[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001087789A - Method and apparatus for treating organic waste water - Google Patents

Method and apparatus for treating organic waste water

Info

Publication number
JP2001087789A
JP2001087789A JP26896099A JP26896099A JP2001087789A JP 2001087789 A JP2001087789 A JP 2001087789A JP 26896099 A JP26896099 A JP 26896099A JP 26896099 A JP26896099 A JP 26896099A JP 2001087789 A JP2001087789 A JP 2001087789A
Authority
JP
Japan
Prior art keywords
sludge
reaction tank
alkali
tank
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26896099A
Other languages
Japanese (ja)
Other versions
JP3877262B2 (en
Inventor
甬生 ▲葛▼
Yousei Katsura
Toshihiro Tanaka
俊博 田中
Akira Watanabe
昭 渡辺
Kiyomi Arakawa
清美 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP26896099A priority Critical patent/JP3877262B2/en
Publication of JP2001087789A publication Critical patent/JP2001087789A/en
Application granted granted Critical
Publication of JP3877262B2 publication Critical patent/JP3877262B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating waste water which increases consumption rate of alkali when solubilized by alkali and improves the decreasing effect on the volume of sludge. SOLUTION: In this method for treating organic waste water 1, the apparatus for treating activated sludge has a biological reaction vessel 7 and a sedimentation basin 11 and a part of the activated sludge in the biological reaction vessel 7 is extracted from the sedimentation basin 11 or the biological reaction vessel 7 and is supplied to two or more alkali reaction vessels 13 and 17 disposed in series. In the first alkali reaction vessel 13, the amount of alkali agent to be added is controlled so as to be pH 10.5-11.5, in the second and succeeding alkali reaction vessels 17, the amount of sludge to be supplied is controlled so as to be pH 8.0-10.5 and the sludge treated in the final alkali reaction vessel is returned to a controlling vessel 2 at the preceding step to the biological reaction vessel or the biological reaction vessel 7. The amount of the activated sludge to be supplied to the alkali reaction vessel is preferably made to be 5-20% of the amount of the sludge in the biological reaction vessel 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性廃水の処理
に係り、特に、有機性工業廃水や生活排水などの有機性
廃水を活性汚泥処理する際に生じる余剰汚泥を減容化す
ることができる処理方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the treatment of organic wastewater, and more particularly to reducing the volume of excess sludge generated when treating organic wastewater such as organic industrial wastewater or domestic wastewater with activated sludge. A possible processing method and apparatus.

【0002】[0002]

【従来の技術】従来、活性汚泥による廃水処理では、処
理に伴なう余剰汚泥の処理処分法としては、引き抜き、
濃縮、脱水、焼却等の工程を得て系外に排出しなければ
ならない。その費用がかなり莫大なものであり、全体の
ランニングコスト増大を招いていた。更に、汚泥脱水処
理においても、適切な薬注率等の管理に伴なうメンテナ
ンスの煩雑さも残る。最近、活性汚泥処理と組み合わせ
た汚泥減容化処理として、余剰汚泥量以上の汚泥を沈殿
池又は生物反応曝気槽から引き抜き、オゾンを注入する
別個のオゾン反応槽に導入して処理し、オゾン処理を受
けた汚泥を、再び生物反応曝気槽へ返送すると、曝気槽
でオゾン処理汚泥の一部が生物処理によって分解するこ
とが知られている(特開平6−206088号公報)。
また、アルカリ添加による汚泥可溶化処理方法として
は、返送汚泥の一部を別個のアルカリ添加の処理槽に返
送し、汚泥の可溶化処理を行った後、中和することなく
曝気槽に返送する方法が知られている(特公平6−61
550号公報)。
2. Description of the Related Art Conventionally, in the treatment of wastewater with activated sludge, methods for treating and disposing of excess sludge accompanying the treatment include drawing,
Processes such as concentration, dehydration, and incineration must be obtained and discharged outside the system. The cost was rather enormous, leading to an increase in overall running costs. Furthermore, even in the sludge dewatering treatment, the complexity of maintenance associated with management of an appropriate chemical injection rate and the like remains. Recently, as sludge volume reduction treatment combined with activated sludge treatment, sludge with an excess amount of excess sludge is withdrawn from a sedimentation basin or biological reaction aeration tank, introduced into a separate ozone reaction tank into which ozone is injected, and treated. It is known that when the sludge thus received is returned to the biological reaction aeration tank again, a part of the ozone-treated sludge is decomposed by the biological treatment in the aeration tank (Japanese Patent Application Laid-Open No. 6-2060888).
Further, as a method of solubilizing sludge by adding alkali, a part of returned sludge is returned to a separate alkali treatment tank, and after solubilizing sludge, returned to an aeration tank without neutralization. The method is known (Japanese Patent Publication 6-61)
550).

