[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001050277A - Manufacture of bearing - Google Patents

Manufacture of bearing

Info

Publication number
JP2001050277A
JP2001050277A JP11227199A JP22719999A JP2001050277A JP 2001050277 A JP2001050277 A JP 2001050277A JP 11227199 A JP11227199 A JP 11227199A JP 22719999 A JP22719999 A JP 22719999A JP 2001050277 A JP2001050277 A JP 2001050277A
Authority
JP
Japan
Prior art keywords
bearing
housing
inner diameter
core rod
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11227199A
Other languages
Japanese (ja)
Inventor
Motohiro Miyasaka
元博 宮坂
Toshiichi Takehana
敏一 竹花
Takeshi Kurihara
健 栗原
Hidekazu Tokushima
秀和 徳島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP11227199A priority Critical patent/JP2001050277A/en
Publication of JP2001050277A publication Critical patent/JP2001050277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a bearing of two-point support structure where sintered body is incorporated into a housing, efficiently in a relatively simple manner to give appreciable bearing performance. SOLUTION: This bearing manufacturing method has a positioning step of positioning a housing 21 in a forming hole 30, and a press-fitting step of press-fitting a raw material 1A to form a bearing body 10A in the housing 21 while a core rod 32 of a uniform outside diameter is kept passed through the raw material 1A. The press-fitting step bonds the diametrally external surface of the raw material 1A under compression to the diametrally internal surface of the housing 21, and presses both axial ends of the diametrally internal surface of the raw material 1A against the core rod 32 to form shaft supporting surface 12 with an intermediate recess 13 in between.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精密機器に内蔵さ
れるスピンドルモータの駆動軸等、比較的高速で回転す
る軸を高精度で支持する場合に用いて好適な軸受であっ
て、特に、回転軸が接触しない中逃げ部を有する軸受本
体がハウジング内に組み込まれたタイプの軸受を製造す
る方法に関する。軸受本体は、焼結体あるいは焼結体に
サイジングを施した多孔質体からなる素材を成形したも
のであり、潤滑油が含浸され、焼結含油軸受として好適
に用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing suitable for use in supporting a shaft rotating at a relatively high speed, such as a drive shaft of a spindle motor built in precision equipment, with high precision. The present invention relates to a method of manufacturing a bearing of a type in which a bearing body having a middle relief portion that does not contact a rotating shaft is incorporated in a housing. The bearing body is formed by molding a material made of a sintered body or a porous body obtained by sizing the sintered body, is impregnated with lubricating oil, and is suitably used as a sintered oil-impregnated bearing.

【0002】[0002]

【従来の技術】上記焼結含油軸受は、焼結体に含浸され
た潤滑油が内径面にしみ出し、内径面と回転軸との間に
油膜が形成されることにより、摩擦抵抗が低減して騒音
や振動が抑えられるといった特性を有する。また、振動
や騒音の抑制効果をさらに高めた焼結含油軸受として、
軸方向中央部の内径面に、内径が回転軸の外径より僅か
に大きく回転軸と接触しない隙間(以下、中逃げ部と称
する)を形成し、回転軸の軸支面を両端部の内径面に限
定した2点支持構造として摩擦抵抗の低減効果と回転軸
の支持力をより安定化させたものがある。
2. Description of the Related Art In a sintered oil-impregnated bearing, the lubricating oil impregnated in a sintered body seeps into an inner diameter surface, and an oil film is formed between the inner diameter surface and a rotating shaft, thereby reducing frictional resistance. It has the characteristic that noise and vibration are suppressed. In addition, as a sintered oil-impregnated bearing with further enhanced vibration and noise suppression effects,
A gap (hereinafter, referred to as a middle relief portion) having an inner diameter slightly larger than the outer diameter of the rotating shaft and not in contact with the rotating shaft is formed on the inner diameter surface at the central portion in the axial direction. As a two-point support structure limited to a surface, there is a structure in which the effect of reducing frictional resistance and the support force of the rotating shaft are further stabilized.

【0003】焼結含油軸受は、通常、原料の金属粉末を
圧縮成形して得た円筒状の圧粉体を焼結し、焼結体をサ
イジングして最終形状に仕上げるといった工程を主体と
して製造されているが、軸受としては、焼結体単体の他
に、焼結体がハウジング内に組み込まれたタイプのもの
がある。ところで、上記中逃げ部を形成する場合、その
中逃げ部を焼結体への機械加工で形成すると、内径面に
表出している気孔が潰れて潤滑油の循環作用に支障を来
すことになる。このため、焼結体のサイジング工程で中
逃げ部を同時に形成するか、もしくはサイジング後にも
う1度焼結体を変形させて中逃げ部を独自に形成する方
法が好ましい。いずれの場合も、軸方向両端部の内径面
が径方向内側に突出したり、軸方向中央部が径方向外側
に膨出したりする塑性変形を焼結体に生じさせることに
より、離間する2つの軸支面とこれらの間の中逃げ部が
内径面に同時に形成される。
[0003] Sintered oil-impregnated bearings are usually manufactured mainly by the steps of sintering a cylindrical green compact obtained by compression-molding a raw metal powder, sizing the sintered body and finishing it into a final shape. However, as a bearing, there is a type in which a sintered body is incorporated in a housing in addition to a sintered body alone. By the way, in the case where the above-mentioned middle relief portion is formed, if the middle relief portion is formed by machining the sintered body, the pores exposed on the inner diameter surface are crushed, which hinders the circulation operation of the lubricating oil. Become. For this reason, it is preferable to form the middle relief portion at the same time in the sizing step of the sintered body, or to form the middle relief portion by deforming the sintered body again after sizing. In any case, the two inner shafts are separated from each other by causing plastic deformation in the sintered body such that the inner diameter surfaces at both ends in the axial direction project radially inward or the central portion in the axial direction swells radially outward. The supporting surface and the clearance between them are formed on the inner diameter surface at the same time.

【0004】[0004]

【発明が解決しようとする課題】上記2点支持構造の軸
受においては、前述した摩擦抵抗の低減や回転軸の支持
力向上といった軸受性能を高める上で、離間する2つの
軸支面の内径および同軸度が高い精度で一致しているこ
とや、軸支面への潤滑油の供給量が十分になされること
が要求される。ところが、従来より焼結体の塑性変形の
させ方は種々提案されているものの、比較的簡素で、軸
受性能向上のための要求が十分満たされる一定の製造方
法は見い出されていないのが現状であった。また、焼結
体をハウジング内に組み込んだタイプの軸受にあって
は、焼結体に軸支面および中逃げ部を形成してからハウ
ジングに組み込んでも、焼結体に変形が生じて軸支面の
内径に差異が生じたり同軸度が損なわれたりすることが
多く、さりとて、組み込んだ後に焼結体をサイジングし
て軸支面および中逃げ部を形成することは、きわめて困
難であった。
In the bearing having the above-mentioned two-point support structure, in order to enhance the bearing performance such as the reduction of the frictional resistance and the improvement of the support force of the rotary shaft, the inner diameter of the two separated shaft supporting surfaces and It is required that the coaxiality match with high accuracy and that the supply amount of the lubricating oil to the bearing surface be sufficient. However, although various methods of plastically deforming a sintered body have been conventionally proposed, a certain manufacturing method that is relatively simple and does not sufficiently satisfy requirements for improving bearing performance has been found at present. there were. Also, in a bearing of a type in which a sintered body is incorporated in a housing, even if the bearing is formed into a housing after forming a bearing surface and an intermediate relief portion, the sintered body is deformed due to deformation. In many cases, the inner diameter of the surface is different or the coaxiality is impaired, and it is extremely difficult to size the sintered body after the assembly to form the bearing surface and the middle relief.

