JP2001076761A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary batteryInfo
- Publication number
- JP2001076761A JP2001076761A JP25546099A JP25546099A JP2001076761A JP 2001076761 A JP2001076761 A JP 2001076761A JP 25546099 A JP25546099 A JP 25546099A JP 25546099 A JP25546099 A JP 25546099A JP 2001076761 A JP2001076761 A JP 2001076761A
- Authority
- JP
- Japan
- Prior art keywords
- electrode sheet
- hole
- holes
- negative electrode
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Gas Exhaust Devices For Batteries (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解液二次電
池に関する。TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.
【0002】[0002]
【従来の技術】近年、ノートパソコン、携帯電話等の小
型電子機器が急速に普及し、モバイルコンピューティン
グ化が進行しつつある。こうした電子機器の駆動用電源
として二次電池が用いられている。かかる二次電池とし
ては、リチウム複合金属酸化物を含む正極と、リチウム
イオンを吸蔵放出する炭素質物を負極とする非水電解液
二次電池が開発され、5Wh以下の容量を持つ小型電池
として、多く使用されている。2. Description of the Related Art In recent years, small electronic devices such as notebook personal computers and mobile phones have rapidly spread, and mobile computing has been progressing. A secondary battery is used as a power supply for driving such an electronic device. As such a secondary battery, a non-aqueous electrolyte secondary battery having a positive electrode containing a lithium composite metal oxide and a carbonaceous material that absorbs and releases lithium ions as a negative electrode has been developed. As a small battery having a capacity of 5 Wh or less, Many are used.
【0003】前記非水電解液二次電池では、正負極共に
活物質として粉体状のものを用い、それと導電剤等を混
合し、結着剤を用いて集電体上にシート状に成形して電
極としている。前記電極シートをセパレータを介在させ
て積層することで電極群を構成し容器に収め、非水溶媒
にリチウム塩を電解質として溶解させた非水電解液を加
えて構成されている。In the non-aqueous electrolyte secondary battery, both the positive and negative electrodes use a powdery active material, mix it with a conductive agent, and form a sheet on a current collector using a binder. And the electrodes. The electrode sheet is laminated with a separator interposed therebetween to form an electrode group, housed in a container, and added with a non-aqueous electrolyte in which a lithium salt is dissolved as an electrolyte in a non-aqueous solvent.
【0004】現在では、従来から使用されている携帯用
小型電子機器だけでなく、より多様な用途に使用できる
ことが求められている。それに伴い、高容量化がますま
す強く要請されるとともに、出力特性向上もまた強く要
求されるようになっている。[0004] At present, it is demanded that the device can be used not only for portable small electronic devices conventionally used but also for various uses. Along with this, a demand for higher capacity has been more and more strongly demanded, and an improvement in output characteristics has also been strongly demanded.
【0005】電池容量の増大のためには活物質のリチウ
ムイオン吸蔵放出量の増加やセパレータの膜厚を薄くす
ることなどが試みられてきている。それらと並行して電
池サイズ大型化の技術も必要とされるようになってい
る。出力特性の向上のためには、電池サイズの大型化や
電極の薄層化などが検討されているが、製造上の困難に
加えてサイクル特性などの低下や安全信頼性の低下が障
害となっている。[0005] In order to increase the battery capacity, attempts have been made to increase the amount of lithium ions absorbed and released by the active material and to reduce the thickness of the separator. At the same time, a technique for increasing the size of the battery is required. In order to improve the output characteristics, the use of larger batteries and thinner electrodes are being studied.However, in addition to difficulties in manufacturing, the deterioration of cycle characteristics and the like and the reduction of safety reliability are obstacles. ing.
【0006】[0006]
【発明が解決しようとする課題】高出力特性の要求に対
して、大電流使用時における電解液不足が、出力特性向
上における障害のひとつとなっていた。また、現在実用
化されている非水電解液二次電池は、5Wh程度の容量
を体積16500mm2程度の円筒缶に収めたものが主
流であり、さらなる大型化をはかろうとすると、電極が
大きくなり電解液の含浸性が低下して容量、サイクル特
性などの諸特性を下げるという問題があった。また、内
部発熱が生ずる異常時において、高出力化では発熱速度
が大きく、サイズの大型きな電池では熱が内部に蓄積さ
れやすい。結果として、いずれにおいても、熱反応が暴
走反応に結びつきやすく安全信頼性を損なってしまうと
いう問題があった。本発明は、これらの問題点を解決す
るためになされたものであり、高出力特性を有する非水
電解液二次電池、および安全信頼性が高く大きなサイズ
の非水電解液二次電池を提供することを目的とする。In response to the demand for high output characteristics, shortage of the electrolyte when a large current is used has been one of the obstacles in improving the output characteristics. Further, the nonaqueous electrolyte secondary batteries which are currently commercialized is the mainstream that matches the capacity of about 5Wh volume 16500Mm 2 about cylindrical can, when it is intended to further increase in size, the electrode is large Thus, there has been a problem that the impregnating property of the electrolytic solution is lowered and various properties such as capacity and cycle characteristics are lowered. In addition, at the time of an abnormality in which internal heat generation occurs, the heat generation speed is high when the output is increased, and heat is easily accumulated inside a large-sized battery. As a result, in each case, there has been a problem that the thermal reaction easily leads to the runaway reaction and the safety reliability is impaired. The present invention has been made to solve these problems, and provides a non-aqueous electrolyte secondary battery having high output characteristics and a large size non-aqueous electrolyte secondary battery with high safety reliability. The purpose is to do.
【0007】[0007]
【課題を解決するための手段】本発明に係わる非水電解
液二次電池は、集電体と活物質層からなる正極シート、
リチウムを吸蔵放出することのできる炭素質物を活物質
として含む活物質層と集電体からなる負極シートを、セ
パレータを介してスパイラル状に捲回した電極群を有
し、リチウム塩を溶解した非水溶媒中に前記電極群を浸
漬した非水電解液二次電池であって、前記正極シート、
前記負極シートのどちらにも活物質層と集電体を貫通す
る孔を有し、前記セパレータを介して前記正極シート上
の孔と前記負極シート上の孔が重なる位置にあることを
特徴とする。孔が連続することにより、電解液が円筒型
の電極群の上下だけでなく側面からも孔を通じて含浸す
ることができるようになり、電解液注液時に短時間で均
一な含浸が得られるだけでなく、放電時に迅速に電解液
が電極群外から供給されるようになるために、高い出力
特性が得られるようになる。また、電池群が発熱したと
きに、この孔を通じて排熱することで、電池の安全信頼
性を高めることができる。発熱時に生じるガスもこの孔
を通じて電極群外へ排出できるので、電極群内に高圧部
ができて電池容器が爆発するこごが回避できる。A nonaqueous electrolyte secondary battery according to the present invention comprises a positive electrode sheet comprising a current collector and an active material layer;
A negative electrode sheet comprising an active material layer containing a carbonaceous material capable of inserting and extracting lithium as an active material and a current collector has an electrode group spirally wound with a separator interposed therebetween. A nonaqueous electrolyte secondary battery in which the electrode group is immersed in an aqueous solvent, wherein the positive electrode sheet,
Both of the negative electrode sheets have holes penetrating the active material layer and the current collector, and the holes on the positive electrode sheet and the holes on the negative electrode sheet overlap with each other via the separator. . By continuous holes, the electrolyte can be impregnated not only from above and below the cylindrical electrode group but also from the side through the holes, and only a uniform impregnation can be obtained in a short time when the electrolyte is injected. In addition, since the electrolyte is quickly supplied from outside the electrode group at the time of discharge, high output characteristics can be obtained. In addition, when the battery group generates heat, heat is exhausted through this hole, thereby improving the safety and reliability of the battery. Gas generated at the time of heat generation can also be discharged to the outside of the electrode group through this hole, so that it is possible to prevent the battery container from exploding due to the formation of a high-pressure part in the electrode group.