【0003】しかし、オゾン注入による汚泥可溶化処理
では、新たにオゾンガス発生器の設置が必要なだけでな
く、排オゾン処理の必要も生じる。また、アルカリ添加
による汚泥可溶化処理では、アルカリ反応槽のpHが過
度に高いとアルカリ処理汚泥の曝気槽での分解が不十分
となり、処理水質の悪化、pH上昇及び減容化効果の低
下を招く。また、アルカリ反応槽が1段のみの場合、添
加アルカリ剤中の汚泥可溶化に寄与するアルカリ消費率
が低下し、アルカリ処理汚泥の液化量が少なくなり、汚
泥減容化効果が低下するといった問題点が残る。
However, in the process of solubilizing sludge by injecting ozone, not only is it necessary to newly install an ozone gas generator, but also it becomes necessary to perform ozone discharge treatment. In addition, in the sludge solubilization treatment by adding an alkali, if the pH of the alkali reaction tank is excessively high, the decomposition of the alkali-treated sludge in the aeration tank becomes insufficient, and the deterioration of the treated water quality, the increase in pH and the decrease in the volume reduction effect are reduced. Invite. In addition, when only one alkali reaction tank is used, the alkali consumption rate contributing to the solubilization of the sludge in the added alkali agent is reduced, the amount of liquefied alkali-treated sludge is reduced, and the sludge volume reduction effect is reduced. Dots remain.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決し、アルカリで可溶化する際のアルカ
リ消費率を上げて、汚泥減溶化効果を向上させた有機性
廃水の処理方法と装置を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and increases the alkali consumption rate when solubilizing with alkali, thereby improving the sludge solubilization effect of organic wastewater. It is an object to provide a method and an apparatus.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、生物反応槽及び沈殿池を有する活性汚
泥処理装置で有機性廃水を処理する方法において、前記
生物反応槽の活性汚泥の一部を沈殿池又は生物反応槽か
ら引き抜き、直列に配置した2つ以上のアルカリ反応槽
に供給し、第1アルカリ反応槽は、pHが10.5〜1
1.5となるようにアルカリ剤の添加量を制御し、第2
アルカリ反応槽以降は、pHが8.0〜10.5となる
ように汚泥の供給量を制御すると共に、最終アルカリ反
応槽の処理汚泥を生物反応槽の前段調整槽又は生物反応
槽に返送することとしたものである。前記処理方法にお
いて、アルカリ反応槽に供給する活性汚泥量は、生物反
応槽汚泥量の5〜20%とするのがよい。
According to the present invention, there is provided a method for treating organic wastewater in an activated sludge treatment apparatus having a biological reaction tank and a sedimentation pond, comprising the steps of: Is withdrawn from a sedimentation basin or a biological reaction tank, and supplied to two or more alkaline reaction tanks arranged in series. The first alkaline reaction tank has a pH of 10.5-1.
The amount of the alkali agent added was controlled to 1.5,
After the alkali reaction tank, the supply amount of the sludge is controlled so that the pH becomes 8.0 to 10.5, and the treated sludge in the final alkali reaction tank is returned to the pre-adjustment tank or the biological reaction tank of the biological reaction tank. It was decided that. In the treatment method, the amount of activated sludge supplied to the alkaline reaction tank is preferably set to 5 to 20% of the amount of sludge in the biological reaction tank.

【0006】また、本発明では、原水調整槽と、生物反
応槽と、沈殿池と、該生物反応槽及び/又は沈殿池から
の活性汚泥を処理する直列に配置した2つ以上のアルカ
リ反応槽とを有する有機性廃水を活性汚泥処理する処理
装置において、前記生物反応槽及び/又は沈殿池から抜
き出した活性汚泥を前記各アルカリ反応槽に供給する導
入経路を設け、前記第1アルカリ反応槽にはアルカリ剤
を添加してpHを10.5〜11.5に調整する調整手
段を有し、前記第2アルカリ反応槽以降の反応槽にはp
Hを8.0〜10.5となるように前記汚泥の供給量を
制御する制御手段を有すると共に、最終アルカリ反応槽
の処理汚泥を前記原水調整槽又は生物反応槽に返送する
経路を設けたことを特徴とする有機性廃水の処理装置と
したものである。
Further, in the present invention, a raw water regulating tank, a biological reaction tank, a sedimentation pond, and two or more alkaline reaction tanks arranged in series for treating activated sludge from the biological reaction tank and / or the sedimentation pond. In the treatment apparatus for treating activated organic sludge having activated sludge having the following, an introduction route for supplying activated sludge extracted from the biological reaction tank and / or the sedimentation basin to each of the alkaline reaction tanks is provided, and the first alkali reaction tank is provided with: Has an adjusting means for adjusting the pH to 10.5 to 11.5 by adding an alkali agent, and the reaction tanks after the second alkali reaction tank have p.
A control means for controlling the supply amount of the sludge so that H becomes 8.0 to 10.5 is provided, and a route for returning the treated sludge of the final alkaline reaction tank to the raw water adjusting tank or the biological reaction tank is provided. An organic wastewater treatment apparatus characterized in that:

【0007】[0007]

【発明の実施の形態】本発明によれば、生物反応槽及び
沈殿池より構成する活性汚泥処理装置において、沈殿池
又は生物反応槽より活性汚泥の一部を第1アルカリ反応
槽に供給し、該槽のpHが10.5〜11.5となるよ
うにアルカリ剤を添加すると、第1アルカリ反応槽内に
おいて、OH-濃度の高い状態で汚泥中の有機物が比較
的短時間内で効果的に加水分解され、低分子化すること
によって、汚泥の液化効果が促進される。なお、第1ア
ルカリ反応槽においてpHを11.5以上にすると、活
性汚泥中の微生物が死滅してしまう。さらに、第1アル
カリ反応槽を経た処理液を第2アルカリ反応槽に供給
し、第2以降のアルカリ反応槽のpHが8.0〜10.
5となるように汚泥を供給し、第1アルカリ反応槽で残
留するOH-が、新たに供給される活性汚泥と接触し
て、汚泥中の有機物を加水分解し、汚泥の液化量がさら
に増加する。同様にして、第2以降のアルカリ反応槽の
混合液を後段のアルカリ反応槽に供給し、残留OH-
新たに導入される活性汚泥と接触混合して、汚泥中の有
機物を加水分解し、汚泥の液化量がさらに増加する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, in an activated sludge treatment apparatus comprising a biological reaction tank and a sedimentation tank, a part of the activated sludge is supplied from the sedimentation tank or the biological reaction tank to the first alkaline reaction tank, When an alkali agent is added so that the pH of the tank becomes 10.5 to 11.5, the organic matter in the sludge can be effectively reduced within a relatively short time in the first alkali reaction tank at a high OH - concentration. Is hydrolyzed to lower molecular weight, thereby promoting the liquefaction effect of sludge. If the pH is set to 11.5 or more in the first alkaline reaction tank, microorganisms in the activated sludge will be killed. Further, the processing solution passed through the first alkali reaction tank is supplied to the second alkali reaction tank, and the pH of the second and subsequent alkali reaction tanks is adjusted to 8.0 to 10.
Sludge is supplied to be 5, remains in the first alkaline reaction tank OH - is in contact with the activated sludge to be newly supplied, the organic matter in the sludge is hydrolysis, increase liquefaction of sludge more I do. Similarly, the mixed solution of the second and subsequent alkaline reaction tanks is supplied to the subsequent alkaline reaction tank, and the residual OH - is contacted and mixed with the newly introduced activated sludge to hydrolyze the organic matter in the sludge, The amount of sludge liquefied further increases.

