JP2001048547A - Spinel-type lithium-manganese multiple oxide, its production and use - Google Patents
Spinel-type lithium-manganese multiple oxide, its production and useInfo
- Publication number
- JP2001048547A JP2001048547A JP11230337A JP23033799A JP2001048547A JP 2001048547 A JP2001048547 A JP 2001048547A JP 11230337 A JP11230337 A JP 11230337A JP 23033799 A JP23033799 A JP 23033799A JP 2001048547 A JP2001048547 A JP 2001048547A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- manganese
- composite oxide
- manganese composite
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Compounds Of Iron (AREA)
Abstract
Description
【0001】[0001]
【発明の技術分野】本発明は、リチウムイオン二次電池
用正極活物質として有用な、スピネル構造を有するリチ
ウム・マンガン複合酸化物およびその製造方法に関す
る。また本発明は、前記リチウム・マンガン複合酸化物
を正極活物質として用いる、リチウムイオン二次電池に
関する。TECHNICAL FIELD The present invention relates to a lithium-manganese composite oxide having a spinel structure, which is useful as a positive electrode active material for a lithium ion secondary battery, and a method for producing the same. The present invention also relates to a lithium ion secondary battery using the lithium-manganese composite oxide as a positive electrode active material.
【0002】[0002]
【発明の技術的背景】リチウムイオン電池の正極を構成
する正極活物質として、コバルト酸リチウム、ニッケル
酸リチウムおよびマンガン酸リチウムなどが一部実用化
を含めて開発が進められている。これらのうち、コバル
ト酸リチウムは原料のコバルトが高価であり、また実効
蓄電量が理論量の50%程度しかないという問題があっ
た。また、ニッケル酸リチウムは安価で実効蓄電量がコ
バルト酸リチウムの約1.4倍であるという特性を有し
ているものの、安全性に若干問題があった。これに対
し、マンガン酸リチウムは実効蓄電量はコバルト酸リチ
ウムより若干劣るが、原料のマンガンが安価なこと、安
全性がコバルト酸リチウムと同等であることなどからリ
チウムイオン電池用の正極活物質として期待されてい
る。BACKGROUND OF THE INVENTION As a positive electrode active material constituting a positive electrode of a lithium ion battery, lithium cobaltate, lithium nickelate, lithium manganate and the like have been developed, including some practical applications. Among them, lithium cobalt oxide has a problem that the raw material cobalt is expensive and the effective charge amount is only about 50% of the theoretical amount. Lithium nickelate has the characteristics that it is inexpensive and has an effective storage capacity of about 1.4 times that of lithium cobaltate, but has some problems in safety. Lithium manganate, on the other hand, has a slightly lower effective storage capacity than lithium cobalt oxide, but it is used as a positive electrode active material for lithium ion batteries because manganese as a raw material is inexpensive and has the same safety as lithium cobalt oxide. Expected.
【0003】しかしながら、従来のマンガン酸リチウム
を正極活物質として用いたリチウムイオン電池では、充
放電を繰り返していると、次第に放電容量が低下すると
いう、いわゆるサイクル特性がコバルト酸リチウムに比
べて劣るという問題点があった。これは、正極活物質中
のマンガンが電解液中に溶解したり、さらには充放電の
繰り返しによるマンガン酸リチウム結晶のひずみの発生
によって、次第に放電容量が低下するためと考えられて
いる。However, in a conventional lithium ion battery using lithium manganate as a positive electrode active material, when charge and discharge are repeated, the discharge capacity gradually decreases, that is, the so-called cycle characteristics are inferior to lithium cobalt oxide. There was a problem. This is considered to be because the manganese in the positive electrode active material is dissolved in the electrolytic solution, and furthermore, the discharge capacity is gradually reduced due to the generation of distortion of the lithium manganate crystal due to repeated charge and discharge.
【0004】以上のようなマンガン酸リチウムを正極活
物質として使用する際の問題点を解決するため、種々の
リチウム・マンガン複合酸化物が提案されている。例え
ば、マンガン酸リチウムのマンガンの一部をAl,Ni,
Co,Fe,Cr,Ta,V,Ti,Mg等の金属元素と置
換した、リチウム・マンガン複合酸化物が提案されてい
る(特開平2−220358号公報、特開平4−141
954号公報、特開平6−187993号公報、特開平
9−147867号公報参照)。また、マンガンの一部
をホウ素と置換した、リチウム・マンガン複合酸化物も
提案されている(特開平4−237970号公報、特開
平8−79215号公報、特開平8−195200号公
報参照)。Various lithium-manganese composite oxides have been proposed to solve the above-mentioned problems when using lithium manganate as a positive electrode active material. For example, a part of manganese of lithium manganate is changed to Al, Ni,
Lithium-manganese composite oxides that have been substituted with metal elements such as Co, Fe, Cr, Ta, V, Ti, and Mg have been proposed (JP-A-2-220358, JP-A-4-141).
954, JP-A-6-187993 and JP-A-9-147867). Further, a lithium-manganese composite oxide in which a part of manganese is replaced with boron has also been proposed (see Japanese Patent Application Laid-Open Nos. 4-237970, 8-79215, 8-195200).
【0005】しかしながら、これらのマンガンの一部が
異種元素で置換された従来のリチウム・マンガン複合酸
化物を用いたリチウムイオン電池では、高温におけるサ
イクル特性が劣っていたり、あるいは高温サイクル特性
が必ずしも満足するものではなく実用的にはまだ不十分
であった。また、これらの正極活物質は、微粒子状に加
工して正極用合剤中に配合され、正極形成に使用され
る。ところで、一定容積の電池中にできる限り多くの正
極活物質を充填した方が、電池容量を向上させることが
できるので、正極用合剤中にはできるだけ多くの正極活
物質が配合されることが望ましいが、合剤中に配合し得
る正極活物質の量にも制限がある。However, a conventional lithium-manganese composite oxide in which a part of these manganese is substituted by a different element has a poor high-temperature cycle characteristic or a high-temperature cycle characteristic is not always satisfactory. It was not enough for practical use. Further, these positive electrode active materials are processed into fine particles, blended in a positive electrode mixture, and used for forming a positive electrode. By the way, as much as possible of the positive electrode active material is filled in a battery of a fixed volume, so that the capacity of the battery can be improved. Although desirable, the amount of the positive electrode active material that can be mixed in the mixture is also limited.
【0006】そこで、緻密な充填密度の大きい微粒子状
正極活物質を用いれば、単位体積当たりに充填される正
極活物質の重量が多くなり、充放電容量の大きい電池を
得ることができる。すなわち、重量当たりの放電容量と
同時に体積当たりの放電容量(重量当たり放電容量×充
填密度)の大きい正極活物質が好ましい。しかしなが
ら、従来のマンガン酸リチウムの微粒子は同じ粒径のコ
バルト酸リチウムと比較して充填密度が小さく、このよ
うなマンガン酸リチウムを使用した正極活物質では、体
積当たりの放電容量が低く、コバルト酸リチウムの50
〜60%程度しかないという問題点もあった。Therefore, if a fine particulate positive electrode active material having a high packing density is used, the weight of the positive electrode active material filled per unit volume increases, and a battery having a large charge / discharge capacity can be obtained. That is, a positive electrode active material having a large discharge capacity per volume (discharge capacity per weight x packing density) at the same time as a discharge capacity per weight is preferable. However, the conventional lithium manganate fine particles have a smaller packing density than lithium cobalt oxide having the same particle size, and the positive electrode active material using such lithium manganate has a low discharge capacity per volume and a low cobalt oxide. 50 of lithium
There is also a problem that it is only about 60%.
【0007】[0007]
【発明の目的】本発明は、上記のような従来のリチウム
・マンガン複合酸化物の問題点を解決するもので、リチ
ウムイオン電池の正極活物質として用いたときに、高温
でのサイクル特性および保存性に優れるとともに、体積
当たり放電容量が高い新規なリチウム・マンガン複合酸
化物およびその製造方法、さらにこのような新規なリチ
ウム・マンガン複合酸化物を正極活物質として用いたリ
チウムイオン二次電池を提供することを目的とする。An object of the present invention is to solve the above-mentioned problems of the conventional lithium-manganese composite oxide, and when used as a positive electrode active material of a lithium ion battery, the cycle characteristics and storage at high temperatures are improved. Provided is a novel lithium-manganese composite oxide having excellent dischargeability and a high discharge capacity per volume, a method for producing the same, and a lithium-ion secondary battery using such a novel lithium-manganese composite oxide as a positive electrode active material The purpose is to do.
【0008】[0008]
【発明の概要】本発明に係るスピネル型リチウム・マン
ガン複合酸化物は、下記の一般式で表される。 Li(x+y)Mn(2-y-p-q)M1pM2qO(4-a)Fa (式中、1.0≦x<1.2 , 0<y≦0.2 , 1.0<x+
y≦1.2 ,0<p≦1.0 , 0.0005≦q≦0.1 , 0≦a
≦1.0 であり、 M1:Ni,Co,Mg,Fe,Al,Crから選ばれる少な
くとも1種の金属、 M2:酸化物の融点が800℃以下の元素から選ばれる
少なくとも1種の元素である) 上記スピネル型リチウム・マンガン複合酸化物の比表面
積は、0.1〜2.0m2/gの範囲にあることが好ま
しい。SUMMARY OF THE INVENTION The spinel-type lithium-manganese composite oxide according to the present invention is represented by the following general formula. Li (x + y) Mn ( 2-ypq) M1 p M2 q O (4-a) F a ( wherein, 1.0 ≦ x <1.2, 0 <y ≦ 0.2, 1.0 <x +
y ≦ 1.2, 0 <p ≦ 1.0, 0.0005 ≦ q ≦ 0.1, 0 ≦ a
≦ 1.0, M1: at least one metal selected from Ni, Co, Mg, Fe, Al, and Cr; M2: at least one element selected from elements having an oxide melting point of 800 ° C. or less) The specific surface area of the spinel-type lithium-manganese composite oxide is preferably in the range of 0.1 to 2.0 m 2 / g.