【0008】前記特徴に加えて、捲回した電極群におい
て、正極シート上の孔と負極シート上の孔を、放射線上
に最内周から最外周まで連続して重ねて設けることよ
り、電解液の含浸がより容易となるとともに、内周部で
の熱やガスも排出できるようになるため、より大きな効
果が得られる。In addition to the above features, in the wound electrode group, the holes on the positive electrode sheet and the holes on the negative electrode sheet are continuously provided on the radiation from the innermost circumference to the outermost circumference, so that the electrolyte Is more easily impregnated, and heat and gas in the inner peripheral portion can be discharged, so that a greater effect can be obtained.
【0009】さらに、正極シート上の孔と負極シート上
の孔に挟まれたセパレータが、前記電極シート上の孔よ
り小さい孔を、前記電極シート上の孔と重なる位置に設
けることより、電解液、熱、ガスの通りが改善され、よ
り大きな効果を得ることができる。Further, the separator sandwiched between the hole on the positive electrode sheet and the hole on the negative electrode sheet provides a hole smaller than the hole on the electrode sheet at a position overlapping with the hole on the electrode sheet. , Heat and gas flow are improved, and a greater effect can be obtained.
【0010】また、電極群の放射線上に電極シート孔を
複数有し、電極群を収める容器の前記放射線上位置に、
内圧感知型安全装置を取り付けることで、より高い安全
信頼性を得ることができる。これは、内部ショート等に
より発熱してガスが発生した時に、ガスをこの連続孔を
通じて電極群に排出するだけでなく、この異常圧力を連
続孔からガスが抜ける位置に設置した内圧感知型安全装
置で感知することで、ガスを電池外へ排出したり、充放
電回路を遮断したりすることが可能となる。これにより
安全信頼性をさらに高めることができる。[0010] Further, a plurality of electrode sheet holes are provided on the radiation of the electrode group, and a container for accommodating the electrode group is provided at the position on the radiation.
By installing the internal pressure sensing type safety device, higher safety reliability can be obtained. This is an internal pressure sensing type safety device installed not only to discharge gas to the electrode group through this continuous hole when gas is generated due to heat generation due to internal short circuit etc., but also to install this abnormal pressure at a position where gas escapes from the continuous hole. , It is possible to discharge gas out of the battery and to shut off the charge / discharge circuit. Thereby, safety reliability can be further improved.
【0011】[0011]
【発明の実施の形態】以下に本発明に係わる非水電解液
二次電池を図1を参照して詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous electrolyte secondary battery according to the present invention will be described below in detail with reference to FIG.
【0012】例えばステンレスからなる有底円筒状の容
器1は、底部に絶縁板2が配置されている。電極群3は
前記容器1内に収納されている。前記電極群3は、正極
活物質層を集電体上に備え孔を有する正極シート4、セ
パレータ5及び負極活物質層を集電体上に備え孔を有す
る負極シート6をこの順序で積層した帯状物をスパイラ
ル状に捲回した構造になっている。スパイラル上に捲回
した構造をもつ電極群は、そのまま円筒型電池として用
いても良く、それを押し潰して角型断面を有する容器に
入れて用いることもできる。A bottomed cylindrical container 1 made of, for example, stainless steel has an insulating plate 2 disposed at the bottom. The electrode group 3 is housed in the container 1. The electrode group 3 was formed by laminating a positive electrode sheet 4 having a positive electrode active material layer on a current collector and having a hole, a separator 5 and a negative electrode sheet 6 having a negative electrode active material layer on a current collector and having a hole in this order. It has a structure in which a strip is spirally wound. The electrode group having a structure wound on a spiral may be used as it is as a cylindrical battery, or may be crushed and used in a container having a square cross section.
【0013】前記容器1内には、非水電解液が収納され
ている。前記容器1と正極端子を隔てる絶縁リング7
は、前記容器1内の前記電極群3の上方に載置されてい
る。封口板8は、前記容器1の上部開口部に配置され、
かつ前記上部開口部付近を内側にかしめ加工することに
より前記封口板8は前記容器1に液密に固定されてい
る。安全弁は前記電極群3と前記封口板8の間に配置さ
れている。正極端子9は、前記封口板8の中央にはめ込
まれている。正極リード10の一端は、前記正極4に、
他端は電流遮断弁12を介して前記正極端子9にそれぞ
れ接続されている。前記負極6は、負極リード13を介
して負極端子である前記容器1に接続されている。電極
群3が有する連続孔14もしくは連続貫通孔15の延長
上に内圧感知型の安全装置16を設置することもでき
る。前記内圧感知型安全装置としては、規定内圧以上と
なったときに開いて内部ガスを電池缶外へ放出する安全
弁、規定内圧以上時に電池外部との電気回路を切断する
電流遮断弁、内圧上昇時に電極反応を停止もしくは反応
速度を減速させる物質を放出する電池不活性化装置等を
用いることができる。The container 1 contains a non-aqueous electrolyte. Insulating ring 7 separating container 1 and positive electrode terminal
Is placed above the electrode group 3 in the container 1. The sealing plate 8 is disposed at an upper opening of the container 1,
The sealing plate 8 is liquid-tightly fixed to the container 1 by caulking the vicinity of the upper opening inward. The safety valve is arranged between the electrode group 3 and the sealing plate 8. The positive electrode terminal 9 is fitted in the center of the sealing plate 8. One end of the positive electrode lead 10 is connected to the positive electrode 4,
The other end is connected to the positive terminal 9 via a current cutoff valve 12. The negative electrode 6 is connected to the container 1 serving as a negative electrode terminal via a negative electrode lead 13. An internal pressure sensing type safety device 16 can be installed on the extension of the continuous hole 14 or the continuous through hole 15 of the electrode group 3. As the internal pressure sensing type safety device, a safety valve that opens when the internal pressure is equal to or higher than a specified internal pressure and discharges internal gas to the outside of the battery can, a current cutoff valve that cuts off an electric circuit with the outside of the battery when the internal pressure is equal to or higher than a specified internal pressure, A battery deactivator that stops the electrode reaction or releases a substance that reduces the reaction rate can be used.