【0005】したがって本発明は、焼結体がハウジング
内に組み込まれた2点支持構造の軸受を、比較的簡素な
方法で効率よく、かつ、優れた軸受性能(2つの軸支面
の内径や同軸度の同一性に伴う回転軸の支持力、潤滑
性、耐摩耗性等)を有するものに製造することができる
方法を提供することを目的としている。
Therefore, the present invention provides a bearing having a two-point support structure in which a sintered body is incorporated in a housing, by a relatively simple method, efficiently and with excellent bearing performance (the inner diameter of two bearing surfaces, It is an object of the present invention to provide a method capable of manufacturing a rotating shaft having a coaxiality having the same bearing capacity, lubricating property, and wear resistance.

【0006】[0006]

【課題を解決するための手段】本発明は、円筒状の軸受
本体を円筒状のハウジング内に組み込んでなる軸受の製
造方法であって、ハウジングを成形孔内に配置する配置
工程と、外径均一のコアロッドを軸受本体に成形される
素材に挿入した状態を保持しながら、該素材を成形孔内
に配置したハウジング内に同軸的に圧入する圧入工程と
を備え、該圧入工程において、素材の外径面をハウジン
グの内径面に圧着させる一方、素材の軸方向両端部の内
径面を前記コアロッドに圧接させて回転軸を支持する軸
支面に形成するとともに、これら軸支面間に、回転軸と
接触しない中逃げ部を形成することを特徴としている。
本発明に係る素材は、前述の如く焼結体あるいは焼結体
にサイジングを施してなる多孔質体が用いられ、製造後
は、潤滑油が含浸され、焼結含油軸受として好適に用い
られる。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing a bearing in which a cylindrical bearing main body is incorporated in a cylindrical housing. A press-fitting step of coaxially press-fitting the material into a housing arranged in a molding hole while maintaining a state in which a uniform core rod is inserted into the material formed in the bearing body. While the outer diameter surface is pressed against the inner diameter surface of the housing, the inner diameter surfaces of both ends in the axial direction of the material are pressed against the core rod to form a bearing surface for supporting the rotating shaft, and the rotation between these bearing surfaces is performed. It is characterized in that a middle escape portion that does not contact the shaft is formed.
As the material according to the present invention, a sintered body or a porous body obtained by sizing the sintered body as described above is used, and after production, the sintered body is impregnated with a lubricating oil and is suitably used as a sintered oil-impregnated bearing.

【0007】上記配置工程としては、例えば、ハウジン
グを成形孔内に圧入する。この場合、ハウジングの外径
が成形孔の内径よりも大きく、ハウジングは成形孔内で
しまり嵌めの状態となる。ハウジングを成形孔内に配置
するには、ハウジングを成形孔内に単に挿入して嵌合さ
せた中間嵌めや、ハウジングの外径面と成形孔の内径面
との間に隙間が空く遊嵌といった形態が挙げられる。
In the arrangement step, for example, the housing is pressed into the molding hole. In this case, the outer diameter of the housing is larger than the inner diameter of the forming hole, and the housing is tightly fitted in the forming hole. In order to dispose the housing in the molding hole, an intermediate fitting in which the housing is simply inserted into the molding hole and fitted thereto, or a loose fit in which a gap is formed between the outer diameter surface of the housing and the inner diameter surface of the molding hole, may be used. Form.

【0008】上記圧入工程では、ハウジングに貫通させ
たコアロッドを素材に挿入し、その状態を保持しなが
ら、素材をハウジング内に押し込んで圧入する。素材は
ハウジングに圧入されることにより外径面がハウジング
内径面に圧着する。素材の外径形状とハウジングの内径
形状とは、素材がハウジング内に圧入されるにつれ、少
なくとも素材の軸方向両端部がハウジングの内径面の圧
迫を受けて縮径し、軸方向両端部の内径面がコアロッド
に圧接する関係とされる。また、素材の内径面は、軸方
向両端部のみがコアロッドに圧接する形状ならびに寸法
とされる。素材とハウジングは、軸方向長さが等しいと
好ましい。
[0008] In the press-fitting step, the core rod penetrating the housing is inserted into the material, and the material is pushed into the housing while being held in that state. The outer diameter surface of the material is pressed into the housing inner diameter surface by being press-fitted into the housing. The outer diameter shape of the material and the inner diameter shape of the housing are such that, as the material is pressed into the housing, at least both ends in the axial direction of the material are reduced in diameter by being pressed against the inner diameter surface of the housing, and the inner diameters at both ends in the axial direction are reduced. The surface is in pressure contact with the core rod. Further, the inner diameter surface of the material is shaped and dimensioned so that only the axial ends are pressed against the core rod. Preferably, the material and the housing have the same axial length.

【0009】上記のようにしてコアロッドに圧接する素
材の内径面が、回転軸を支持する離間した2つの軸支面
となる。一方、これら軸支面間の内径面においてはコア
ロッドとの間に隙間が形成され、回転軸と接触しない中
逃げ部となる。このように素材が塑性変形することによ
り、素材が軸受本体に成形され、かつ、この軸受本体が
ハウジングに圧着して両者が一体化した軸受に成形され
る。
As described above, the inner diameter surface of the material pressed against the core rod serves as two spaced-apart bearing surfaces for supporting the rotating shaft. On the other hand, a gap is formed between the shaft supporting surface and the core rod on the inner diameter surface, and serves as a middle escape portion that does not contact the rotating shaft. As a result of the plastic deformation of the material, the material is formed into a bearing body, and the bearing body is pressed against the housing to form a bearing in which the two are integrated.

【0010】本発明では、素材を全長にわたって縮径す
る形態も勿論含む。この場合には、素材の内径面に中逃
げ部が形成されるべく、予め素材の軸方向両端部の内径
を中央部よりも小径として肉厚としておき、その内径小
径部の内径面のみがコアロッドに圧接するよう構成す
る。上記のように素材の軸方向両端部を局部的に縮径す
る場合には、素材の内径は均一であってかまわないが、
軸方向両端部に内径小径部を有する形状の素材を用いる
こともできる。この素材の内径小径部は、中逃げ部が確
実に形成されるのであれば、その内径面がコアロッドに
当接する寸法であってもかまわない。
In the present invention, a form in which the material is reduced in diameter over its entire length is of course included. In this case, in order to form a middle clearance portion on the inner diameter surface of the material, the inner diameter of both ends in the axial direction of the material is made smaller in advance than the center portion so as to be thicker, and only the inner diameter surface of the inner diameter small diameter portion is the core rod. It is configured to be pressed against. When locally reducing the diameter of both ends in the axial direction of the material as described above, the inner diameter of the material may be uniform,
It is also possible to use a material having a shape having a small inner diameter portion at both ends in the axial direction. The small-diameter inner diameter portion of this material may have such a size that the inner diameter surface is in contact with the core rod as long as the middle relief portion is formed reliably.

【0011】本発明によれば、上記のような変形態様が
適宜になされる素材およびハウジングの組み合わせを採
ることにより、軸受本体がハウジング内に組み込まれた
構成であって、かつ、中逃げ量が比較的大きな中逃げ部
を有する2点支持構造の軸受を、比較的簡素な方法で効
率よく製造することができる。
According to the present invention, by adopting a combination of a material and a housing in which the above-described modification is appropriately made, the bearing main body is configured to be incorporated in the housing, and the amount of clearance is reduced. A bearing having a two-point support structure having a relatively large middle relief can be efficiently manufactured by a relatively simple method.

【0012】また、軸受本体に形成される軸支面は、素
材の内径面がコアロッドに強く圧接させられることによ
り形成されるので、その内径および同軸度が高い精度で
一致する。また、軸支面の密度を高くすることができる
ので、耐摩耗性の向上が図られる。一方、中逃げ部が形
成される内径面の密度を軸支面よりも低くすること、な
らびに中逃げ部の直径を比較的大きく形成することが可
能なので、潤滑油の含有量や保油量を増大させることが
でき、潤滑性の向上が図られる。これらの結果、高レベ
ルの軸受性能を有する軸受を製造することができる。
Further, since the bearing surface formed on the bearing body is formed by pressing the inner diameter surface of the material strongly against the core rod, the inner diameter and the coaxiality coincide with high accuracy. Further, since the density of the bearing surface can be increased, the wear resistance is improved. On the other hand, it is possible to make the density of the inner diameter surface where the middle relief portion is formed lower than that of the bearing surface, and it is possible to form the diameter of the middle relief portion relatively large, so that the lubricating oil content and the oil retention amount are reduced. It can be increased, and the lubricity is improved. As a result, a bearing having a high level of bearing performance can be manufactured.

【0013】また、本発明では、素材の軸方向両端部の
内径面が圧接させられるコアロッドの外径面に、動圧溝
形成用の凸部または凹部が形成されていることを特徴と
している。これによると、前者の凸部の場合では、軸支
面には凸部形状に応じた動圧溝が形成される。また、後
者の凹部の場合では、凹部形状に応じて刻設された軸支
面と軸支面間の動圧溝とが同時に形成される。軸支面に
動圧溝を形成すると、両端部の各軸支面により回転軸を
支持する2点支持構造に加え、動圧溝に発生する動圧効
果(動圧溝に流入する潤滑油の高圧化に伴う剛性向上)
によって回転軸の支持力が相乗的に高まり、回転軸の支
持力をより安定させることができる。
Further, the present invention is characterized in that a convex portion or a concave portion for forming a dynamic pressure groove is formed on the outer diameter surface of the core rod which is pressed against the inner diameter surfaces of both ends in the axial direction of the material. According to this, in the case of the former convex portion, a dynamic pressure groove corresponding to the shape of the convex portion is formed on the bearing surface. In the case of the latter concave portion, a bearing surface engraved according to the shape of the concave portion and a dynamic pressure groove between the bearing surfaces are simultaneously formed. When the dynamic pressure grooves are formed on the bearing surface, the dynamic pressure effect generated in the dynamic pressure grooves (the lubricating oil flowing into the dynamic pressure grooves) Increased rigidity with higher pressure)
Accordingly, the supporting force of the rotating shaft is synergistically increased, and the supporting force of the rotating shaft can be further stabilized.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。(1)第1実施形態−図1 図1は、第1実施形態に係る軸受の成形工程を(a)〜
(d)の順に示している。本実施形態では、ハウジング
21を成形装置のダイ31内に配置し、次いで、ハウジ
ング21内に素材1Aを圧入して軸受を製造する。
Embodiments of the present invention will be described below with reference to the drawings. (1) First Embodiment-FIG. 1 FIGS . 1A to 1C show a bearing forming process according to a first embodiment.
These are shown in the order of (d). In the present embodiment, the housing 21 is arranged in the die 31 of the molding apparatus, and then the material 1A is press-fitted into the housing 21 to manufacture a bearing.

【0015】成形装置は、図1に示すように、ハウジン
グ21が圧入される成形孔30を有するダイ31と、外
径均一のコアロッド32と、上下のパンチ33,34と
から構成されている。ダイ31の成形孔30はハウジン
グ21に対応する形状であって、図1(a)に示すよう
に、円筒状の主部30aの入口側(上側)に、水平な段
部30dを介して、主部30aよりも径が大きい開口部
30cが形成されている。図1(b)に示すように、上
パンチ33は、成形孔30の開口部30cに摺動自在に
挿入されるようになされ、また、下パンチ34は、成形
孔30の主部30aに摺動自在に挿入されるようになさ
れている。コアロッド32は、上下のパンチ33,34
に摺動自在に貫通するようになされている。
As shown in FIG. 1, the molding apparatus includes a die 31 having a molding hole 30 into which the housing 21 is press-fitted, a core rod 32 having a uniform outer diameter, and upper and lower punches 33 and 34. The forming hole 30 of the die 31 has a shape corresponding to the housing 21. As shown in FIG. 1A, the forming hole 30 is provided on the inlet side (upper side) of the cylindrical main portion 30a via a horizontal step portion 30d. An opening 30c having a larger diameter than the main portion 30a is formed. As shown in FIG. 1B, the upper punch 33 is slidably inserted into the opening 30c of the molding hole 30, and the lower punch 34 slides on the main portion 30a of the molding hole 30. It is designed to be movably inserted. The core rod 32 includes upper and lower punches 33 and 34.
It is slidably penetrated.