【0009】本発明に係るスピネル型リチウム・マンガ
ン複合酸化物の製造方法は、(i)リチウム化合物、(ii)
マンガン化合物、(iii)Ni,Co,Mg,Fe,Al,Cr
から選ばれる少なくとも1種の金属(M1)の化合物、(i
v)酸化物の融点が800℃以下の元素(M2)から選ばれ
る少なくとも1種の化合物、および(v)フッ素化合物
を、 Li:Mn:M1:M2:Fの原子比が(x+y):(2−
y−p−q):p:q:a(ただし、1.0≦x<1.2、0
<y≦0.2、1.0<x+y≦1.2、0<p≦1.0、0.0005≦
q≦0.1、0≦a≦1.0)の比率で混合して水懸濁液を調
製し、該水懸濁液を乾燥したのち、650〜900℃の
温度で焼成することを特徴としている。The method for producing a spinel-type lithium-manganese composite oxide according to the present invention comprises: (i) a lithium compound;
Manganese compounds, (iii) Ni, Co, Mg, Fe, Al, Cr
A compound of at least one metal (M1) selected from
v) at least one compound selected from the elements (M2) having an oxide melting point of 800 ° C. or lower, and (v) a fluorine compound, wherein the atomic ratio of Li: Mn: M 1 : M 2 : F is (x + y) : (2-
ypq): p: q: a (where 1.0 ≦ x <1.2, 0
<Y ≦ 0.2, 1.0 <x + y ≦ 1.2, 0 <p ≦ 1.0, 0.0005 ≦
(q ≦ 0.1, 0 ≦ a ≦ 1.0) to prepare a water suspension, and drying the water suspension, followed by firing at a temperature of 650 to 900 ° C.
【0010】本発明に係るリチウムイオン二次電池は、
前記スピネル型リチウム・マンガン複合酸化物を正極活
物質として含む正極を有している。[0010] The lithium ion secondary battery according to the present invention comprises:
A positive electrode including the spinel-type lithium-manganese composite oxide as a positive electrode active material is provided.
【0011】[0011]
【発明の具体的説明】本発明に係るスピネル型リチウム
・マンガン複合酸化物は、下記一般式で表される。 Li(x+y)Mn(2-y-p-q)M1pM2qO(4-a)Fa (式中、1.0≦x<1.2 , 0<y≦0.2 , 1.0<x+
y≦1.20<p≦1.0 , 0.0005≦q≦0.1 , 0≦a≦
1.0 であり、 M1:Ni,Co,Mg,Fe,Al,Crから選ばれる少な
くとも1種の金属、 M2:酸化物の融点が800℃以下の元素から選ばれる
少なくとも1種の元素である) このようなリチウム・マンガン複合酸化物は、スピネル
構造を有し、しかも結晶構造中のマンガン原子の一部
が、金属M1および元素M2と置換し、さらにマンガン原
子の一部がリチウム原子と置換した構造を有していると
推定される。DETAILED DESCRIPTION OF THE INVENTION The spinel-type lithium-manganese composite oxide according to the present invention is represented by the following general formula. Li (x + y) Mn ( 2-ypq) M1 p M2 q O (4-a) F a ( wherein, 1.0 ≦ x <1.2, 0 <y ≦ 0.2, 1.0 <x +
y ≦ 1.20 <p ≦ 1.0, 0.0005 ≦ q ≦ 0.1, 0 ≦ a ≦
1.0, M1: at least one metal selected from Ni, Co, Mg, Fe, Al, and Cr; M2: at least one element selected from elements having an oxide melting point of 800 ° C. or less. Such a lithium-manganese composite oxide has a spinel structure, and further has a structure in which part of the manganese atoms in the crystal structure is replaced by metal M1 and element M2, and part of the manganese atoms is further replaced by lithium atoms. It is estimated that it has.
【0012】上記の金属M1の置換量は、前記の一般式
において、0<p≦1、好ましくは0.02≦P≦0.
2の範囲にある。このような範囲にあれば、正極活物質
として用いたときに、一定の放電容量を確保し、高温サ
イクル特性を維持することができる。なお、金属M1の
置換量が多くなると、正極活物質として用いたときの電
池の高温サイクル特性は向上するものの、電池の放電容
量が低下してしまうことがある。The substitution amount of the metal M1 is 0 <p ≦ 1, preferably 0.02 ≦ P ≦ 0 in the general formula.
2 range. Within such a range, when used as a positive electrode active material, a constant discharge capacity can be secured and high-temperature cycle characteristics can be maintained. In addition, when the substitution amount of the metal M1 is increased, the high-temperature cycle characteristics of the battery when used as the positive electrode active material are improved, but the discharge capacity of the battery may be reduced.
【0013】酸化物の融点が800℃以下の元素M2と
しては、具体的にはB(B2O3;融点460℃)、P
(P2O5;融点420℃)、Pb(PbO;融点290
℃)、Sb(Sb2O3;融点655℃)、V(V2O5;
融点680℃)などが挙げられる。これらのうち、特に
好ましい元素はBまたはVである。これらの元素M2
は、最終的に得られるリチウム・マンガン複合酸化物中
でMnの一部と置換した構造を構成しているものと考え
られる。As the element M2 whose melting point of the oxide is 800 ° C. or less, specifically, B (B 2 O 3 ; melting point: 460 ° C.), P
(P 2 O 5 ; melting point 420 ° C.), Pb (PbO; melting point 290)
℃), Sb (Sb 2 O 3; mp 655 ℃), V (V 2 O 5;
Melting point 680 ° C.). Among these, a particularly preferred element is B or V. These elements M2
Is considered to constitute a structure in which a part of Mn is substituted in the finally obtained lithium-manganese composite oxide.
【0014】M2の量は、前記の一般式において、0.
0005≦q≦0.1、好ましくは0.005≦q≦
0.05の範囲にあることが望ましい。元素M2が、リ
チウム・マンガン複合酸化物中に上記の範囲内で含まれ
ていれば、得られるリチウム・マンガン複合酸化物は十
分に結晶が成長している。qが0.0005未満では結
晶成長および微粒子焼結の効果が期待できず、0.1を
越すと正極活物質として用いたときの電池の放電容量が
低下することがある。The amount of M2 in the above general formula is 0.1.
0005 ≦ q ≦ 0.1, preferably 0.005 ≦ q ≦
It is desirably in the range of 0.05. If the element M2 is contained within the above range in the lithium-manganese composite oxide, the obtained lithium-manganese composite oxide has sufficiently grown crystals. When q is less than 0.0005, the effects of crystal growth and fine particle sintering cannot be expected, and when q exceeds 0.1, the discharge capacity of the battery when used as a positive electrode active material may decrease.
【0015】本発明において、これらの元素M2は、ス
ピネル結晶の生成および成長を促進させるために添加さ
れている。すなわち、これらの元素M2は、スピネル結
晶の生成過程で上記の元素の酸化物が融剤として作用し
て、結晶の生成および成長を促進し、さらに結晶粒子
(一次粒子)が集合した微粒子(二次粒子)の焼結を促
進する。その結果、比表面積が小さく、きわめて緻密な
リチウム・マンガン複合酸化物を得ることができる。In the present invention, these elements M2 are added to promote the formation and growth of spinel crystals. That is, during the spinel crystal formation process, these elements M2 promote the generation and growth of the crystal by the oxide of the above element acting as a flux, and further, the fine particles (primary particles) in which the crystal particles (primary particles) are aggregated. Secondary particles). As a result, a very dense lithium-manganese composite oxide having a small specific surface area can be obtained.
【0016】すなわち本発明に係るスピネル型リチウム
・マンガン複合酸化物は、粒径が0.1〜5.0μmの
範囲の結晶粒子(一次粒子)、およびこの一次粒子が集
合して焼結した約2〜30μmの範囲の二次粒子からな
り、その比表面積は、0.1〜2.0m2/g、好まし
くは0.2〜0.8m2/gであり、充填密度は、1.
5〜2.5g/mlの範囲にある。That is, the spinel-type lithium-manganese composite oxide according to the present invention has a crystal particle (primary particle) having a particle size in the range of 0.1 to 5.0 μm, and an approximately sintered particle obtained by assembling the primary particle. consists secondary particles in the range of 2 to 30 m, a specific surface area, 0.1~2.0m 2 / g, preferably from 0.2~0.8m 2 / g, packing density, 1.
It is in the range of 5-2.5 g / ml.
【0017】以上のようなスピネル型リチウム・マンガ
ン複合酸化物微粒子は、一定容積の容器に充填したとき
の充填密度が従来のリチウム・マンガン複合酸化物より
大きい。したがって、正極活物質として用いた場合に一
定容積の電池内に充填し得る正極活物質の重量が多くな
り、従来の正極活物質に比較して体積当たりの放電容量
を大きくすることができる。The above-mentioned spinel-type lithium-manganese composite oxide fine particles have a higher packing density than conventional lithium-manganese composite oxides when filled in a container having a fixed volume. Therefore, when used as a positive electrode active material, the weight of the positive electrode active material that can be filled in a battery of a fixed volume increases, and the discharge capacity per volume can be increased as compared with a conventional positive electrode active material.
【0018】また、結晶が十分に成長しているのでこれ
を正極活物質として用いた場合、電解液と接触したとき
の電解液中に溶解するMnの量が従来のリチウム・マン
ガン複合酸化物に比べて高温でも少ないことから、高温
での充放電の繰り返しによる放電容量の低下が少なく、
すなわち高温のサイクル特性の向上を図ることができ
る。Further, when the crystal is sufficiently grown and is used as a positive electrode active material, the amount of Mn dissolved in the electrolytic solution when contacted with the electrolytic solution is smaller than that of the conventional lithium-manganese composite oxide. Since it is less at high temperatures, there is little decrease in discharge capacity due to repeated charging and discharging at high temperatures.
That is, the high-temperature cycle characteristics can be improved.
【0019】なお、比表面積が0.1m2/gより小さ
いと、Mn溶解量は減るものの、正極中で正極活物質と
導電剤との接触および電解液との接触が不十分となるこ
とがある。また、2.0m2/gより大きくなると充填
密度が小さくなり、体積当たりの放電容量の向上が見ら
れなかったり、また、Mn溶解量の増加によってサイク
ル特性の向上しなくなることがある。If the specific surface area is smaller than 0.1 m 2 / g, the dissolution amount of Mn is reduced, but the contact between the positive electrode active material and the conductive agent and the contact with the electrolyte in the positive electrode may be insufficient. is there. On the other hand, if it is more than 2.0 m 2 / g, the packing density becomes small, and the discharge capacity per volume may not be improved, or the cycle characteristics may not be improved due to the increase in the amount of dissolved Mn.
【0020】本発明に係るリチウム・マンガン複合酸化
物は、さらにMnの一部がLiと置換している。リチウム
イオン電池の正極活物質として用いられるスピネル構造
のリチウム・マンガン複合酸化物におけるLiの理論値
は1であるが、本発明では理論値より過剰のLiが含ま
れている。この過剰のLiの一部または全部に見合う分
だけMn量を少なくすることにより、Liの少なくとも一
部がMnと置換した構造をとっている。すなわち、前記
の一般式において、Liの総量(x+y)は1.0<
(x+y)≦1.2、好ましくは1.05<(x+y)
≦1.15の範囲にあることが望ましい。また、Mnと
置換しているLi量(y)は、0<y≦0.2、好まし
くは0.05<y≦0.15の範囲にあることが望まし
い。Liの置換量(y)が多くなると、電池の充放電容
量は若干低下するものの、サイクル特性が向上する。し
かしながら、yが0.2(x+yが1.2)より多くな
ってもサイクル特性の向上効果は見られない。また、L
i総量(x+y)が1.0以下になると不純物となる異
相が生成され、電池の充放電性能が低下する。In the lithium-manganese composite oxide according to the present invention, Mn is partially replaced with Li. The theoretical value of Li in a lithium-manganese composite oxide having a spinel structure used as a positive electrode active material of a lithium ion battery is 1, but in the present invention, Li is included in excess of the theoretical value. By reducing the amount of Mn by an amount corresponding to part or all of the excess Li, a structure is obtained in which at least a part of Li is substituted with Mn. That is, in the above general formula, the total amount (x + y) of Li is 1.0 <
(X + y) ≦ 1.2, preferably 1.05 <(x + y)
It is desirable to be in the range of ≦ 1.15. Further, the Li amount (y) substituted with Mn is desirably in the range of 0 <y ≦ 0.2, preferably 0.05 <y ≦ 0.15. When the Li replacement amount (y) increases, the charge and discharge capacity of the battery slightly decreases, but the cycle characteristics improve. However, even if y is more than 0.2 (x + y is 1.2), the effect of improving the cycle characteristics is not seen. Also, L
When the total amount (x + y) becomes 1.0 or less, a hetero phase serving as an impurity is generated, and the charge / discharge performance of the battery is reduced.
【0021】本発明に係るスピネル型リチウム・マンガ
ン複合酸化物では、さらにリチウム・マンガン複合酸化
物中にフッ素が含まれていてもよい。このフッ素は、ス
ピネル構造中で酸素の一部と置換した構造をとるものと
推定される。フッ素を添加した正極活物質を用いること
により、リチウムイオン電池の充放電容量の増加が可能
となる。In the spinel-type lithium-manganese composite oxide according to the present invention, the lithium-manganese composite oxide may further contain fluorine. This fluorine is presumed to have a structure in which a part of oxygen is substituted in the spinel structure. By using the positive electrode active material to which fluorine is added, the charge / discharge capacity of the lithium ion battery can be increased.
【0022】本発明のリチウム・マンガン複合酸化物
は、例えばリチウム化合物、マンガン化合物および元素
M1、M2の化合物の粉末を混合したのち、混合物を酸素
含有ガス雰囲気中で焼成することによって製造すること
ができる。特に好適であるのは、本出願人が先に出願し
た特開平10−172567号に基づき、リチウム化合
物、マンガン化合物、元素M1、M2の化合物およびフッ
素化合物を所定の割合で混合した水懸濁液を調製し、こ
れを乾燥したのち650〜900℃で焼成する方法であ
る。The lithium-manganese composite oxide of the present invention can be produced, for example, by mixing powders of a lithium compound, a manganese compound and compounds of the elements M1 and M2, and firing the mixture in an oxygen-containing gas atmosphere. it can. Particularly preferred is an aqueous suspension in which a lithium compound, a manganese compound, compounds of the elements M1, M2 and a fluorine compound are mixed at a predetermined ratio based on Japanese Patent Application Laid-Open No. Hei 10-172567 filed by the present applicant. Is prepared, dried, and then fired at 650 to 900 ° C.
【0023】以下、このような本発明に係る製造方法に
ついて、具体的に説明する。まずマンガン化合物、置換
元素M1化合物およびフッ素化合物が水に分散した、あ
るいはその一部が溶解した水懸濁液(以後水懸濁液Aと
いう)を調製する。マンガン化合物としては、電解二酸
化マンガン、化学合成二酸化マンガンなどのマンガン酸
化物、または水酸化マンガン、炭酸マンガン、硝酸マン
ガンなどの熱分解して二酸化マンガンとなるマンガン化
合物が用いられる。このようなマンガン化合物は粉砕等
の手段で、予めその平均粒径を10μm以下、好ましく
は0.1〜5μmの範囲に調整することが好ましい。Hereinafter, the manufacturing method according to the present invention will be specifically described. First, an aqueous suspension in which a manganese compound, a substituting element M1 compound and a fluorine compound are dispersed in water or a part of which is dissolved (hereinafter referred to as an aqueous suspension A) is prepared. As the manganese compound, a manganese oxide such as electrolytic manganese dioxide or chemically synthesized manganese dioxide, or a manganese compound which is thermally decomposed to manganese dioxide such as manganese hydroxide, manganese carbonate, or manganese nitrate is used. It is preferable that such a manganese compound is previously adjusted to have an average particle diameter of 10 μm or less, preferably 0.1 to 5 μm by means such as grinding.
【0024】元素M1(Ni,Co,Mg,Fe,Al,Cr
から選ばれる1種または2種以上の金属)の化合物とし
ては、塩基性炭酸ニッケル、塩基性炭酸コバルトなどの
炭酸塩、アルミナ、マグネシアなどの酸化物があげられ
る。これらの化合物もマンガン化合物と同様に平均粒径
を10μm以下、好ましくは0.1〜5μmの範囲に調
整することが好ましい。The element M1 (Ni, Co, Mg, Fe, Al, Cr)
Examples of the compound include one or more metals selected from the group consisting of carbonates such as basic nickel carbonate and basic cobalt carbonate, and oxides such as alumina and magnesia. The average particle diameter of these compounds is preferably adjusted to 10 μm or less, preferably 0.1 to 5 μm, similarly to the manganese compound.
【0025】粒度調整は上記の化合物をそれぞれ別に行
ってもよく、上記化合物をすべて混合したのち行っても
よい。このような範囲に水懸濁液中の固形分の平均粒径
を調整しておくと、懸濁液中で固形分が固液分離するこ
となく、均一な状態で次の乾燥工程に付することができ
る。その結果、各化合物がきわめて均一に混合した乾燥
粉体が得られる。そして、この乾燥物を焼成すれば、マ
ンガン、リチウム、置換元素との固相反応が容易に進行
し、従来の固体粉末同士の混合物の焼成物よりもより高
純度の複合酸化物を得ることができる。フッ素元素を添
加する場合は、たとえばフッ化アンモニアム、フッ化水
素酸、フッ化リチウムなどが上記の水懸濁液Aに混合さ
れる。The particle size adjustment may be performed separately for each of the above compounds, or may be performed after all of the above compounds are mixed. If the average particle size of the solids in the aqueous suspension is adjusted to such a range, the solids in the suspension are not subjected to solid-liquid separation, and are subjected to the next drying step in a uniform state. be able to. As a result, a dry powder in which each compound is mixed very uniformly is obtained. Then, if this dried material is fired, the solid phase reaction with manganese, lithium, and the substitution element easily proceeds, and it is possible to obtain a higher-purity composite oxide than a fired product of a conventional mixture of solid powders. it can. In the case where elemental fluorine is added, for example, ammonium fluoride, hydrofluoric acid, lithium fluoride, and the like are mixed into the above-mentioned aqueous suspension A.
【0026】上記のようにして調製された水懸濁液A中
にリチウム化合物および酸化物の融点が800℃以下の
元素M2の化合物を混合する。リチウム化合物として
は、水酸化リチウム、炭酸リチウム、硝酸リチウムなど
の水溶性リチウム化合物が挙げられる。また、M2の化
合物としては、元素M2を含む酸、水溶性塩などが挙げ
られ、具体的には硼酸、硼砂などの水溶性硼素化合物、
メタバナジン酸アンモニウムなどの水溶性バナジウム化
合物などが例示される。In the aqueous suspension A prepared as described above, a compound of the element M2 whose melting point of the lithium compound and the oxide is 800 ° C. or less is mixed. Examples of the lithium compound include water-soluble lithium compounds such as lithium hydroxide, lithium carbonate, and lithium nitrate. Examples of the compound of M2 include an acid containing the element M2, a water-soluble salt, and the like. Specifically, a water-soluble boron compound such as boric acid and borax;
Water-soluble vanadium compounds such as ammonium metavanadate are exemplified.
【0027】上記のリチウム化合物および酸化物の融点
が800℃以下の元素M2の化合物は、調製しておいた
水懸濁液Aに直接混合してもよく、また、水溶液として
前記の水懸濁液Aに混合してもよい。上記のようにして
調製されたリチウム化合物、マンガン化合物、元素M
1、M2の化合物およびフッ素化合物を所定の割合で含む
水懸濁液(水懸濁液Bという)は、新たに水を加えるな
どにより、固形分濃度が5〜30重量%の範囲となるよ
うに調整することが望ましい。The compound of the element M2 whose melting point of the above-mentioned lithium compound and oxide is 800 ° C. or less may be directly mixed with the prepared water suspension A. It may be mixed with the liquid A. Lithium compound, manganese compound, element M prepared as described above
1. An aqueous suspension containing a compound of M2 and a fluorine compound at a predetermined ratio (hereinafter referred to as an aqueous suspension B) has a solid content concentration of 5 to 30% by weight by adding new water or the like. It is desirable to adjust to.
【0028】上記の方法で調製された水懸濁液Bは、次
に乾燥操作に付される。乾燥方法としては特に制限はな
く、たとえば、スプレードライヤー、バンド乾燥機、棚
型乾燥機などによる方法が挙げられる。特に、スプレー
ドライヤーを使用すれば、球状のリチウム・マンガン複
合酸化物微粒子が得られる。このときの乾燥条件として
は、スプレードライヤーの乾燥用熱風の入口温度が約2
90〜310℃、出口温度が約110〜120℃の範囲
が好ましい。The aqueous suspension B prepared by the above method is then subjected to a drying operation. The drying method is not particularly limited, and examples thereof include a method using a spray drier, a band drier, a shelf type drier and the like. In particular, if a spray dryer is used, spherical lithium / manganese composite oxide fine particles can be obtained. At this time, the drying temperature of the hot air for drying of the spray dryer is about 2
Preferably, the temperature ranges from 90 to 310C and the outlet temperature ranges from about 110 to 120C.
【0029】乾燥後の微粒子は、次いで酸素含有ガス雰
囲気中で、650〜900℃の範囲の温度で焼成され
る。この焼成操作によって、スピネル構造のリチウム・
マンガン複合酸化物が生成し、かつ結晶成長が進むとと
もに結晶粒子が集合した微粒子(二次粒子)の焼結が促
進され、上記したようなリチウム・マンガン複合酸化物
が得られる。The dried fine particles are then fired in an oxygen-containing gas atmosphere at a temperature in the range of 650 to 900 ° C. By this firing operation, lithium with spinel structure
As the manganese composite oxide is generated and the crystal growth proceeds, sintering of the fine particles (secondary particles) in which the crystal particles are aggregated is promoted, and the above-described lithium-manganese composite oxide is obtained.