【0014】次に、前記正極シート4、前記負極シート
6、前記セパレータ5、前記非水電解液および前記電極
群3の構成について具体的に説明する。 1)正極シートの構成 前記正極シート4は、活物質、導電材および結着剤等を
あわせてシート状に成形した正極シートを集電体の片面
もしくは両面に備えた電極シートである。前記活物質は
リチウムを吸蔵放出し、前記負極6より貴な電位を示す
物質であればよいが、例えばLiNiO2、LiCoO
2、LiNi1−xCoxO2(0<x≦1)などのリ
チウム複合金属酸化物の粉体を用いることができる。Next, the structure of the positive electrode sheet 4, the negative electrode sheet 6, the separator 5, the non-aqueous electrolyte, and the electrode group 3 will be specifically described. 1) Configuration of Positive Electrode Sheet The positive electrode sheet 4 is an electrode sheet provided on one or both sides of a current collector with a positive electrode sheet formed into a sheet shape by combining an active material, a conductive material, a binder, and the like. The active material may be any material that absorbs and releases lithium and has a higher potential than the negative electrode 6. For example, LiNiO 2 , LiCoO 2
2 , a powder of a lithium composite metal oxide such as LiNi 1-x Co x O 2 (0 <x ≦ 1) can be used.
【0015】前記導電剤は、特に限定されるものではな
いが、アセチレンブラック、各種形状の天然および人工
黒鉛、コークス等を用いる事ができる。The conductive agent is not particularly limited, but acetylene black, natural and artificial graphite of various shapes, coke, and the like can be used.
【0016】前記結着剤としては、ポリテトラフルオロ
エチレン(PTFE)、ポリフッ化ビニリデン(PVd
F)、エチレン−プロピレン−ジエン共重合体、スチレ
ン−ブタジエンゴム等を用いることができる。Examples of the binder include polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVd).
F), ethylene-propylene-diene copolymer, styrene-butadiene rubber and the like can be used.
【0017】前記集電体としては、例えばアルミニウム
箔、ステンレス箔、ニッケル箔等を用いることができ
る。As the current collector, for example, an aluminum foil, a stainless steel foil, a nickel foil or the like can be used.
【0018】前記正極活物質と前記導電剤は、前記結着
剤を加えて混練によりシート化することができる。ある
いは、トルエン、N−メチルピロリドン(NMP)等の
溶媒に溶解、懸濁してスラリー化した後、前記集電体上
に塗布、乾燥してシート化することも可能である。その
後、必要に応じてロールプレス等を用いた圧延を行うこ
とによって正極シートの密度を制御することができる。
その後、正極シート上に穿孔機等を用いて孔を開けるこ
とができる。孔は正極活物質層と集電体の両方を貫通す
るようにあける。穿孔は、正極シート上の位置と負極シ
ート上の位置をより容易に合わせるために、電極群の捲
回時に行なうこともできる。孔の形状は任意の形を用い
ることができるが、円形もしくは楕円形が好ましい。円
形や楕円形であると電極シートの機械的強度を損なうこ
とが少ないためである。さらに、楕円形を電極シートの
長尺方向すなわち捲回時の接線方向に楕円の長半径方向
を合わせて形成することがより好ましい。これは、電極
群製造時および電池使用時にかかる力が、電極シートの
長尺方向であるため、この方向に長直径を持つ楕円形の
孔とすることで、電極シートの強度減を最小にして大き
な面積を有する孔を設けることができるためである。孔
を設ける位置および孔の数は、特に限定されるものでは
なく、電極の面積、捲回された後の積層数に応じて適宜
決めることができる。孔の大きさは、前記非水電解液が
通り抜けられる大きさであれば良いが、外接円で0.5
mm以上5mm以下の直径とすることが好ましい。0.
5mm以下の直径であると非水電解液の通り抜けが困難
であり、5mm以上では電極シートの機械的強度を損な
うとともにその分の活物質を減ずるため電池全体での電
気容量を減少させる。 2)負極シートの構成 前記負極シート6は、負極活物質および結着剤等をあわ
せてシート状に成形した負極シートを集電体の片面もし
くは両面に備えた電極シートである前記負極活物質はリ
チウムを吸蔵放出することのできる炭素質材料である。
前記炭素質材料は特に限定されるものではないが、原料
として、石油や石炭などのコークスやピッチ、天然ガス
や低級炭化水素などの低分子量有機化合物、ポリアクリ
ロニトリル、フェノール樹脂等の合成高分子などが上げ
られ、これらを700℃から3000℃で焼成して炭化
あるいは黒鉛化して炭素質材料としたものを用いること
ができる。形状としてはりん片状、繊維状、球状など各
種形状のものが可能である。The positive electrode active material and the conductive agent can be formed into a sheet by kneading with the addition of the binder. Alternatively, after dissolving and suspending in a solvent such as toluene or N-methylpyrrolidone (NMP) to form a slurry, the slurry may be coated on the current collector and dried to form a sheet. Thereafter, if necessary, the density of the positive electrode sheet can be controlled by performing rolling using a roll press or the like.
Thereafter, holes can be formed on the positive electrode sheet using a punch or the like. The hole is formed so as to penetrate both the positive electrode active material layer and the current collector. Perforation can also be performed at the time of winding the electrode group in order to more easily match the position on the positive electrode sheet with the position on the negative electrode sheet. The shape of the holes may be any shape, but is preferably circular or elliptical. This is because a circular or elliptical shape is less likely to impair the mechanical strength of the electrode sheet. Further, it is more preferable that the elliptical shape is formed by aligning the major radius direction of the ellipse with the longitudinal direction of the electrode sheet, that is, the tangential direction at the time of winding. This is because the force applied during the manufacture of the electrode group and during the use of the battery is in the long direction of the electrode sheet, so that the elliptical hole having a long diameter in this direction is used to minimize the reduction in the strength of the electrode sheet. This is because a hole having a large area can be provided. The position where the holes are provided and the number of holes are not particularly limited, and can be appropriately determined according to the area of the electrode and the number of layers after winding. The size of the hole may be any size as long as the non-aqueous electrolyte can pass through the hole.
The diameter is preferably not less than 5 mm and not more than 5 mm. 0.
If the diameter is 5 mm or less, it is difficult to pass through the non-aqueous electrolyte. If the diameter is 5 mm or more, the mechanical strength of the electrode sheet is impaired and the active material is reduced by that amount, so that the electric capacity of the entire battery is reduced. 2) Configuration of Negative Electrode Sheet The negative electrode sheet 6 is an electrode sheet provided on one or both sides of a current collector with a negative electrode sheet formed into a sheet shape by combining a negative electrode active material, a binder, and the like. It is a carbonaceous material that can store and release lithium.
The carbonaceous material is not particularly limited, but as a raw material, coke or pitch such as petroleum or coal, a low molecular weight organic compound such as natural gas or lower hydrocarbon, polyacrylonitrile, a synthetic polymer such as a phenol resin, and the like. These can be fired at 700 ° C. to 3000 ° C. and carbonized or graphitized to obtain a carbonaceous material. Various shapes such as flakes, fibers, and spheres are possible.
【0019】前記結着剤としては、ポリテトラフルオロ
エチレン(PTFE)、ポリフッ化ビニリデン(PVd
F)、スチレン−ブタジエンゴム、カルボキシメチルセ
ルロース(CMC)等を用いることができる。Examples of the binder include polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVd).
F), styrene-butadiene rubber, carboxymethyl cellulose (CMC) and the like can be used.
【0020】前記集電体としては、例えば銅箔、ステン
レス箔、ニッケル箔等を用いることができる。As the current collector, for example, a copper foil, a stainless steel foil, a nickel foil or the like can be used.
【0021】前記負極活物質と前記結着剤は、水、N−
メチルピロリドン(NMP)等の溶媒に溶解、懸濁して
スラリー化した後、前記集電体上に塗布、乾燥してシー
ト化することができる。その後、必要に応じてロールプ
レス等を用いた圧延を行うことによって負極シートの密
度を制御することができる。その後、負極シート上に穿
孔機等を用いて孔を開けることができる。孔は負極活物
質層と集電体の両方を貫通するようにあける。穿孔は、
正極シート上の位置と負極シート上の位置をより容易に
合わせるため、電極群の捲回時に行なうこともできる。
孔の形状は任意の形を用いることができ、正極シート上
の孔と同一形状である必要はない。形状は、円形もしく
は楕円形が好ましい。円形や楕円形であると電極シート
の機械的強度を損なうことが少ないためである。さら
に、楕円形を電極シートの長尺方向すなわち捲回時の接
線方向に楕円の長半径方向に合わせて形成することがよ
り好ましい。これは、電極群製造時および電池使用時に
かかる力が、電極シートの長尺方向であるため、この方
向に長直径を持つ楕円形の孔とすることで、電極シート
の強度減を最小にして大面積を有する孔を設けることが
できるためである。孔を設ける位置および孔の数は、特
に限定されるものではなく、電極の面積、捲回された後
の積層数に応じて適宜決めることができる。穴の大きさ
は、前記非水電解液が通り抜けられる大きさであれば良
いが、外接円で0.5mm以上5mm以下の直径とする
ことが好ましい。0.5mm以下の直径であると非水電
解液の通り抜けが困難であり、5mm以上では電極シー
トの機械的強度を損なうとともにその分の活物質を減ず
るため電池全体での電気容量を減少させる。 3)セパレータ 前記セパレータ5は、例えば合成樹脂製不織布、ポリエ
チレン多孔質フィルム、ポリプロピレン多孔質フィルム
から形成されている。セパレータ上にも孔を設けること
ができる。前記孔は、正極シートおよび負極シートの孔
と捲回時に重なる位置に設けることにより、電解液の出
入りがより容易になる。前記セパレータ上の孔は、正負
電極の接触を避けるために、少なくとも正負どちらかの
電極上に設けられた孔より小さいものでなければならな
い。 4)非水電解液の構成 前記非水電解液は、少なくとも一種類以上の非水溶媒
と、リチウムを含む少なくとも一種類以上の電解質から
構成される。前記非水溶媒として、エチレンカーボネー
ト、プロピレンカーボネートなどの環状カーボネート、
γ―ブチロラクトン等の環状エステル、エチルメチルカ
ーボネート、ジメチルカーボネート、ジエチルカーボネ
ートなどの鎖状カーボネート、テトラメチルスルフォラ
ン、N−メチルピロリドンなどを単独あるいは複数種混
合して用いることができる。The negative electrode active material and the binder are water, N-
After dissolving and suspending in a solvent such as methylpyrrolidone (NMP) to form a slurry, it can be coated on the current collector and dried to form a sheet. Thereafter, if necessary, the density of the negative electrode sheet can be controlled by performing rolling using a roll press or the like. Thereafter, holes can be formed on the negative electrode sheet using a punch or the like. The hole is formed so as to penetrate both the negative electrode active material layer and the current collector. The perforation is
In order to more easily match the position on the positive electrode sheet with the position on the negative electrode sheet, it can be performed at the time of winding the electrode group.
The shape of the hole may be any shape, and need not be the same as the shape of the hole on the positive electrode sheet. The shape is preferably circular or elliptical. This is because a circular or elliptical shape is less likely to impair the mechanical strength of the electrode sheet. Further, it is more preferable that the elliptical shape is formed in accordance with the major radius direction of the ellipse in the longitudinal direction of the electrode sheet, that is, the tangential direction at the time of winding. This is because the force applied during the manufacture of the electrode group and during the use of the battery is in the long direction of the electrode sheet, so that the elliptical hole having a long diameter in this direction is used to minimize the reduction in the strength of the electrode sheet. This is because a hole having a large area can be provided. The position where the holes are provided and the number of holes are not particularly limited, and can be appropriately determined according to the area of the electrode and the number of layers after winding. The size of the hole may be any size as long as the non-aqueous electrolyte can pass through the hole, and preferably has a diameter of 0.5 mm or more and 5 mm or less as a circumscribed circle. If the diameter is less than 0.5 mm, it is difficult to pass through the non-aqueous electrolyte. If the diameter is more than 5 mm, the mechanical strength of the electrode sheet is impaired and the active material is reduced by that amount, so that the electric capacity of the entire battery is reduced. 3) Separator The separator 5 is formed of, for example, a synthetic resin nonwoven fabric, a polyethylene porous film, or a polypropylene porous film. Holes can also be provided on the separator. By providing the hole at a position overlapping with the holes of the positive electrode sheet and the negative electrode sheet at the time of winding, entry and exit of the electrolyte can be more easily performed. The holes on the separator must be smaller than holes provided on at least one of the positive and negative electrodes in order to avoid contact between the positive and negative electrodes. 4) Configuration of Nonaqueous Electrolyte The nonaqueous electrolyte is composed of at least one or more nonaqueous solvents and at least one or more electrolytes containing lithium. As the non-aqueous solvent, ethylene carbonate, cyclic carbonate such as propylene carbonate,
Cyclic esters such as γ-butyrolactone, chain carbonates such as ethyl methyl carbonate, dimethyl carbonate and diethyl carbonate, tetramethylsulfolane, N-methylpyrrolidone and the like can be used alone or in combination.
【0022】前記電解質として、例えば、過塩素酸リチ
ウム(LiClO4)、六フッ化リン酸リチウム(Li
PF6)、ホウフッ化リチウム(LiBF4)、ビスト
リフルオロメチルスルホニルイミドリチウム(LiN
(CF3SO2)2)などのリチウム塩が挙げられる。Examples of the electrolyte include lithium perchlorate (LiClO 4 ) and lithium hexafluorophosphate (Li
PF 6 ), lithium borofluoride (LiBF 4 ), lithium bistrifluoromethylsulfonylimide (LiN
(CF3SO 2) 2) is a lithium salt and the like.
【0023】以上に加えて、各種界面活性剤等の添加物
を加えることもできる。 5)電極群 前記電極群3は、前記正極シート4、前記負極シート6
を、前記セパレータ5を介してスパイラル状に捲回して
なるもので、前記正極シート上に設けられた孔と前記負
極シート上に設けられた孔の位置が重なるようにしなけ
ればならない。また、前記セパレータ上にも孔を設ける
場合は正負極シート上の孔に重なる位置に設ける。連続
孔14に図示したように、捲回後に孔は少なくとも一組
の正負極シートで、位置が重なるようにする必要があ
る。また、図1の連続貫通孔15に示したように、円筒
状の電極群の中心から外周まで、貫通孔を形成するよう
に孔の位置を合わせることで、より大きな効果を得るこ
ともできる。In addition to the above, additives such as various surfactants can be added. 5) Electrode group The electrode group 3 includes the positive electrode sheet 4 and the negative electrode sheet 6.
Is wound spirally with the separator 5 interposed therebetween, and the positions of the holes provided on the positive electrode sheet and the holes provided on the negative electrode sheet must be overlapped. When a hole is also provided on the separator, the hole is provided at a position overlapping with the hole on the positive / negative electrode sheet. As shown in the continuous hole 14, the hole needs to be at least one set of positive and negative electrode sheets after winding so that the positions overlap. Further, as shown in the continuous through hole 15 in FIG. 1, a greater effect can be obtained by adjusting the positions of the holes so as to form the through holes from the center to the outer periphery of the cylindrical electrode group.
【0024】以上説明した本発明に係わる非水電解液二
次電池は、捲回時に重なる位置に設けられた孔を有する
ため、電池のサイクル特性、出力特性の向上を実現する
ことができる。それは以下の理由によるものである。電
池製造時の電解液注液において、従来は円筒状の電極群
の上下からしか電解液の浸入路がなかったが、連続孔に
より側面からも電解液の含浸が可能となるために短時間
に均一かつ十分な量の電解液を電極群中に与えることが
できるためである。製造後の充放電反応時には、正負活
物質の体積変化により電極群からは電解液が出入りする
が、この電解液の出入りが連続孔により容易となるた
め、電解液不足による電池性能の劣化が押さえられてサ
イクル特性が向上するとともに、出力特性の向上も得ら
れる。前記電極シート上の孔に加えて、前記孔に挟まれ
た部分のセパレータにも孔を設けることにより、前述の
電解液の出入り、含浸をより容易とすることができる。
この場合は、正負極間の電気的接触によるショートを回
避するため、セパレータ上の孔は少なくとも正負いずれ
かの電極シート上の孔より小さくしなければならない。The non-aqueous electrolyte secondary battery according to the present invention described above has holes provided at overlapping positions during winding, so that the cycle characteristics and output characteristics of the battery can be improved. It is for the following reasons. In the electrolyte injection at the time of battery production, conventionally, there was an infiltration path of the electrolyte only from above and below the cylindrical electrode group. This is because a uniform and sufficient amount of the electrolytic solution can be provided in the electrode group. During the charge / discharge reaction after production, the electrolyte solution enters and exits from the electrode group due to the change in volume of the positive and negative active materials, but the continuous holes facilitate the entry and exit of the electrolyte solution. As a result, the cycle characteristics are improved, and the output characteristics are also improved. By providing holes in the separators between the holes in addition to the holes on the electrode sheet, it is possible to facilitate entry and exit and impregnation of the electrolyte solution described above.
In this case, in order to avoid a short circuit due to electrical contact between the positive and negative electrodes, the holes on the separator must be at least smaller than the holes on either the positive or negative electrode sheet.
【0025】サイクル特性、出力特性の向上に加えて、
安全信頼性の向上も得られる。これは特に、容器側面の
電極群の連続孔もしくは貫通連続孔に対応する位置に内
圧感知型安全装置を備えた場合に著しい効果が得られ
る。それは以下の理由によるものである。内部における
ショート、外部からの加熱、電池が押し潰された場合な
どにおいて、電池内では活物質の異常反応が生じて発熱
および発熱に伴うガス発生が起こる。従来において、発
生したガスは電池群内の電極に並行な方向しか移動する
ことができず、電極群の端部以外で異常反応が生じた場
合は容器上部に設置した安全弁11や電流遮断弁12で
は動作が間に合わないことがあった。特に電池容器が2
つに分断されるように変形押し潰しされた場合、安全弁
や電流遮断弁を持たない電池缶底部側ではガスの放出が
できず危険であった。2500mAh以上を持つ大容量
電池では、こうした場合に電池内異常反応が連鎖化して
暴走・発火の可能性があった。これに対して、電極群が
連続孔を持つことで電極群内のガスが熱とともに容易に
電池群外へ放出されて熱の局所集集中を低減し、安全信
頼性を高めることができる。さらに、連続孔の電池群外
への出口にあたる位置の容器側面に内圧感知型の安全装
置を設けることにより、ガス発生にともなう内圧上昇を
感知して、弁開放による容器外へのガス放出、回路の遮
断、反応抑制物質の放出等の処置を行うことができ、安
全信頼性を格段に高めることができる。 (実施例)以下、本発明の実施例を詳細に説明する。 (実施例1)平均粒径5μmのリチウムコバルト酸化物
(LixCoO2(0.8≦x≦1))粉末91重量
%、アセチレンブラック3重量%、グラファイト3重量
%、ポリフッ化ビニリデン3重量%をN−メチルピロリ
ドンに加えて混合してスラリーとし、このスラリーを2
5μのアルミニウム箔からなる集電体の両面に塗布後、
熱風乾燥してN−メチルピロリドンを除去し、プレス、
カットすることにより正極シートを作成した。長さ11
50mm、幅55mm、塗布量は片面当たり240g/
m2で、プレス後の厚さは150μmであった。前記正
極シートの幅方向でシート端からそれぞれ20mmの位
置、長さ方向では50mmごとに直径2mmの円形の孔
を合計で44個、穿孔機を用いて設けた。In addition to improving cycle characteristics and output characteristics,
Improved safety reliability is also obtained. This is particularly effective when the internal pressure sensing type safety device is provided at a position corresponding to the continuous hole or the continuous through hole of the electrode group on the side surface of the container. It is for the following reasons. When the battery is short-circuited inside, externally heated, or the battery is crushed, an abnormal reaction of the active material occurs in the battery, and heat generation and gas generation accompanying the heat generation occur. Conventionally, the generated gas can move only in a direction parallel to the electrodes in the battery group. If an abnormal reaction occurs at an end other than the end of the electrode group, the safety valve 11 and the current cutoff valve 12 installed at the upper part of the container are used. In some cases, the operation was not in time. Especially two battery containers
When deformed and crushed so as to be divided into two pieces, gas could not be released from the bottom of the battery can, which had no safety valve or current cutoff valve, and was dangerous. In such a large capacity battery having 2500 mAh or more, in such a case, the abnormal reaction in the battery is chained, and there is a possibility of runaway and ignition. On the other hand, when the electrode group has the continuous holes, the gas in the electrode group is easily released to the outside of the battery group together with the heat, so that local concentration and concentration of heat can be reduced, and safety reliability can be improved. Furthermore, by providing an internal pressure sensing type safety device on the side of the container at the position corresponding to the outlet of the continuous hole to the outside of the battery group, the internal pressure rise due to gas generation is sensed, and gas is released to the outside of the container by opening the valve and the circuit is opened. , And the release of the reaction-suppressing substance, etc., and safety reliability can be remarkably improved. (Embodiment) Hereinafter, embodiments of the present invention will be described in detail. Example 1 91% by weight of lithium cobalt oxide (LixCoO 2 (0.8 ≦ x ≦ 1)) powder having an average particle size of 5 μm, 3% by weight of acetylene black, 3% by weight of graphite, and 3% by weight of polyvinylidene fluoride Add to N-methylpyrrolidone and mix to form a slurry.