【0016】ハウジング21は、図1(a)に示すよう
に、内径が均一で、主体をなす円筒部22の一端部にフ
ランジ23が形成された円筒状のものである。円筒部2
2の外径は成形孔30の主部30aの内径よりも大き
く、フランジ23の外径は開口部30cの内径よりも大
きく設定されている。また、軸方向長さ(高さ)に関し
ては、円筒部22は成形孔30の主部30aよりも短
く、フランジ23は開口部30cよりも短く設定されて
いる。ハウジング21は、成形孔30に塑性変形しなが
ら圧入され得る材質が選択され、例えば、青銅、黄銅、
アルミニウム合金、鋼の他、焼結材が用いられる。焼結
材の場合、素材1Aよりも気孔が大きいものを用いる
と、ハウジング21に含浸させた油が、毛細管力によっ
て軸受本体側に効果的に供給されるので、軸受寿命を長
くすることができ好ましい。
As shown in FIG. 1 (a), the housing 21 has a uniform inner diameter, and has a cylindrical shape in which a flange 23 is formed at one end of a cylindrical portion 22 which forms a main body. Cylindrical part 2
The outer diameter of 2 is larger than the inner diameter of the main part 30a of the forming hole 30, and the outer diameter of the flange 23 is set to be larger than the inner diameter of the opening 30c. Further, with respect to the axial length (height), the cylindrical portion 22 is set shorter than the main portion 30a of the forming hole 30, and the flange 23 is set shorter than the opening 30c. The housing 21 is made of a material that can be press-fit into the forming hole 30 while being plastically deformed. For example, bronze, brass,
Sintered materials are used in addition to aluminum alloys and steels. In the case of using a sintered material, if a material having pores larger than the material 1A is used, the oil impregnated in the housing 21 is effectively supplied to the bearing main body side by capillary force, so that the bearing life can be extended. preferable.

【0017】図1(c)に示す素材1Aは、焼結体もし
くは焼結体にサイジングを施して成形された円筒状の多
孔質体である。素材1Aの外径面は、ハウジング21の
内径よりも外径が大きい外径小径部4aが主体となって
おり、一端部に外径小径部4aよりも径の大きい外径大
径部4bが形成されている。素材1Aの内径面は、コア
ロッド32の直径よりも径が大きい内径大径部3bが主
体となっており、他端部(外径大径部4bと反対側の端
部)に内径小径部3aが形成されている。内径小径部3
aの内径面とコアロッド32との間には微小な隙間が形
成され、この隙間よりも大きな隙間が、内径大径部3b
とコアロッド32との間に形成されるようになってい
る。また、素材1Aの軸方向長さは、ハウジング21の
それと等しく設定されている。
The material 1A shown in FIG. 1C is a sintered body or a cylindrical porous body formed by sizing the sintered body. The outer diameter surface of the material 1A is mainly composed of an outer diameter small diameter portion 4a having an outer diameter larger than the inner diameter of the housing 21, and an outer diameter large diameter portion 4b having a diameter larger than the outer diameter small diameter portion 4a at one end. Is formed. The inner diameter surface of the material 1A mainly includes an inner diameter large diameter portion 3b having a diameter larger than the diameter of the core rod 32, and the other end portion (an end opposite to the outer diameter large diameter portion 4b) has an inner diameter small diameter portion 3a. Are formed. Inside diameter small diameter part 3
a small gap is formed between the inner diameter surface of the core rod 32 and the inner diameter surface of the core rod 32.
And the core rod 32. The axial length of the material 1A is set equal to that of the housing 21.

【0018】次に、成形装置により軸受を製造する手順
を説明する。 [工程1−ハウジングの配置]図1(a)に示すよう
に、ダイ31の成形孔30の主部30aに挿入した下パ
ンチ34の上端を段部30dと同一レベルに保持する一
方、コアロッド32をダイ31の上面から所定長さ突出
させる。次に、フランジ23を上にしたハウジング21
を、コアロッド32に同軸的に嵌め込んで下パンチ34
上にセットする。次いで、図1(b)に示すように上パ
ンチ33を降下させ、上パンチ33によりハウジング2
1を成形孔30に押し込む。下パンチ34は、ハウジン
グ21とともに降下させる。ハウジング21は、円筒部
22が成形孔30の主部30aに、フランジ23が開口
部30cに、それぞれ圧入され、外径面がダイ31に拘
束された状態となる。
Next, a procedure for manufacturing a bearing by a molding apparatus will be described. [Step 1-Housing Arrangement] As shown in FIG. 1A, the upper end of the lower punch 34 inserted into the main portion 30a of the forming hole 30 of the die 31 is held at the same level as the step portion 30d, while the core rod 32 is held. From the upper surface of the die 31 for a predetermined length. Next, the housing 21 with the flange 23 facing up
Is coaxially fitted into the core rod 32 to form a lower punch 34.
Set on top. Next, the upper punch 33 is lowered as shown in FIG.
1 is pressed into the forming hole 30. The lower punch 34 is lowered together with the housing 21. In the housing 21, the cylindrical portion 22 is press-fitted into the main portion 30 a of the forming hole 30, and the flange 23 is press-fitted into the opening 30 c, and the outer diameter surface is restrained by the die 31.

【0019】[工程2−素材の圧入]上パンチ33を上
昇させて一旦退避させた後、図1(c)に示すように、
外径大径部4bを上にして素材1Aをコアロッド32に
嵌合させ、ハウジング21上にセットする。次いで、図
1(d)に示すように再び上パンチ33を降下させ、上
パンチ33により素材1Aをハウジング21内に押し込
んで圧入する。このとき、コアロッド32を素材1Aに
追随して降下させる。
[Step 2—Press-fitting of Material] After the upper punch 33 is lifted and retracted once, as shown in FIG.
The material 1A is fitted to the core rod 32 with the outer diameter large diameter portion 4b facing upward, and set on the housing 21. Next, as shown in FIG. 1D, the upper punch 33 is lowered again, and the material 1A is pushed into the housing 21 by the upper punch 33 and press-fitted. At this time, the core rod 32 is moved down following the material 1A.

【0020】素材1Aがハウジング21内に圧入される
と、その外径面がハウジング21の内径面に倣って塑性
変形し、全長にわたって縮径するとともに、外径大径部
4bが消滅して外径面がストレートになり、さらに、外
径面がハウジング21の内径面に圧着する。素材1Aの
下端部の内径小径部3aは内径側に突出し、その内径面
がコアロッド32に圧接して回転軸を支持する軸支面1
2に形成される。また、消滅した外径大径部4bの分の
肉が内径側に塑性流動し、その内径面がコアロッド32
に圧接して回転軸を支持する軸支面12に形成される。
内径大径部3bは上下の軸支面12間において残存し、
回転軸が接触しない中逃げ部13に形成される。
When the material 1A is pressed into the housing 21, its outer diameter surface is plastically deformed in accordance with the inner diameter surface of the housing 21, and its diameter is reduced over its entire length. The diameter surface becomes straight, and the outer diameter surface is pressed against the inner diameter surface of the housing 21. The small-diameter portion 3a at the lower end of the material 1A protrudes toward the inner diameter side, and its inner diameter surface is pressed against the core rod 32 to support the rotary shaft 1.
2 is formed. Further, the flesh of the disappeared outer diameter large diameter portion 4b plastically flows toward the inner diameter side, and the inner diameter surface thereof corresponds to the core rod 32.
Is formed on a shaft support surface 12 that presses against the shaft to support the rotating shaft.
The large inner diameter portion 3b remains between the upper and lower shaft support surfaces 12,
It is formed in the escape portion 13 where the rotating shaft does not contact.