【0030】焼成は、トンネル炉、マッフル炉、ロータ
リーキルンなど通常の焼成炉により、空気などの酸素含
有ガス中で行われる。なお、本発明のリチウム・マンガ
ン複合酸化物の比表面積は、上記の焼成温度を高くした
り、また融剤として作用する元素M2の化合物の添加量
が多くすると、小さくなる。本発明では、前記元素M2
の添加量に応じて焼成温度を適宜選ぶことによって、比
表面積が0.1〜2.0m2/gの範囲のリチウム・マ
ンガン複合酸化物を得ることができる。The calcination is carried out in a usual calcination furnace such as a tunnel furnace, a muffle furnace and a rotary kiln in an oxygen-containing gas such as air. The specific surface area of the lithium-manganese composite oxide of the present invention decreases as the firing temperature is increased or the amount of the compound of the element M2 acting as a flux increases. In the present invention, the element M2
By appropriately selecting the sintering temperature in accordance with the added amount of, a lithium-manganese composite oxide having a specific surface area of 0.1 to 2.0 m 2 / g can be obtained.
【0031】さらに、上記範囲の温度で焼成すれば結晶
粒子が集合した微粒子(二次粒子)の焼結が進み、従来
の方法で得られる二次粒子よりも充填密度が大きい緻密
な微粒子が得られる。Further, if calcination is carried out at a temperature within the above range, sintering of fine particles (secondary particles) in which crystal particles are aggregated proceeds, and dense fine particles having a higher packing density than the secondary particles obtained by a conventional method are obtained. Can be
【0032】[0032]
【発明の効果】本発明に係るリチウム・マンガン複合酸
化物は、Mnの一部がNi,Co,Mg,Fe,Al,Crか
ら選ばれる金属元素と置換されており、これを正極活物
質として用いたリチウムイオン電池は、高温での保存
性、高温サイクル特性などの高温特性が優れている。In the lithium-manganese composite oxide according to the present invention, a part of Mn is replaced by a metal element selected from Ni, Co, Mg, Fe, Al and Cr, and this is used as a positive electrode active material. The used lithium ion battery is excellent in high temperature characteristics such as high temperature storage stability and high temperature cycle characteristics.
【0033】さらに、Bなどの酸化物の融点が800℃
以下の元素が添加されていることにより、結晶が十分に
成長し、また結晶粒子同士の集合体である微粒子も十分
に焼結しているので、比表面積が小さく、微粒子の充填
密度も大きい。したがって、これを正極活物質として用
いたリチウムイオン電池の体積当たりの放電容量が優れ
ると同時に、高温での保存性などの高温特性が、Ni,
Co,Mg,Fe,Al,Cr等の金属元素とのみの置換物
よりもさらに向上している。Further, the melting point of the oxide such as B is 800 ° C.
Since the following elements are added, the crystals grow sufficiently, and the fine particles, which are aggregates of the crystal particles, are sufficiently sintered, so that the specific surface area is small and the packing density of the fine particles is large. Accordingly, a lithium ion battery using this as a positive electrode active material has excellent discharge capacity per volume, and at the same time, Ni,
It is more improved than the substitution with only metal elements such as Co, Mg, Fe, Al and Cr.
【0034】また、Mnの一部がLiと置換されているの
で、これを正極活物質として用いたリチウムイオン電池
は、高温サイクル特性が向上している。さらにまた、本
発明に係るリチウム・マンガン複合酸化物の酸素の一部
をフッ素で置換したものを正極活物質として用いると、
リチウムイオン電池の充放電容量の向上を図ることがで
きる。Further, since part of Mn is replaced with Li, a lithium ion battery using this as a positive electrode active material has improved high-temperature cycle characteristics. Furthermore, when the lithium-manganese composite oxide according to the present invention is obtained by replacing a part of oxygen with fluorine as a positive electrode active material,
The charge / discharge capacity of the lithium ion battery can be improved.
【0035】[0035]
【実施例】以下、本発明について実施例に基づき説明す
るが、本発明はこれらの実施例に何ら限定されるもので
はない。EXAMPLES Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
【0036】[0036]
【実施例1】電解二酸化マンガン粉末(γ−MnO2、純
度92%)と炭酸コバルト粉末(CoCO3、純度93
%)を、Mn:Co=90:10(原子比)の割合で湿式
粉砕器に仕込み、平均粒径0.5μmに粉砕した。この
混合物スラリーに、Li:Co:Mn:B=1.1:0.
189:1.701:0.0095(原子比)になるよ
うに水酸化リチウム水溶液および硼酸水溶液を加えて、
固形分濃度20重量%のスラリーを調製した。EXAMPLE 1 Electrolytic manganese dioxide powder (γ-MnO 2 , purity 92%) and cobalt carbonate powder (CoCO 3 , purity 93)
%) In a wet crusher at a ratio of Mn: Co = 90: 10 (atomic ratio) and crushed to an average particle size of 0.5 μm. Add Li: Co: Mn: B = 1.1: 0.
189: 1.701: 0.0095 (atomic ratio), an aqueous solution of lithium hydroxide and an aqueous solution of boric acid are added.
A slurry having a solid content of 20% by weight was prepared.
【0037】このスラリーをスプレードライヤーで乾燥
した。スプレードライヤーの条件は、熱風入口温度30
0〜310℃、出口温度110〜150℃とした。次い
で、乾燥粉末を空気流通下850℃で6時間焼成するこ
とにより、Li1.1Co0.189Mn1.701B0.0095O4(x=
1.0,y=0.1)の組成を有する結晶性リチウム・
マンガン複合酸化物の微粒子を得た。This slurry was dried with a spray drier. The condition of the spray dryer is hot air inlet temperature 30
0 to 310 ° C and outlet temperature of 110 to 150 ° C. Next, the dried powder was calcined at 850 ° C. for 6 hours under air flow to obtain Li 1.1 Co 0.189 Mn 1.701 B 0.0095 O 4 (x =
1.0, y = 0.1).
Fine particles of a manganese composite oxide were obtained.
【0038】上記の微粒子の平均粒径、比表面積および
充填密度を表1に示す。なお、測定方法は次のとおりで
ある。平均粒径:レーザー回折散乱式粒度分布測定装置
(堀場製作所製、LA-700)比表面積:自動表面積測定装
置(ユアサアイオニクス社製、マルチソープ-12)充填
密度:50mlのメスシリンダーに試料を25g採取し、
木製テーブル上で3分間タッピングしたのちその容積
(V)を測り、次式により求めた。Table 1 shows the average particle size, specific surface area and packing density of the fine particles. In addition, the measuring method is as follows. Average particle size: Laser diffraction scattering type particle size distribution measuring device (LA-700, manufactured by Horiba Ltd.) Specific surface area: Automatic surface area measuring device (Multisoap-12, manufactured by Yuasa Ionics Inc.) Collect 25g,
After tapping on a wooden table for 3 minutes, the volume (V) was measured and determined by the following equation.
【0039】充填密度(g/ml)=25/VPacking density (g / ml) = 25 / V
【0040】[0040]
【実施例2】リチウム、コバルト、マンガンおよび硼素
の原子比が、Li:Co:Mn:B=1.1:0.09
5:1.796:0.0095となるように原料を配合
したした以外は、実施例1と同様の合成条件で、Li1.1
Co0.095Mn1.796B0.0095O4(x=1.0,y=0.
1)からなる結晶性リチウム・マンガン複合酸化物の微
粒子を調製した。EXAMPLE 2 The atomic ratio of lithium, cobalt, manganese and boron is Li: Co: Mn: B = 1.1: 0.09.
Except that the raw materials were blended so as to be 5: 1.796: 0.0095, Li 1.1 was obtained under the same synthesis conditions as in Example 1.
Co 0.095 Mn 1.796 B 0.0095 O 4 (x = 1.0, y = 0.
Fine particles of the crystalline lithium / manganese composite oxide comprising 1) were prepared.
【0041】得られた微粒子の平均粒径、比表面積およ
び充填密度を表1に示す。Table 1 shows the average particle size, specific surface area and packing density of the obtained fine particles.
【0042】[0042]
【実施例3】リチウム、コバルト、マンガンおよび硼素
の原子比が、Li:Co:Mn:B=1.1:0.01
9:1.872:0.0095になるように原料を配合
した以外は、実施例1と同様の合成条件で、Li1.1Co
0.019Mn1.872B0.0095O4(x=1.0,y=0.1)
からなる結晶性リチウム・マンガン複合酸化物の微粒子
を調製した。Embodiment 3 The atomic ratio of lithium, cobalt, manganese and boron is Li: Co: Mn: B = 1.1: 0.01.
Except that the raw materials were blended so as to be 9: 1.872: 0.0095, Li 1.1 Co was used under the same synthesis conditions as in Example 1.
0.019 Mn 1.872 B 0.0095 O 4 (x = 1.0, y = 0.1)
Fine particles of a crystalline lithium-manganese composite oxide were prepared.
【0043】得られた微粒子の平均粒径、比表面積およ
び充填密度を表1に示す。Table 1 shows the average particle size, specific surface area and packing density of the obtained fine particles.
【0044】[0044]
【実施例4】リチウム、コバルト、マンガンおよび硼素
の原子比が、Li:Co:Mn:B=1.1:0.09
2:1.751:0.057になるように原料を配合し
た以外は、実施例1と同様の合成条件で、Li1.1Co
0.092Mn1.751B0.057O4(x=1.0,y=0.1)
からなる結晶性リチウム・マンガン複合酸化物の微粒子
を調製した。Embodiment 4 The atomic ratio of lithium, cobalt, manganese and boron is Li: Co: Mn: B = 1.1: 0.09.
2: 1.751: except that blended raw material to be 0.057, the synthesis conditions as in Example 1, Li 1.1 Co
0.092 Mn 1.751 B 0.057 O 4 (x = 1.0, y = 0.1)
Fine particles of a crystalline lithium-manganese composite oxide were prepared.
【0045】得られた微粒子の平均粒径、比表面積およ
び充填密度を表1に示す。Table 1 shows the average particle size, specific surface area and packing density of the obtained fine particles.
【0046】[0046]
【実施例5】アルミニウム化合物としてγ−Al2O
3(純度:95%)を用い、リチウム、アルミニウム、
マンガンおよび硼素の原子比をLi:Al:Mn:B=
1.1:0.095:1.796:0.0095になる
ように原料を配合した以外は、実施例1と同様の合成条
件で、Li1.1Al0.095Mn1.796B0.0095O4(x=1.
0,y=0.1)からなる結晶性リチウム・マンガン複
合酸化物の微粒子を得た。Embodiment 5 γ-Al 2 O as an aluminum compound
3 (purity: 95%) using lithium, aluminum,
The atomic ratio of manganese and boron is expressed as Li: Al: Mn: B =
Under the same synthesis conditions as in Example 1 except that the raw materials were blended so as to be 1.1: 0.095: 1.796: 0.0095, Li 1.1 Al 0.095 Mn 1.796 B 0.0095 O 4 (x = 1 .
(0, y = 0.1) to obtain fine particles of a crystalline lithium-manganese composite oxide.
【0047】得られた微粒子の平均粒径、比表面積およ
び充填密度を表1に示す。Table 1 shows the average particle size, specific surface area and packing density of the obtained fine particles.
【0048】[0048]
【実施例6】マグネシウム化合物として酸化マグネシウ
ム(MgO,純度:99.8%)を使用し、リチウム、
マグネシウム、マンガンおよび硼素の原子比が、Li:
Mg:Mn:B=1.1:0.047:1.843:0.
0095になるように原料を配合した以外は、実施例1
と同様の合成条件で、Li1.1Mg0.047Mn1.843B0.00 95
O4(x=1.0,y=0.1)からなる結晶性リチウ
ム・マンガン複合酸化物の微粒子を得た。Example 6 Using magnesium oxide (MgO, purity: 99.8%) as a magnesium compound, lithium,
The atomic ratio of magnesium, manganese and boron is Li:
Mg: Mn: B = 1.1: 0.047: 1.843: 0.
Example 1 except that the raw materials were blended so as to be 0095.
In the same synthesis conditions as, Li 1.1 Mg 0.047 Mn 1.843 B 0.00 95
Fine particles of a crystalline lithium / manganese composite oxide composed of O 4 (x = 1.0, y = 0.1) were obtained.
【0049】得られた微粒子の平均粒径、比表面積およ
び充填密度を表1に示す。Table 1 shows the average particle size, specific surface area and packing density of the obtained fine particles.
【0050】[0050]
【実施例7】ニッケル化合物として水酸化ニッケル(N
i(OH)2、純度:100%)を用いた。リチウム、ニッ
ケル、マンガンおよび硼素の原子比が、Li:Ni:M
n:B=1.1:0.095:1.796:0.009
5になるように原料を配合した以外は、実施例1と同様
の合成条件で、Li1.1Ni0.095Mn1.796B0.0095O
4(x=1.0,y=0.1)からなる結晶性リチウム
・マンガン複合酸化物の微粒子を得た。Embodiment 7 Nickel hydroxide (N
i (OH) 2 , purity: 100%). The atomic ratio of lithium, nickel, manganese and boron is Li: Ni: M
n: B = 1.1: 0.095: 1.796: 0.009
5, Li 1.1 Ni 0.095 Mn 1.796 B 0.0095 O under the same synthesis conditions as in Example 1, except that the raw materials were blended.
4 (x = 1.0, y = 0.1) to obtain fine particles of crystalline lithium / manganese composite oxide.
【0051】得られた微粒子の平均粒径、比表面積およ
び充填密度を表1に示す。Table 1 shows the average particle size, specific surface area and packing density of the obtained fine particles.
【0052】[0052]
【実施例8】クロム化合物として無水クロム酸(Cr
O3、純度:99.8%)を用い、リチウム、クロム、
マンガンおよび硼素の原子比が、Li:Cr:Mn:B=
1.1:0.095:1.796:0.0095になる
ように原料を配合した以外は、実施例1と同様の合成条
件で、Li1.1Cr0.095Mn1.796B0.0095O4(x=1.
0,y=0.1)からなる結晶性リチウム・マンガン複
合酸化物の微粒子を得た。Embodiment 8 Chromic anhydride (Cr) was used as a chromium compound.
O 3 , purity: 99.8%), lithium, chromium,
When the atomic ratio of manganese and boron is Li: Cr: Mn: B =
Under the same synthesis conditions as in Example 1 except that the raw materials were blended so as to be 1.1: 0.095: 1.796: 0.0095, Li 1.1 Cr 0.095 Mn 1.796 B 0.0095 O 4 (x = 1 .
(0, y = 0.1) to obtain fine particles of a crystalline lithium-manganese composite oxide.
【0053】得られた微粒子の平均粒径、比表面積およ
び充填密度を表1に示す。Table 1 shows the average particle size, specific surface area and packing density of the obtained fine particles.
【0054】[0054]
【実施例9】鉄化合物として酸化鉄(Fe2O3,純度:9
8%)を用いて、リチウム、鉄、マンガンおよび硼素の
原子比が、Li:Fe:Mn:B=1.1:0.047:
1.843:0.0095になるように原料を配合した
以外は、実施例1と同様の合成条件で、Li1.1Fe0.047
Mn1.843B0.0095O4(x=1.0,y=0.1)から
なる結晶性リチウム・マンガン複合酸化物の微粒子を得
た。Embodiment 9 Iron oxide (Fe 2 O 3 , purity: 9) was used as an iron compound.
8%), the atomic ratio of lithium, iron, manganese and boron is Li: Fe: Mn: B = 1.1: 0.047:
1.83: Li 1.1 Fe 0.047 under the same synthesis conditions as in Example 1 except that the raw materials were blended so as to be 0.0095.
Fine particles of a crystalline lithium-manganese composite oxide composed of Mn 1.843 B 0.0095 O 4 (x = 1.0, y = 0.1) were obtained.
【0055】得られた微粒子の平均粒径、比表面積およ
び充填密度を表1に示す。Table 1 shows the average particle size, specific surface area and packing density of the obtained fine particles.
【0056】[0056]
【実施例10】電解二酸化マンガン粉末(γ−MnO2、
純度92%)と水酸化ニッケル粉末(Ni(OH)2、純度
100%)を、Mn:Ni=95:5(原子比)の割合で
湿式粉砕器に仕込み、平均粒径0.5μmに粉砕した。
この混合物スラリーに、Li:Ni:Mn:B:F=1.
1:0.095:1.796:0.0095:0.09
5(原子比)になるように水酸化リチウム水溶液、硼酸
水溶液およびフッ化アンモニウム水溶液を加えて、固形
分濃度20重量%のスラリーを調製した。Example 10 Electrolytic manganese dioxide powder (γ-MnO 2 ,
Purity 92%) and nickel hydroxide powder (Ni (OH) 2 , purity 100%) were charged into a wet mill at a ratio of Mn: Ni = 95: 5 (atomic ratio) and milled to an average particle size of 0.5 μm. did.
To this mixture slurry, Li: Ni: Mn: B: F = 1.
1: 0.095: 1.796: 0.0095: 0.09
An aqueous solution of lithium hydroxide, an aqueous solution of boric acid and an aqueous solution of ammonium fluoride were added so as to have an atomic ratio of 5 to prepare a slurry having a solid content of 20% by weight.
【0057】このスラリーを実施例1と同一条件のスプ
レードライヤーで乾燥した。次いで、乾燥粉末を空気流
通下850℃で6時間焼成することにより、Li1.1Ni
0.095Mn1.796B0.0095O3.905F0.095(x=1.0,
y=0.1)からなる結晶性リチウム・マンガン複合酸
化物の微粒子を得た。得られた微粒子の平均粒径、比表
面積および充填密度を表1に示す。This slurry was dried with a spray drier under the same conditions as in Example 1. Then, the dried powder is calcined at 850 ° C. for 6 hours under air flow to obtain Li 1.1 Ni.
0.095 Mn 1.796 B 0.0095 O 3.905 F 0.095 (x = 1.0,
y = 0.1) to obtain fine particles of crystalline lithium / manganese composite oxide. Table 1 shows the average particle size, specific surface area, and packing density of the obtained fine particles.
【0058】[0058]
【実施例11】リチウム、ニッケル、マンガン、硼素お
よびフッ素の原子比が、Li:Ni:Mn:B:F=1.
1:0.095:1.796:0.0095:0.19
になるようにした以外は、実施例10と同様の合成条件
で、Li1.1Ni0.095Mn1.796B 0.0095O3.81F0.19(x
=1.0,y=0.1)からなる結晶性リチウム・マン
ガン複合酸化物の微粒子を得た。Embodiment 11 Lithium, nickel, manganese, boron and the like
And the atomic ratio of fluorine and Li: Ni: Mn: B: F = 1.
1: 0.095: 1.796: 0.0095: 0.19
Synthesis conditions similar to Example 10 except that
And Li1.1Ni0.095Mn1.796B 0.0095O3.81F0.19(X
= 1.0, y = 0.1)
Fine particles of the gun complex oxide were obtained.
【0059】得られた微粒子の平均粒径、比表面積およ
び充填密度を表1に示す。Table 1 shows the average particle size, specific surface area and packing density of the obtained fine particles.
【0060】[0060]
【比較例1】ホウ素を添加せず、リチウムおよびコバル
トの量を実施例2と同じにした以外は、実施例1と同様
の合成条件で、Li1.1Co0.095Mn1.805O4(x=1.
0,y=0.1)からなる結晶性リチウム・マンガン複
合酸化物の微粒子を得た。得られた微粒子の平均粒径、
比表面積および充填密度を表1に示す。Comparative Example 1 Li 1.1 Co 0.095 Mn 1.805 O 4 (x = 1.10) under the same synthesis conditions as in Example 1 except that boron was not added and the amounts of lithium and cobalt were the same as in Example 2.
(0, y = 0.1) to obtain fine particles of a crystalline lithium-manganese composite oxide. Average particle size of the obtained fine particles,
Table 1 shows the specific surface area and packing density.
【0061】[0061]
【比較例2】リチウム、マンガンおよび硼素の原子比
が、Li:Mn:B=1.1:1.89:0.0095に
なるようにした以外は、実施例1と同様の合成条件で、
LiおよびB以外の置換元素のないLi1.1Mn1.89B
0.0095O4(x=1.0,y=0.1)からなる結晶性
リチウム・マンガン複合酸化物の微粒子を得た。Comparative Example 2 The synthesis conditions were the same as in Example 1 except that the atomic ratio of lithium, manganese and boron was set to Li: Mn: B = 1.1: 1.89: 0.0095.
Li 1.1 Mn 1.89 B without substitution elements other than Li and B
Fine particles of crystalline lithium / manganese composite oxide composed of 0.0095 O 4 (x = 1.0, y = 0.1) were obtained.
【0062】得られた微粒子の平均粒径、比表面積およ
び充填密度を表1に示す。Table 1 shows the average particle size, specific surface area and packing density of the obtained fine particles.
【0063】[0063]
【比較例3】Liを理論量とし、CoおよびBの置換量を
実施例2と同じとした以外は、実施例1と同様の合成条
件で、Li1.0Co0.10Mn1.89B0.0095O4(x=1.
0,y=0)からなる結晶性リチウム・マンガン複合酸
化物の微粒子を得た。得られた微粒子の平均粒径、比表
面積および充填密度を表1に示す。[Comparative Example 3] The Li was the theoretical amount, except that the same substitution of Co and B as in Example 2, the synthesis conditions as in Example 1, Li 1.0 Co 0.10 Mn 1.89 B 0.0095 O 4 (x = 1.
(0, y = 0) to obtain fine particles of a crystalline lithium-manganese composite oxide. Table 1 shows the average particle size, specific surface area, and packing density of the obtained fine particles.
【0064】[0064]
【比較例4】実施例1で用いた電解二酸化マンガン、炭
酸コバルト、水酸化リチウムおよび硼酸それぞれの粉末
を、Li:Co:Mn:B=1.1:0.095:1.7
96:0.0095(原子比)になるように乳鉢に採取
し、粉砕したのち、混合した。次にこの混合物を、空気
流通下、850℃で6時間焼成し、Li1.1Co0.095Mn
1.796B0.0095O4(x=1.0,y=0.1)からなる
結晶性リチウム・マンガン複合酸化物の微粒子を得た。Comparative Example 4 The powders of electrolytic manganese dioxide, cobalt carbonate, lithium hydroxide and boric acid used in Example 1 were obtained by adding Li: Co: Mn: B = 1.1: 0.095: 1.7.
It was collected in a mortar so that the ratio became 96: 0.0095 (atomic ratio), crushed, and then mixed. Next, the mixture was calcined at 850 ° C. for 6 hours under flowing air to obtain Li 1.1 Co 0.095 Mn.
Fine particles of crystalline lithium / manganese composite oxide composed of 1.796 B 0.0095 O 4 (x = 1.0, y = 0.1) were obtained.
【0065】得られた微粒子の平均粒径、比表面積およ
び充填密度を表1に示す。Table 1 shows the average particle size, specific surface area and packing density of the obtained fine particles.
【0066】[0066]
【表1】 [Table 1]
【0067】[0067]
【実施例12】実施例1〜11で得られた結晶性リチウ
ム・マンガン複合酸化物を正極活物質として含む正極を
用いて試験用リチウムイオン電池を作成し、電池性能を
評価した。まず、それぞれの結晶性リチウム・マンガン
複合酸化物の微粒子と導電材としてのアセチレンブラッ
クおよびバインダーとしてのポリ四フッ化エチレンパウ
ダーを、75:20:5の重量比で混合し、乳鉢で混練
して正極用合剤を調製した。この合剤を展伸ローラーで
厚さ0.1mmのシートとし、16mmφに型抜きした後1
10℃で真空乾燥して試験用正極を作成した。Example 12 A test lithium ion battery was prepared using the positive electrode containing the crystalline lithium / manganese composite oxide obtained in Examples 1 to 11 as a positive electrode active material, and the battery performance was evaluated. First, fine particles of each crystalline lithium-manganese composite oxide, acetylene black as a conductive material, and polytetrafluoroethylene powder as a binder are mixed at a weight ratio of 75: 20: 5, and kneaded in a mortar. A mixture for a positive electrode was prepared. This mixture was formed into a sheet having a thickness of 0.1 mm with a spreading roller, and then punched out to a diameter of 16 mm.
Vacuum drying was performed at 10 ° C. to prepare a test positive electrode.
【0068】これらの正極と金属リチウム箔(厚さ0.
2μm)を、セパレーター(商品名:セルガード)を介
してコイン型電池ケースに積層し、体積比1:1のエチ
レンカーボネートとジメチルカーボネート混合溶媒に1
mol/lのLiPF6を溶解した電解液を注入して試験用電
池を作成した。上記の電池について、放電容量、高温サ
イクル特性および高温劣化試験を行った。 (1)放電容量 定電流で0.5mA/cm2の電流密度、充電電位4.3
Vまで、放電電位3.0Vまでの電位規制の条件で、ま
ず重量当たりの放電容量を測定したのち、次式により体
積当たりの放電容量を算出した。These positive electrodes and a metallic lithium foil (thickness: 0.
2 μm) was laminated on a coin-type battery case via a separator (trade name: Celgard), and 1: 1 in a mixed solvent of ethylene carbonate and dimethyl carbonate having a volume ratio of 1: 1.
A test battery was prepared by injecting an electrolytic solution in which mol / l of LiPF 6 was dissolved. The above batteries were subjected to a discharge capacity, a high-temperature cycle characteristic, and a high-temperature deterioration test. (1) Discharge capacity Current density of 0.5 mA / cm 2 at constant current, charge potential 4.3
The discharge capacity per unit weight was first measured under the conditions of potential regulation up to 3.0 V, and the discharge capacity per unit volume was calculated by the following equation.
【0069】体積当たりの放電容量=重量当たりの放電
容量×充填密度 (2)高温サイクル特性 試験用電池を60℃の恒温槽に設置し、上記と同一の条
件で30回の充放電試験を行い、高温サイクル特性を次
式の容量維持率で評価した。 容量維持率(%)=(1回目の重量当たり放電容量/3
0回目の重量当たり放電容量)×100 (3)高温劣化試験(高温保存性の評価) 高温の電解液中に一定時間浸したあとの正極活物質の性
能劣化を放電容量の回復率を指標として評価した。Discharge capacity per volume = discharge capacity per weight × packing density (2) High temperature cycle characteristics A test battery was placed in a thermostat at 60 ° C., and a charge / discharge test was performed 30 times under the same conditions as above. The high-temperature cycle characteristics were evaluated based on the capacity retention rate of the following equation. Capacity retention rate (%) = (Discharge capacity per weight for the first time / 3)
(0th discharge capacity per weight) x 100 (3) High temperature deterioration test (evaluation of high temperature storage property) Performance degradation of positive electrode active material after immersion in high temperature electrolyte for a certain period of time, using recovery rate of discharge capacity as index evaluated.
【0070】まず、正極活物質試料を110℃で3時間
乾燥後、その約10gを容積50mlのふた付ステンレス
製容器に採取した。これを露点約−70℃のアルゴンガ
ス循環グローブボックス内に移し、体積比1:1のエチ
レンカーボネートとジメチルカーボネート混合溶媒に1
mol/lのLiPF6を溶解した有機溶媒10mlを加えた。
容器を密閉後グローブボックスから取り出し、85℃に
設定された恒温槽に移し、7日間保持した。次いで容器
を取り出し室温まで冷却後、容器内の試料と有機溶媒と
を濾別し、110℃で3時間乾燥した。First, a positive electrode active material sample was dried at 110 ° C. for 3 hours, and about 10 g of the sample was collected in a 50 ml-capacity stainless steel container with a lid. This was transferred into an argon gas circulation glove box having a dew point of about -70 ° C., and 1 part by volume of a mixed solvent of ethylene carbonate and dimethyl carbonate having a volume ratio of 1: 1.
10 ml of an organic solvent in which mol / l of LiPF 6 was dissolved was added.
After the container was closed, it was taken out of the glove box, transferred to a thermostat set at 85 ° C., and kept for 7 days. Next, the container was taken out and cooled to room temperature. Then, the sample in the container and the organic solvent were separated by filtration and dried at 110 ° C. for 3 hours.
【0071】こうして処理された正極活物質を用いて、
上記同様の試験用正極および試験用電池を作成した。こ
れらの試験用電極の充放電試験を上記した条件で行い、
次式により回復率を算出した。 A:処理後の正極活物質を用いた電池の放電容量 B:未処理の正極活物質を用いた電池の放電容量 回復率(%)=(A/B)×100 (なお、放電容量は2サイクル目の値) 上記で得られた放電容量、高温サイクル特性および回復
率の結果を表2に示す。Using the thus treated positive electrode active material,
A test positive electrode and a test battery similar to the above were prepared. Perform the charge and discharge test of these test electrodes under the above conditions,
The recovery rate was calculated by the following equation. A: Discharge capacity of battery using untreated cathode active material B: Discharge capacity of battery using untreated cathode active material Recovery rate (%) = (A / B) × 100 (The discharge capacity is 2 Table 2 shows the results of the discharge capacity, high-temperature cycle characteristics, and recovery rate obtained above.
【0072】[0072]
【比較例5】比較例1〜4で得られた結晶性リチウム・
マンガン複合酸化物を正極活物質として含む正極を用い
て、実施例12と同様にして試験用リチウムイオン電池
を作成し、電池性能を評価した。結果を表2に示す。Comparative Example 5 The crystalline lithium obtained in Comparative Examples 1 to 4
Using a positive electrode containing a manganese composite oxide as a positive electrode active material, a test lithium ion battery was prepared in the same manner as in Example 12, and the battery performance was evaluated. Table 2 shows the results.
【0073】[0073]
【表2】 [Table 2]
【0074】以上の実施例および比較例から、以下のこ
とがわかる。 (1)硼素添加の有無以外は同一組成の実施例2と比較例
1とを比べると、実施例2の方が、比表面積が小さく、
充填密度も大きい。したがって、容量維持率、回復率と
もに比較例1に比べて優れている。 (2)置換金属M1の有無以外は同一組成の実施例1と比較
例2と比べると、実施例1の方が、容量維持率、回復率
ともに優れている。 (3) 比較例3のようにリチウムが理論量(1.0)の場合
は、リチウムが1.0以上でMnと置換している各実施例
と比べて、容量維持率が劣る。 (4)実施例10および11のように、実施例7にフッ素
を添加すると、放電容量が向上する。The following can be seen from the above Examples and Comparative Examples. (1) Comparing Example 2 and Comparative Example 1 having the same composition except for the presence or absence of boron, Example 2 has a smaller specific surface area,
High packing density. Therefore, both the capacity retention rate and the recovery rate are superior to Comparative Example 1. (2) Compared to Example 1 and Comparative Example 2 having the same composition except for the presence or absence of the substituted metal M1, Example 1 is superior in both the capacity retention rate and the recovery rate. (3) When the theoretical amount of lithium is (1.0) as in Comparative Example 3, the capacity retention ratio is inferior to each of the examples in which lithium is at least 1.0 and Mn is substituted. (4) As in Examples 10 and 11, when fluorine is added to Example 7, the discharge capacity is improved.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/58 H01M 4/58 10/40 10/40 Z (72)発明者 西 脇 茂 男 新潟県新津市滝谷本町1−26 日揮化学株 式会社開発研究所内 (72)発明者 保 科 正 行 新潟県新津市滝谷本町1−26 日揮化学株 式会社開発研究所内 Fターム(参考) 4G002 AA06 AA07 AA12 AB01 AE05 4G048 AA04 AA05 AB05 AC06 AD04 AD06 AE05 AE06 5H003 AA07 BA01 BA03 BB05 BC06 BD00 BD01 BD05 5H014 AA02 BB01 BB06 HH00 HH08 5H029 AJ14 AK03 AL12 AM03 AM07 BJ03 CJ02 CJ08 HJ02 HJ07 HJ14 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/58 H01M 4/58 10/40 10/40 Z (72) Inventor Shigeo Nishiwaki Niitsu, Niigata 1-26 Ichitaki Honmachi, JGC Chemicals Development Research Laboratory (72) Inventor Masayuki Hoshina 1-26, Takitani Honmachi, Niitsu City, Niigata Prefecture JGC Chemicals Corporation R & D Laboratory F-term (reference) AE05 4G048 AA04 AA05 AB05 AC06 AD04 AD06 AE05 AE06 5H003 AA07 BA01 BA03 BB05 BC06 BD00 BD01 BD05 5H014 AA02 BB01 BB06 HH00 HH08 5H029 AJ14 AK03 AL12 AM03 AM07 BJ03 CJ02 CJ08 HJ02 HJ07
Claims (4)
ム・マンガン複合酸化物。 Li(x+y)Mn(2-y-p-q)M1pM2qO(4-a)Fa (式中、1.0≦x<1.2 , 0<y≦0.2 , 1.0<x+
y≦1.2 ,0<p≦1.0 , 0.0005≦q≦0.1 , 0≦a
≦1.0 であり、 M1:Ni,Co,Mg,Fe,Al,Crから選ばれる少な
くとも1種の金属、 M2:酸化物の融点が800℃以下の元素から選ばれる
少なくとも1種の元素である)1. A spinel-type lithium / manganese composite oxide represented by the following general formula. Li (x + y) Mn ( 2-ypq) M1 p M2 q O (4-a) F a ( wherein, 1.0 ≦ x <1.2, 0 <y ≦ 0.2, 1.0 <x +
y ≦ 1.2, 0 <p ≦ 1.0, 0.0005 ≦ q ≦ 0.1, 0 ≦ a
≦ 1.0, M1: at least one metal selected from Ni, Co, Mg, Fe, Al, and Cr; M2: at least one element selected from elements having an oxide melting point of 800 ° C. or less)
にあることを特徴とする請求項1に記載のスピネル型リ
チウム・マンガン複合酸化物。2. The spinel-type lithium-manganese composite oxide according to claim 1, wherein the specific surface area is in the range of 0.1 to 2.0 m 2 / g.
物、(iii)Ni,Co,Mg,Fe,Al,Crから選ばれる
少なくとも1種の金属(M1)の化合物、(iv)酸化物の融
点が800℃以下の元素(M2)から選ばれる少なくとも
1種の化合物、および(v)フッ素化合物を、 Li:Mn:M1:M2:Fの原子比が(x+y):(2−
y−p−q):p:q:a(ただし、1.0≦x<1.2、0
<y≦0.2、1.0<x+y≦1.2、0<p≦1.0、0.0005≦
q≦0.1、0≦a≦1.0)の比率で混合して水懸濁液を調
製し、該水懸濁液を乾燥したのち、 650〜900℃の温度で焼成することを特徴とするス
ピネル型リチウム・マンガン複合酸化物の製造方法。3. A compound of at least one metal (M1) selected from (i) a lithium compound, (ii) a manganese compound, (iii) Ni, Co, Mg, Fe, Al and Cr, and (iv) an oxide. At least one compound selected from the elements (M2) having a melting point of 800 ° C. or less, and (v) a fluorine compound, wherein the atomic ratio of Li: Mn: M1: M2: F is (x + y) :( 2-
ypq): p: q: a (where 1.0 ≦ x <1.2, 0
<Y ≦ 0.2, 1.0 <x + y ≦ 1.2, 0 <p ≦ 1.0, 0.0005 ≦
(q ≦ 0.1, 0 ≦ a ≦ 1.0) to prepare a water suspension, and after drying the water suspension, calcination at a temperature of 650 to 900 ° C. A method for producing a lithium-manganese composite oxide.
ンガン複合酸化物を正極活物質として含む正極を有する
リチウムイオン二次電池。4. A lithium ion secondary battery having a positive electrode containing the spinel-type lithium-manganese composite oxide according to claim 1 as a positive electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23033799A JP5199522B2 (en) | 1999-08-17 | 1999-08-17 | Spinel-type lithium / manganese composite oxide, its production method and use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23033799A JP5199522B2 (en) | 1999-08-17 | 1999-08-17 | Spinel-type lithium / manganese composite oxide, its production method and use |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011241713A Division JP5632350B2 (en) | 2011-11-02 | 2011-11-02 | Spinel-type lithium-manganese composite oxide and method for producing the same |
JP2011241714A Division JP5539946B2 (en) | 2011-11-02 | 2011-11-02 | Method for producing spinel-type lithium-manganese composite oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001048547A true JP2001048547A (en) | 2001-02-20 |
JP5199522B2 JP5199522B2 (en) | 2013-05-15 |
Family
ID=16906271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23033799A Expired - Lifetime JP5199522B2 (en) | 1999-08-17 | 1999-08-17 | Spinel-type lithium / manganese composite oxide, its production method and use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5199522B2 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001319653A (en) * | 2000-05-12 | 2001-11-16 | Hitachi Maxell Ltd | Non-aqueous secondary battery |
JP2002274853A (en) * | 2001-03-16 | 2002-09-25 | Titan Kogyo Kk | Lithium manganese multicomponent oxide and method of preparation for the same as well as application of the same |
JP2002279984A (en) * | 2001-03-15 | 2002-09-27 | Hitachi Metals Ltd | Method of manufacturing positive electrode active material for non-aqueous lithium secondary battery, the positive electrode active material, and the non- aqueous lithium secondary battery using the positive electrode active material |
JP2003045426A (en) * | 2001-07-27 | 2003-02-14 | Toshiba Corp | Positive active material, its manufacturing method, and nonaqueous electrolyte secondary battery |
JP2003095659A (en) * | 2001-09-25 | 2003-04-03 | Mitsubishi Chemicals Corp | Lithium transition metal complex oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and method of manufacturing lithium transition metal complex oxide |
EP1391949A2 (en) * | 2002-05-20 | 2004-02-25 | Nichia Corporation | Positive electrode active material for a nonaqueous electrolyte secondary battery |
JP2004241242A (en) * | 2003-02-05 | 2004-08-26 | Nichia Chem Ind Ltd | Positive electrode active material for nonaqueous electrolytic solution secondary battery |
JP2005071680A (en) * | 2003-08-21 | 2005-03-17 | Nichia Chem Ind Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
US7011907B2 (en) | 2001-11-27 | 2006-03-14 | Nec Corporation | Secondary battery cathode active material, secondary battery cathode and secondary battery using the same |
JP2007317639A (en) * | 2006-05-29 | 2007-12-06 | Lg Chem Ltd | Cathode active material and lithium secondary cell containing this |
WO2009063630A1 (en) | 2007-11-12 | 2009-05-22 | Toda Kogyo Corporation | Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery |
JP2009164138A (en) * | 2009-04-20 | 2009-07-23 | Toyo Tanso Kk | Positive electrode active material for nonaqueous electrolyte secondary battery |
JP2009164139A (en) * | 2009-04-20 | 2009-07-23 | Toyo Tanso Kk | Method of manufacturing positive electrode active material for nonaqueous electrolyte secondary battery |
WO2010032449A1 (en) | 2008-09-18 | 2010-03-25 | 戸田工業株式会社 | Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery |
WO2010038424A1 (en) | 2008-10-01 | 2010-04-08 | 戸田工業株式会社 | Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery |
JP2010108928A (en) * | 2008-10-01 | 2010-05-13 | Daiken Chemical Co Ltd | Process of producing lithium cell active material, lithium cell active material, and lithium system secondary battery |
JP2010137996A (en) * | 2007-11-12 | 2010-06-24 | Toda Kogyo Corp | Lithium manganate particle powder for nonaqueous electrolyte secondary battery, producing method of the same and nonaqueous electrolyte secondary battery |
EP2304828A1 (en) * | 2008-06-24 | 2011-04-06 | Süd-Chemie AG | Mixed oxide containing a lithium-manganese spinel and process for producing it |
JP2011082188A (en) * | 2009-03-31 | 2011-04-21 | Mitsui Mining & Smelting Co Ltd | Method of manufacturing material for positive electrode active material for lithium battery |
JP2012096949A (en) * | 2010-10-29 | 2012-05-24 | Jgc Catalysts & Chemicals Ltd | Production method and application of spinel-type lithium-manganese compound oxide particle |
JP2013129556A (en) * | 2011-12-21 | 2013-07-04 | Jgc Catalysts & Chemicals Ltd | Spinel type lithium manganese composite oxide |
US8496855B2 (en) | 2009-07-27 | 2013-07-30 | Samsung Electronics Co., Ltd. | Cathode active material, cathode including cathode active material, and lithium battery including cathode |
WO2013125668A1 (en) | 2012-02-23 | 2013-08-29 | 戸田工業株式会社 | Positive electrode active material powder for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell |
JP2014181157A (en) * | 2013-03-19 | 2014-09-29 | Jgc Catalysts & Chemicals Ltd | Method of producing lithium manganate |
KR101520903B1 (en) * | 2010-03-29 | 2015-05-18 | 주식회사 포스코이에스엠 | Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same |
JP2015515442A (en) * | 2012-11-15 | 2015-05-28 | ポスコ イーエス マテリアルス カンパニー リミテッドPOSCO ES Materials Co., Ltd. | Lithium manganese composite oxide in which the size of the vertical angle of primary particles is adjusted, and a method for producing the same |
JP2015195177A (en) * | 2014-03-24 | 2015-11-05 | 日亜化学工業株式会社 | Positive electrode active material for nonaqueous electrolyte secondary batteries |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05283077A (en) * | 1992-03-31 | 1993-10-29 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JPH08279366A (en) * | 1994-03-08 | 1996-10-22 | Sanyo Electric Co Ltd | Lithium secondary battery |
JPH09270259A (en) * | 1996-04-01 | 1997-10-14 | Masataka Wakihara | Electrode and lithium secondary battery |
JPH1173962A (en) * | 1997-08-29 | 1999-03-16 | Asahi Chem Ind Co Ltd | Nonaqueous system secondary battery |
JPH11111291A (en) * | 1997-10-06 | 1999-04-23 | Mitsui Mining & Smelting Co Ltd | Positive electrode material for nonaqueous secondary battery and battery using this |
JPH11171551A (en) * | 1997-10-08 | 1999-06-29 | Nikki Chemcal Co Ltd | Lithium manganese multiple oxide, its production and use |
JPH11176441A (en) * | 1997-12-15 | 1999-07-02 | Hitachi Ltd | Lithium secondary battery |
JPH11189419A (en) * | 1997-12-24 | 1999-07-13 | Masayuki Yoshio | Spinel manganese oxide or lithium secondary battery |
JPH11240721A (en) * | 1997-05-07 | 1999-09-07 | Fuji Chem Ind Co Ltd | New production of spinel type lithium manganese compound oxide and positive electrode active substance for secondary battery |
JP2001048545A (en) * | 1999-08-09 | 2001-02-20 | Mitsubishi Chemicals Corp | Production of lithium-manganese multiple oxide and secondary battery using the same |
-
1999
- 1999-08-17 JP JP23033799A patent/JP5199522B2/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05283077A (en) * | 1992-03-31 | 1993-10-29 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JPH08279366A (en) * | 1994-03-08 | 1996-10-22 | Sanyo Electric Co Ltd | Lithium secondary battery |
JPH09270259A (en) * | 1996-04-01 | 1997-10-14 | Masataka Wakihara | Electrode and lithium secondary battery |
JPH11240721A (en) * | 1997-05-07 | 1999-09-07 | Fuji Chem Ind Co Ltd | New production of spinel type lithium manganese compound oxide and positive electrode active substance for secondary battery |
JPH1173962A (en) * | 1997-08-29 | 1999-03-16 | Asahi Chem Ind Co Ltd | Nonaqueous system secondary battery |
JPH11111291A (en) * | 1997-10-06 | 1999-04-23 | Mitsui Mining & Smelting Co Ltd | Positive electrode material for nonaqueous secondary battery and battery using this |
JPH11171551A (en) * | 1997-10-08 | 1999-06-29 | Nikki Chemcal Co Ltd | Lithium manganese multiple oxide, its production and use |
JPH11176441A (en) * | 1997-12-15 | 1999-07-02 | Hitachi Ltd | Lithium secondary battery |
JPH11189419A (en) * | 1997-12-24 | 1999-07-13 | Masayuki Yoshio | Spinel manganese oxide or lithium secondary battery |
JP2001048545A (en) * | 1999-08-09 | 2001-02-20 | Mitsubishi Chemicals Corp | Production of lithium-manganese multiple oxide and secondary battery using the same |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001319653A (en) * | 2000-05-12 | 2001-11-16 | Hitachi Maxell Ltd | Non-aqueous secondary battery |
JP2002279984A (en) * | 2001-03-15 | 2002-09-27 | Hitachi Metals Ltd | Method of manufacturing positive electrode active material for non-aqueous lithium secondary battery, the positive electrode active material, and the non- aqueous lithium secondary battery using the positive electrode active material |
JP2002274853A (en) * | 2001-03-16 | 2002-09-25 | Titan Kogyo Kk | Lithium manganese multicomponent oxide and method of preparation for the same as well as application of the same |
JP2003045426A (en) * | 2001-07-27 | 2003-02-14 | Toshiba Corp | Positive active material, its manufacturing method, and nonaqueous electrolyte secondary battery |
JP2003095659A (en) * | 2001-09-25 | 2003-04-03 | Mitsubishi Chemicals Corp | Lithium transition metal complex oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and method of manufacturing lithium transition metal complex oxide |
US7011907B2 (en) | 2001-11-27 | 2006-03-14 | Nec Corporation | Secondary battery cathode active material, secondary battery cathode and secondary battery using the same |
EP1391949A3 (en) * | 2002-05-20 | 2006-01-11 | Nichia Corporation | Positive electrode active material for a nonaqueous electrolyte secondary battery |
EP1391949A2 (en) * | 2002-05-20 | 2004-02-25 | Nichia Corporation | Positive electrode active material for a nonaqueous electrolyte secondary battery |
JP2004241242A (en) * | 2003-02-05 | 2004-08-26 | Nichia Chem Ind Ltd | Positive electrode active material for nonaqueous electrolytic solution secondary battery |
JP2005071680A (en) * | 2003-08-21 | 2005-03-17 | Nichia Chem Ind Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
JP2007317639A (en) * | 2006-05-29 | 2007-12-06 | Lg Chem Ltd | Cathode active material and lithium secondary cell containing this |
JP4717847B2 (en) * | 2006-05-29 | 2011-07-06 | エルジー・ケム・リミテッド | Positive electrode active material and lithium secondary battery including the same |
WO2009063630A1 (en) | 2007-11-12 | 2009-05-22 | Toda Kogyo Corporation | Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery |
JP2010137996A (en) * | 2007-11-12 | 2010-06-24 | Toda Kogyo Corp | Lithium manganate particle powder for nonaqueous electrolyte secondary battery, producing method of the same and nonaqueous electrolyte secondary battery |
US10483538B2 (en) | 2008-06-24 | 2019-11-19 | Johnson Matthey Public Limited Company | Mixed oxide containing a lithium manganese spinel and process for its preparation |
EP2304828B1 (en) * | 2008-06-24 | 2018-10-31 | Johnson Matthey PLC | Mixed oxide containing a lithium-manganese spinel and process for producing it |
US9562303B2 (en) | 2008-06-24 | 2017-02-07 | Johnson Matthey Plc | Mixed oxide containing a lithium manganese spinel and process for its preparation |
US9281522B2 (en) | 2008-06-24 | 2016-03-08 | Johnson Matthey Plc | Mixed oxide containing a lithium manganese spinel and process for its preparation |
EP2304828A1 (en) * | 2008-06-24 | 2011-04-06 | Süd-Chemie AG | Mixed oxide containing a lithium-manganese spinel and process for producing it |
KR20110061565A (en) | 2008-09-18 | 2011-06-09 | 도다 고교 가부시끼가이샤 | Method for producing lithium manganate particles powder and nonaqueous electrolyte secondary battery |
WO2010032449A1 (en) | 2008-09-18 | 2010-03-25 | 戸田工業株式会社 | Method for producing lithium manganate particle powder and nonaqueous electrolyte secondary battery |
CN105789612A (en) * | 2008-10-01 | 2016-07-20 | 户田工业株式会社 | Lithium manganate particles for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery |
WO2010038424A1 (en) | 2008-10-01 | 2010-04-08 | 戸田工業株式会社 | Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery |
CN102171862A (en) * | 2008-10-01 | 2011-08-31 | 户田工业株式会社 | Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery |
US10056612B2 (en) | 2008-10-01 | 2018-08-21 | Toda Kogyo Corporation | Lithium manganate particles for non-aqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery |
EP2333878A4 (en) * | 2008-10-01 | 2013-06-26 | Toda Kogyo Corp | Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery |
EP2333878A1 (en) * | 2008-10-01 | 2011-06-15 | Toda Kogyo Corporation | Lithium manganate powder for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery |
JP2010108928A (en) * | 2008-10-01 | 2010-05-13 | Daiken Chemical Co Ltd | Process of producing lithium cell active material, lithium cell active material, and lithium system secondary battery |
JP2011082188A (en) * | 2009-03-31 | 2011-04-21 | Mitsui Mining & Smelting Co Ltd | Method of manufacturing material for positive electrode active material for lithium battery |
JP2009164138A (en) * | 2009-04-20 | 2009-07-23 | Toyo Tanso Kk | Positive electrode active material for nonaqueous electrolyte secondary battery |
JP2009164139A (en) * | 2009-04-20 | 2009-07-23 | Toyo Tanso Kk | Method of manufacturing positive electrode active material for nonaqueous electrolyte secondary battery |
US8496855B2 (en) | 2009-07-27 | 2013-07-30 | Samsung Electronics Co., Ltd. | Cathode active material, cathode including cathode active material, and lithium battery including cathode |
KR101520903B1 (en) * | 2010-03-29 | 2015-05-18 | 주식회사 포스코이에스엠 | Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same |
JP2012096949A (en) * | 2010-10-29 | 2012-05-24 | Jgc Catalysts & Chemicals Ltd | Production method and application of spinel-type lithium-manganese compound oxide particle |
JP2013129556A (en) * | 2011-12-21 | 2013-07-04 | Jgc Catalysts & Chemicals Ltd | Spinel type lithium manganese composite oxide |
KR20140135163A (en) | 2012-02-23 | 2014-11-25 | 도다 고교 가부시끼가이샤 | Positive electrode active material powder for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell |
WO2013125668A1 (en) | 2012-02-23 | 2013-08-29 | 戸田工業株式会社 | Positive electrode active material powder for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell |
JP2017061409A (en) * | 2012-11-15 | 2017-03-30 | ポスコ イーエス マテリアルス カンパニー リミテッドPOSCO ES Materials Co., Ltd. | Method for producing lithium-manganese composite oxide |
JP2015515442A (en) * | 2012-11-15 | 2015-05-28 | ポスコ イーエス マテリアルス カンパニー リミテッドPOSCO ES Materials Co., Ltd. | Lithium manganese composite oxide in which the size of the vertical angle of primary particles is adjusted, and a method for producing the same |
JP2014181157A (en) * | 2013-03-19 | 2014-09-29 | Jgc Catalysts & Chemicals Ltd | Method of producing lithium manganate |
JP2015195177A (en) * | 2014-03-24 | 2015-11-05 | 日亜化学工業株式会社 | Positive electrode active material for nonaqueous electrolyte secondary batteries |
Also Published As
Publication number | Publication date |
---|---|
JP5199522B2 (en) | 2013-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5199522B2 (en) | Spinel-type lithium / manganese composite oxide, its production method and use | |
KR100326455B1 (en) | Positive active material for lithium secondary battery and method of preparing the same | |
JP5257272B2 (en) | Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery | |
JP3033899B1 (en) | Positive electrode active material for lithium secondary battery, method for producing the same and use thereof | |
JP6174145B2 (en) | Spinel type lithium metal composite oxide | |
CA2546889A1 (en) | Solid state synthesis of lithium-nickel-cobalt-manganese mixed metal oxides for use in lithium ion battery cathode material | |
JP4124522B2 (en) | Lithium / manganese composite oxide, production method and use thereof | |
JPH11302020A (en) | Lithium manganese composite oxide, method for producing the same and use thereof | |
JP2002316823A (en) | Lithium manganese composite oxide, its production method and its use | |
JP4655453B2 (en) | Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery | |
JP2004259470A (en) | Positive electrode active material for lithium ion battery, and lithium ion battery having it | |
JP2002158007A (en) | Lithium manganese nickel complex oxide, and manufacturing method of the same | |
JP2001146426A (en) | Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same | |
JP4496150B2 (en) | Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide | |
JP2002274849A (en) | Lithium titanate, production method therefor and its use | |
JP5539946B2 (en) | Method for producing spinel-type lithium-manganese composite oxide | |
JP2005029424A (en) | Method for producing lithium manganese composite oxide granules | |
JP2003146662A (en) | Lithium-nickel-manganese complex oxide, method for manufacturing the same and use of the same | |
JP5632350B2 (en) | Spinel-type lithium-manganese composite oxide and method for producing the same | |
JP2023538338A (en) | cathode material | |
JP2002003220A (en) | Anode material for lithium ion secondary battery, anode and battery using it | |
JP2023514476A (en) | Cathode materials and processes | |
JP4774661B2 (en) | Lithium transition metal composite oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and method for producing lithium transition metal composite oxide | |
JP2002083596A (en) | Lithium ion secondary battery | |
JP2000169152A (en) | Cobalt-coated lithium manganese double oxide and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060731 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080514 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080829 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090804 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091005 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20091005 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100927 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110802 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111102 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20111111 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20120203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130208 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160215 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5199522 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D02 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |