[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001091646A - Doppler radar device - Google Patents

Doppler radar device

Info

Publication number
JP2001091646A
JP2001091646A JP26870799A JP26870799A JP2001091646A JP 2001091646 A JP2001091646 A JP 2001091646A JP 26870799 A JP26870799 A JP 26870799A JP 26870799 A JP26870799 A JP 26870799A JP 2001091646 A JP2001091646 A JP 2001091646A
Authority
JP
Japan
Prior art keywords
pulse width
doppler
speed calculation
transmission wave
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP26870799A
Other languages
Japanese (ja)
Inventor
Masakazu Wada
将一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26870799A priority Critical patent/JP2001091646A/en
Publication of JP2001091646A publication Critical patent/JP2001091646A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To favorably maintain and improve velocity calculation accuracy even when a pulse width of a transmission wave is shortened. SOLUTION: In a prior system (a), a velocity calculation result from a reception signal is outputted as it is, but in this Doppler radar device (b) and (c), velocity calculations from the reception signal are closely performed and an averaged result of this is used as a Doppler velocity calculation result.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気象防災に資する
ドップラーレーダ装置に関する。
The present invention relates to a Doppler radar device that contributes to weather disaster prevention.

【0002】[0002]

【従来の技術】周知のように、例えば空港におけるダウ
ンバースト・マイクロバースト検出、雷予知におけるセ
ル追尾などの気象防災に資するドップラーレーダ装置に
あっては、一般に距離方向の空間長が250〜1000
mとなっている。送信波のパルス幅は、送信平均電力の
制約から、必要とされる分解能より短くなる。そのた
め、信号処理は送信波の空間長より長い間隔で行ってい
る。
2. Description of the Related Art As is well known, a Doppler radar device which contributes to weather disaster prevention such as down-burst / micro-burst detection at an airport and cell tracking in lightning prediction generally has a spatial length of 250 to 1000 in a distance direction.
m. The pulse width of the transmission wave is shorter than the required resolution due to the restriction on the average transmission power. Therefore, signal processing is performed at intervals longer than the space length of the transmission wave.

【0003】しかしながら、短いパルス幅の送信波から
得られる受信信号はS/N比が低いため、速度算出精度
が悪くなるが、従来ではこの問題に対処する有効な手段
が得られていない。
[0003] However, a received signal obtained from a transmission wave having a short pulse width has a low S / N ratio, so that the speed calculation accuracy is deteriorated. However, no effective means for solving this problem has been conventionally obtained.

【0004】[0004]

【発明が解決しようとする課題】以上述べたように、従
来のドップラーレーダ装置では、特に気象用の場合、送
信平均電力の制約から送信波のパルス幅を短くすること
があるが、これに伴ってS/N比が低くなってしまい、
速度算出精度が悪化するという問題があった。
As described above, in the conventional Doppler radar apparatus, especially in the case of weather, the pulse width of the transmitted wave may be shortened due to the restriction of the average transmission power. And the S / N ratio becomes low,
There was a problem that the speed calculation accuracy deteriorated.

【0005】本発明は、上記の問題を解決し、送信波の
パルス幅を短くしても速度算出精度を良好に維持向上さ
せることのできるドップラーレーダ装置を提供すること
を目的とする。
It is an object of the present invention to provide a Doppler radar apparatus which solves the above-mentioned problem and which can maintain and improve the speed calculation accuracy satisfactorily even if the pulse width of a transmission wave is shortened.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに本発明に係るドップラーレーダ装置は、必要とする
空間分解能よりも短いパルス幅の送信波を送出し、その
反射波の受信信号から必要とする空間分解能より高い密
度でドップラー速度算出を行い、レンジ方式で速度の平
均をとることを特徴とする。
In order to achieve the above object, a Doppler radar device according to the present invention transmits a transmission wave having a pulse width shorter than a required spatial resolution, and transmits a transmission wave having a pulse width shorter than the required spatial resolution. The Doppler velocity is calculated at a density higher than the required spatial resolution, and the average of the velocity is obtained by a range method.