【0008】この結果、汚泥の液化に寄与するアルカリ
の消費率が高く、処理汚泥のpHを従来より低く抑える
ことができる。上記のようにして得られたアルカリ処理
汚泥を、例えば生物反応槽前段の原水調整槽に供給する
ことによって、調整槽の嫌気状態を促進し、流入原水及
びアルカリ処理汚泥の液化有機物の酸醗酵が促進される
のみでなく、調整槽のpH変動が少なく、酸醗酵に伴な
う必要アルカリ度の不足を、アルカリ処理汚泥のアルカ
リ度により補給することができる。さらに、アルカリ処
理汚泥の液化有機物が、生物反応槽においての分解効率
を向上し、処理水への残留がほとんどなく、処理水質を
良好に維持することができる。
As a result, the consumption rate of the alkali contributing to the liquefaction of the sludge is high, and the pH of the treated sludge can be kept lower than before. By supplying the alkali-treated sludge obtained as described above to, for example, a raw water adjusting tank in the former stage of the biological reaction tank, the anaerobic state of the adjusting tank is promoted, and acid fermentation of the liquefied organic matter of the inflowing raw water and the alkali-treated sludge is performed. In addition to being promoted, the pH fluctuation in the adjusting tank is small, and the lack of required alkalinity accompanying acid fermentation can be replenished by the alkalinity of the alkali-treated sludge. Furthermore, the liquefied organic matter of the alkali-treated sludge improves the decomposition efficiency in the biological reaction tank, hardly remains in the treated water, and can maintain the quality of the treated water well.

【0009】また、アルカリ処理汚泥を生物反応槽に供
給しても、該アルカリ処理汚泥中の残留OH-が少な
く、液化有機物の生分解性が高いことから、生物反応槽
のpH上昇がほとんどなく、生物反応槽において液化有
機物が高効率で分解除去される。なお、生物アルカリ処
理汚泥量を生物反応槽全汚泥量の5〜20%とすれば、
液化有機物の増加に伴う生物反応槽への有機物負荷の増
加が少なく、生物反応槽での有機物分解能力が十分維持
されており、原水とアルカリ処理汚泥の液化有機物を効
率よく生物学的に分解除去し、一部をCO2及びH2Oに
分解することで、系内汚泥発生量を抑制することがで
き、処理水質も良好に維持することができる。
Further, even if supply alkaline treated sludge to the biological reaction tank, residual OH of the alkali treatment sludge - is less, because of high biodegradability of the liquefied organic, almost no increase in pH bioreactor In the biological reaction tank, liquefied organic matter is decomposed and removed with high efficiency. In addition, if the amount of the biological alkali-treated sludge is 5 to 20% of the total sludge amount of the biological reaction tank,
The increase in organic matter load on the biological reaction tank due to the increase in liquefied organic matter is small, and the organic matter decomposition ability in the biological reaction tank is sufficiently maintained, and the liquefied organic matter in raw water and alkali-treated sludge is efficiently biologically decomposed and removed. However, by partially decomposing it into CO 2 and H 2 O, the amount of sludge generated in the system can be suppressed, and the quality of treated water can be maintained well.

【0010】次に、本発明を図面を用いて詳細に説明す
る。図1は、本発明の有機性廃水の処理方法の一例を示
すフロー工程図である。図1に示す如く、流入原水1
は、原水調整槽2に一旦導入され、ここに、第2アルカ
リ反応槽17からのアルカリ処理汚泥9も導入され、調
整槽攪拌ポンプ3によって原水と均一混合され、嫌気状
態において原水及びアルカリ処理汚泥中の有機物の酸醗
酵が進行する。酸醗酵に伴なうアルカリ消費に必要なア
ルカリはアルカリ処理汚泥より補給でき、調整槽pHの
変動が少なく、調整槽出口原水4のpHはほぼ中性付近
に維持できる。調整槽出口原水4は、生物反応槽7に導
入され、活性汚泥によって原水中の有機物が分解除去さ
れ、混合液は生物反応槽出口10を経て沈殿池11に導
入されて固液分離され処理水20を得る。
Next, the present invention will be described in detail with reference to the drawings. FIG. 1 is a flowchart showing an example of the method for treating organic wastewater of the present invention. As shown in FIG.
Is once introduced into the raw water adjusting tank 2, into which the alkali-treated sludge 9 from the second alkali reaction tank 17 is also introduced, and is uniformly mixed with the raw water by the adjusting tank stirring pump 3, and in the anaerobic state, the raw water and the alkali-treated sludge are mixed. The acid fermentation of the organic matter inside proceeds. The alkali required for the alkali consumption accompanying the acid fermentation can be replenished from the alkali-treated sludge, the fluctuation of the pH of the adjusting tank is small, and the pH of the raw water 4 at the outlet of the adjusting tank can be maintained at about neutral. The raw water 4 from the regulating tank outlet is introduced into the biological reaction tank 7, the organic matter in the raw water is decomposed and removed by the activated sludge, and the mixed liquid is introduced into the sedimentation basin 11 via the biological reaction tank outlet 10 to be separated into a solid and a liquid. Get 20.