After coating on both sides of a current collector made of 5μ aluminum foil,
Hot air drying to remove N-methylpyrrolidone, press,
The positive electrode sheet was produced by cutting. Length 11
50 mm, width 55 mm, coating amount 240 g / side
m 2 , the thickness after pressing was 150 μm. Using a punch, a total of 44 circular holes having a diameter of 2 mm were provided at a position of 20 mm from the end of the positive electrode sheet in the width direction and every 50 mm in the length direction.
【0026】また、メソフェーズピッチを原料としたメ
ソフェーズ炭素繊維をアルゴン雰囲気下で600℃にて
熱処理後、平均粒径20μに粉砕し、不活性雰囲気下で
3000℃にて黒鉛化することにより炭素質物を製造し
た。Further, a mesophase carbon fiber using mesophase pitch as a raw material is heat-treated at 600 ° C. in an argon atmosphere, pulverized to an average particle size of 20 μm, and graphitized at 3000 ° C. in an inert atmosphere to obtain a carbonaceous material. Was manufactured.
【0027】前記炭素質物96.7重量%をスチレンブ
タジエンゴム2.2重量%およびカルボキシメチルセル
ロース1.1重量%と共に混合し、水を溶媒として使用
してスラリーとし、これを銅箔からなる集電体の両面に
塗布後、乾燥した。これをプレス、カットすることによ
り負極シートを作成した。長さ1240mm、幅55m
m、塗布量は片面当たり94g/m2で、プレス後の厚
さは142μmであった。前記正極シート上の孔の位置
に合わせて、前記負極シート上に直径2mmの円形の孔
を44個設けた。96.7% by weight of the carbonaceous material was mixed with 2.2% by weight of styrene-butadiene rubber and 1.1% by weight of carboxymethylcellulose, and a slurry was prepared using water as a solvent. After application to both sides of the body, it was dried. This was pressed and cut to produce a negative electrode sheet. Length 1240mm, width 55m
m, the applied amount was 94 g / m 2 per one side, and the thickness after pressing was 142 μm. 44 circular holes having a diameter of 2 mm were provided on the negative electrode sheet in accordance with the positions of the holes on the positive electrode sheet.
【0028】前記正極シート、ポリエチレン製多孔質フ
ィルムからなるセパレータおよび前記負極シートをそれ
ぞれこの順序で積層した後、前記正極シート上の孔と前
記負極シート状の孔が重なるように位置を合わせてスパ
イラル状に捲回して円筒形状の電極群を作成した。After laminating the positive electrode sheet, the separator made of a porous film made of polyethylene and the negative electrode sheet in this order, the positions of the holes on the positive electrode sheet and the holes of the negative electrode sheet are aligned so as to be spiral. To form a cylindrical electrode group.
【0029】さらに、電解質としての六フッ化リン酸リ
チウム(LiPF6)を、エチレンカーボネート(E
C)、エチルメチルカーボネート(MEC)の混合溶媒
(体積比率34:66)に1モル/L溶解して非水電解
液を調製した。前記電極群及び前記電解液をステンレス
製の缶径34.2mm、高さ65.0mmの有底円筒状
容器内にそれぞれ収納して前述した連続貫通孔15と内
圧感知型安全装置16を除く図1に示す構造を有し、図
1の連続孔14を38箇所有する円筒形非水電解液二次
電池を組み立てた。 (実施例2)実施例1と同様の正負電極シートを作成し
た後、対応する正極シート上の孔と負極シート上の孔に
挟まれたセパレータ部分に直径1.5mmの円形の孔を
開けながらスパイラル状に捲回したほかは、実施例1と
同様な構成で前述した円筒形非水電解液二次電池を組み
立てた。 (実施例3)図1に示した連続貫通孔15を、電極群の
幅方向上下からそれぞれ20mmの位置で、電極群の放
射線上の対向する位置、すなわち電極群の捲回中心を通
って直径2.5mmの円形の2つの連続貫通孔で円筒形
の電極群を貫通するように設け、合計4つの連続貫通孔
を有する他は実施例1と同様な構成で前述した円筒形非
水電解液二次電池を組み立てた。 (実施例4)実施例2と同様な電極群を構成し、連続貫
通孔の容器1と接する位置に内圧上昇時に開く安全弁を
設けた他は同様な構成で前述した円筒形非水電解液二次
電池を組み立てた。 (比較例1)正極シート、負極シート上に孔を持たない
他は実施例1と同様な構成で前述した円筒形非水電解液
二次電池を組み立てた。得られた実施例1〜4および比
較例1の円筒形非水電解液二次電池について、電池容量
試験とサイクル特性試験を実施した。充電は2000m
Aの定電流で4.2Vまで行った後、定電圧で合計充電
時間が5時間になるように行った。充電、放電間の休止
時間は30分とした。このような充放電を繰り返し行
い、2サイクル目の放電容量を各電池の電池容量とし、
この容量の70%に到達したサイクル数をサイクル特性
を表すサイクル寿命とした。結果を表1に示す。Further, lithium hexafluorophosphate (LiPF 6 ) as an electrolyte was replaced with ethylene carbonate (E
C) and 1 mol / L in a mixed solvent of ethyl methyl carbonate (MEC) (volume ratio 34:66) to prepare a non-aqueous electrolyte. The electrode group and the electrolytic solution are accommodated in a bottomed cylindrical container having a stainless steel can diameter of 34.2 mm and a height of 65.0 mm, respectively, except for the aforementioned continuous through hole 15 and the internal pressure sensing type safety device 16. A cylindrical non-aqueous electrolyte secondary battery having the structure shown in FIG. 1 and having 38 continuous holes 14 in FIG. 1 was assembled. (Example 2) After the same positive and negative electrode sheets as in Example 1 were prepared, a circular hole having a diameter of 1.5 mm was formed in a separator portion sandwiched between the corresponding holes on the positive electrode sheet and the holes on the negative electrode sheet. The cylindrical non-aqueous electrolyte secondary battery described above was assembled in the same configuration as in Example 1 except that it was wound in a spiral shape. Example 3 The continuous through-hole 15 shown in FIG. 1 was formed at a position 20 mm from the top and bottom of the electrode group in the width direction, at a position facing the radiation of the electrode group, that is, through the center of the winding of the electrode group. The cylindrical non-aqueous electrolyte described above has the same configuration as that of the first embodiment except that it is provided so as to penetrate the cylindrical electrode group with two 2.5 mm circular continuous through holes and has a total of four continuous through holes. The secondary battery was assembled. (Embodiment 4) A cylindrical non-aqueous electrolyte 2 having the same configuration as that of Embodiment 2 except that a safety valve which opens when the internal pressure rises is provided at a position where the continuous through hole comes into contact with the container 1 is provided. The next battery was assembled. (Comparative Example 1) The above-mentioned cylindrical non-aqueous electrolyte secondary battery was assembled in the same configuration as in Example 1 except that no holes were formed on the positive electrode sheet and the negative electrode sheet. For the obtained cylindrical nonaqueous electrolyte secondary batteries of Examples 1 to 4 and Comparative Example 1, a battery capacity test and a cycle characteristic test were performed. Charge 2000m
After the voltage was increased to 4.2 V at a constant current of A, the charging was performed at a constant voltage so that the total charging time was 5 hours. The rest time between charge and discharge was 30 minutes. By repeating such charge and discharge, the discharge capacity in the second cycle is defined as the battery capacity of each battery,
The number of cycles that reached 70% of this capacity was defined as the cycle life representing the cycle characteristics. Table 1 shows the results.
【0030】また、実施例1〜4および比較例1の円筒
形非水電解液二次電池について、2000mAの電流で
放電した際の放電容量(C1)と、16000mAの電
流で放電した際の放電容量(C2)を測定し、それらの
比C2/C1の値を放電レート特性とし、表1に併記す
る。The cylindrical non-aqueous electrolyte secondary batteries of Examples 1 to 4 and Comparative Example 1 had a discharge capacity (C 1 ) when discharged at a current of 2000 mA and a discharge capacity (C 1 ) when discharged at a current of 16000 mA. The discharge capacity (C 2 ) was measured, and the value of the ratio C 2 / C 1 was used as a discharge rate characteristic and is also shown in Table 1.
【表1】 表1から明らかなように、実施例1〜4の非水電解液二
次電池は、サイクル特性および放電レート特性に優れて
いることがわかる。[Table 1] As is clear from Table 1, it can be seen that the non-aqueous electrolyte secondary batteries of Examples 1 to 4 have excellent cycle characteristics and discharge rate characteristics.
【0031】次に、実施例1〜4および比較例1の円筒
形非水電解液二次電池について、充電を2000mAの
定電流で4.2Vまで行った後、定電圧で合計充電時間
が5時間になるように行った。この充電状態において、
底部が5mm×10mmのステンレス板を容器中央部に
降ろすことで容器を潰して安全性試験を行った。結果を
表2に示す。Next, with respect to the cylindrical non-aqueous electrolyte secondary batteries of Examples 1 to 4 and Comparative Example 1, charging was performed at a constant current of 2000 mA to 4.2 V, and a total charging time of 5 at a constant voltage was obtained. I went to time. In this state of charge,
A safety test was performed by crushing the container by lowering a stainless plate having a bottom of 5 mm × 10 mm at the center of the container. Table 2 shows the results.
【表2】 表2より分かるように、実施例1〜4の非水電解液二次
電池は、比較例1と比べて高い安全信頼性を実現してい
ることが分かる。[Table 2] As can be seen from Table 2, it can be seen that the non-aqueous electrolyte secondary batteries of Examples 1 to 4 achieve higher safety reliability than Comparative Example 1.
【0032】従って、前述のように電極群に連続孔もし
くは貫通連続孔を有することにより、サイクル特性、出
力特性および安全信頼性の向上が得られた。さらに、孔
に対応した位置に内圧感知型安全装置を備えることによ
りさらに高い安全信頼性を実現することが可能となっ
た。Therefore, by providing the electrode group with the continuous holes or the continuous through holes as described above, the cycle characteristics, output characteristics and safety reliability were improved. Further, by providing an internal pressure sensing type safety device at a position corresponding to the hole, it has become possible to realize higher safety reliability.
【0033】[0033]
【発明の効果】以上説明したように、本発明によれば、
高いサイクル特性と高い出力特性を同時に達成し、さら
に安全信頼性を高めた非水電解液二次電池を提供するこ
とができる。As described above, according to the present invention,
It is possible to provide a non-aqueous electrolyte secondary battery that achieves high cycle characteristics and high output characteristics at the same time and further enhances safety reliability.
【図1】本発明に係る円筒形非水電解液二次電池の一例
を示す部分断面図FIG. 1 is a partial cross-sectional view showing an example of a cylindrical non-aqueous electrolyte secondary battery according to the present invention.
1・・・容器、2・・・絶縁板、3・・・電極群、4・
・・正極シート、5・・・セパレータ、6・・・負極シ
ート、7・・・絶縁リング、8・・・封口板、9・・・
正極端子、10・・・正極タブ、11・・・安全弁、1
2・・・電流遮断弁、13・・・負極タブ、14・・・
連続孔、15・・・貫通連続孔、16・・・内圧感知型
安全装置。DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Insulating plate, 3 ... Electrode group, 4
..Positive electrode sheet, 5 ... Separator, 6 ... Negative electrode sheet, 7 ... Insulating ring, 8 ... Sealing plate, 9 ...
Positive electrode terminal, 10: positive electrode tab, 11: safety valve, 1
2 ... current cutoff valve, 13 ... negative electrode tab, 14 ...
Continuous hole, 15 ... Continuous through hole, 16 ... Internal pressure sensing type safety device.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 優治 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72)発明者 舘林 義直 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 (72)発明者 金井 秀之 神奈川県川崎市幸区堀川町72番地 株式会 社東芝川崎事業所内 Fターム(参考) 5H012 AA01 BB01 CC01 CC09 FF00 FF01 5H014 AA02 AA06 CC04 5H028 AA01 AA07 BB07 BB19 CC00 CC08 CC12 5H029 AJ02 AJ03 AJ05 AJ12 AK03 AL06 AL07 AM02 AM03 AM05 AM07 BJ02 BJ14 BJ27 CJ04 CJ07 CJ13 DJ02 DJ04 DJ07 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuji Sato 72 Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Pref. (72) Inventor Hideyuki Kanai 72 Horikawa-cho, Saiwai-ku, Kawasaki City, Kanagawa Prefecture F-term (reference) 5H012 AA01 BB01 CC01 CC09 FF00 FF01 5H014 AA02 AA06 CC04 5H028 AA01 AA07 BB07 BB19 CC00 CC08 CC12 5H029 AJ02 AJ03 AJ05 AJ12 AK03 AL06 AL07 AM02 AM03 AM05 AM07 BJ02 BJ14 BJ27 CJ04 CJ07 CJ13 DJ02 DJ04 DJ07
Claims (4)
リチウムを吸蔵放出することのできる炭素質物を活物質
として含む活物質層と集電体からなる負極シートを、セ
パレータを介してスパイラル状に捲回した電極群を有
し、リチウム塩を溶解した非水溶媒中に前記電極群を浸
漬した非水電解液二次電池であって、前記正極シート、
前記負極シートのどちらにも活物質層と集電体を貫通す
る孔を有し、前記セパレータを介して前記正極シート上
の孔と前記負極シート上の孔が重なる位置にあることを
特徴とする非水電解液二次電池。1. A positive electrode sheet comprising a current collector and an active material layer,
A negative electrode sheet comprising an active material layer containing a carbonaceous material capable of inserting and extracting lithium as an active material and a current collector has an electrode group spirally wound with a separator interposed therebetween. A nonaqueous electrolyte secondary battery in which the electrode group is immersed in an aqueous solvent, wherein the positive electrode sheet,
Both of the negative electrode sheets have holes penetrating the active material layer and the current collector, and the holes on the positive electrode sheet and the holes on the negative electrode sheet overlap with each other via the separator. Non-aqueous electrolyte secondary battery.
の孔と負極シート上の孔が、放射線上に最内周から最外
周まで連続して重なることを特徴とする請求項1に記載
の非水電解液二次電池。2. The wound electrode group, wherein the holes on the positive electrode sheet and the holes on the negative electrode sheet continuously overlap on the radiation from the innermost circumference to the outermost circumference. Non-aqueous electrolyte secondary battery.
挟まれたセパレータの部分に、前記電極シート上の少な
くともどちらかの孔より小さい孔を、前記電極シート上
の孔と重なる位置に有することを特徴とする請求項1に
記載の非水電解液二次電池。3. A portion of the separator sandwiched between the hole on the positive electrode sheet and the hole on the negative electrode sheet is provided with a hole smaller than at least one of the holes on the electrode sheet at a position overlapping the hole on the electrode sheet. The non-aqueous electrolyte secondary battery according to claim 1, wherein:
られた電極上の孔を有し、電極群を収める外装容器の前
記放射線上位置に、内圧感知型安全装置が取り付けられ
たことを特徴とする請求項1に記載の非水電解液二次電
池。4. An internal pressure sensing type safety device is provided at a position on the radiation of an outer container for accommodating the electrode group, which has a hole on the electrode provided at a position continuous on the radiation of the electrode group. The non-aqueous electrolyte secondary battery according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25546099A JP2001076761A (en) | 1999-09-09 | 1999-09-09 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25546099A JP2001076761A (en) | 1999-09-09 | 1999-09-09 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001076761A true JP2001076761A (en) | 2001-03-23 |
Family
ID=17279083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25546099A Pending JP2001076761A (en) | 1999-09-09 | 1999-09-09 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001076761A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006086049A (en) * | 2004-09-17 | 2006-03-30 | Nissan Motor Co Ltd | Bipolar battery equipped with gas discharge means, its manufacturing method, and battery pack using bipolar battery |
JP2007012391A (en) * | 2005-06-29 | 2007-01-18 | Hitachi Maxell Ltd | Non-aqueous electrolyte battery |
JP2010232404A (en) * | 2009-03-27 | 2010-10-14 | Jm Energy Corp | Electricity storage device element, and lithium ion capacitor |
US7838154B2 (en) | 2004-09-09 | 2010-11-23 | Mitsui Mining & Smelting Co., Ltd. | Negative electrode for nonaqueous secondary battery |
JP2011165665A (en) * | 2010-02-05 | 2011-08-25 | Robert Bosch Gmbh | Manufacturing method of cathode structure for li battery which has aligned structure of cycle resistance |
WO2013100643A1 (en) * | 2011-12-27 | 2013-07-04 | 주식회사 엘지화학 | Electrode assembly and secondary battery using same |
US10158108B2 (en) * | 2014-10-24 | 2018-12-18 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device including separator surrounding electrode |
JP2019091538A (en) * | 2017-11-10 | 2019-06-13 | 住友ゴム工業株式会社 | Method for manufacturing lithium ion storage device, and lithium ion storage device |
JP2019153388A (en) * | 2018-02-28 | 2019-09-12 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
WO2022163790A1 (en) * | 2021-01-29 | 2022-08-04 | 株式会社Gsユアサ | Electricity storage element |
CN117117344A (en) * | 2023-10-25 | 2023-11-24 | 宁德时代新能源科技股份有限公司 | Battery monomer, battery and electric equipment |
-
1999
- 1999-09-09 JP JP25546099A patent/JP2001076761A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7838154B2 (en) | 2004-09-09 | 2010-11-23 | Mitsui Mining & Smelting Co., Ltd. | Negative electrode for nonaqueous secondary battery |
JP2006086049A (en) * | 2004-09-17 | 2006-03-30 | Nissan Motor Co Ltd | Bipolar battery equipped with gas discharge means, its manufacturing method, and battery pack using bipolar battery |
JP2007012391A (en) * | 2005-06-29 | 2007-01-18 | Hitachi Maxell Ltd | Non-aqueous electrolyte battery |
JP2010232404A (en) * | 2009-03-27 | 2010-10-14 | Jm Energy Corp | Electricity storage device element, and lithium ion capacitor |
JP2011165665A (en) * | 2010-02-05 | 2011-08-25 | Robert Bosch Gmbh | Manufacturing method of cathode structure for li battery which has aligned structure of cycle resistance |
JP2015503832A (en) * | 2011-12-27 | 2015-02-02 | エルジー・ケム・リミテッド | Electrode assembly and secondary battery using the same |
KR101310734B1 (en) * | 2011-12-27 | 2013-09-24 | 주식회사 엘지화학 | Electrode assembly and secondary battery using the same |
CN103843170A (en) * | 2011-12-27 | 2014-06-04 | 株式会社Lg化学 | Electrode assembly and secondary battery using same |
WO2013100643A1 (en) * | 2011-12-27 | 2013-07-04 | 주식회사 엘지화학 | Electrode assembly and secondary battery using same |
US9142821B2 (en) | 2011-12-27 | 2015-09-22 | Lg Chem, Ltd. | Electrode assembly and secondary battery using the same |
CN103843170B (en) * | 2011-12-27 | 2016-03-16 | 株式会社Lg化学 | The secondary cell of electrode assemblie and use electrode assemblie |
US10158108B2 (en) * | 2014-10-24 | 2018-12-18 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device including separator surrounding electrode |
JP2019091538A (en) * | 2017-11-10 | 2019-06-13 | 住友ゴム工業株式会社 | Method for manufacturing lithium ion storage device, and lithium ion storage device |
JP7052304B2 (en) | 2017-11-10 | 2022-04-12 | 住友ゴム工業株式会社 | Manufacturing method of lithium-ion power storage device and lithium-ion power storage device |
JP2019153388A (en) * | 2018-02-28 | 2019-09-12 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
JP7066450B2 (en) | 2018-02-28 | 2022-05-13 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery |
WO2022163790A1 (en) * | 2021-01-29 | 2022-08-04 | 株式会社Gsユアサ | Electricity storage element |
CN117117344A (en) * | 2023-10-25 | 2023-11-24 | 宁德时代新能源科技股份有限公司 | Battery monomer, battery and electric equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4752574B2 (en) | Negative electrode and secondary battery | |
KR100331209B1 (en) | Non-aqueous Electrolyte Secondary Battery | |
JP3932653B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5093997B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
EP1619733A1 (en) | Non-aqueous electrolyte battery | |
JP3556636B2 (en) | Flat secondary battery and method of manufacturing the same | |
KR20000076975A (en) | Secondary battery | |
JP2008059999A (en) | Negative electrode and nonaqueous electrolyte secondary battery using it | |
JPH04328278A (en) | Nonaqueous electrolyte secondary battery | |
JP2002280079A (en) | Battery | |
JP4649113B2 (en) | Nonaqueous electrolyte secondary battery | |
CN107004898B (en) | Electricity storage device | |
JPH10112318A (en) | Nonaqueous electrolyte secondary battery | |
JP2001076761A (en) | Nonaqueous electrolyte secondary battery | |
WO2000042669A1 (en) | Lithium secondary cell | |
JP2002279956A (en) | Nonaqueous electrolyte battery | |
JP3010783B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6180237B2 (en) | Lithium ion secondary battery | |
JP2004363076A (en) | Battery | |
JPH1074502A (en) | Nonaqueous electrolyte secondary battery | |
JP3309449B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH11273743A (en) | Cylindrical nonaqueous electrolyte secondary battery | |
JP3381070B2 (en) | Manufacturing method of laminated battery | |
JP3444302B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4817483B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040601 |