【0007】具体的には、必要とする空間分解能よりも
短いパルス幅の送信波を空間に送出する送信手段と、こ
の送信手段で空間に送出された送信波の反射波を受信す
る受信手段と、この受信手段の出力について、前記送信
波のパルス幅に相当するレンジを速度算出単位として、
必要とする空間分解能分の速度算出結果を平均処理する
信号処理装置とを具備することを特徴とする。
Specifically, a transmitting means for transmitting a transmission wave having a pulse width shorter than a required spatial resolution to a space, and a receiving means for receiving a reflected wave of the transmission wave transmitted to the space by the transmitting means. For the output of the receiving means, a range corresponding to the pulse width of the transmission wave as a speed calculation unit,
A signal processing device for averaging the speed calculation results for the required spatial resolution.

【0008】すなわち、上記構成によれば、速度算出単
位での演算結果がばらついていても、平均処理によって
均一なデータが得られるようになり、これによってドッ
プラー速度算出結果の精度を向上させることが可能とな
る。
That is, according to the above configuration, even if the calculation result in the speed calculation unit varies, uniform data can be obtained by the averaging process, thereby improving the accuracy of the Doppler speed calculation result. It becomes possible.

【0009】[0009]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0010】図1は本発明に係るドップラーレーダ装置
の構成を示すもので、COHO発振器11で発生される
周波数fi の中間周波信号と局部発振器12で発生され
る周波数fLo の局部発振信号が混合器13でミキシン
グされて周波数f0 の送信信号が生成され、送信機14
に送られる。この送信機14に入力された送信信号は電
力増幅器141で電力増幅された後、クライストロンあ
るいはマグネトロンによる変調器142に送り込まれ、
高圧変調回路143からの繰り返し送信パルスに基づい
てパルス化される。このようにして送信機13で生成さ
れた送信パルス信号は、サーキュレータ15を介して空
中線装置16に供給され、空間に送出される。
FIG. 1 shows a configuration of a Doppler radar apparatus according to the present invention, in which an intermediate frequency signal having a frequency fi generated by a COHO oscillator 11 and a local oscillation signal having a frequency fLo generated by a local oscillator 12 are mixed. 13 to generate a transmission signal having a frequency f0.
Sent to The transmission signal input to the transmitter 14 is power-amplified by a power amplifier 141, and then sent to a klystron or magnetron modulator 142.
It is pulsed based on the repetitive transmission pulse from the high voltage modulation circuit 143. The transmission pulse signal generated by the transmitter 13 in this way is supplied to the antenna device 16 via the circulator 15 and sent out to space.

【0011】上記空中線装置16から送出された周波数
f0 の送信波は、目標(雨粒等)に当たって戻ってくる
が、目標の移動によりドップラー周波数fd を伴ってい
る。
The transmission wave of the frequency f0 transmitted from the antenna device 16 returns upon hitting a target (raindrops or the like), but is accompanied by the Doppler frequency fd due to the movement of the target.

【0012】空中線装置16で受けた受信信号(周波数
fr =f0 +fd )は、サーキュレータ15を介して高
周波増幅器17で増幅され、混合器18で局部発振信号
とミキシングされて中間周波に変換され(周波数fi +
fd )、中間周波数増幅器19で増幅された後、混合器
20、21にて、位相検波器22により互いに90°の
位相差が与えられた中間周波数信号(fi )と混合され
ることで直交検波されて信号処理装置23に送られる。
信号処理装置25は、受信中において、直交検波信号か
らビデオ信号を生成し、ドップラー速度を求めて雨量換
算処理を行うものである。
The received signal (frequency fr = f0 + fd) received by the antenna device 16 is amplified by the high-frequency amplifier 17 via the circulator 15, mixed with the local oscillation signal by the mixer 18, and converted into an intermediate frequency (frequency). fi +
fd), after being amplified by the intermediate frequency amplifier 19, mixed by the mixers 20 and 21 with the intermediate frequency signals (fi) having a phase difference of 90 ° with each other by the phase detector 22 to perform quadrature detection. The signal is sent to the signal processing device 23.
The signal processing device 25 generates a video signal from the quadrature detection signal during reception, obtains a Doppler speed, and performs a rainfall conversion process.

【0013】上記構成において、本発明の特徴となる信
号処理装置23の処理内容を説明する。
The processing contents of the signal processing device 23 which characterizes the present invention in the above configuration will be described.