【0021】このように素材1Aが塑性変形することに
より、素材1Aが軸受本体10Aに成形され、かつ、こ
の軸受本体10Aとハウジング21とが一体化した軸受
20Aが成形される。軸受20Aは、上パンチ33を上
昇させて退避させ、コアロッド32とともに下パンチ3
4を上昇させてダイ31から脱型し、この後、コアロッ
ド32を降下させれば、取り出すことができる。
As a result of the plastic deformation of the material 1A, the material 1A is formed into the bearing body 10A, and the bearing 20A in which the bearing body 10A and the housing 21 are integrated is formed. The bearing 20A raises and retracts the upper punch 33 and, together with the core rod 32, lower punch 3
4 can be removed from the die 31 by raising it, and then the core rod 32 can be taken out by lowering.

【0022】上記第1実施形態によれば、ハウジング2
1をダイ31内に圧入して配置し、次いで、素材1Aを
ハウジング21内に圧入するといった簡素な方法によ
り、焼結体からなる軸受本体10Aがハウジング21内
に組み込まれた2点支持構造の軸受20Aを、効率よく
製造することができる。
According to the first embodiment, the housing 2
1 is press-fitted into the die 31 and then the raw material 1A is press-fitted into the housing 21 by a simple method such that the bearing body 10A made of a sintered body is incorporated in the housing 21. The bearing 20A can be manufactured efficiently.

【0023】軸受20Aの軸支面12は、素材1Aの内
径面をコアロッド32に強く圧接させることにより形成
されるので、その内径および同軸度が高い精度で一致
し、加えて高密度化する故、耐摩耗性および回転軸の支
持力に優れる。一方、中逃げ部13はコアロッド32に
圧接しないことから軸支面12よりも密度は低く、か
つ、その中逃げ量を比較的大きなものとすることができ
るので、潤滑油の含有量や保油量を増大させることがで
き、潤滑性が向上する。これらの結果、軸受20Aは優
れた軸受性能を発揮する。また、双方の軸支面12の圧
縮度をほぼ等しくすることができることから、それら軸
支面12の気孔率が均等化され、このため、軸支面12
に生じる油圧も均等となって回転軸をバランスよく支持
することができる。
Since the bearing surface 12 of the bearing 20A is formed by pressing the inner diameter surface of the material 1A strongly against the core rod 32, the inner diameter and the coaxiality match with high precision, and the density is increased. Excellent in abrasion resistance and rotating shaft support force. On the other hand, since the middle relief portion 13 does not press against the core rod 32, the density is lower than that of the bearing surface 12, and the middle relief amount can be made relatively large. The amount can be increased and lubricity is improved. As a result, the bearing 20A exhibits excellent bearing performance. In addition, since the degree of compression of both bearing surfaces 12 can be made substantially equal, the porosity of those bearing surfaces 12 is equalized, and therefore, the bearing surfaces 12
And the hydraulic pressure generated at the same time is equalized, and the rotating shaft can be supported in a well-balanced manner.

【0024】なお、上記実施形態では、ハウジング21
の外径は成形孔30内に圧入されてしまり嵌めの状態に
なる寸法であったが、成形孔30に中間嵌めされる寸法
か、あるいは成形孔30の内径面との間に僅かな隙間が
形成される遊嵌の状態になる寸法でもよい。ハウジング
21の外径が、その外径面と嵌合孔30との間に隙間が
空くようであると、素材1Aの圧入時にハウジング21
が拡径するおそれがあるので好ましくはないが、ハウジ
ング21の剛性が高く弾性変形の領域で拡径する、すな
わち塑性変形しなければ、その限りではない。
In the above embodiment, the housing 21
The outer diameter of the hole is a size that is pressed into the forming hole 30 to be tightly fitted. However, the outer diameter is a size that is fitted into the forming hole 30 in the middle, or a slight gap is formed between the outer diameter of the forming hole 30 and the inner diameter surface. The dimensions may be such that the loose fit is formed. If the outer diameter of the housing 21 is such that there is a gap between the outer diameter surface of the housing 21 and the fitting hole 30, the housing 21 is press-fitted when the material 1A is pressed.
Although it is not preferable because there is a possibility that the diameter of the housing 21 may be increased, it is not limited as long as the housing 21 has a high rigidity and expands in an elastic deformation region, that is, does not plastically deform.

【0025】(2)第2実施形態−図2 次に、本発明の第2実施形態を説明する。第2実施形態
の成形装置は、第1実施形態で用いたダイ31の成形孔
30および下パンチ34を変更したものである。この場
合の成形孔30は、図2(a)に示すように、主部30
aの奥部(下部)に、主部30aよりも径が小さい小径
部30bが形成され、この小径部30bに、下パンチ3
4が挿入されるようになされている。第2実施形態で
は、第1実施形態と同様のハウジング21と、図2
(c)の符合1Bで示す素材とから軸受を製造する。
(2) Second Embodiment FIG. 2 Next, a second embodiment of the present invention will be described. The forming apparatus according to the second embodiment is obtained by changing the forming hole 30 and the lower punch 34 of the die 31 used in the first embodiment. The molding hole 30 in this case is, as shown in FIG.
A small-diameter portion 30b having a smaller diameter than the main portion 30a is formed in a deeper portion (lower portion) of the lower portion 3a.
4 is inserted. In the second embodiment, a housing 21 similar to that of the first embodiment, and FIG.
A bearing is manufactured from the material indicated by reference numeral 1B in (c).

【0026】この場合のハウジング21の円筒部22の
外径は、小径部30bの内径よりも大きく、かつ、成形
孔30の主部30aの内径よりも僅かに小さくて、主部
30aに円筒部22が中間嵌めの状態で嵌合する寸法に
設定されている。また、フランジ23の外径は、第1実
施形態と同様に開口部30cの内径よりも大きく設定さ
れている。
In this case, the outer diameter of the cylindrical portion 22 of the housing 21 is larger than the inner diameter of the small-diameter portion 30b and slightly smaller than the inner diameter of the main portion 30a of the forming hole 30. Reference numeral 22 is set to a size that fits in the state of intermediate fitting. The outer diameter of the flange 23 is set to be larger than the inner diameter of the opening 30c as in the first embodiment.