【0011】一方、沈殿池11からの返送汚泥の一部
は、アルカリ反応槽流入汚泥12として第1アルカリ反
応槽13に導入し、第1アルカリ反応槽pH計15がp
H10.5〜11.5となるように、NaOH注入ポン
プ14よりNaOHの注入を行う。第1アルカリ反応槽
13で加水分解を受け、液化した第1アルカリ処理汚泥
16が第2アルカリ反応槽17に導入される。第2アル
カリ反応槽17においては、第2アルカリ反応槽pH計
19が8.0〜10.5となるように、第2アルカリ反
応槽汚泥注入ポンプ18より返送汚泥の注入を行い、第
1アルカリ反応槽の処理汚泥16中に残留するOH-
の反応で汚泥の加水分解が促進され、汚泥の液化がさら
に進行する。第2アルカリ反応槽17より得たアルカリ
処理汚泥9は、原水調整槽2に送られる。
On the other hand, a part of the returned sludge from the sedimentation basin 11 is introduced into the first alkali reaction tank 13 as sludge 12 flowing into the alkali reaction tank, and the pH of the first alkali reaction tank 15 is measured by the pH meter 15.
NaOH is injected from the NaOH injection pump 14 so that H10.5 to 11.5. The first alkali-treated sludge 16 that has undergone hydrolysis in the first alkali reaction tank 13 and is liquefied is introduced into the second alkali reaction tank 17. In the second alkali reaction tank 17, return sludge is injected from the second alkali reaction tank sludge injection pump 18 so that the pH of the second alkali reaction tank pH meter 19 becomes 8.0 to 10.5. OH remaining in the treated sludge 16 in the reactor - the sludge hydrolysis is promoted by reaction with the liquefied sludge proceeds further. The alkali-treated sludge 9 obtained from the second alkali reaction tank 17 is sent to the raw water adjustment tank 2.

【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 図1に示した本発明のフロー工程図に従って処理した。
まず、分離汚泥のアルカリ処理について説明する。ML
SS 11000mg/L、pH7.5、S−M−アル
カリ度が220mg/L、S−CODが15mg/L、
S−BODが5mg/L以下の返送汚泥を第1アルカリ
反応槽へ供給し、NaOHを注入してpH10.8とし
て約2時間処理した結果、第1アルカリ反応槽出口で、
MLSSが9200mg/Lに低下し、一方、S−CO
Dが450mg/L、S−BODが430mg/Lに増
加しており、汚泥中有機物の可溶化が認められた。な
お、S−P−アルカリ度が620mg/L残留し、添加
NaOH中のOH-が十分に消費されていないと認めら
れる。
The present invention will be described below in more detail with reference to examples. Example 1 Processing was performed according to the flow chart of the present invention shown in FIG.
First, the alkali treatment of the separated sludge will be described. ML
SS 11000 mg / L, pH 7.5, SM alkalinity 220 mg / L, S-COD 15 mg / L,
As a result of supplying the returned sludge having an S-BOD of 5 mg / L or less to the first alkali reaction tank and injecting NaOH to adjust the pH to 10.8 and treating for about 2 hours, at the outlet of the first alkali reaction tank,
MLSS dropped to 9200 mg / L, while S-CO
D was increased to 450 mg / L and S-BOD was increased to 430 mg / L, and solubilization of organic matter in sludge was observed. Incidentally, S-P- alkalinity remaining 620 mg / L, OH in the addition NaOH - it is deemed not sufficiently consumed.

【0012】次いで、第1アルカリ反応槽からの処理汚
泥を第2アルカリ反応槽において、NaOHを添加せず
に、返送汚泥を反応槽pHが10以上となるように添加
し、滞留時間2.0時間で処理した。その結果、第2ア
ルカリ反応槽出口で、MLSSが900mg/Lとな
り、流入汚泥に対し約18%低下した。さらに、pHが
9.8に低下し、S−P−アルカリ度が310mg/L
に低下したことから、添加NaOH中のOH-が第2ア
ルカリ反応槽で消費された。これにより、S−CODが
480mg/L、S−BODが520mg/Lとなり、
いずれも第1アルカリ反応槽より増加したことから、汚
泥中有機物の可溶化がさらに進行したものと認められ
る。表1にアルカリ反応槽の処理条件と結果を示す。結
果は、それぞれの反応槽の出口の数値である。
Then, the treated sludge from the first alkali reaction tank is added to the second alkali reaction tank without adding NaOH, and the returned sludge is added so that the pH of the reaction tank becomes 10 or more. Processed in time. As a result, the MLSS was 900 mg / L at the outlet of the second alkali reaction tank, which was about 18% lower than the inflow sludge. Further, the pH was lowered to 9.8 and the SP alkalinity was 310 mg / L.
From what has been reduced to, OH in the addition NaOH - it was consumed in the second alkaline reaction vessel. Thereby, S-COD becomes 480 mg / L, S-BOD becomes 520 mg / L,
In each case, the increase was larger than that in the first alkaline reaction tank, and it is recognized that the solubilization of the organic matter in the sludge was further advanced. Table 1 shows the processing conditions and results of the alkaline reaction tank. The results are the numerical values at the outlet of each reactor.