【0014】前述のように、短いパルス幅の送信波から
得られる受信信号は、S/N比が低く、ドップラー速度
算出精度が悪いという問題がある。しかしながら、パル
ス幅が短いということは、言い換えれば空間長が短いこ
とになり、これは処理方式を改善することにより利点と
なり得る。本発明は、この点に着目し、データの間引き
を行わず、パルス幅の空間長単位でドップラー速度を算
出し、これを平均することにより精度向上を図ることを
特徴とする。
As described above, a received signal obtained from a transmission wave having a short pulse width has a problem that the S / N ratio is low and the Doppler velocity calculation accuracy is poor. However, a shorter pulse width translates into a shorter space length, which can be an advantage by improving the processing scheme. Focusing on this point, the present invention is characterized in that the data is not thinned out, the Doppler velocity is calculated in units of the space length of the pulse width, and the accuracy is improved by averaging the Doppler velocity.

【0015】本発明と従来のドップラー速度算出方式の
処理ブロック図を図2に示す。図2において、(a)の
レンジ平均なしの場合が従来の算出方式であり、レンジ
平均を行う(b)、(c)の方式が本発明である。
FIG. 2 is a processing block diagram of the present invention and a conventional Doppler velocity calculation method. In FIG. 2, the case of (a) without range averaging is a conventional calculation method, and the methods of (b) and (c) for performing range averaging are the present invention.

【0016】従来の方式では、受信信号からの速度算出
結果をそのまま出力していたが、本発明では受信信号か
らの速度算出を密に行い、これを平均した結果をドップ
ラー速度算出結果とする。
In the conventional method, the speed calculation result from the received signal is output as it is. However, in the present invention, the speed calculation from the received signal is performed densely, and the averaged result is used as the Doppler speed calculation result.

【0017】さらに図3を参照して具体的に説明する。A specific description will be given with reference to FIG.

【0018】図3は送信パルス幅に対するドップラー速
度算出単位について、従来方式と本発明の方式を比較し
た場合の一例を示すものである。
FIG. 3 shows an example of a comparison between the conventional system and the system of the present invention with respect to the Doppler velocity calculation unit with respect to the transmission pulse width.

【0019】図3において、(a)はクライストロンタ
イプの送信管を用いる場合の従来方式である。この場
合、電力効率が高いため、送信平均電力の制約がそれ程
なく、受信信号強度を高くするためにパルス幅を長くす
ることが可能である。このため、送信パルス幅を2μs
とした場合、速度算出単位は2μs(距離分解能300
m)かそれ以上である。
FIG. 3A shows a conventional system in which a klystron type transmission tube is used. In this case, since the power efficiency is high, the transmission average power is not so limited, and the pulse width can be increased to increase the received signal strength. Therefore, the transmission pulse width is 2 μs
, The speed calculation unit is 2 μs (distance resolution 300
m) or more.

【0020】図3(b)はマグネトロンタイプの送信管
を用いる場合の従来方式である。この場合、送信電力の
制約から0.5μsのパルス幅で送信を行うが、速度算
出単位は速度算出単位は2μs(距離分解能300m)
かそれ以上であり、0.5μs単位でデータが得られて
も、データは間引くことになる。
FIG. 3B shows a conventional system in which a magnetron type transmission tube is used. In this case, transmission is performed with a pulse width of 0.5 μs due to transmission power restrictions, but the speed calculation unit is 2 μs (distance resolution 300 m).
Or more, and even if data is obtained in units of 0.5 μs, the data will be thinned out.

【0021】図3(c)は本発明の方式であり、送信パ
ルス幅を0.5μsとし、0.5μsを速度算出単位と
し、図3(d)に示すように、4レンジを一組として平
均処理を行う。この結果、速度算出単位での演算結果が
ばらついていても、平均処理によって均一なデータが得
られるようになり、これによってドップラー速度算出結
果の精度を向上させることができる。
FIG. 3C shows the method of the present invention, in which the transmission pulse width is 0.5 μs, the speed calculation unit is 0.5 μs, and as shown in FIG. Perform averaging. As a result, even if the calculation result in the speed calculation unit varies, uniform data can be obtained by the averaging process, whereby the accuracy of the Doppler speed calculation result can be improved.