【0027】素材1Bは外径均一で、その外径はハウジ
ング21の内径よりも大きく設定されている。また、内
径面は、コアロッド32の直径よりも径が大きい内径大
径部3bが主体となっており、軸方向一端部に内径小径
部3aが形成されている。内径小径部3aの内径面とコ
アロッド32との間には微小な隙間が形成され、この隙
間よりも大きな隙間が、内径大径部3bとコアロッド3
2との間に形成されるようになっている。
The material 1B has a uniform outer diameter, and the outer diameter is set larger than the inner diameter of the housing 21. The inner diameter surface mainly includes an inner diameter large diameter portion 3b having a diameter larger than the diameter of the core rod 32, and an inner diameter small diameter portion 3a is formed at one end in the axial direction. A minute gap is formed between the inner diameter surface of the inner diameter small diameter portion 3a and the core rod 32, and a gap larger than this gap is formed between the inner diameter large diameter portion 3b and the core rod 3.
2 is formed.

【0028】次に、成形装置により軸受を製造する手順
を説明する。 [工程1−ハウジングの配置]図2(a)に示すよう
に、フランジ23を上にしたハウジング21を成形装置
にセットし、次いで、図2(b)に示すように上パンチ
33によりハウジング21を成形孔30に押し込む。ハ
ウジング21は、円筒部22の下端部が成形孔30の小
径部30bに圧入されて絞り部25が造形され、フラン
ジ23が開口部30cに圧入される。ハウジング21
は、外径面がダイ31に拘束された状態となる。
Next, a procedure for manufacturing a bearing by a molding apparatus will be described. [Step 1-Housing Arrangement] As shown in FIG. 2A, the housing 21 with the flange 23 facing upward is set in a molding apparatus, and then, as shown in FIG. Into the forming hole 30. In the housing 21, the lower end of the cylindrical portion 22 is press-fitted into the small diameter portion 30b of the forming hole 30, the narrowed portion 25 is formed, and the flange 23 is press-fitted into the opening 30c. Housing 21
Is in a state where the outer diameter surface is restricted by the die 31.

【0029】[工程2−素材の圧入]上パンチ33を上
昇させて一旦退避させた後、図2(c)に示すように、
内径小径部3aを上にして素材1Bをコアロッド32に
嵌合させ、ハウジング21上にセットする。次いで、図
2(d)に示すように上パンチ33により素材1Bをハ
ウジング21内に押し込んで圧入する。このとき、コア
ロッド32を素材1Bに追随して降下させる。
[Step 2—Press-fitting of Material] After the upper punch 33 is lifted and retracted once, as shown in FIG.
The material 1B is fitted to the core rod 32 with the small-diameter portion 3a facing upward, and set on the housing 21. Next, as shown in FIG. 2D, the material 1B is pushed into the housing 21 by the upper punch 33 and press-fitted. At this time, the core rod 32 is moved down following the material 1B.

【0030】素材1Bがハウジング21内に圧入される
と、その外径面がハウジング21の内径面に倣って塑性
変形し、全長にわたって縮径するとともに、下端部がハ
ウジング21の絞り部25に圧入して絞り部11が造形
され、さらに、外径面がハウジング21の内径面に圧着
する。絞り部11の内径面はコアロッド32に圧接し、
回転軸を支持する軸支面12に形成される。また、素材
1Bの上端部の内径大径部3bは内径側に突出し、その
内径面がコアロッド32に圧接して回転軸を支持する軸
支面12に形成される。内径大径部3bは上下の軸支面
12間において残存し、回転軸が接触しない中逃げ部1
3に形成される。
When the material 1B is press-fitted into the housing 21, its outer diameter surface is plastically deformed to follow the inner diameter surface of the housing 21, and its diameter is reduced over its entire length. Thus, the squeezed portion 11 is formed, and the outer diameter surface is pressed against the inner diameter surface of the housing 21. The inner diameter surface of the throttle unit 11 is pressed against the core rod 32,
It is formed on a shaft support surface 12 that supports the rotation shaft. The large-diameter large-diameter portion 3b at the upper end of the material 1B protrudes toward the inner diameter side, and the inner diameter surface is formed on the shaft support surface 12 that presses against the core rod 32 and supports the rotating shaft. The large-diameter large-diameter portion 3b remains between the upper and lower shaft supporting surfaces 12, and the middle relief portion 1 where the rotating shaft does not contact.
3 is formed.

【0031】このように素材1Bが塑性変形することに
より、素材1Bが軸受本体10Bに成形され、かつ、こ
の軸受本体10Bとハウジング21とが一体化した軸受
20Bが成形される。軸受20Bは、上パンチ33を上
昇させて退避させ、コアロッド32とともに下パンチ3
4を上昇させてダイ31から脱型し、この後、コアロッ
ド32を降下させれば、取り出すことができる。
By plastically deforming the material 1B, the material 1B is formed into the bearing body 10B, and the bearing 20B in which the bearing body 10B and the housing 21 are integrated is formed. The bearing 20B raises and retracts the upper punch 33, and moves the lower punch 3 together with the core rod 32.
4 can be removed from the die 31 by raising it, and then the core rod 32 can be taken out by lowering.

【0032】(3)第3実施形態−図3,図4 第3実施形態は、図3に示すように、上記コアロッド3
2に代えた動圧溝形成用のコアロッド32Aを、上記第
1実施形態に適用して素材1Aを成形し、軸支面12に
動圧溝が形成された軸受を成形する例である。そのコア
ロッド32Aは、図4(a)に示すように、素材1Aの
両端部内径面の圧接を受ける外径面に、複数のV字状の
凸部32aが周方向に等間隔をおいてヘリングボーン状
に形成されたものである。凸部32aは、コアロッド3
2Aの切削やメッキ等の手段によって形成することがで
きるものであり、その高さは、数μm程度である。
(3) Third Embodiment—FIGS. 3 and 4 In the third embodiment, as shown in FIG.
This is an example in which a core rod 32A for forming a dynamic pressure groove in place of 2 is applied to the first embodiment to form a raw material 1A and a bearing in which a dynamic pressure groove is formed on a shaft support surface 12. As shown in FIG. 4 (a), the core rod 32A has a plurality of V-shaped protrusions 32a herring at equal intervals in the circumferential direction on an outer diameter surface of the material 1A which receives pressure contact between inner diameter surfaces at both ends. It is formed in a bone shape. The protrusion 32a is formed by the core rod 3
It can be formed by means such as cutting or plating of 2A, and its height is about several μm.

