc. represented by 2 etc. can be used. In addition to those having these basic compositions, in order to improve the characteristics as a positive electrode active material, a material in which a transition metal site is replaced with another element, a material in which a Li site is replaced with an element such as an alkali metal, or the like is used. Can also. In addition, these layered rock salt-structured lithium transition metal composite oxides may be used alone as a positive electrode active material, or may be used as a mixture of two or more.

【0015】これらのものうち、リチウムコバルト複合
酸化物は、合成が容易でありかつ最も安定で、サイクル
特性も良好であり、現在のリチウム二次電池の主流をな
す正極活物質材料である。したがって、サイクル特性を
優先させる場合は、リチウムコバルト複合酸化物を用い
ることがのぞましい。ただし、構成元素であるCoが非
常に高価であり、リチウム電池のコストは高い。これに
対し、リチウムマンガン複合酸化物は、構成元素である
Mnが安価であるため、正極活物質としてのコストは安
くなる。したがって、リチウム二次電池のコストを優先
させる場合は、正極活物質にリチウムマンガン複合酸化
物を用いることが望ましい。
Of these, lithium-cobalt composite oxides are easy to synthesize, most stable, have good cycle characteristics, and are the positive electrode active material which is the mainstream of current lithium secondary batteries. Therefore, when giving priority to cycle characteristics, it is preferable to use a lithium-cobalt composite oxide. However, Co as a constituent element is very expensive, and the cost of a lithium battery is high. On the other hand, in the lithium manganese composite oxide, since the constituent element Mn is inexpensive, the cost as the positive electrode active material is reduced. Therefore, when giving priority to the cost of the lithium secondary battery, it is desirable to use a lithium manganese composite oxide as the positive electrode active material.

【0016】リチウムニッケル複合酸化物は、容量が大
きいというメリットがあり、さらにコスト面でもリチウ
ムコバルト複合酸化物ほど高くなく、リチウムコバルト
複合酸化物に代わる正極活物質として期待されている。
ただし、リチウムの吸蔵・離脱に伴う体積変化が比較的
大きいため、若干サイクル特性に劣る。しかし、本発明
のリチウム二次電池では、電極体を加圧することにより
サイクル特性を改善させることを目的としており、この
加圧による効果が最も期待できことから、このリチウム
ニッケル複合酸化物を用いた場合、電池容量が大きく、
サイクル特性にも優れた、バランスのとれたリチウム二
次電池となる。
The lithium-nickel composite oxide has the advantage of a large capacity and is not as expensive as the lithium-cobalt composite oxide in terms of cost, and is expected to be used as a positive electrode active material instead of the lithium-cobalt composite oxide.
However, since the volume change due to insertion and extraction of lithium is relatively large, the cycle characteristics are slightly inferior. However, in the lithium secondary battery of the present invention, the purpose is to improve the cycle characteristics by pressurizing the electrode body, and since the effect of this pressurization can be expected most, the lithium nickel composite oxide was used. If the battery capacity is large,
A well-balanced lithium secondary battery with excellent cycle characteristics.

【0017】リチウムニッケル複合酸化物を用いる場
合、組成式LiNiO2で表される化学量論組成のもの
を用いることができる。また、二次電池のサイクル特性
等を改善するため、Niサイトの一部を、他元素で置換
するものを用いることもできる。他元素で置換するもの
のうちでは、組成式LiNixM1yM2z2(M1はC
o、Mnから選ばれた少なくとも1種;M2はAl、
B、Fe、Cr、Mgから選ばれた少なくとも1種;x
+y+z=1;0.5<x<0.95;0.01<y<
0.4;0.001<z<0.2)で表されるものを用
いるのが望ましい。
When a lithium nickel composite oxide is used, a stoichiometric composition represented by a composition formula LiNiO 2 can be used. Further, in order to improve the cycle characteristics and the like of the secondary battery, a battery in which part of the Ni site is replaced with another element can be used. Among those substituted with other elements, the composition formula LiNi x M1 y M2 z O 2 (M1 is C
at least one selected from o and Mn; M2 is Al;
At least one selected from B, Fe, Cr, and Mg; x
+ Y + z = 1; 0.5 <x <0.95; 0.01 <y <
0.4; 0.001 <z <0.2).

【0018】この、LiNixM1yM2z2は、役割の異
なるM1、M2の2種以上の元素でNiサイトの一部を置
換したものとなっている。置換させずにNiを存置させ
る割合つまり組成式におけるxの値で置換割合を規定す
れば、0.5<x<0.95となる。x≦0.5の場合
は、層状岩塩構造のものだけでなく、スピネル構造等の
第2の相が生成するからであり、また、x≧0.95の
場合は、置換効果が少なすぎて、目的とする良好なサイ
クル特性の電池を構成できないからである。なお、0.
7<x<0.9の範囲とするのがさらに好ましい。
This LiNi x M1 y M2 z O 2 is obtained by partially substituting Ni sites with two or more kinds of elements M1 and M2 having different roles. If the substitution ratio is defined by the ratio of leaving Ni without substitution, that is, the value of x in the composition formula, 0.5 <x <0.95. If x ≦ 0.5, not only a layered rock salt structure but also a second phase such as a spinel structure is generated. If x ≧ 0.95, the substitution effect is too small. This is because a battery having the desired good cycle characteristics cannot be formed. Note that 0.
More preferably, the range is 7 <x <0.9.

【0019】Co、Mnから選ばれる元素M1は、主
に、リチウムニッケル複合酸化物の結晶構造を安定化す
る役割を果たしている。M1での結晶構造安定化によ
り、リチウム二次電池のサイクル特性はより良好に保た
れ、特に高温下での充放電および高温下での貯蔵による
電池容量の劣化が抑制される。サイクル特性の改善効果
を充分に発揮させるために、M1の置換割合、つまり組
成式におけるyの値は0.01<y<0.4とする。y
≦0.01の場合は、構成される二次電池の結晶構造安
定化が充分でないためサイクル特性が良好ではなく、y
≧0.4の場合はリチウムニッケル複合酸化物の結晶性
が低下し好ましくない。なお、0.1<y<0.3とす
るのがより好ましい。さらに、置換する元素M1はCo
であることがより望ましい。Coには、元素置換による
容量低下を抑えるとともに、得られる複合酸化物Li
(Co,Ni)O2は全固溶型であり、結晶性の低下を
最小限にとどめるという利点があるからである。
The element M1 selected from Co and Mn mainly serves to stabilize the crystal structure of the lithium nickel composite oxide. By stabilizing the crystal structure at M1, the cycle characteristics of the lithium secondary battery are more favorably maintained, and particularly, deterioration of the battery capacity due to charge / discharge at high temperature and storage at high temperature is suppressed. In order to sufficiently exert the effect of improving the cycle characteristics, the substitution ratio of M1, that is, the value of y in the composition formula, is set to 0.01 <y <0.4. y
When ≦ 0.01, the crystal structure of the formed secondary battery is not sufficiently stabilized, so that the cycle characteristics are not good.
If ≧ 0.4, the crystallinity of the lithium-nickel composite oxide is undesirably reduced. It is more preferable that 0.1 <y <0.3. Further, the replacing element M1 is Co
Is more desirable. In Co, while suppressing the capacity reduction due to the element substitution, the obtained composite oxide Li
This is because (Co, Ni) O 2 is an all-solid solution type and has an advantage of minimizing a decrease in crystallinity.

【0020】Al、B、Fe、Cr、Mgから選ばれる
元素M2は、主に、酸素放出に伴う活物質の分解反応を
抑え、熱安定性を向上させるという役割を果たしてい
る。この役割のため、M2の置換割合、つまり組成式に
おけるzの値は、0.001<z<0.2とする。z≦
0.001の場合は、安全性に対して十分な効果が得ら
れなくなり、z≧0.2の場合は、正極の容量が低下し
てしまうため好ましくない。なお、0.01<z<0.
1とするのがより好ましい。さらに、置換する元素M2
には、Alを用いることがより望ましい。Alには、熱
安定性を向上させつつ、容量低下を最小限に抑えるとい
う利点があるからである。
The element M2 selected from Al, B, Fe, Cr and Mg mainly serves to suppress the decomposition reaction of the active material due to the release of oxygen and to improve the thermal stability. Due to this role, the substitution ratio of M2, that is, the value of z in the composition formula, is set to 0.001 <z <0.2. z ≦
In the case of 0.001, a sufficient effect on safety cannot be obtained, and in the case of z ≧ 0.2, the capacity of the positive electrode decreases, which is not preferable. In addition, 0.01 <z <0.
It is more preferably set to 1. Further, the substituting element M2
It is more preferable to use Al. This is because Al has an advantage of minimizing a decrease in capacity while improving thermal stability.

【0021】例えば、組成式LiNixCoyAlz2
表される層状岩塩構造リチウムニッケル複合酸化物を製
造しようとする場合は、LiOH・H2O、Ni(O
H)2、Co34、Al(OH)3をそれぞれ所定量混合
し、酸素気流中で850℃程度の温度で、20時間程度
の時間焼成することによって、これを合成することがで
きる。
For example, to manufacture a layered rock salt structure lithium nickel composite oxide represented by the composition formula LiNi x Co y Al z O 2 , use LiOH · H 2 O, Ni (O
This can be synthesized by mixing predetermined amounts of H) 2 , Co 3 O 4 , and Al (OH) 3 and baking them in an oxygen stream at a temperature of about 850 ° C. for about 20 hours.

【0022】正極は、正極活物質である上記リチウム遷
移金属複合酸化物の粉状体に導電材および結着剤を混合
し、適当な溶剤を加えてペースト状の正極合材としたも
のを、アルミニウム等の金属箔製の集電体表面に塗布乾
燥し、必要に応じて電極密度を高めるべく圧縮して形成
し、シート状のものとすることができる。導電材は、正
極の電気伝導性を確保するためのものであり、カーボン
ブラック、アセチレンブラック、黒鉛等の炭素物質粉状
体の1種又は2種以上を混合したもの等を用いることが
できる。結着剤は、活物質粒子および導電材粒子を繋ぎ
止める役割を果たすものでポリテトラフルオロエチレ
ン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹
脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を
用いることができる。これら活物質、導電材、結着剤を
分散させる溶剤としては、N−メチル−2−ピロリドン
等の有機溶剤を用いることができる。
The positive electrode is prepared by mixing a powder of the above-mentioned lithium transition metal composite oxide, which is a positive electrode active material, with a conductive material and a binder, and adding an appropriate solvent to form a paste-like positive electrode mixture. It can be coated and dried on the surface of a current collector made of a metal foil such as aluminum, and if necessary, compressed to increase the electrode density to form a sheet. The conductive material is for ensuring the electrical conductivity of the positive electrode, and may be one or a mixture of two or more of carbon material powders such as carbon black, acetylene black, and graphite. The binding agent plays a role of binding the active material particles and the conductive material particles, and may be a fluororesin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene. . An organic solvent such as N-methyl-2-pyrrolidone can be used as a solvent in which the active material, the conductive material, and the binder are dispersed.

【0023】上記の手段によって、正極活物質を含む正
極合材を層状に形成して作成されたシート状の正極は、
作成しようとするリチウム二次電池の、大きさ、形状等
に応じ、適正な寸法に裁断することができる。また、正
極から外部への集電のために、集電用リード等を正極に
付設してもよい。
By the above-mentioned means, a sheet-like positive electrode formed by forming a positive electrode mixture containing a positive electrode active material into a layer,
The lithium secondary battery can be cut into appropriate dimensions according to the size, shape, and the like of the lithium secondary battery to be created. In addition, a current collecting lead or the like may be attached to the positive electrode for current collection from the positive electrode to the outside.

【0024】〈負極〉負極活物質には、金属リチウム、
リチウム合金等を用いることができる。金属リチウム等
を箔状あるいはシート状にして負極集電体に貼り付ける
ようにしてシート状の負極を作製することができる。た
だし、これら金属リチウム等を負極に用いる場合、繰り
返される充放電により負極表面へのデンドライトの析出
の可能性があり、二次電池の安全性が懸念される。した
がって、リチウム二次電池の安全性を考慮する場合、負
極活物質には、リチウムの吸蔵・離脱可能な炭素材料を
用いるのが望ましい。
<Negative electrode> As the negative electrode active material, metallic lithium,
A lithium alloy or the like can be used. A sheet-shaped negative electrode can be produced by attaching metal lithium or the like to a negative electrode current collector in a foil shape or a sheet shape. However, when such metal lithium or the like is used for the negative electrode, there is a possibility that dendrite is deposited on the surface of the negative electrode due to repeated charging and discharging, and there is a concern about the safety of the secondary battery. Therefore, when considering the safety of the lithium secondary battery, it is desirable to use a carbon material capable of inserting and extracting lithium as the negative electrode active material.

【0025】用いることができる炭素材料には、天然黒
鉛、球状あるいは繊維状の人造黒鉛、難黒鉛化性炭素、
および、フェノール樹脂等の有機化合物焼成体、コーク
ス等の易黒鉛化性炭素の粉状体を挙げることができる。
負極活物質となる炭素材料にはそれぞれの利点があり、
作製しようとするリチウム二次電池の特性に応じて選択
すればよい。
The carbon materials that can be used include natural graphite, spherical or fibrous artificial graphite, non-graphitizable carbon,
Further, there may be mentioned an organic compound fired body such as a phenol resin, and a graphitizable carbon powder such as coke.
The carbon material used as the negative electrode active material has its own advantages,
The selection may be made according to the characteristics of the lithium secondary battery to be manufactured.

【0026】これらのもののうち、天然および人造の黒
鉛は、真密度が高くまた導電性に優れるため、容量が大
きく(エネルギー密度の高い)、パワー特性の良好なリ
チウム二次電池を構成できるという利点がある。この利
点を活かしたリチウム二次電池を作製する場合、用いる
黒鉛は、結晶性の高いことが望ましく、(002)面の
面間隔d002が3.4Å以下であり、c軸方向の結晶子
厚みLcが1000Å以上のものを用いるのがよい。な
お、人造黒鉛は、例えば、易黒鉛化性炭素を2800℃
以上の高温で熱処理して製造することができる。この場
合の原料となる易黒鉛化性炭素には、コークス、ピッチ
類を400℃前後で加熱する過程で得られる光学異方性
の小球体(メソカーボンマイクロビーズ:MCMB)等
を挙げることができる。
Of these, natural and artificial graphites have the advantage of being capable of forming a lithium secondary battery having a large capacity (high energy density) and good power characteristics because of its high true density and excellent conductivity. There is. When a lithium secondary battery utilizing this advantage is manufactured, it is desirable that the graphite used has high crystallinity, the (002) plane spacing d 002 is 3.4 ° or less, and the crystallite thickness in the c-axis direction. It is preferable to use one having Lc of 1000 ° or more. In addition, artificial graphite is, for example, 2800 ° C.
It can be manufactured by heat treatment at the above high temperature. In this case, the easily graphitizable carbon as a raw material includes coke and optically anisotropic small spheres (mesocarbon microbeads: MCMB) obtained in the process of heating pitches at about 400 ° C. .

【0027】易黒鉛化性炭素は、一般に石油や石炭から
得られるタールピッチを原料としたもので、コークス、
MCMB、メソフェーズピッチ系炭素繊維、熱分解気相
成長炭素繊維等が挙げられる。また、フェノール樹脂等
の有機化合物焼成体をも用いることができる。易黒鉛化
性炭素は、安価な炭素材料であるため、コスト面で優れ
たリチウム二次電池を構成できる負極活物質となり得
る。これらの中でも、コークスは低コストであり比較的
容量も大きいという利点があり、この点を考慮すれば、
コークスを用いるのが望ましい。コークスを用いる場合
には、(002)面の面間隔d002が3.4Å以上であ
り、c軸方向の結晶子厚みLcが30Å以下のものを用
いるのがよい。
[0027] Graphitizable carbon is generally obtained by using tar pitch obtained from petroleum or coal as a raw material.
MCMB, mesophase pitch-based carbon fiber, pyrolytic vapor growth carbon fiber, and the like. An organic compound fired body such as a phenol resin can also be used. Since graphitizable carbon is an inexpensive carbon material, it can be a negative electrode active material that can constitute a lithium secondary battery that is excellent in cost. Among them, coke has the advantages of low cost and relatively large capacity, and considering this point,
It is desirable to use coke. When coke is used, it is preferable to use one having a (002) plane spacing d 002 of 3.4 ° or more and a crystallite thickness Lc in the c-axis direction of 30 ° or less.

【0028】難黒鉛化性炭素とは、いわゆるハードカー
ボンと呼ばれるもので、ガラス状炭素に代表される非晶
質に近い構造をもつ炭素材料である。一般的に熱硬化性
樹脂を炭素化して得られる材料であり、熱処理温度を高
くしても黒鉛構造が発達しない材料である。難黒鉛化性
炭素には安全性が高く、比較的低コストであるという利
点があり、この点を考慮すれば、難黒鉛化性炭素を負極
活物質として用いるのが望ましい。具体的には、例え
ば、フェノール樹脂焼成体、ポリアクリロニトリル系炭
素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成
体等を用いることができる。より望ましくは、(00
2)面の面間隔d002が3.6Å以上であり、c軸方向
の結晶子厚みLcが100Å以下のものを用いるのがよ
い。
The non-graphitizable carbon is a so-called hard carbon, and is a carbon material having a structure close to an amorphous state represented by glassy carbon. Generally, it is a material obtained by carbonizing a thermosetting resin, and does not develop a graphite structure even when the heat treatment temperature is increased. The non-graphitizable carbon has the advantages of high safety and relatively low cost. In view of this, it is desirable to use non-graphitizable carbon as the negative electrode active material. Specifically, for example, a phenol resin fired body, a polyacrylonitrile-based carbon fiber, pseudo isotropic carbon, a furfuryl alcohol resin fired body, or the like can be used. More preferably, (00
2) It is preferable to use those having a plane spacing d 002 of 3.6 ° or more and a crystallite thickness Lc in the c-axis direction of 100 ° or less.

【0029】上記、黒鉛、易黒鉛化性炭素、難黒鉛化性
炭素等は、1種のものを単独で用いることもでき、ま
た、2種以上を混合して用いることもできる。2種以上
を混合させる態様としては、例えば、上記リチウムニッ
ケル複合酸化物を正極活物質に用いた場合の態様とし
て、過充電時の安全性を確保しつつ、正極活物質である
リチウムニッケル複合酸化物に吸蔵・離脱されるリチウ
ム量を制限してサイクル特性をより良好なものとする目
的で、黒鉛と難黒鉛化性炭素、易黒鉛化性炭素等の黒鉛
化の進んでいない炭素材料とを混合物する場合が例示で
きる。なお、黒鉛と黒鉛化の進んでいない炭素質材料と
の混合物を負極活物質に用いる場合、両者の混合比は、
サイクル特性と放電容量とのバランスにより決定すれば
よい。
The above-mentioned graphite, easily graphitizable carbon, hardly graphitizable carbon and the like can be used singly or as a mixture of two or more kinds. As an embodiment in which two or more kinds are mixed, for example, as an embodiment in which the above-mentioned lithium-nickel composite oxide is used as the positive electrode active material, while securing safety during overcharge, the lithium-nickel composite oxide as the positive electrode active material is used. Graphite and non-graphitizable carbon materials such as non-graphitizable carbon and easily graphitizable carbon were used for the purpose of improving the cycle characteristics by limiting the amount of lithium absorbed and desorbed from the material. A case where they are mixed can be exemplified. When a mixture of graphite and a non-graphitized carbonaceous material is used for the negative electrode active material, the mixture ratio of both is
What is necessary is just to determine by the balance between cycle characteristics and discharge capacity.

【0030】負極活物質に炭素材料を用いる場合、負極
は、この炭素材料の粉状体に結着剤を混合し、必要に応
じて適当な溶剤を加えて、ペースト状の負極合材とした
ものを、正極同様、銅等の金属箔製の集電体表面に塗
布、乾燥し、その後必要に応じプレス等にて負極合材の
密度を高めることによって形成する。結着剤としては、
正極同様、ポリフッ化ビニリデン等の含フッ素樹脂等
を、溶剤としてはN−メチル−2−ピロリドン等の有機
溶剤を用いることができる。
When a carbon material is used as the negative electrode active material, the negative electrode was formed into a paste-like negative electrode mixture by mixing a binder into a powder of the carbon material and adding an appropriate solvent as needed. Like the positive electrode, the negative electrode mixture is applied to the surface of a current collector made of metal foil such as copper, dried, and then, if necessary, formed by increasing the density of the negative electrode mixture by pressing or the like. As a binder,
Like the positive electrode, a fluorine-containing resin such as polyvinylidene fluoride or the like can be used, and as a solvent, an organic solvent such as N-methyl-2-pyrrolidone can be used.

【0031】上記の手段によって、負極活物質を含む負
極合材を層状に形成して作成されたシート状の負極は、
正極の場合と同様、作成しようとするリチウム二次電池
の、大きさ、形状等に応じ、適正な寸法に裁断すること
ができる。また、負極から外部への集電のための集電用
リード等の付設についても、正極の場合と同様に行うこ
とができる。
By the above means, a sheet-like negative electrode formed by forming a negative electrode mixture containing a negative electrode active material in a layered form,
As in the case of the positive electrode, the lithium secondary battery can be cut into appropriate dimensions according to the size, shape, and the like of the lithium secondary battery to be produced. Also, the attachment of a current collecting lead or the like for current collection from the negative electrode to the outside can be performed in the same manner as in the case of the positive electrode.

【0032】〈電極体〉電極体は、上記シート状の正極
と上記シート状の負極とを、セパレータを介し積層して
形成する。積層の方式は、2つに大別できる。その一つ
は、図1に模式的に示すようないわゆる角型電池を構成
する電極体10で、複数のシート状の正極1およびシー
ト状の負極2とを用い、その間にセパレータ3を介在さ
せて交互に幾重にも重畳する方式のものである(以下、
「重畳型電極体」と呼ぶ)。また、もう一つは、図2に
模式的に示すようないわゆる円筒型電池を構成する電極
体10で、帯状の正極1と帯状の負極2とをそれぞれ1
枚ずつ、そして帯状のセパレータ3を2枚用い、正極1
と負極2との間にセパレータをそれぞれ1枚づつ挟装し
て、それらを捲回芯等を中心にしてロール状に捲回する
方式のものである(以下、「捲回型電極体」と呼ぶ)。
本発明のリチウム二次電池は、重畳型、捲回型のいずれ
の電極体を有する二次電池をも対象とできる。なお、図
1の断面拡大図に示すように、シート状の正極1は、正
極集電体1aの両面に正極活物質を含む正極合材層1b
が、シート状の負極はシート状の負極2は、負極集電体
2aの両面に負極活物質を含む負極合材層2bがそれぞ
れ形成されている。
<Electrode Body> The electrode body is formed by laminating the above-mentioned sheet-like positive electrode and the above-mentioned sheet-like negative electrode via a separator. The lamination method can be roughly classified into two. One of them is an electrode body 10 constituting a so-called prismatic battery as schematically shown in FIG. 1, using a plurality of sheet-like positive electrodes 1 and a sheet-like negative electrode 2 with a separator 3 interposed therebetween. Is a method of superimposing multiple times alternately (hereinafter, referred to as
This is referred to as “superimposed electrode body”). The other is an electrode body 10 constituting a so-called cylindrical battery as schematically shown in FIG. 2, in which a strip-shaped positive electrode 1 and a strip-shaped negative electrode 2 are respectively connected to one.
Each of the sheets and two strip-shaped separators 3 were used.
And a negative electrode 2 in which separators are sandwiched one by one and wound in a roll around a winding core or the like (hereinafter referred to as a “wound electrode body”). Call).
The lithium secondary battery of the present invention can be applied to a secondary battery having any of a stacked type and a wound type electrode body. As shown in the enlarged cross-sectional view of FIG. 1, the sheet-like positive electrode 1 has a positive electrode mixture layer 1b containing a positive electrode active material on both surfaces of a positive electrode current collector 1a.
However, in the sheet-shaped negative electrode, the sheet-shaped negative electrode 2 has the negative electrode mixture layers 2b containing the negative electrode active material formed on both surfaces of the negative electrode current collector 2a.

【0033】正極と負極との間に挟装するセパレータ
は、正極と負極とを分離し非水電解液を保持するもので
あり、ポリエチレン、ポリプロピレン等の薄い微多孔膜
を用いることができる。
The separator sandwiched between the positive electrode and the negative electrode separates the positive electrode and the negative electrode and holds a non-aqueous electrolyte, and a thin microporous film such as polyethylene or polypropylene can be used.

【0034】リチウム二次電池では、正極負極間のリチ
ウムイオンの移動を確保するために非水電解液が用いら
れ、電極体には非水電解液を含浸させる。非水電解液
は、有機溶媒に電解質であるリチウム塩を溶解させたも
ので、有機溶媒としては、非プロトン性有機溶媒、例え
ばエチレンカーボネート、プロピレンカーボネート、ジ
メチルカーボネート、ジエチルカーボネート、エチルメ
チルカーボネート、γ−ブチロラクトン、アセトニトリ
ル、1,2−ジメトキシエタン、テトラヒドロフラン、
ジオキソラン、塩化メチレン等の1種またはこれらの2
種以上の混合液を用いることができる。また、溶解させ
る電解質としては、LiI、LiClO4、LiAs
6、LiBF4、LiPF6、LiN(CF3SO22
のリチウム塩を用いることができる。
In a lithium secondary battery, a non-aqueous electrolyte is used to secure the movement of lithium ions between the positive electrode and the negative electrode, and the electrode body is impregnated with the non-aqueous electrolyte. The non-aqueous electrolyte is a solution in which a lithium salt as an electrolyte is dissolved in an organic solvent.As the organic solvent, an aprotic organic solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ -Butyrolactone, acetonitrile, 1,2-dimethoxyethane, tetrahydrofuran,
One kind of dioxolane, methylene chloride, etc.
Mixtures of more than one species can be used. The electrolyte to be dissolved is LiI, LiClO 4 , LiAs.
Lithium salts such as F 6 , LiBF 4 , LiPF 6 , and LiN (CF 3 SO 2 ) 2 can be used.

【0035】〈電極体加圧手段〉本発明のリチウム二次
電池における特徴部である電極体加圧手段は、電極体を
正極および負極の積層方向に、常時5kg/cm2以上
の圧力で加圧する。正極および負極の積層方向とは、重
畳型電極体の場合は、シート状の正極および負極に垂直
の方向であって、電極体自体をその方向に押しつぶすよ
うに加圧する。また、捲回型電極体の場合は、電極体の
半径方向であって、電極体を締め付けるように加圧す
る。
<Electrode Body Pressing Means> The electrode body pressing means, which is a characteristic part of the lithium secondary battery of the present invention, applies the electrode body to the lamination direction of the positive electrode and the negative electrode at a pressure of at least 5 kg / cm 2 at all times. Press. The stacking direction of the positive electrode and the negative electrode is a direction perpendicular to the sheet-shaped positive electrode and the negative electrode in the case of a superposed electrode body, and the electrode body itself is pressed so as to be crushed in that direction. In the case of a wound electrode body, pressure is applied in the radial direction of the electrode body to tighten the electrode body.

【0036】加圧機構は、電極体に常に5kg/cm2
以上の圧力を付勢することのできるものであればよく、
その方式を特に限定するものではない。例えば、重畳型
電極体の場合、電極体の両側にそれぞれ剛性のある押圧
部材を配し、その押圧部材その間隔が小さくなるように
ボルト・ナット等の締結具を用いて締め付けるること
で、電極体を加圧するものでもよい。また、それぞれの
あるいは一方の押圧部材を油圧、空気圧等の力で押さえ
つけることで、電極体を加圧するものであってもよい。
さらに、電極体の積層方向が鉛直となるように電極体を
配置し、電極体の上へおもりを載せ、重力によって電極
体を加圧するものであってもよい。
The pressing mechanism always applies 5 kg / cm 2 to the electrode body.
Anything that can apply the above pressure may be used.
The method is not particularly limited. For example, in the case of a superimposed electrode body, rigid pressing members are arranged on both sides of the electrode body, and the pressing members are tightened using fasteners such as bolts and nuts so that the interval between the pressing members is reduced. The body may be pressurized. Further, the electrode body may be pressurized by pressing each or one of the pressing members with a force such as hydraulic pressure or air pressure.
Further, the electrode body may be arranged so that the lamination direction of the electrode body is vertical, a weight may be placed on the electrode body, and the electrode body may be pressed by gravity.

【0037】実験により明らかとなったことであるが、
正極と負極との間に介在させたセパレータは多孔質体で
あるため、電極体を加圧し続けることによって、セパレ
ータは薄くなる。セパレータが薄くなった場合、その分
だけ電極体の厚さ(積層方法の長さ)も薄くなる。例え
ば加圧機構として上述した締結材による締付を採用した
場合には、電極体の厚さが薄くなった場合その締付力が
減少し、電極体の加圧力も減少する。加圧力が5kg/
cm2を下回る前に、締結具の増締めを行う等の必要を
生じる。
As clarified by experiments,
Since the separator interposed between the positive electrode and the negative electrode is a porous body, the separator becomes thinner by continuously pressing the electrode body. When the thickness of the separator is reduced, the thickness of the electrode body (the length of the lamination method) is reduced accordingly. For example, when the above-described tightening by the fastening material is adopted as the pressing mechanism, when the thickness of the electrode body is reduced, the tightening force decreases, and the pressing force of the electrode body also decreases. Pressure is 5kg /
Before dropping below cm 2 , it becomes necessary to retighten the fastener.

【0038】このようなセパレータの薄化に伴う加圧力
の減少を吸収し、常に所定圧で加圧し続けるために、電
極体加圧手段には、その加圧力をバネによって発生する
方式のものを採用することが望ましい。バネ以外にも所
定圧を維持できる加圧部材は存在するが、バネによれば
機構が簡単であること、強度に優れること等のメリット
がある。
In order to absorb the decrease in the pressing force due to such thinning of the separator and to always pressurize at a predetermined pressure, the electrode body pressing means is of a type that generates the pressing force by a spring. It is desirable to adopt it. There are pressure members other than springs that can maintain a predetermined pressure, but springs have advantages such as a simple mechanism and excellent strength.

【0039】電極体加圧手段の一例として、図3に、重
畳型電極体を圧縮コイルバネで加圧する電極体加圧手段
を模式的に示す。電極体加圧手段20は、電極体10を
挟む2つの押圧部材21、22と、押圧部材21に一端
部が固定され押圧部材22に設けられた穴22aを挿通
する4本の支柱23と、支柱23を挿通させるようにし
て端部をそれぞれ支柱頭部23aと押圧部材22に当接
する4つの圧縮コイルバネ24とからなる。電極体10
は、圧縮コイルバネの力により、シート状の正極および
負極の積層方向に加圧される。このような、バネを用い
た電極体加圧手段は、セパレータの薄化によって電極体
の厚さがある程度小さくなっても、必要となる5kg/
cm2以上の加圧力を維持できるように設計することが
容易である。
As an example of the electrode body pressing means, FIG. 3 schematically shows an electrode body pressing means for pressing the superposed electrode body with a compression coil spring. The electrode body pressing means 20 includes two pressing members 21, 22 sandwiching the electrode body 10, four columns 23 each having one end fixed to the pressing member 21 and inserted through a hole 22 a provided in the pressing member 22, Each of the ends is formed of a column head 23 a and four compression coil springs 24 abutting against the pressing member 22 so that the column 23 is inserted. Electrode body 10
Is pressed in the laminating direction of the sheet-like positive and negative electrodes by the force of a compression coil spring. Such an electrode body pressurizing means using a spring requires a required 5 kg / kg even if the thickness of the electrode body is reduced to some extent by thinning the separator.
It is easy to design so that a pressing force of not less than cm 2 can be maintained.

【0040】実験によれば、セパレータとして多孔質ポ
リエチレンシートを用いた場合、電極体を5kg/cm
2〜20kg/cm2で加圧して充放電を繰り返すことに
より、セパレータが20%程度薄化することが明らかと
なった。このことを考慮すれば、電極体加圧手段の有効
ストローク(押圧代)は[セパレータの厚さ×セパレー
タの積層数×0.2]より大きくする必要がある。ま
た、加圧力を発生する部材として上記のようなバネを用
いた場合、バネの長さが変わることによって加圧力が変
わることを考慮すれば、バネ自体も、長さの変化によっ
ても常に設定する圧力で加圧できるようなバネ定数を有
するものとする必要がある。バネ定数にもよるがバネ一
般の特性を考慮すれば、比較的小さなバネ定数を有する
バネを採用し、電極体加圧手段の有効ストロークをなる
べく大きくとるように設計するのが望ましい。
According to the experiment, when the porous polyethylene sheet was used as the separator, the electrode body was 5 kg / cm.
It was clarified that the separator was thinned by about 20% by repeating the charge and discharge by applying a pressure of 2 to 20 kg / cm 2 . In consideration of this, the effective stroke (pressing allowance) of the electrode body pressing means needs to be larger than [separator thickness × number of stacked separators × 0.2]. Further, when the above-described spring is used as a member that generates a pressing force, the spring itself is always set according to the change in length, considering that the pressing force changes due to a change in the length of the spring. It is necessary to have a spring constant so that pressure can be applied. Although it depends on the spring constant, in consideration of general characteristics of the spring, it is desirable to adopt a spring having a relatively small spring constant and to design the effective stroke of the electrode body pressing means as large as possible.

【0041】図4には、捲回型の電極体を加圧する電極
体加圧手段の一例を模式的に示す。この電極体加圧手段
20は、バネ材自体を捲回型電極体10の外径より小さ
い内径を持つロール状に成形したものであり、その内径
を押し広げた状態で電極体10を挿入し、その後に押し
広げた状態から開放することで、電極体加圧手段20の
有する弾性力により、電極体10は締め付けられるよう
に加圧されることとなる。
FIG. 4 schematically shows an example of an electrode body pressing means for pressing a wound electrode body. The electrode body pressing means 20 is formed by forming the spring material itself into a roll shape having an inner diameter smaller than the outer diameter of the wound electrode body 10, and inserts the electrode body 10 in a state where the inner diameter is expanded. Then, by releasing the expanded state, the electrode body 10 is pressed so as to be tightened by the elastic force of the electrode body pressing means 20.

【0042】リチウム二次電池の場合、電極体は密閉さ
れる必要がある。電極体加圧手段を設ける場合、電極体
を電極体加圧手段とともに電池ケース等に挿入し、その
電池ケースを密閉することで電極体を密閉する方式を採
用することもでき、また、電極体を可撓性(変形性)の
ある電池ケースに密閉し、電極体加圧手段によってその
電池ケースの外部から電極体を加圧するような方式を採
用することもできる。
In the case of a lithium secondary battery, the electrode body needs to be sealed. When the electrode body pressurizing means is provided, a method of inserting the electrode body together with the electrode body pressurizing means into a battery case or the like, and sealing the battery case to seal the electrode body can be adopted. May be sealed in a flexible (deformable) battery case, and the electrode body may be pressed from the outside of the battery case by an electrode body pressing means.

【0043】本発明のリチウム二次電池のより具体的な
実施形態の一例について、図5に示す。本実施形態のリ
チウム二次電池は、電極体10を可撓性のある電池ケー
ス30に密閉したものを1つのセルとし、そのセルを電
極体10における電極の積層方向に複数配置してセル集
合体とし、セル集合体を電極の積層方向に電極体加圧手
段20により加圧することで、電極体を加圧する方式の
リチウム二次電池である。電極体加圧手段20は、電池
のカバーを兼ねセル集合体を挟持する押圧部材21およ
び22と、押圧部材21と押圧部材22とを繋ぐ複数の
支柱23と、加圧力を発生させるための複数の圧縮コイ
ルバネとを備えてなる。支柱23は、ボルト形状をな
し、押圧部材22に設けられた穴22を挿通して、その
一端部にあるネジで押圧部材21に螺着されている。押
圧部材22は、支柱23がガイドとなり電極体の積層方
法に移動可能となっている。圧縮コイルバネ24は、押
圧部材22の穴22の内部において支柱23を相通させ
るような状態で配置され、その両端をそれぞれ支柱23
の頭部23aと押圧部材22の穴22aの段差部22b
とに当接しており、圧縮された状態を保っている。圧縮
コイルバネ24が伸びようとする力で、押圧部材21と
押圧部材22は互いに接近する方向に力が加えられ、押
圧部材21と押圧部材22と間に挟持されたセル集合体
は加圧されることで、それぞれの電極体10は、電極の
積層方法に加圧されることになる。
FIG. 5 shows an example of a more specific embodiment of the lithium secondary battery of the present invention. In the lithium secondary battery of the present embodiment, a cell assembly in which the electrode body 10 is hermetically sealed in a flexible battery case 30 is defined as one cell, and the plurality of cells are arranged in the electrode stacking direction in the electrode body 10. This is a lithium secondary battery of a type in which the electrode assembly is pressurized by pressing the cell assembly in the electrode stacking direction by the electrode assembly pressurizing means 20. The electrode body pressing means 20 includes pressing members 21 and 22 which also serve as a battery cover and hold the cell assembly, a plurality of columns 23 connecting the pressing members 21 and 22, and a plurality of And a compression coil spring. The support 23 has a bolt shape, is inserted through a hole 22 provided in the pressing member 22, and is screwed to the pressing member 21 with a screw at one end thereof. The pressing member 22 can be moved in a method of laminating the electrode body by using the support 23 as a guide. The compression coil springs 24 are arranged in such a manner that the struts 23 communicate with each other inside the hole 22 of the pressing member 22, and both ends thereof are respectively supported by the struts 23.
Step 23b of the head 23a of the hole and the hole 22a of the pressing member 22
And is kept in a compressed state. The pressing member 21 and the pressing member 22 are applied with a force to expand the compression coil spring 24 in a direction approaching each other, and the cell assembly sandwiched between the pressing member 21 and the pressing member 22 is pressed. Thus, each electrode body 10 is pressurized by the electrode lamination method.

【0044】このように、複数の電極体を一体的に加圧
できることによって、より大型のリチウム二次電池にお
いても、効率的な電極加圧手段となる。また、電池のカ
バーを兼ねる押圧部材の中に圧縮コイルバネによる加圧
機構を組み込むことで、長い有効ストロークをもつ電極
体加圧手段であっても、電池のデッドスペースを小さく
できるというメリットを有する。なお、押圧部材には、
金属材料の他、ポリプロピレン等の樹脂等を用いること
ができ、電極体を密閉する可撓性のある電池ケースに
は、ポリエチレン等を用いることができる。
As described above, since a plurality of electrode bodies can be integrally pressurized, even a larger lithium secondary battery can be an efficient electrode pressurizing means. In addition, by incorporating a pressing mechanism using a compression coil spring in a pressing member also serving as a battery cover, there is an advantage that the dead space of the battery can be reduced even with an electrode body pressing unit having a long effective stroke. The pressing member includes
In addition to metal materials, resins such as polypropylene can be used, and polyethylene or the like can be used for a flexible battery case that seals the electrode body.

【0045】[0045]

【実施例】電極体を電極の積層方向に加圧することによ
るリチウム二次電池のサイクル特性改善効果を確かめる
ために、その加圧力を種々変更したリチウム二次電池を
作製し、それらの二次電池に対して充放電サイクル試験
を行った。この試験およびその評価を、以下に実施例と
して記載する。
EXAMPLE In order to confirm the effect of improving the cycle characteristics of a lithium secondary battery by pressing the electrode body in the direction of lamination of the electrodes, lithium secondary batteries with variously changed pressures were produced, and those secondary batteries were manufactured. Was subjected to a charge / discharge cycle test. This test and its evaluation are described below as examples.

【0046】〈リチウム二次電池の構成〉本リチウム二
次電池では、正極活物質に組成式LiNi0.8Co0.15
Al0.052で表される層状岩塩構造リチウムニッケル
複合酸化物(富士化学工業製:LINILITE CA
−5)を用いた。正極は、このLiNi0.8Co0.15
0 .052の85重量部に、導電材としてアセチレンブ
ラック(電気化学工業製:HS−100)を10重量
部、結着剤としてポリフッ化ビニリデン(呉羽化学工業
製:KFポリマ)を5重量部混合し、適量のN−メチル
−2−ピロリドンを加えてペースト状の正極合材を得、
この正極合材を厚さ20μmのアルミニウム箔集電体の
両面に塗布し、その後乾燥させ、さらにロールプレスを
してシート状のものを作製した。なお、シート状の正極
の大きさは、50mm×50mmで、集電体表面に形成
された正極合材層の厚さは、片面あたり40μmとし
た。
<Structure of Lithium Secondary Battery>
In the secondary battery, the composition formula LiNi0.8Co0.15
Al0.05OTwoLayered rock salt structure lithium nickel represented by
Complex oxide (manufactured by Fuji Chemical: LINILITE CA)
-5) was used. The positive electrode is LiNi0.8Co0.15A
l0 .05OTwo85 parts by weight of acetylene
10 racks (HS-100 manufactured by Denki Kagaku Kogyo)
Part, polyvinylidene fluoride as binder (Kureha Chemical Industry)
Manufactured by KF Polymer Co., Ltd.).
-2-Pyrrolidone was added to obtain a paste-like positive electrode mixture,
This positive electrode mixture was used as a 20 μm thick aluminum foil current collector.
Apply on both sides, then dry and roll press
Thus, a sheet-like product was produced. The sheet-like positive electrode
Size is 50mm x 50mm, formed on the current collector surface
The thickness of the positive electrode mixture layer is 40 μm per side.
Was.

【0047】負極活物質には、人造黒鉛である黒鉛化メ
ソフェーズ小球体(大阪ガスケミカル製:MCMB25
−28)を用いた。負極は、この黒鉛化メソフェーズ小
球体95重量部に、結着剤としてポリフッ化ビニリデン
(呉羽化学工業製:KFポリマ)を5重量部混合し、適
量のN−メチル−2−ピロリドンを加えてペースト状の
負極合材を得、この負極合材を厚さ10μmの銅箔集電
体の両面に塗布し、その後乾燥させ、さらにロールプレ
スをしてシート状のものを作製した。なお、シート状の
負極の大きさは、52mm×52mmで、集電体表面に
形成された負極合材層の厚さは、片面あたり50μmと
した。
As the negative electrode active material, graphitized mesophase microspheres (manufactured by Osaka Gas Chemicals: MCMB25), which are artificial graphite, are used.
-28) was used. The negative electrode was prepared by mixing 95 parts by weight of the graphitized mesophase spherules with 5 parts by weight of polyvinylidene fluoride (KF polymer manufactured by Kureha Chemical Industry Co., Ltd.) as a binder, and adding an appropriate amount of N-methyl-2-pyrrolidone. A negative electrode mixture in the form of was obtained, and this negative electrode mixture was applied to both surfaces of a copper foil current collector having a thickness of 10 μm, dried, and then roll-pressed to produce a sheet. The size of the sheet-shaped negative electrode was 52 mm × 52 mm, and the thickness of the negative electrode mixture layer formed on the current collector surface was 50 μm per side.

【0048】試験に供するリチウム二次電池は、上記シ
ート状の正極と上記シート状の負極とを用いて図6に示
すような構成とした。電極体10は、上記正極1を1枚
と、上記負極2を2枚と、厚さ25μmの多孔質ポリエ
チレンシート(東燃タルピス製)のセパレータ3を2枚
用い、負極2、セパレータ3、正極1、セパレータ3、
負極2の順に積層して構成した。電極体加圧手段20
は、中央に電極体が挿設される凹部を有する押圧部材2
1と、その凹みに嵌合する凸部を有する押圧部材22
と、ボルトを利用した支柱23と、圧縮コイルバネ24
からなり前記実施形態の項で説明したのと同様の方式で
電極体10を加圧する。圧縮コイルバネ24は、10m
mの有効ストロークを有するものとし、セパレータ3が
充放電サイクルにより20%薄化した場合であっても初
期加圧力の90%以上の圧力が電極体10にかけられる
ようなバネ定数を有するものとした。なお、押圧部材2
1の凹部と押圧部材22の凸部との嵌合部にはOリング
25を配設し、電極体10が密閉される構造となってい
る。さらに、電極体10には、エチレンカーボネートと
ジエチルカーボネートとを体積比1:1に混合した混合
溶媒にLiPF6を1Mの濃度で溶解させた非水電解液
を含浸させている。
The lithium secondary battery used for the test was configured as shown in FIG. 6 using the above-mentioned sheet-like positive electrode and the above-mentioned sheet-like negative electrode. The electrode body 10 includes one positive electrode 1, two negative electrodes 2, and two separators 3 each made of a porous polyethylene sheet (manufactured by Tonen Talpis) having a thickness of 25 μm. , Separator 3,
The negative electrode 2 was laminated in this order. Electrode body pressing means 20
Is a pressing member 2 having a concave portion in which the electrode body is inserted in the center.
1 and a pressing member 22 having a convex portion fitted into the concave portion
, A column 23 using bolts, and a compression coil spring 24
The electrode body 10 is pressurized in the same manner as described in the above embodiment. The compression coil spring 24 is 10 m
m and a spring constant such that a pressure of 90% or more of the initial pressing force can be applied to the electrode body 10 even when the separator 3 is thinned by 20% by the charge / discharge cycle. . The pressing member 2
An O-ring 25 is provided at a fitting portion between the concave portion 1 and the convex portion of the pressing member 22 so that the electrode body 10 is sealed. Further, the electrode body 10 is impregnated with a non-aqueous electrolyte obtained by dissolving LiPF 6 at a concentration of 1 M in a mixed solvent of ethylene carbonate and diethyl carbonate mixed at a volume ratio of 1: 1.

【0049】リチウム二次電池は、電極体への加圧力の
違うものを数種類作製した。上述したように、20%セ
パレータが薄化した場合に、それぞれ1kg/cm2
2kg/cm2、5kg/cm2、20kg/cm2の圧
力で電極体を加圧するように初期加圧力を設定し、それ
ぞれの二次電池をサンプルNo.1、No.2、No.
3、No.4のリチウム二次電池とした。また、比較の
ため、圧縮コイルバネを用いず直接ボルトで締めつけ初
期加圧力が5kg/cm2となる二次電池を作製し、こ
の二次電池をサンプルNo.5の二次電池とした。
Several types of lithium secondary batteries having different pressures on the electrode body were manufactured. As described above, when the 20% separator is thinned, each is 1 kg / cm 2 ,
2 kg / cm 2, a 5kg / cm 2, 20kg / cm pressure at the electrode body 2 to set the initial pressure to pressurize the respective secondary batteries Sample No. 1, No. 2, No.
3, No. 4 was obtained. For comparison, a secondary battery having an initial pressure of 5 kg / cm 2 was prepared by directly tightening with a bolt without using a compression coil spring. No. 5 secondary battery.

【0050】〈充放電サイクル試験〉上記それぞれのリ
チウム二次電池に対して、まず、コンディショニングを
行った。コンディショニングの条件は、20℃の温度
下、電流密度0.2mA/cm 2の定電流で充電上限電
圧4.1Vまで充電し、その後電流密度0.2mA/c
2の定電流で放電下限電圧3.0Vまで放電するもの
とした。次いで、コンディショニングが終了したそれぞ
れの二次電池に対して充放電サイクル試験を行った。充
放電サイクル試験の条件は、電池の実使用温度範囲の上
限と見込まれる60℃という高温の環境温度下、電流密
度2mA/cm2の定電流で充電上限電圧4.1Vまで
充電し、その後電流密度2mA/cm2の定電流で放電
下限電圧3.0Vまで放電するものを1サイクルとし、
このサイクルを500サイクル繰り返すものとした。
<Charge / discharge cycle test>
First, condition the rechargeable lithium battery.
went. Conditioning conditions are at a temperature of 20 ° C.
Lower, current density 0.2 mA / cm TwoCharge upper limit current with constant current
Charge to 4.1V, then current density 0.2mA / c
mTwoThat discharges to a discharge lower limit voltage of 3.0 V at a constant current of
And Next, the conditioning is finished
A charge / discharge cycle test was performed on these secondary batteries. Filling
The conditions for the discharge cycle test are above the actual operating temperature range of the battery.
Current density under the high ambient temperature of 60 ° C
Degree 2mA / cmTwoCharge current up to 4.1V at constant current
Charge, then current density 2mA / cmTwoDischarge at constant current
What discharges to the lower limit voltage 3.0V is one cycle,
This cycle was repeated 500 times.

【0051】この充放電サイクル試験で、それぞれの二
次電池の正極活物質単位重量あたりの初期放電容量およ
び500サイクル後の放電容量、初期直流抵抗および5
00サイクル後の直流抵抗を測定し、さらに容量維持
率、直流抵抗上昇率を求めた。なお、直流抵抗は、(平
均充電電圧−平均放電電圧)/(充放電電流×2)とい
う計算式に基づいて求めた値を採用した。下記、表1
に、それぞれの二次電池の正極活物質単位重量あたりの
初期放電容量および500サイクル後の放電容量、初期
直流抵抗および500サイクル後の直流抵抗、容量維持
率、直流抵抗上昇率を示す。
In this charge / discharge cycle test, the initial discharge capacity per unit weight of the positive electrode active material of each secondary battery, the discharge capacity after 500 cycles, the initial DC resistance, and the
The DC resistance after the 00 cycle was measured, and the capacity retention rate and the DC resistance rise rate were determined. In addition, the value obtained based on the calculation formula of (average charge voltage-average discharge voltage) / (charge / discharge current × 2) was adopted as the DC resistance. Table 1 below
Table 2 shows the initial discharge capacity per unit weight of the positive electrode active material of each secondary battery, the discharge capacity after 500 cycles, the initial DC resistance and the DC resistance after 500 cycles, the capacity retention ratio, and the DC resistance rise rate.

【0052】[0052]

【表1】 [Table 1]

【0053】上記表1から明らかなように、圧縮コイル
バネを有し常時設定圧以上で加圧するサンプルNo.1
〜No.4の二次電池を比較すれば、加圧力が1kg/
cm 2、2kg/cm2となるNo.1およびNo.2の
二次電池に比べ、加圧力が5kg/cm2、20kg/
cm2となるNo.3およびNo.4の二次電池は、5
00サイクルの充放電後においても、直流抵抗の上昇は
低く、90%を超える高い容量維持率を示し、サイクル
特性の良好な二次電池であることが判る。したがって、
5kg/cm2の圧力で、電極体を電極の積層方向に加
圧することがサイクル特性の改善に有効であることが確
認できる。
As apparent from Table 1 above, the compression coil
Sample No. which has a spring and is always pressurized above the set pressure 1
-No. Comparing the secondary battery of No. 4 shows that the pressing force is 1 kg /
cm Two, 2kg / cmTwoNo. 1 and No. Two
Pressing force is 5kg / cm compared to rechargeable batteryTwo, 20kg /
cmTwoNo. 3 and No. 3 The secondary battery of 4 is 5
Even after the charge / discharge cycle of 00 cycles, the DC resistance rises
Low, high capacity retention of over 90%, cycle
It can be seen that the secondary battery has good characteristics. Therefore,
5kg / cmTwoElectrode body in the electrode stacking direction.
Pressure is effective in improving cycle characteristics.
It can be recognized.

【0054】また、圧縮コイルバネを有し常時5kg/
cm2以上の圧力で加圧することのできるNo.3の二
次電池と、圧縮コイルバネを有さず充放電サイクルに伴
い加圧力が減少するNo.5の二次電池を比較すれば、
常時5kg/cm2以上の圧力で加圧できるNo.3の
二次電池は、直流抵抗の上昇が低く、高い容量維持率を
示し、よりサイクル特性の良好な二次電池であることが
判る。したがって、常時設定された圧力以上でで加圧す
ることがサイクル特性の改善に有効であることが確認で
きる。
Further, a compression coil spring has a
No. which can be pressurized with a pressure of not less than 2 cm 2 . No. 3 which has no compression coil spring and whose pressure decreases with the charge / discharge cycle No. 3 Comparing the secondary batteries of No. 5
No. which can always be pressurized with a pressure of 5 kg / cm 2 or more. It can be seen that the secondary battery of No. 3 has a low rise in DC resistance, shows a high capacity retention ratio, and has better cycle characteristics. Therefore, it can be confirmed that applying pressure at a pressure equal to or higher than the preset pressure is effective for improving the cycle characteristics.

【0055】[0055]

【発明の効果】本発明は、層状岩塩構造リチウム遷移金
属複合酸化物を正極活物質とするリチウム二次電池を、
電極体を正極および負極の積層方向に、常時5kg/c
2以上の圧力で加圧するような電極体加圧手段を備え
るように構成するものである。このような構成とするこ
とで、本発明のリチウム二次電池は、膨張・収縮に伴う
活物質の脱落、正極活物質であるリチウム遷移金属複合
酸化物の2次粒子の微細化に起因する正極内部の導電性
低下を充分に抑制することができ、サイクル特性が極め
て良好なリチウム二次電池となる。
The present invention provides a lithium secondary battery using a layered rock salt structure lithium transition metal composite oxide as a positive electrode active material.
The electrode body is always 5 kg / c in the laminating direction of the positive electrode and the negative electrode.
It is configured to include an electrode body pressurizing means for pressurizing with a pressure of m 2 or more. With such a structure, the lithium secondary battery of the present invention has a positive electrode due to the fall of the active material due to expansion and contraction and the miniaturization of the secondary particles of the lithium transition metal composite oxide as the positive electrode active material. A reduction in the internal conductivity can be sufficiently suppressed, and a lithium secondary battery having extremely good cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のリチウム二次電池に採用することの
できる重畳型電極体を模式的に示す。
FIG. 1 schematically shows a superposed electrode body that can be employed in a lithium secondary battery of the present invention.

【図2】 本発明のリチウム二次電池に採用することの
できる捲回型電極体を模式的に示す。
FIG. 2 schematically shows a wound electrode body that can be employed in the lithium secondary battery of the present invention.

【図3】 本発明のリチウム二次電池に採用することの
できる重畳型電極体を圧縮コイルバネで加圧する電極体
加圧手段の一例を模式的に示す。
FIG. 3 schematically illustrates an example of an electrode body pressing unit that presses a superimposed electrode body with a compression coil spring that can be employed in the lithium secondary battery of the present invention.

【図4】 本発明のリチウム二次電池に採用することの
できる捲回型電極体を加圧する電極体加圧手段の一例を
模式的に示す。
FIG. 4 schematically shows an example of an electrode body pressing means for pressing a wound electrode body that can be employed in the lithium secondary battery of the present invention.

【図5】 本発明のリチウム二次電池の一実施形態であ
って、複数の電極体を有し、これらを一体的に加圧でき
る電極体加圧手段を備えたリチウム二次電池を示す。
FIG. 5 shows an embodiment of the lithium secondary battery according to the present invention, which has a plurality of electrode bodies and is provided with an electrode body pressing means capable of integrally pressing them.

【図6】 充放電サイクル試験に供したリチウム二次電
池の構成を模式的に示す。
FIG. 6 schematically shows a configuration of a lithium secondary battery subjected to a charge / discharge cycle test.

【符号の説明】[Explanation of symbols]

1:正極 2:負極 3:セパレータ 10:電極体 20:電極体加圧手段 1: Positive electrode 2: Negative electrode 3: Separator 10: Electrode body 20: Electrode body pressurizing means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐々木 厳 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 伊藤 勇一 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 右京 良雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 Fターム(参考) 5H003 AA04 AA06 BB05 BC06 BD01 BD03 5H014 AA02 AA06 EE10 HH01 HH08 5H029 AJ05 AJ11 AK03 AL06 AL07 AL12 AM02 AM07 BJ02 BJ21 DJ17 EJ01 HJ02 HJ15  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor, Takeshi Sasaki 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central R & D Laboratories Co., Ltd. (72) Inventor Yuichi Ito, Nagakute-cho, Nagakute-cho, Aichi County, Aichi Prefecture 41, Yokomichi, Toyota Central Research Laboratory Co., Ltd. (72) Inventor Yoshio Ukyo 41, Toyota-Chuo Research Laboratory, Nagakute-cho, Aichi-gun, Aichi, Japan F-term (reference) 5H003 AA04 AA06 BB05 BC06 BD01 BD03 5H014 AA02 AA06 EE10 HH01 HH08 5H029 AJ05 AJ11 AK03 AL06 AL07 AL12 AM02 AM07 BJ02 BJ21 DJ17 EJ01 HJ02 HJ15

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 結晶構造が層状岩塩構造であるリチウム
遷移金属複合酸化物を正極活物質として含むシート状の
正極と、シート状の負極とを、セパレータを介し積層し
て形成した電極体と、 該電極体を前記正極および前記負極の積層方向に、常時
5kg/cm2以上の圧力で加圧する電極体加圧手段と
を備えてなるリチウム二次電池。
An electrode body formed by laminating a sheet-shaped positive electrode containing a lithium transition metal composite oxide having a layered rock salt structure as a positive electrode active material, and a sheet-shaped negative electrode with a separator interposed therebetween. A lithium secondary battery comprising: an electrode body pressing means for constantly pressing the electrode body in the stacking direction of the positive electrode and the negative electrode at a pressure of 5 kg / cm 2 or more.
【請求項2】 前記電極体加圧手段は、その加圧力をバ
ネによって発生する請求項1に記載のリチウム二次電
池。
2. The lithium secondary battery according to claim 1, wherein the electrode body pressurizing means generates the pressing force by a spring.
【請求項3】 前記リチウム遷移金属複合酸化物は、組
成式LiNixM1yM2 z2(M1はCo、Mnから選ば
れた少なくとも1種;M2はAl、B、Fe、Cr、M
gから選ばれた少なくとも1種;x+y+z=1;0.
5<x<0.95;0.01<y<0.4;0.001
<z<0.2)で表されるリチウムニッケル複合酸化物
である請求項1または請求項2に記載のリチウム二次電
池。
3. The lithium transition metal composite oxide according to claim 1, wherein
Formula LiNixM1yM2 zOTwo(M1 is selected from Co and Mn
M2 is Al, B, Fe, Cr, M
g + x + y + z = 1;
5 <x <0.95; 0.01 <y <0.4; 0.001
<Z <0.2) lithium nickel composite oxide
The lithium secondary battery according to claim 1 or 2, wherein
pond.
JP26619699A 1999-09-20 1999-09-20 Lithium secondary battery Pending JP2001093577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26619699A JP2001093577A (en) 1999-09-20 1999-09-20 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26619699A JP2001093577A (en) 1999-09-20 1999-09-20 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2001093577A true JP2001093577A (en) 2001-04-06

Family

ID=17427606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26619699A Pending JP2001093577A (en) 1999-09-20 1999-09-20 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2001093577A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076373A (en) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd Non-aqueous secondary battery
JP2010009989A (en) * 2008-06-27 2010-01-14 Sanyo Electric Co Ltd Charge/discharge method of secondary battery and battery device
WO2010016881A1 (en) 2008-08-05 2010-02-11 Sion Power Corporation Application of force in electrochemical cells
JP2010205479A (en) * 2009-03-02 2010-09-16 Toyota Motor Corp All-solid battery employing power compact
WO2010107499A2 (en) * 2009-03-19 2010-09-23 Sion Power Corporation Cathode for lithium battery
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
WO2015045400A1 (en) * 2013-09-30 2015-04-02 三洋電機株式会社 Flat non-aqueous electrolyte secondary cell and group of cells using same
US9005809B2 (en) 2009-08-28 2015-04-14 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US9034421B2 (en) 2008-01-08 2015-05-19 Sion Power Corporation Method of forming electrodes comprising sulfur and porous material comprising carbon
US9077041B2 (en) 2012-02-14 2015-07-07 Sion Power Corporation Electrode structure for electrochemical cell
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US9577267B2 (en) 2012-12-19 2017-02-21 Sion Power Corporation Electrode structure and method for making same
WO2017038041A1 (en) * 2015-08-28 2017-03-09 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
US10319988B2 (en) 2014-05-01 2019-06-11 Sion Power Corporation Electrode fabrication methods and associated systems and articles
JP2019102231A (en) * 2017-11-30 2019-06-24 株式会社Gsユアサ Power storage element
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US10868306B2 (en) 2017-05-19 2020-12-15 Sion Power Corporation Passivating agents for electrochemical cells
US10944094B2 (en) 2017-05-19 2021-03-09 Sion Power Corporation Passivating agents for electrochemical cells
WO2023008012A1 (en) * 2021-07-27 2023-02-02 株式会社Gsユアサ Power storage element and power storage device
US11791511B2 (en) 2019-11-19 2023-10-17 Sion Power Corporation Thermally insulating compressible components for battery packs
US11824228B2 (en) 2019-11-19 2023-11-21 Sion Power Corporation Compression systems for batteries
US11923495B2 (en) 2020-03-13 2024-03-05 Sion Power Corporation Application of pressure to electrochemical devices including deformable solids, and related systems
US11978917B2 (en) 2019-11-19 2024-05-07 Sion Power Corporation Batteries with components including carbon fiber, and associated systems and methods
US11984575B2 (en) 2019-11-19 2024-05-14 Sion Power Corporation Battery alignment, and associated systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873968A (en) * 1981-08-13 1983-05-04 モ−リ・エネルギ−・リミテツド Electrode unit, battery cell and method of improving inversion thereof
JPS6435871A (en) * 1987-07-31 1989-02-06 Nippon Telegraph & Telephone Lithium secondary cell
JPH05290886A (en) * 1992-04-09 1993-11-05 Sumitomo Electric Ind Ltd Layered type lithium secondary battery
JPH09232003A (en) * 1995-12-18 1997-09-05 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JPH11102693A (en) * 1997-09-29 1999-04-13 Hitachi Ltd Lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873968A (en) * 1981-08-13 1983-05-04 モ−リ・エネルギ−・リミテツド Electrode unit, battery cell and method of improving inversion thereof
JPS6435871A (en) * 1987-07-31 1989-02-06 Nippon Telegraph & Telephone Lithium secondary cell
JPH05290886A (en) * 1992-04-09 1993-11-05 Sumitomo Electric Ind Ltd Layered type lithium secondary battery
JPH09232003A (en) * 1995-12-18 1997-09-05 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JPH11102693A (en) * 1997-09-29 1999-04-13 Hitachi Ltd Lithium secondary battery

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076373A (en) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd Non-aqueous secondary battery
US9034421B2 (en) 2008-01-08 2015-05-19 Sion Power Corporation Method of forming electrodes comprising sulfur and porous material comprising carbon
JP2010009989A (en) * 2008-06-27 2010-01-14 Sanyo Electric Co Ltd Charge/discharge method of secondary battery and battery device
US11121397B2 (en) 2008-08-05 2021-09-14 Sion Power Corporation Application of force in electrochemical cells
EP2669975A1 (en) * 2008-08-05 2013-12-04 Sion Power Corporation Application of force in electrochemical cells
US11735761B2 (en) 2008-08-05 2023-08-22 Sion Power Corporation Application of force in electrochemical cells
EP2365566A1 (en) * 2008-08-05 2011-09-14 Sion Power Corporation Application of force in electrochemical cells
WO2010016881A1 (en) 2008-08-05 2010-02-11 Sion Power Corporation Application of force in electrochemical cells
US11108076B2 (en) 2008-08-05 2021-08-31 Sion Power Corporation Application of force in electrochemical cells
US11108077B2 (en) 2008-08-05 2021-08-31 Sion Power Corporation Application of force in electrochemical cells
KR102170047B1 (en) * 2008-08-05 2020-10-27 시온 파워 코퍼레이션 Application of force in electrochemical cells
EP3694036A1 (en) * 2008-08-05 2020-08-12 Sion Power Corporation Application of force in electrochemical cells
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
US9780404B2 (en) 2008-08-05 2017-10-03 Sion Power Corporation Application of force in electrochemical cells
US10320027B2 (en) 2008-08-05 2019-06-11 Sion Power Corporation Application of force in electrochemical cells
US10312545B2 (en) 2008-08-05 2019-06-04 Sion Power Corporation Application of force in electrochemical cells
US9105938B2 (en) 2008-08-05 2015-08-11 Sion Power Corporation Application of force in electrochemical cells
KR20190062623A (en) * 2008-08-05 2019-06-05 시온 파워 코퍼레이션 Application of force in electrochemical cells
JP2010205479A (en) * 2009-03-02 2010-09-16 Toyota Motor Corp All-solid battery employing power compact
WO2010107499A3 (en) * 2009-03-19 2011-02-24 Sion Power Corporation Cathode for lithium battery
EP2409349A2 (en) * 2009-03-19 2012-01-25 Sion Power Corporation Cathode for lithium battery
EP2409349A4 (en) * 2009-03-19 2013-05-01 Sion Power Corp Cathode for lithium battery
WO2010107499A2 (en) * 2009-03-19 2010-09-23 Sion Power Corporation Cathode for lithium battery
EP2471130B1 (en) * 2009-08-28 2019-12-04 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US9419274B2 (en) 2009-08-28 2016-08-16 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US9005809B2 (en) 2009-08-28 2015-04-14 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US11456459B2 (en) 2011-06-17 2022-09-27 Sion Power Corporation Plating technique for electrode
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
US9040197B2 (en) 2011-10-13 2015-05-26 Sion Power Corporation Electrode structure and method for making the same
US9077041B2 (en) 2012-02-14 2015-07-07 Sion Power Corporation Electrode structure for electrochemical cell
US9577267B2 (en) 2012-12-19 2017-02-21 Sion Power Corporation Electrode structure and method for making same
CN105493334A (en) * 2013-09-30 2016-04-13 三洋电机株式会社 Flat non-aqueous electrolyte secondary cell and group of cells using same
JPWO2015045400A1 (en) * 2013-09-30 2017-03-09 三洋電機株式会社 Flat type non-aqueous electrolyte secondary battery and assembled battery using the same
WO2015045400A1 (en) * 2013-09-30 2015-04-02 三洋電機株式会社 Flat non-aqueous electrolyte secondary cell and group of cells using same
US10319988B2 (en) 2014-05-01 2019-06-11 Sion Power Corporation Electrode fabrication methods and associated systems and articles
JPWO2017038041A1 (en) * 2015-08-28 2018-06-14 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
WO2017038041A1 (en) * 2015-08-28 2017-03-09 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
CN107925125A (en) * 2015-08-28 2018-04-17 松下知识产权经营株式会社 Rechargeable nonaqueous electrolytic battery
US10868306B2 (en) 2017-05-19 2020-12-15 Sion Power Corporation Passivating agents for electrochemical cells
US10944094B2 (en) 2017-05-19 2021-03-09 Sion Power Corporation Passivating agents for electrochemical cells
US11784297B2 (en) 2017-05-19 2023-10-10 Sion Power Corporation Passivating agents for electrochemical cells
JP7147157B2 (en) 2017-11-30 2022-10-05 株式会社Gsユアサ Storage element
JP2019102231A (en) * 2017-11-30 2019-06-24 株式会社Gsユアサ Power storage element
US12051829B2 (en) 2019-11-19 2024-07-30 Sion Power Corporation Systems and methods for applying and maintaining compression pressure on electrochemical cells
US11984575B2 (en) 2019-11-19 2024-05-14 Sion Power Corporation Battery alignment, and associated systems and methods
US11791511B2 (en) 2019-11-19 2023-10-17 Sion Power Corporation Thermally insulating compressible components for battery packs
US11824228B2 (en) 2019-11-19 2023-11-21 Sion Power Corporation Compression systems for batteries
US11929523B2 (en) 2019-11-19 2024-03-12 Sion Power Corporation Batteries, and associated systems and methods
US11978917B2 (en) 2019-11-19 2024-05-07 Sion Power Corporation Batteries with components including carbon fiber, and associated systems and methods
US11923495B2 (en) 2020-03-13 2024-03-05 Sion Power Corporation Application of pressure to electrochemical devices including deformable solids, and related systems
WO2023008012A1 (en) * 2021-07-27 2023-02-02 株式会社Gsユアサ Power storage element and power storage device

Similar Documents

Publication Publication Date Title
JP2001093577A (en) Lithium secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US7754381B2 (en) Anode and battery, and manufacturing methods thereof
CN105576279B (en) Lithium secondary battery
JP2004111076A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JPS63121260A (en) Lightweight secondary battery
JP2009164013A (en) Negative electrode, and battery
JP2000340262A (en) Aging treatment method for lithium secondary battery
JP4354723B2 (en) Method for producing graphite particles
JP5406447B2 (en) Method for producing negative electrode active material sheet for lithium ion secondary battery
JP4900994B2 (en) Nonaqueous electrolyte secondary battery
WO2006090607A1 (en) Electric cell
JP2000260479A (en) Lithium ion secondary battery
JP3236400B2 (en) Non-aqueous secondary battery
JP2001283861A (en) Battery electrode and nonaqueous electrolyte battery
JP2002237331A (en) Lithium secondary battery
JP2002128526A (en) Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP4085244B2 (en) Non-aqueous secondary battery
JP4120771B2 (en) Non-aqueous secondary battery
JP2000123835A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery using the same as negative electrode active material
JP2000268878A (en) Lithium ion secondary battery
JP7143943B2 (en) Negative electrode active material, negative electrode and secondary battery
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
JP2001216965A (en) Positive electrode for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929