【0022】図4に示す条件のもとで、計算機シミュレ
ーションによりドップラー速度算出精度を算出した結果
を図5に示す。尚、図5において、レンジ平均数に対す
る速度算出精度(真値からの偏差)は次式の関係となっ
ている。 Sd(m)=Sd(1)/√m ここで、Sd(m)はmレンジ平均したときの速度算出
精度[m/s]、Sd(1)はレンジ平均しないときの
速度算出精度[m/s]、mはレンジ平均数である。
FIG. 5 shows the result of calculating the Doppler velocity calculation accuracy by computer simulation under the conditions shown in FIG. In FIG. 5, the speed calculation accuracy (deviation from the true value) with respect to the average number of ranges has the following relationship. Sd (m) = Sd (1) / √m Here, Sd (m) is the speed calculation accuracy [m / s] when averaging the m range, and Sd (1) is the speed calculation accuracy [m when the range averaging is not performed. / S] and m is the average number of ranges.

【0023】上記の演算式が成立する理由は、ドップラ
ーレーダにより算出される速度の確率分布が、真値を中
心とした正規分布となるためである。このように、距離
方向で密にドップラー速度を算出し、レンジ平均を行う
ことにより、速度算出精度が向上する。
The reason why the above equation is satisfied is that the probability distribution of the velocity calculated by the Doppler radar is a normal distribution centered on the true value. As described above, the Doppler speed is calculated densely in the distance direction and the range averaging is performed, thereby improving the speed calculation accuracy.

【0024】したがって、上記構成によれば、送信波の
パルス幅を短くしても、速度算出精度を良好に維持向上
させることができる。特に、送信管にマグネトロンを用
いた場合でも、クライストロンと同等またはそれ以上の
速度算出精度が得られるようになる。
Therefore, according to the above configuration, even if the pulse width of the transmission wave is shortened, the speed calculation accuracy can be maintained and improved satisfactorily. In particular, even when a magnetron is used for the transmission tube, speed calculation accuracy equal to or higher than that of a klystron can be obtained.

【0025】[0025]

【発明の効果】以上のように本発明によれば、送信波の
パルス幅を短くしても、速度算出精度を良好に維持向上
させることのできるドップラーレーダ装置を提供するこ
とができる。
As described above, according to the present invention, it is possible to provide a Doppler radar device which can maintain and improve the speed calculation accuracy satisfactorily even if the pulse width of the transmission wave is shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るドップラーレーダ装
置の構成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of a Doppler radar device according to an embodiment of the present invention.

【図2】本発明と従来のドップラー速度算出方式を比較
して示す処理ブロック図。
FIG. 2 is a processing block diagram showing a comparison between the present invention and a conventional Doppler velocity calculation method.

【図3】送信パルス幅に対するドップラー速度算出単位
について、従来方式と本発明の方式を比較した場合の一
例を示す図。
FIG. 3 is a diagram showing an example of a comparison between a conventional method and a method according to the present invention with respect to a Doppler velocity calculation unit with respect to a transmission pulse width.

【図4】計算機シミュレーションによりドップラー速度
算出精度を算出する際の条件を示す図。
FIG. 4 is a diagram showing conditions for calculating Doppler velocity calculation accuracy by computer simulation.

【図5】図4に示す条件のもとで計算機シミュレーショ
ンによりドップラー速度算出精度を算出した結果の一例
を示す図。
FIG. 5 is a view showing an example of a result of calculating Doppler velocity calculation accuracy by computer simulation under the conditions shown in FIG. 4;

【符号の説明】[Explanation of symbols]