【0033】軸受を成形するには、第1実施形態と同様
にしてハウジング21を成形孔30内に圧入し、次い
で、図3(a)に示すように素材1Aを成形装置にセッ
トして、コアロッド32Aの凸部32aが形成された部
分を素材1Aの両端部内径面に対応させる。この状態か
ら、図3(b)に示すように、コアロッド32Aを降下
させながら上パンチ33によって素材1Aをハウジング
21内に圧入し、軸受本体10Cがハウジング21内に
組み込まれた軸受20Cを得る。
In order to form the bearing, the housing 21 is press-fitted into the forming hole 30 in the same manner as in the first embodiment, and then, as shown in FIG. The portions of the core rod 32A where the protrusions 32a are formed correspond to the inner diameter surfaces of both ends of the material 1A. From this state, as shown in FIG. 3B, the raw material 1A is pressed into the housing 21 by the upper punch 33 while the core rod 32A is lowered, and the bearing 20C in which the bearing body 10C is incorporated in the housing 21 is obtained.

【0034】軸受本体10Cの軸支面12には、図4
(b)に示すように(同図はハウジング21を省略して
いる)、コアロッド32Aの凸部32aによってヘリン
グボーン状の動圧溝14が刻設される。脱型された軸受
20Cには、ダイ31による外径面の拘束が開放されて
全体が僅かに拡径するスプリングバックが生じるので、
動圧溝14間の凸部を摩滅することなくコアロッド32
Aから軸受20Cを抜くことができる。
The bearing surface 12 of the bearing body 10C has a structure shown in FIG.
As shown in (b) (the housing 21 is omitted in the figure), a herringbone-shaped dynamic pressure groove 14 is formed by the projection 32a of the core rod 32A. Since the restraint on the outer diameter surface by the die 31 is released to the removed bearing 20C, spring back occurs in which the entire diameter slightly increases,
The core rod 32 without abrasion of the projections between the dynamic pressure grooves 14.
The bearing 20C can be removed from A.

【0035】第3実施形態によって製造された軸受20
Cによれば、軸支面12で回転軸を支持する2点支持構
造に加え、動圧溝14に発生する動圧効果(動圧溝に流
入する潤滑油の高圧化に伴う剛性向上)によって回転軸
の支持力が相乗的に高まり、回転軸の支持力がより安定
する。なお、潤滑油が動圧溝14の一部に集中して動圧
が上昇する効果が十分に期待される観点から、軸受20
Cは、回転軸の回転方向が動圧溝14のV字の先端方向
(図4(b)で矢印R方向)に向くようにセットされる
ことが好ましい。
Bearing 20 manufactured according to the third embodiment
According to C, in addition to the two-point support structure that supports the rotating shaft on the shaft supporting surface 12, due to the dynamic pressure effect generated in the dynamic pressure groove 14 (improved rigidity due to the high pressure of the lubricating oil flowing into the dynamic pressure groove). The supporting force of the rotating shaft increases synergistically, and the supporting force of the rotating shaft becomes more stable. From the viewpoint that the effect that the lubricating oil concentrates on a part of the dynamic pressure groove 14 and the dynamic pressure rises is sufficiently expected, the bearing 20
C is preferably set so that the rotation direction of the rotating shaft is oriented in the direction of the V-shaped tip of the dynamic pressure groove 14 (the direction of arrow R in FIG. 4B).

【0036】上記第3実施形態のように動圧溝形成用の
コアロッド32Aを用いて軸支面に動圧溝を形成する形
態は、第2実施形態にも勿論適用することができる。
The form in which the dynamic pressure grooves are formed on the bearing surface using the core rods 32A for forming the dynamic pressure grooves as in the third embodiment can be applied to the second embodiment.

【0037】なお、第3実施形態で示した動圧溝の形状
は任意であり、その数も適宜に選択されるが、回転軸を
より安定して支持する観点から、複数が軸支面の周方向
に沿って等間隔をおいて配置されると好ましい。第3実
施形態では、ヘリングボーン状として、つまり形状によ
って、動圧上昇が生じる効果を得るようにしているが、
深さの断面形状によってもその効果を得ることができ
る。
The shape of the dynamic pressure groove shown in the third embodiment is arbitrary, and the number thereof is also selected as appropriate. However, from the viewpoint of more stably supporting the rotating shaft, a plurality of grooves are formed on the bearing surface. It is preferable that they are arranged at equal intervals along the circumferential direction. In the third embodiment, the effect of increasing the dynamic pressure is obtained as a herringbone shape, that is, depending on the shape.
The effect can also be obtained depending on the cross-sectional shape of the depth.

【0038】それには、概略形状を軸方向に沿って延び
る溝とし、回転軸が一方向のみに回転する場合には、回
転軸の回転方向の逆方向側の端部を最深部とし、この最
深部から回転軸の回転方向に向かってしだいに浅くなる
よう傾斜させる。また、回転軸が正逆双方向に回転する
場合には、周方向の中間部を最深部とし、この最深部か
ら周方向両端部に向かってしだいに浅くなるよう傾斜さ
せる。このように形成された動圧溝は、横断面(輪切り
にした場合の断面)形状が回転軸の回転方向に向かって
浅くなるくさび状の隙間となり、溝の浅い先端部に潤滑
油が集中するくさび効果を得ることができる。
In order to achieve this, the general shape is a groove extending along the axial direction. When the rotating shaft rotates in only one direction, the end of the rotating shaft in the direction opposite to the rotating direction is the deepest portion. From the section to the direction of rotation of the rotating shaft. When the rotating shaft rotates in both the forward and reverse directions, the middle part in the circumferential direction is set as the deepest part, and the inclination is made so as to gradually become shallower from the deepest part toward both ends in the circumferential direction. The thus formed dynamic pressure groove has a wedge-shaped gap in which the cross-section (cross-section when cut into a circle) becomes shallower in the direction of rotation of the rotary shaft, and the lubricating oil concentrates on the shallow tip of the groove. A wedge effect can be obtained.

【0039】また、第3実施形態で示した動圧溝14
は、コアロッド32Aに形成した凸部32aにより形成
されているが、このような凸部に代え、凹部によって動
圧溝を形成することができる。すなわち、第3実施形態
と刻設のパターンが逆であって、素材1Aの内径小径部
の内径面がコアロッドに圧接させられるとコアロッドに
形成した凹部に導入されて凸部が突設され、この凸部の
内径面が軸支面に、また、凸部間の溝が動圧溝として機
能する。この場合、凸部がさらに突設されることによ
り、その高さだけ中逃げ量が大きい軸受が得られる。な
お、コアロッドに形成する凹部は、放電加工や電解腐食
といった手段により形成することができる。
The dynamic pressure groove 14 shown in the third embodiment
Is formed by the convex portion 32a formed on the core rod 32A, but a dynamic pressure groove can be formed by a concave portion instead of such a convex portion. That is, the pattern of the engraving is opposite to that of the third embodiment, and when the inner diameter surface of the inner diameter small diameter portion of the material 1A is pressed against the core rod, it is introduced into the concave portion formed in the core rod, and the convex portion protrudes. The inner diameter surface of the convex portion functions as a bearing surface, and the groove between the convex portions functions as a dynamic pressure groove. In this case, by further projecting the convex portion, a bearing having a large amount of middle clearance by its height can be obtained. The concave portion formed in the core rod can be formed by means such as electric discharge machining or electrolytic corrosion.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
軸受本体がハウジング内に組み込まれた構成であって、
比較的大きな中逃げ部を有する2点支持構造の軸受を、
比較的簡素な方法で効率よく製造することができる。ま
た、本発明によって製造された軸受は、軸方向両端部の
軸支面においては、内径および同軸度が高い精度で一致
するとともに高密度化されて耐摩耗性の向上が図られ、
一方、中逃げ部が形成された軸方向中央部においては、
密度が低いことから潤滑油の含有量や保油量が十分に確
保される。これらの結果、優れた軸受性能を発揮する。
As described above, according to the present invention,
The bearing body is configured to be incorporated in the housing,
A two-point support structure bearing with a relatively large middle relief
It can be efficiently manufactured by a relatively simple method. In the bearing manufactured by the present invention, the inner diameter and the coaxiality of the bearing surfaces at both ends in the axial direction are matched with high accuracy, and the density is increased to improve wear resistance.
On the other hand, in the central portion in the axial direction where the middle relief portion is formed,
Since the density is low, the content of lubricating oil and the amount of retained oil are sufficiently ensured. As a result, excellent bearing performance is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態に係る軸受の製造工程
を(a)〜(d)の順に示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a manufacturing process of a bearing according to a first embodiment of the present invention in the order of (a) to (d).

【図2】 本発明の第2実施形態に係る軸受の製造工程
を(a)〜(d)の順に示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing a manufacturing process of a bearing according to a second embodiment of the present invention in the order of (a) to (d).

【図3】 本発明の第3実施形態に係る軸受の製造工程
の一部を(a),(b)の順に示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing a part of a manufacturing process of a bearing according to a third embodiment of the present invention in the order of (a) and (b).

【図4】 (a)は本発明の第3実施形態で用いるコア
ロッドの一部斜視図、(b)は第3実施形態で製造され
た軸受の一部を示す縦割り斜視図ある。
FIG. 4A is a partial perspective view of a core rod used in a third embodiment of the present invention, and FIG. 4B is a vertical perspective view showing a part of a bearing manufactured in the third embodiment.

【符号の説明】[Explanation of symbols]

1A,1B…素材 10A,10B,10C…軸受本体 12…軸支面 13…中逃げ部 14…動圧溝 20A,20B,20C…軸受 21…ハウジング 30…成形孔 32,32A…コアロッド 32a…動圧溝形成用の凸部 1A, 1B ... Material 10A, 10B, 10C ... Bearing body 12 ... Bearing support surface 13 ... Medium relief portion 14 ... Dynamic pressure groove 20A, 20B, 20C ... Bearing 21 ... Housing 30 ... Forming hole 32, 32A ... Core rod 32a ... Driving Protrusions for forming pressure grooves

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J011 AA04 BA02 CA01 CA02 DA02 JA02 LA01 SB19 4K018 CA13 CA15 FA02 JA34 KA03 KA22  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3J011 AA04 BA02 CA01 CA02 DA02 JA02 LA01 SB19 4K018 CA13 CA15 FA02 JA34 KA03 KA22

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 円筒状の軸受本体を円筒状のハウジング
内に組み込んでなる軸受の製造方法であって、 前記ハウジングを成形孔内に配置する配置工程と、 外径均一のコアロッドを前記軸受本体に成形される素材
に挿入した状態を保持しながら、該素材を成形孔内に配
置したハウジング内に同軸的に圧入する圧入工程とを備
え、 該圧入工程において、 素材の外径面をハウジングの内径面に圧着させる一方、 素材の軸方向両端部の内径面を前記コアロッドに圧接さ
せて回転軸を支持する軸支面に形成するとともに、これ
ら軸支面間に、回転軸と接触しない中逃げ部を形成する
ことを特徴とする軸受の製造方法。
1. A method of manufacturing a bearing, comprising a cylindrical bearing main body incorporated in a cylindrical housing, comprising: an arranging step of arranging the housing in a molding hole; Press-fitting the material coaxially into a housing arranged in the molding hole while maintaining the state of being inserted into the material to be molded into the material. While being pressed against the inner diameter surface, the inner diameter surfaces of both ends in the axial direction of the material are pressed against the core rod to form a bearing surface for supporting the rotating shaft, and a clearance between these bearing surfaces that does not contact the rotating shaft. A method for manufacturing a bearing, comprising forming a portion.
【請求項2】 前記素材の軸方向両端部の内径面が圧接
させられる前記コアロッドの外径面に、動圧溝形成用の
凸部または凹部が形成されていることを特徴とする請求
項1に記載の軸受の製造方法。
2. A convex portion or a concave portion for forming a dynamic pressure groove is formed on an outer diameter surface of the core rod to which inner diameter surfaces of both ends in the axial direction of the material are pressed. 3. The method for producing a bearing according to item 1.
JP11227199A 1999-08-11 1999-08-11 Manufacture of bearing Pending JP2001050277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11227199A JP2001050277A (en) 1999-08-11 1999-08-11 Manufacture of bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11227199A JP2001050277A (en) 1999-08-11 1999-08-11 Manufacture of bearing

Publications (1)

Publication Number Publication Date
JP2001050277A true JP2001050277A (en) 2001-02-23

Family

ID=16857058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11227199A Pending JP2001050277A (en) 1999-08-11 1999-08-11 Manufacture of bearing

Country Status (1)

Country Link
JP (1) JP2001050277A (en)

Similar Documents

Publication Publication Date Title
JP3954695B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP2006258185A (en) Sintered oil retaining bearing, and method for manufacturing the same
JP4573349B2 (en) Manufacturing method of hydrodynamic bearing
KR102702567B1 (en) Sintered bearing and its manufacturing method
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
JP3607478B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP2001059106A (en) Manufacture of bearing
JP3856363B2 (en) Manufacturing method of bearing
JP2001050277A (en) Manufacture of bearing
JP3818626B2 (en) Method for producing sintered oil-impregnated bearing
JP3797465B2 (en) Manufacturing method of bearing
JP2001056028A (en) Manufacture of bearing
JP2001059105A (en) Manufacture of bearing
JP2001050275A (en) Manufacture of bearing
JP2001020956A (en) Manufacture method of bearing
JP2001032838A (en) Manufacture of bearing
JP2850135B2 (en) Manufacturing method of hydrodynamic groove bearing
JP2001050274A (en) Manufacture of bearing
JP2001041244A (en) Manufacture of bearing
JP2001059104A (en) Manufacture of bearing
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP4327038B2 (en) Spindle motor
JP2001012470A (en) Manufacture of bearing
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801