【0013】[0013]

【表1】 [Table 1]

【0014】次に、原水の調整槽での処理について述べ
る。調整槽に、表3に記載した水質の原水を1000m
3/d、第2アルカリ反応槽からの表1に記載した性状
の処理汚泥100m3/dを流入した。その結果、約1
0時間の滞留時間で、調整槽出口の水質は調整槽入口と
比較すると、pHが9.0から7.1に低下したのに対
し、全有機酸が10mg/Lから150mg/Lに増加
し、調整槽において酸醗酵の進行が認めれた。また、入
口のS−BOD/S−COD比が約1.2であるのに対
し、出口では2.0に上昇したことから、有機物の生分
解性が向上したものと考えられる。
Next, the treatment of the raw water in the adjusting tank will be described. Raw water of the quality described in Table 3
3 / d, 100 m 3 / d of the treated sludge having the properties shown in Table 1 from the second alkaline reaction tank were introduced. As a result, about 1
At a residence time of 0 hours, the water quality at the outlet of the control tank was lower than the pH at the inlet of the control tank from 9.0 to 7.1, while the total organic acid was increased from 10 mg / L to 150 mg / L. The progress of acid fermentation was observed in the adjustment tank. In addition, since the S-BOD / S-COD ratio at the inlet was about 1.2, but increased at the outlet to 2.0, it is considered that the biodegradability of organic matter was improved.

【0015】表2に原水調整槽の条件及び水質変化を示
す。
Table 2 shows the conditions of the raw water regulating tank and changes in water quality.

【表2】 [Table 2]

【0016】次いで、調整槽で嫌気性処理された原水を
生物反応槽で処理した。生物反応槽のBOD汚泥負荷が
0.14kg/kg・d、槽内MLSS 6100mg
/Lの条件下、流入原水BODが約720mg/Lであ
るのに対し、処理水のBODが5.8mg/Lであり、
生物処理が良好であると認められた。表3に生物反応槽
の処理条件及び原水、処理水の水質を示す。
Next, the raw water subjected to the anaerobic treatment in the regulating tank was treated in the biological reaction tank. BOD sludge load of biological reaction tank is 0.14kg / kg · d, MLSS in tank is 6100mg
/ L, the BOD of the influent raw water is about 720 mg / L, whereas the BOD of the treated water is 5.8 mg / L,
The biological treatment was found to be good. Table 3 shows the treatment conditions of the biological reaction tank and the quality of raw water and treated water.

【表3】 [Table 3]

【0017】比較例1 比較例1としてアルカリ反応槽を1槽のみとした処理例
を示す。まず、アルカリ反応槽において、NaOH添加
量及び供給汚泥量を実施例1と同じく、それぞれ、80
kg/dと1000kg/dとし、滞留時間を2.0時
間として処理した場合、流入汚泥MLSSが10200
mg/Lであるのに対し、アルカリ処理汚泥のMLSS
が9700mg/Lであり、わずか4.9%の減少率と
なり、実施例1より13ポイント低くなった。また、S
−COD、S−BODとも実施例1より低く、S−P−
アルカリ度は実施例1より高く、アルカリ処理が有効に
行われていないと認められる。
Comparative Example 1 As Comparative Example 1, a processing example in which only one alkali reaction tank is used is shown. First, in the alkaline reaction tank, the amount of NaOH added and the amount of supplied sludge were 80
kg / d and 1000 kg / d and the residence time was 2.0 hours, the inflow sludge MLSS was 10200
mg / L, MLSS of alkali-treated sludge
Was 9700 mg / L, a reduction rate of only 4.9%, which was 13 points lower than in Example 1. Also, S
-Both COD and S-BOD are lower than Example 1, and SP-
The alkalinity was higher than in Example 1, and it was recognized that the alkali treatment was not effectively performed.

【0018】表4に比較例1のアルカリ反応槽処理条件
と結果を示す。
Table 4 shows the treatment conditions and results of the alkali reaction tank of Comparative Example 1.

【表4】 [Table 4]

【0019】図2に系内の余剰汚泥排出を行わない条件
での系内汚泥量の経過を示す。約2か月間において、実
施例1の系内汚泥量はほぼ一定に維持でき、余剰汚泥の
排出がなくても、系内汚泥量の増加はほとんどなく、ア
ルカリ反応槽を2段とした実施例1のアルカリ注入によ
る汚泥減容効果が顕著であった。一方、比較例1では、
系内汚泥量が処理経過とともに徐々に増加し、余剰汚泥
の引き抜きを行わない場合、2か月経過後の系内汚泥量
が初期の約1.4倍となり、実施例1より汚泥減容効果
が低いと認められる。
FIG. 2 shows the progress of the amount of sludge in the system under the condition that the excess sludge is not discharged in the system. In about two months, the amount of sludge in the system of Example 1 can be maintained almost constant, and even if there is no discharge of excess sludge, there is almost no increase in the amount of sludge in the system, and the example in which the alkali reaction tank is two-staged The sludge volume reduction effect by the alkali injection of No. 1 was remarkable. On the other hand, in Comparative Example 1,
When the amount of sludge in the system gradually increases with the progress of the treatment and the excess sludge is not withdrawn, the amount of sludge in the system after two months has elapsed is about 1.4 times the initial amount, and the sludge volume reduction effect is higher than in Example 1. Is recognized as low.

【0020】比較例2 表5に実施例1と同様な処理フローでアルカリ処理槽の
設定pHが実施例1と異なり、第1槽でpH10.0、
第2槽でpH7.5とした場合の処理結果を示す。
Comparative Example 2 Table 5 shows the same treatment flow as in Example 1 except that the set pH of the alkaline treatment tank was different from that of Example 1.
The processing result when pH is set to 7.5 in the second tank is shown.

【表5】 [Table 5]

【0021】表5に示すように比較例2において、アル
カリ槽に供給する汚泥量を系内全汚泥量の19.2%と
した場合で、NaOH添加量が実施例1と同様の80k
g/dとし、第1アルカリ反応槽への汚泥供給量が15
00kg/d、滞留時間2時間とした。この結果、第1
アルカリ反応槽入口のMLSSが11000mg/Lで
あるのに対し、出口のMLSSが10500mg/Lと
なり、わずか4.5%の低下となり、実施例1より約1
2ポイント低くなった。また、出口のS−CODが18
0mg/L、S−BODが80mg/Lに止まり、実施
例1と比べるとS−CODが270mg/L、S−BO
Dが350mg/L低下し、汚泥の可溶化が不十分であ
ると認められた。第2アルカリ反応槽においても、入口
と出口のMLSSはほとんど変化が見られず、約105
00mg/Lとなった。
As shown in Table 5, in Comparative Example 2, the amount of sludge supplied to the alkaline tank was 19.2% of the total amount of sludge in the system.
g / d, and the amount of sludge supplied to the first alkaline reaction tank is 15
00 kg / d and residence time was 2 hours. As a result, the first
The MLSS at the inlet of the alkali reaction tank was 11,000 mg / L, whereas the MLSS at the outlet was 10500 mg / L, a decrease of only 4.5%, which was about 1% lower than that of Example 1.
Two points lower. The S-COD at the exit is 18
0 mg / L, S-BOD was limited to 80 mg / L, and S-COD was 270 mg / L, S-BO compared to Example 1.
D decreased by 350 mg / L, and it was recognized that the solubilization of sludge was insufficient. Also in the second alkaline reaction tank, the MLSS at the inlet and the outlet was hardly changed,
It became 00 mg / L.

【0022】また、S−COD及びS−BODもそれぞ
れ120mg/Lと52mg/Lとなり、むしろ減少し
た。これは第2アルカリ反応槽に返送汚泥を1000k
g/dを供給し、希釈効果で濃度が減少し、可溶化効果
がまったく認められなかったと考える。比較例2におけ
る系内汚泥量の経過を同時に図2に示す。対照的に比較
例2の系内汚泥量も処理経過と共に徐々に増加し、余剰
汚泥の引き抜きを行わない場合、2か月経過後の系内汚
泥量が初期の約1.4倍となり、実施例1より汚泥減容
効果が低いと認められる。
Also, S-COD and S-BOD were reduced to 120 mg / L and 52 mg / L, respectively, and rather decreased. This is to return the sludge to the second alkaline reaction tank at 1000k.
g / d, the concentration was reduced by the dilution effect, and no solubilizing effect was observed. The progress of the amount of sludge in the system in Comparative Example 2 is also shown in FIG. In contrast, the amount of sludge in the system of Comparative Example 2 also gradually increased with the progress of the treatment, and the amount of sludge in the system after two months passed was about 1.4 times the initial value when the excess sludge was not extracted. It is recognized that the sludge volume reduction effect is lower than in Example 1.

【0023】[0023]

【発明の効果】上述の如く、本発明によれば、生物反応
槽及び沈殿池より構成する活性汚泥処理装置において、
沈殿池又は生物反応槽より活性汚泥の一部を、pHが1
0.5〜11.5となるようにアルカリ剤を添加する第
1アルカリ反応槽に供給し、第1アルカリ反応槽内にお
いて、OH-濃度の高い状態で汚泥へ中の有機物を比較
的短時間内で効果的に加水分解し、低分子化することに
よって、汚泥の液化効果が促進される。さらに、第1ア
ルカリ反応槽を出た処理液を第2アルカリ反応槽に供給
し、第1アルカリ反応槽で残留するOH-が新たに供給
される活性汚泥との接触により、pHを8.0〜10.
5となるようにして汚泥中の有機物を加水分解し、汚泥
の液化量がさらに増加する。同様にして、第2以降のア
ルカリ反応槽混合液を後段のアル力リ反応槽に供給し、
残留OH-が新たに導入される活性汚泥との接触混合に
より、pHを8.0〜10.5となるようにして汚泥中
の有機物を加水分解し、汚泥の液化量がさらに増加す
る。この結果、汚泥の液化に寄与するアルカリの消費率
が高く、処理汚泥のpHを従来より低く抑えることがで
きる。
As described above, according to the present invention, in an activated sludge treatment apparatus comprising a biological reaction tank and a sedimentation tank,
Part of the activated sludge from the sedimentation basin or the biological reaction tank, pH 1
Is supplied to the first alkaline reaction vessel for adding an alkaline agent such that from 0.5 to 11.5, in the first alkaline reaction vessel, OH - relatively short time organic medium to the sludge with high concentration state The liquefaction effect of the sludge is promoted by effectively hydrolyzing and reducing the molecular weight in the inside. Further, the treatment liquid that has left the first alkali reaction tank is supplied to the second alkali reaction tank, and the OH remaining in the first alkali reaction tank is brought into contact with the newly supplied activated sludge to adjust the pH to 8.0. -10.
The organic matter in the sludge is hydrolyzed so as to be 5, and the liquefied amount of the sludge further increases. Similarly, the mixed liquid of the second and subsequent alkaline reaction tanks is supplied to the latter reaction tank,
The residual OH - is mixed with the activated sludge to be newly introduced, and the organic matter in the sludge is hydrolyzed by adjusting the pH to 8.0 to 10.5 to further increase the liquefied amount of the sludge. As a result, the consumption rate of the alkali contributing to the liquefaction of the sludge is high, and the pH of the treated sludge can be kept lower than before.