11…COHO発振器 12…局部発振器 13…混合器 14…送信機 141…電力増幅器 142…変調器 143…高圧変調回路 15…サーキュレータ 16…空中線装置 17…高周波増幅器 18…混合器 19…中間周波増幅器 20…混合器 21…混合器 22…位相検波器 23…信号処理装置 DESCRIPTION OF SYMBOLS 11 ... COHO oscillator 12 ... Local oscillator 13 ... Mixer 14 ... Transmitter 141 ... Power amplifier 142 ... Modulator 143 ... High voltage modulation circuit 15 ... Circulator 16 ... Antenna device 17 ... High frequency amplifier 18 ... Mixer 19 ... Intermediate frequency amplifier 20 ... Mixer 21 ... Mixer 22 ... Phase detector 23 ... Signal processing device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】必要とする空間分解能よりも短いパルス幅
の送信波を送出し、その反射波の受信信号から必要とす
る空間分解能より高い密度でドップラー速度算出を行
い、レンジ方式で速度の平均をとることを特徴とするド
ップラーレーダ装置。
1. A transmission wave having a pulse width shorter than a required spatial resolution is transmitted, a Doppler velocity is calculated at a density higher than the required spatial resolution from a received signal of the reflected wave, and the average of the velocity is obtained by a range method. A Doppler radar device.
【請求項2】必要とする空間分解能よりも短いパルス幅
の送信波を空間に送出する送信手段と、 この送信手段で空間に送出された送信波の反射波を受信
する受信手段と、 この受信手段の出力について、前記送信波のパルス幅に
相当するレンジを速度算出単位として、必要とする空間
分解能分の速度算出結果を平均処理する信号処理装置と
を具備することを特徴とするドップラーレーダ装置。
2. A transmitting means for transmitting a transmission wave having a pulse width shorter than a required spatial resolution to a space, a receiving means for receiving a reflected wave of the transmission wave transmitted to the space by the transmitting means, A Doppler radar device comprising: a signal processing device that averages a speed calculation result for a required spatial resolution using a range corresponding to a pulse width of the transmission wave as a speed calculation unit for an output of the means. .
JP26870799A 1999-09-22 1999-09-22 Doppler radar device Abandoned JP2001091646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26870799A JP2001091646A (en) 1999-09-22 1999-09-22 Doppler radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26870799A JP2001091646A (en) 1999-09-22 1999-09-22 Doppler radar device

Publications (1)

Publication Number Publication Date
JP2001091646A true JP2001091646A (en) 2001-04-06

Family

ID=17462262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26870799A Abandoned JP2001091646A (en) 1999-09-22 1999-09-22 Doppler radar device

Country Status (1)

Country Link
JP (1) JP2001091646A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232642A (en) * 2007-03-16 2008-10-02 Mitsubishi Electric Corp Radar device
JP2014066548A (en) * 2012-09-25 2014-04-17 Mitsubishi Electric Corp Laser radar device
CN106842192A (en) * 2017-01-14 2017-06-13 石家庄铁道大学 A kind of Ballast track disease automatic detection recognition methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232642A (en) * 2007-03-16 2008-10-02 Mitsubishi Electric Corp Radar device
JP2014066548A (en) * 2012-09-25 2014-04-17 Mitsubishi Electric Corp Laser radar device
CN106842192A (en) * 2017-01-14 2017-06-13 石家庄铁道大学 A kind of Ballast track disease automatic detection recognition methods
CN106842192B (en) * 2017-01-14 2019-05-10 石家庄铁道大学 A kind of automatic detection recognition method of Ballast track disease

Similar Documents

Publication Publication Date Title
US20190004167A1 (en) Range Resolution in FMCW Radars
US8031106B2 (en) Object ranging
US6646587B2 (en) Doppler radar apparatus
JP3988571B2 (en) Radar equipment
US7786927B2 (en) Radar, radio frequency sensor, and radar detection method
US8410976B2 (en) Frequency-modulated interrupted continuous wave radar using pulses derived from a frequency-modulated signal in which the rate of frequency change increases at the boundary of a pulse repetition interval
JP2009121826A (en) Electronic scanning type radar device
JPH11133144A (en) Fm-cw radar device
JP2004151022A (en) Fmcw radar device
JPH0672920B2 (en) Radar equipment
JPH01116475A (en) Fm-cw radar
JP3552206B2 (en) Doppler radar equipment
JP2001091646A (en) Doppler radar device
JP2003130944A (en) On-vehicle radar device
JP3620459B2 (en) Radar equipment
JP3303862B2 (en) Pulse compression radar device
JP3500629B2 (en) DBF radar device
JP3482870B2 (en) FM-CW radar device
Li et al. Frequency reference error analysis for bistatic sar
JP2007225319A (en) Pulse radar system
JP3252514B2 (en) Airborne radar equipment
JPH11281729A (en) Beam switched radar apparatus
JP2000171556A (en) Radar apparatus for vehicle
JP2001091643A (en) Dual polarization type doppler radar device
JPH11183613A (en) Radar apparatus for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040621