【0024】上記のようにして得られたアルカリ処理汚
泥を、例えば生物反応槽前段の原水調整槽に供給するこ
とによって、調整槽の嫌気状態を促進し、流入原水及び
アルカリ処理汚泥液化有機物の酸醗酵が促進されるのみ
でなく、調整槽のpH変動が少なく、酸醗酵に伴なう必
要アルカリ度の不足をアルカリ処理汚泥のアルカリ度よ
り補給することができる。さらに、アルカリ処理汚泥の
液化有機物は、生物反応槽において分解効率が向上し、
処理水への残留がほとんどなく、処理水質を良好に維持
することができる。また、アルカリ処理汚泥を同様に生
物反応槽に供給しても、該アルカリ処理汚泥中の残留O
-が少なく、液化有機物の生分解性が高いことから、
生物反応槽はpH上昇がほとんどなく、生物反応槽にお
いて、液化有機物が高効率で分解除去される。なお、生
物アルカリ処理汚泥量を生物反応槽全汚泥量の5〜20
%とすれば、液化有機物の増加に伴う生物反応槽への有
機物負荷の増加が少なく、生物反応槽での有機物分解能
力が十分維持されており、原水とアルカリ処理汚泥の液
化有機物を効率よく生物学的に分解除去でき、一部をC
2及びH2Oに分解することで、系内汚泥発生量を抑制
することができ、処理水質も良好に維持することができ
る。
The alkali-treated sludge obtained as described above is supplied to, for example, a raw water adjusting tank in the former stage of the biological reaction tank, thereby promoting the anaerobic state of the adjusting tank, and inflowing raw water and acid of the alkali-treated sludge liquefied organic matter. Not only the fermentation is promoted, but also the pH fluctuation in the adjusting tank is small, and the lack of required alkalinity accompanying acid fermentation can be replenished from the alkalinity of the alkali-treated sludge. Furthermore, the liquefied organic matter of the alkali-treated sludge has an improved decomposition efficiency in the biological reaction tank,
There is almost no residue in the treated water, and the treated water quality can be maintained well. Further, even if the alkali-treated sludge is similarly supplied to the biological reaction tank, the residual O
Since H - is small and the biodegradability of liquefied organic matter is high,
In the biological reaction tank, there is almost no increase in pH, and in the biological reaction tank, liquefied organic matter is decomposed and removed with high efficiency. In addition, the amount of biological alkali-treated sludge is 5 to 20 times
%, The increase in organic matter load on the biological reaction tank due to the increase in liquefied organic matter is small, the ability to decompose organic matter in the biological reaction tank is sufficiently maintained, and the liquefied organic matter in raw water and alkali-treated sludge can be efficiently converted into biological matter. Can be removed by decomposition
By decomposing into O 2 and H 2 O, the amount of sludge generated in the system can be suppressed, and the quality of treated water can be maintained well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の処理方法の一例を示すフロー工程図。FIG. 1 is a flowchart showing an example of a processing method of the present invention.

【図2】経過日数による系内汚泥量の変化を示すグラ
フ。
FIG. 2 is a graph showing a change in the amount of sludge in the system according to the number of elapsed days.

【符号の説明】[Explanation of symbols]

1:流入原水、2:原水調整槽、3:調整槽攪拌ポン
プ、4:調整槽出口原水、5:返送汚泥、7:生物反応
槽、8:散気ライン、9:第2アルカリ反応槽処理汚
泥、10:生物反応槽出口、11:沈殿池、12:第1
アルカリ反応槽流入汚泥、13:第1アルカリ反応槽、
14:第1アルカリ反応槽NaOH注入ポンプ、15:
第1アルカリ反応槽pH計、16:第1アルカリ反応槽
処理汚泥、17:第2アルカリ反応槽、18:第2アル
カリ反応槽汚泥注入ポンプ、19:第2アルカリ反応槽
pH計、20:処理水
1: Inflow raw water, 2: Raw water adjustment tank, 3: Adjustment tank stirring pump, 4: Adjustment tank outlet raw water, 5: Returned sludge, 7: Biological reaction tank, 8: Aeration line, 9: Treatment in second alkaline reaction tank Sludge, 10: Biological reactor outlet, 11: Sedimentation basin, 12: 1st
Sludge flowing into the alkali reaction tank, 13: first alkali reaction tank,
14: first alkaline reaction tank NaOH injection pump, 15:
First alkali reaction tank pH meter, 16: Sludge treated with first alkali reaction tank, 17: Second alkali reaction tank, 18: Sludge injection pump for second alkali reaction tank, 19: pH meter for second alkali reaction tank, 20: Treatment water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 昭 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 荒川 清美 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D028 AC03 AC09 BC18 BD00 BD11 BD12 BD16 CA00 CD01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akira Watanabe 11-1 Haneda Asahimachi, Ota-ku, Tokyo Inside Ebara Corporation (72) Inventor Kiyomi Arakawa 11-1 Haneda Asahi-cho, Ota-ku, Tokyo EBARA F-term (reference) 4D028 AC03 AC09 BC18 BD00 BD11 BD12 BD16 CA00 CD01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 生物反応槽及び沈殿池を有する活性汚泥
処理装置で有機性廃水を処理する方法において、前記生
物反応槽の活性汚泥の一部を沈殿池又は生物反応槽から
引き抜き、直列に配置した2つ以上のアルカリ反応槽に
供給し、第1アルカリ反応槽は、pHが10.5〜1
1.5となるようにアルカリ剤の添加量を制御し、第2
アルカリ反応槽以降はpHが8.0〜10.5となるよ
うに汚泥の供給量を制御すると共に、最終アルカリ反応
槽の処理汚泥を生物反応槽の前段調整槽又は生物反応槽
に返送することを特徴とする有機性廃水の処理方法。
1. A method for treating organic wastewater in an activated sludge treatment apparatus having a biological reaction tank and a sedimentation pond, wherein a part of the activated sludge in the biological reaction tank is withdrawn from the sedimentation pond or the biological reaction tank and arranged in series. To the two or more alkali reaction tanks, and the first alkali reaction tank has a pH of 10.5 to 1
The amount of the alkali agent added was controlled to 1.5,
Control the supply amount of sludge so that the pH becomes 8.0 to 10.5 after the alkaline reaction tank, and return the treated sludge of the final alkaline reaction tank to the pre-adjustment tank or biological reaction tank of the biological reaction tank. A method for treating organic wastewater.
【請求項2】 前記アルカリ反応槽に供給する活性汚泥
量は、生物反応槽汚泥量の5〜20%であることを特徴
とする請求項1記載の有機性廃水の処理方法。
2. The method according to claim 1, wherein the amount of activated sludge supplied to the alkaline reaction tank is 5 to 20% of the amount of sludge in the biological reaction tank.
【請求項3】 原水調整槽と、生物反応槽と、沈殿池
と、該生物反応槽及び/又は沈殿池からの活性汚泥を処
理する直列に配置した2つ以上のアルカリ反応槽とを有
する有機性廃水を活性汚泥処理する処理装置において、
前記生物反応槽及び/又は沈殿池から抜き出した活性汚
泥を前記各アルカリ反応槽に供給する導入経路を設け、
前記第1アルカリ反応槽にはアルカリ剤を添加してpH
を10.5〜11.5に調整する調整手段を有し、前記
第2アルカリ反応槽以降の反応槽にはpHを8.0〜1
0.5となるように前記汚泥の供給量を制御する制御手
段を有すると共に、最終アルカリ反応槽の処理汚泥を前
記原水調整槽又は生物反応槽に返送する経路を設けたこ
とを特徴とする有機性廃水の処理装置。
3. An organic system comprising a raw water regulating tank, a biological reactor, a sedimentation basin, and two or more alkaline reactors arranged in series for treating activated sludge from the biological reactor and / or the sedimentation basin. In a treatment device for treating activated wastewater with activated sludge,
Providing an introduction path for supplying the activated sludge extracted from the biological reaction tank and / or the sedimentation tank to each of the alkaline reaction tanks,
An alkali agent is added to the first alkali reaction tank to adjust the pH.
Is adjusted to 10.5 to 11.5, and pH is set to 8.0 to 1 in the reaction tanks after the second alkali reaction tank.
An organic means having a control means for controlling the supply amount of the sludge so as to be 0.5 and a path for returning the treated sludge of the final alkaline reaction tank to the raw water adjusting tank or the biological reaction tank. Wastewater treatment equipment.
JP26896099A 1999-09-22 1999-09-22 Organic wastewater treatment method and equipment Expired - Fee Related JP3877262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26896099A JP3877262B2 (en) 1999-09-22 1999-09-22 Organic wastewater treatment method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26896099A JP3877262B2 (en) 1999-09-22 1999-09-22 Organic wastewater treatment method and equipment

Publications (2)

Publication Number Publication Date
JP2001087789A true JP2001087789A (en) 2001-04-03
JP3877262B2 JP3877262B2 (en) 2007-02-07

Family

ID=17465699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26896099A Expired - Fee Related JP3877262B2 (en) 1999-09-22 1999-09-22 Organic wastewater treatment method and equipment

Country Status (1)

Country Link
JP (1) JP3877262B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316182A (en) * 2001-04-23 2002-10-29 Kurita Water Ind Ltd Method for treating organic waste liquid
JP2005186022A (en) * 2003-12-26 2005-07-14 Japan Organo Co Ltd Treatment apparatus and treatment method for organic waste water
US20130040200A1 (en) * 2011-08-09 2013-02-14 Nitto Denko Corporation Lithium secondary battery and anode therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316182A (en) * 2001-04-23 2002-10-29 Kurita Water Ind Ltd Method for treating organic waste liquid
JP2005186022A (en) * 2003-12-26 2005-07-14 Japan Organo Co Ltd Treatment apparatus and treatment method for organic waste water
JP4627403B2 (en) * 2003-12-26 2011-02-09 オルガノ株式会社 Organic wastewater treatment apparatus and treatment method
US20130040200A1 (en) * 2011-08-09 2013-02-14 Nitto Denko Corporation Lithium secondary battery and anode therefor

Also Published As

Publication number Publication date
JP3877262B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
EP1976804A1 (en) Ozonation of wastewater for reduction of sludge or foam and bulking control
JPH05277486A (en) Anaerobic treatment of organic waste water
KR100769997B1 (en) Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System)
JP4404976B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP3591086B2 (en) Biological treatment of organic wastewater
JP2001087789A (en) Method and apparatus for treating organic waste water
JP3900796B2 (en) Method and apparatus for treating organic wastewater
EP1260486A1 (en) Method for treating organic wastewater
JP2009531159A (en) Excess sludge digestion method and equipment
JP3483081B2 (en) Organic wastewater treatment method and treatment device
JPH115096A (en) Treatment of waste water containing hydrogen peroxide
JP3750923B2 (en) Method for adjusting activated sludge, method and apparatus for treating organic wastewater using the same
KR20070018192A (en) Processing method of high thickness organic sewage by sequencing and Batch type AB SAcksang-Busick-System
JPH08103786A (en) Aerobic treating method for organic waste liquid
JP2007209889A (en) Surplus sludge treatment method
JP2001029983A (en) Method and apparatus for treating food wastewater
JPH11347588A (en) Methane fermentation treatment apparatus and method
JP4581174B2 (en) Biological treatment method
JPH11333494A (en) Method and apparatus for biological dentrification of waste water
JP3961246B2 (en) Method and apparatus for treating organic wastewater
JP2003010877A (en) Activated sludge treatment method for sewage and its apparatus
JP3400622B2 (en) Method and apparatus for treating organic sewage
JPS584599B2 (en) How to digest organic sludge
JP2000202485A (en) Treatment of organic sewage
WO2023095399A1 (en) Biological treatment method and biological treatment system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees