[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001046094A - Separation and purification of poly-3-hydroxyalkanoic acid - Google Patents

Separation and purification of poly-3-hydroxyalkanoic acid

Info

Publication number
JP2001046094A
JP2001046094A JP11226841A JP22684199A JP2001046094A JP 2001046094 A JP2001046094 A JP 2001046094A JP 11226841 A JP11226841 A JP 11226841A JP 22684199 A JP22684199 A JP 22684199A JP 2001046094 A JP2001046094 A JP 2001046094A
Authority
JP
Japan
Prior art keywords
poly
pha
hydroxyalkanoic acid
suspension
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11226841A
Other languages
Japanese (ja)
Other versions
JP3930667B2 (en
Inventor
Osamu Odawara
修 小田原
Kenji Miyamoto
憲二 宮本
Satoshi Yokomizo
聡 横溝
Keiji Matsumoto
圭司 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP22684199A priority Critical patent/JP3930667B2/en
Publication of JP2001046094A publication Critical patent/JP2001046094A/en
Application granted granted Critical
Publication of JP3930667B2 publication Critical patent/JP3930667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To separate and purify the subject compound which is a biodegradable plastic by adding a surfactant to a suspension of a microbial cell of a microorganism containing a poly-3-hydroxyalkanoic acid and carrying out a physical crushing treatment of the resultant mixture liquid. SOLUTION: A surfactant is added to a suspension of a microbial cell of a microorganism (e.g. Aeromonas caviae) containing a poly-3-hydroxyalkanoic acid comprising a bipolymer of D-3-hydroxybutyrate and D-3-hydroxyhexanoate, a terpolymer, etc., of the D-3-hydroxybutyrate, D-3-hydroxyvalerate and D-3- hydroxyhexanoate and the resultant mixture liquid is then subjected to a physical crushing treatment to thereby separate and purify the objective poly-3- hydroxyalkanoic acid suitable as a raw material, etc. for a plastic product, an implant material without requiring recovery, a drug carrier, a fertilizer carrier, an agricultural mulching film, a fishing gear such as a fishing line, a bag, etc. such as a refuse bag, etc. for composts in high purity and high yield.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリ−3−ヒドロ
キシアルカン酸の微生物菌体からの分離精製方法に関す
る。
The present invention relates to a method for separating and purifying poly-3-hydroxyalkanoic acid from microbial cells.

【0002】[0002]

【従来の技術】現在、プラスチック廃棄物は焼却、埋め
立てなどにより処理されているが、これらの処理方法に
は地球の温暖化や埋め立て地の地盤弛緩等の問題点があ
る。そのためプラスチックリサイクルへの社会意識の高
まりとともに、リサイクルシステム化が進みつつある。
しかし、リサイクル可能な用途には限りがあり、実際に
は、プラスチック廃棄処理方法としては、焼却、埋め立
て、リサイクルだけでは対応しきれず、自然界に放置さ
れたままになるものも多いのが現状である。そこで、廃
棄後は自然界の物質循環に取り込まれ、分解生成物が有
害とならない生分解性プラスチックが注目されており、
その実用化が切望されている。
2. Description of the Related Art At present, plastic waste is treated by incineration, landfill, and the like. However, these treatment methods have problems such as global warming and ground loosening of a landfill. For this reason, with the increasing public awareness of plastic recycling, recycling systems are being promoted.
However, recyclable applications are limited, and in fact, many plastic waste treatment methods cannot be dealt with simply by incineration, landfill, and recycling, and are often left in the natural world. . Therefore, biodegradable plastics that are taken into the natural material cycle after disposal and whose decomposition products are not harmful are attracting attention.
The practical application is eagerly desired.

【0003】これらの生分解性プラスチックの中でも、
ポリ−3−ヒドロキシアルカン酸(以後PHAと称す)
は、多くの微生物種の菌体内にエネルギー蓄積物質とし
て生成、蓄積される熱可塑性ポリエステルであり、自然
界の炭素循環プロセスに取り込まれることから生態系へ
の悪影響がほとんどないと予想されているため、特に注
目されている。また、医療分野においても、回収不要の
インプラント材料、薬物担体としての利用が可能と考え
られる。
[0003] Among these biodegradable plastics,
Poly-3-hydroxyalkanoic acid (hereinafter referred to as PHA)
Is a thermoplastic polyester that is produced and stored as an energy storage substance in the cells of many microbial species, and is expected to have little adverse effect on ecosystems because it is taken into the natural carbon cycle process. Particular attention has been paid. In the medical field, it can be used as an implant material or a drug carrier that does not require collection.

【0004】前記PHAは、顆粒体を形成して微生物菌
体内に蓄積されており、これらをプラスチックとして利
用するためには、微生物菌体内から分離精製する必要が
ある。PHAを微生物菌体から分離精製する既知の方法
として、大別するとPHAが可溶である有機溶媒にPH
Aを溶解させ、PHAを抽出する方法と、PHA以外の
菌体構成成分を可溶化させて除くことによりPHAを得
る方法とがある。これらの中で、PHAの分離が容易
で、かつ処理工程がより簡素であるという点では、後者
の方法が好ましい。
[0004] The PHA forms granules and accumulates in the microbial cells. In order to use these as plastic, it is necessary to separate and purify the PHA from the microbial cells. As a known method for separating and purifying PHA from microbial cells, broadly speaking, PH is dissolved in an organic solvent in which PHA is soluble.
There is a method of dissolving A and extracting PHA, and a method of obtaining PHA by solubilizing and removing bacterial cell components other than PHA. Among these, the latter method is preferable in that the separation of PHA is easy and the processing step is simpler.

【0005】前記PHA以外の菌体構成成分を可溶化さ
せて除くことによりPHAを得る方法として、例えば、
J. Gen. Microbiology, 19, 198-209 頁 (1958) には、
菌体懸濁液を次亜塩素酸ナトリウムで処理してPHA以
外の菌体構成成分を可溶化してPHAを得る方法が記載
されている。この方法は、プロセスとしては簡単ではあ
るが、大量の次亜塩素酸ナトリウムを使用する必要があ
るためにコストが高くなる。また、PHAの著しい低分
子化が引き起こされることや得られたPHA内に無視で
きない量の塩素が残存することから実用には適さないと
考えられる。また、特公平4−61638号公報には、
PHAを含有する微生物菌体懸濁液を100℃以上で熱
処理することで菌体構造を破壊し、次いでタンパク質分
解酵素処理と、リン脂質分解酵素処理あるいは過酸化水
素処理とを組み合わせて、PHA以外の菌体構成成分を
可溶化し、PHAを得る方法が記載されている。この方
法は、熱処理によってタンパク質が変性・不溶化するた
めに、次のタンパク質分解酵素処理工程での負荷が増大
すること、更には、処理工程が多く複雑であること等の
欠点を有している。
[0005] As a method for obtaining PHA by solubilizing and removing bacterial cell components other than the PHA, for example,
J. Gen. Microbiology, 19, pp. 198-209 (1958) states:
A method is described in which a cell suspension is treated with sodium hypochlorite to solubilize cell constituents other than PHA to obtain PHA. This method is simple as a process, but is expensive due to the need to use large amounts of sodium hypochlorite. Further, it is considered that PHA is not suitable for practical use because remarkable lowering of the molecular weight of PHA is caused and chlorine which cannot be ignored in the obtained PHA is left. Japanese Patent Publication No. 4-61638 discloses that
The microbial cell suspension containing PHA is heat-treated at 100 ° C. or higher to destroy the cell structure, and then combined with proteolytic enzyme treatment and phospholipid-degrading enzyme treatment or hydrogen peroxide treatment to obtain a product other than PHA. A method for solubilizing the bacterial cell components to obtain PHA is described. This method has drawbacks such that the protein is denatured and insolubilized by the heat treatment, so that the load in the next proteolytic enzyme treatment step increases, and further, the treatment steps are many and complicated.

【0006】また、他に微生物菌体を破砕処理する工程
を有する方法として、界面活性剤で処理したのち、菌体
から放出された核酸を過酸化水素処理して分解し、PH
Aを分離する方法が提案されている(特表平8−502
415号公報)が、毒性の強い過酸化水素を利用するた
め工業的レベルでの実施は困難である。また、PHA含
有微生物菌体を高圧ホモジナイザーで破砕してPHAを
分離する方法が提案されている(特開平7−17789
4号公報)。しかし、この方法は微生物菌体懸濁液を少
なくとも3回程度繰り返して高圧処理しなければ純度の
高いPHAを得ることはできず、かつ得られるPHAの
純度は最高でも70〜89%程度と低いという欠点があ
る。
As another method having a step of crushing microbial cells, the nucleic acid released from the cells is treated with hydrogen peroxide, decomposed by treating with a surfactant,
A method for separating A has been proposed.
No. 415) is difficult to implement on an industrial level because it utilizes highly toxic hydrogen peroxide. Further, a method has been proposed in which PHA-containing microorganism cells are crushed with a high-pressure homogenizer to separate PHA (Japanese Patent Application Laid-Open No. 7-17789).
No. 4). However, in this method, high-purity PHA cannot be obtained unless the microbial cell suspension is repeatedly subjected to high-pressure treatment at least about three times, and the purity of the obtained PHA is as low as about 70 to 89% at the maximum. There is a disadvantage that.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、PH
Aを含有する微生物菌体から、少ない工程数で高純度の
PHAを高収率で得ることのできるPHAの分離精製方
法を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to
It is an object of the present invention to provide a method for separating and purifying PHA that can obtain high-purity PHA in a small number of steps and in high yield from microbial cells containing A.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明は、ポ
リ−3−ヒドロキシアルカン酸(PHA)を含有する微
生物菌体の懸濁液に界面活性剤を添加し、得られる混合
液を物理的破砕処理することを特徴とするPHAの分離
精製方法に関する。
That is, the present invention relates to a method of adding a surfactant to a suspension of microbial cells containing poly-3-hydroxyalkanoic acid (PHA) and subjecting the resulting mixture to physical suspension. The present invention relates to a method for separating and purifying PHA, which comprises crushing.

【0009】[0009]

【発明の実施の形態】本発明に用いられる微生物は、細
胞内にPHAを蓄積している微生物であれば特に限定さ
れない。例えば、アルカリゲネス・リポリチカ(Alc
aligenes lipolytica)、アルカリ
ゲネス・ユウトロファス(A.eutrophus)、
アルカリゲネス・ラタス(A.latas)等のアルカ
リゲネス属(Alcaligenes)、シュウドモナ
ス属(Pseudomonas)、バチルス属(Bac
illus)、アゾトバクター属(Azotobact
er)、ノカルディア属(Nocardia)、アエロ
モナス属(Aeromonas)の菌が挙げられ、中で
も、アエロモナス・キャビエ(Aeromonas c
aviae)等の菌株、またはアエロモナス・キャビエ
由来のPHA合成酵素群の遺伝子が導入された菌株、例
えば、アルカリゲネス・ユウトロファスAC32(寄託
番号FERM P−15786)(J. Bacteriol., 17
9, 4821-4830 頁 (1997) )等がより好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The microorganism used in the present invention is not particularly limited as long as it is a microorganism accumulating PHA in cells. For example, Alcaligenes lipolytica (Alc
alligenes lipolytica), Alcaligenes eutrophus,
Alcaligenes such as A. latas, Pseudomonas, Bacillus (Bac)
illus), Azotobacter
er), Nocardia, and Aeromonas, and among them, Aeromonas cavier (Aeromonas c.)
aviae) or a strain into which a gene of the PHA synthase group derived from Aeromonas caviae has been introduced, for example, Alcaligenes eutrophus AC32 (Accession No. FERM P-15786) (J. Bacteriol., 17).
9, 4821-4830 (1997)).

【0010】これらの微生物の培養方法は、PHAを多
量に効率よく菌体内に蓄積できるものであれば特に限定
はなく、例えば、前記アルカリゲネス・ユウトロファス
AC32(FERM P−15786)を用いる場合に
は、J. Bacteriol., 179, 4821-4830 頁 (1997) 等に記
載の方法が好ましい。
[0010] The method of culturing these microorganisms is not particularly limited as long as PHA can be efficiently accumulated in a large amount in the cells. For example, when the aforementioned Alcaligenes eutrophus AC32 (FERM P-15786) is used, The method described in J. Bacteriol., 179, pp. 4821-4830 (1997) is preferred.

【0011】本発明におけるポリ−3−ヒドロキシアル
カン酸(PHA)とは、D−3−ヒドロキシブチレート
(3HB)のホモポリマーや3HBと他の3−ヒドロキ
シアルカン酸との共重合体などを示すが、中でも3HB
とD−3−ヒドロキシヘキサノエート(3HH)との2
成分共重合体(Macromolecules, 28, 4822-4828 (199
5)) または3HBとD−3−ヒドロキシバレレート(3
HV)と3HHとの3成分共重合体(特開平8−289
797号公報)が、物性の面からより好ましい。ここで
3HBと3HHの2成分共重合体を構成する各モノマー
ユニットの組成比については、特に限定されるものでは
ないが、3HBの含有量が1〜99モル%、3HHユニ
ットの含有量が1〜99モル%のものが好適である。ま
た、3HBと3HVと3HHとの3成分共重合体を構成
する各モノマーユニットの組成比については特に限定さ
れるものではないが、例えば、3HBユニットの含有量
が1〜95モル%、3HVユニットの含有量が1〜96
モル%、3HHユニットの含有量が1〜30モル%のも
のが好適である。また、これらのPHAの分子量は、1
0万以上が好ましく、50万以上がより好ましい。
The poly-3-hydroxyalkanoic acid (PHA) in the present invention refers to a homopolymer of D-3-hydroxybutyrate (3HB) or a copolymer of 3HB with another 3-hydroxyalkanoic acid. But especially 3HB
And D-3-hydroxyhexanoate (3HH)
Component copolymers (Macromolecules, 28, 4822-4828 (199
5)) or 3HB and D-3-hydroxyvalerate (3
HV) and a 3 component copolymer of 3HH (JP-A-8-289)
797) is more preferable from the viewpoint of physical properties. Here, the composition ratio of each monomer unit constituting the two-component copolymer of 3HB and 3HH is not particularly limited, but the content of 3HB is 1 to 99 mol% and the content of 3HH unit is 1 ~ 99 mol% are preferred. Further, the composition ratio of each monomer unit constituting the three-component copolymer of 3HB, 3HV and 3HH is not particularly limited. For example, the content of the 3HV unit is 1 to 95% by mole, and the 3HV unit is Content of 1 to 96
Those having a content of 3% by mole and 3HH units of 1 to 30% by mole are preferred. The molecular weight of these PHA is 1
It is preferably at least 100,000, more preferably at least 500,000.

【0012】PHAの微生物菌体中の含有率は、高い方
が好ましいのは当然であり、工業レベルでの適用におい
ては乾燥菌体中に20重量%以上が好ましく、界面活性
剤処理、物理的破砕処理、分離操作、分離したPHAの
純度等を考慮すると50重量%以上が特に好ましい。
It is natural that the content of PHA in the microbial cells is preferably higher. For application on an industrial level, the content of PHA is preferably 20% by weight or more in the dry cells. Considering the crushing treatment, the separation operation, the purity of the separated PHA, etc., it is particularly preferably 50% by weight or more.

【0013】本発明においては、前記のように培養して
得られた微生物菌体の懸濁液に界面活性剤を添加する。
なお、本発明における「微生物菌体の懸濁液」とは、培
養終了後の培養懸濁液または培養液から遠心分離等で分
離した菌体を水に懸濁させた水性の懸濁液を意味する。
該懸濁液中における菌体濃度は、湿菌体換算で500g
/l以下が好ましく、300g/l以下がさらに好まし
い。
In the present invention, a surfactant is added to the microbial cell suspension obtained by culturing as described above.
In the present invention, the term "suspension of microbial cells" refers to a culture suspension after completion of culture or an aqueous suspension obtained by suspending cells isolated from a culture solution by centrifugation or the like in water. means.
The cell concentration in the suspension was 500 g in terms of wet cells.
/ L or less, more preferably 300 g / l or less.

【0014】本発明で使用する界面活性剤としては、陰
イオン性、陽イオン性、両性もしくは非イオン性でも良
く、具体的には、ドデシル硫酸ナトリウム、ドデシルス
ルホン酸ナトリウム、コール酸ナトリウム、デオキシコ
ール酸ナトリウム、オレイン酸ナトリウム、セチルトリ
メチルアンモニウムブロミド、ドデシルピリジニウムク
ロリド、3−((3−コラミドプロピル)ジメチルアン
モニオ)−1−プロパンスルホン酸、3−((コラミド
プロピル)ジメチルアンモニオ)−2−ヒドリキシ−1
−プロパンスルホン酸、ドデシル−N−ベタイン、オク
チルグルコシド、ヘプチルチオグルコシド、ポリエチル
エチレンドデシルエーテル、ポリオキシエチレンイソオ
クチルフェニルエーテル、ポリオキシエチレンノニルフ
ェニルエーテル、ポリオキシエチレンソルビトールエス
テル等が挙げられるが、これらに制限されるものではな
い。本発明においては、特にドデシル硫酸ナトリウム、
ドデシルスルホン酸ナトリウム、コール酸ナトリウム、
デオキシコール酸ナトリウム、オレイン酸ナトリウム等
が、価格、使用量や添加効果の点から好ましい。
The surfactant used in the present invention may be anionic, cationic, amphoteric or non-ionic. Specifically, sodium dodecyl sulfate, sodium dodecyl sulfonate, sodium cholate, deoxychol Sodium, sodium oleate, cetyltrimethylammonium bromide, dodecylpyridinium chloride, 3-((3-cholamidopropyl) dimethylammonio) -1-propanesulfonic acid, 3-((cholamidopropyl) dimethylammonio)- 2-hydroxy-1
-Propanesulfonic acid, dodecyl-N-betaine, octylglucoside, heptylthioglucoside, polyethylethylene dodecyl ether, polyoxyethylene isooctylphenyl ether, polyoxyethylene nonylphenyl ether, polyoxyethylene sorbitol ester, and the like. It is not limited to these. In the present invention, in particular, sodium dodecyl sulfate,
Sodium dodecyl sulfonate, sodium cholate,
Sodium deoxycholate, sodium oleate, and the like are preferred in terms of price, amount used, and effect of addition.

【0015】界面活性剤の添加量は、特に制限されない
が、微生物菌体重量(湿菌体換算)100重量部に対し
て、0.001〜50重量部が好ましく、1〜20重量
部がより好ましい。該添加量は、界面活性剤の添加効果
が良好な観点から、0.001重量部以上が好ましく、
低コストである観点から、50重量部以下が好ましい。
また、得られた混合液は、PHA以外の菌体構成成分の
可溶化を促進させる観点から、室温下で1分〜2時間程
度攪拌することが好ましい。
The amount of the surfactant added is not particularly limited, but is preferably 0.001 to 50 parts by weight, more preferably 1 to 20 parts by weight, based on 100 parts by weight of microbial cells (wet cells). preferable. The addition amount is preferably 0.001 part by weight or more from the viewpoint of a good effect of adding a surfactant,
From the viewpoint of low cost, 50 parts by weight or less is preferable.
Moreover, it is preferable to stir the obtained liquid mixture at room temperature for about 1 minute to 2 hours from the viewpoint of promoting the solubilization of bacterial cell components other than PHA.

【0016】次いで、前記混合液を物理的破砕処理す
る。本発明においては、かかる物理的破砕処理を行なう
ことにより、前記微生物菌体を破砕してPHAを菌体外
に漏出させる効果を有する。
Next, the mixture is physically crushed. In the present invention, by performing such a physical crushing treatment, there is an effect that the microbial cells are crushed and PHA is leaked out of the cells.

【0017】本発明における物理的破砕処理とは、超音
波による破砕、高圧ホモジナイザーやミル等による破砕
等が挙げられる。高圧ホモジナイザーとしては、独国の
APV・ゴーリン社製「マントンゴーリン(商品
名)」、デンマークのAPVラニー社製「ミニラボ(商
品名)」、米国のマイクロフルイディックス(Microflui
dics) 社製「マイクロフルイタイザー(商品名)」等が
挙げられ、ミルとしては、スイスのウィリー・エー・バ
ックオフェン(Willy A. Bachofen) 社製「ダイノーミル
(商品名)」等が挙げられるが、同等の破砕効果が得ら
れればこれらに限定されるものではない。
The physical crushing treatment in the present invention includes crushing by ultrasonic waves, crushing by a high-pressure homogenizer, a mill or the like. Examples of the high-pressure homogenizer include "Menton Gorin (trade name)" manufactured by APV Gorin of Germany, "Minilab (trade name)" of APV Runny of Denmark, and Microfluidics (U.S.A.).
dics) "Microfluidizer (trade name)" and the like. Examples of the mill include "Dino Mill (trade name)" and the like manufactured by Willy A. Bachofen of Switzerland. However, the present invention is not limited to these as long as the same crushing effect can be obtained.

【0018】物理的破砕処理の条件としては、用いる手
段により一概には限定できないが、例えば、超音波によ
る破砕の場合、米国のブランソン(Branson)社製、ソニ
ファイヤーを用いて、出力5、簡欠サイクル50%で3
0分間の超音波処理であることが好ましい。高圧ホモジ
ナイザーによる破砕の場合、デンマークのAPVラニー
社製のミニラボを用いて、500kgf/cm2 で1時
間の高圧破砕処理であることが好ましい。ミル等による
破砕の場合、スイスのフィリー・エー・バックオフェン
社製のダイノーミルを用いて1l/hの流量で1時間の
破砕処理であることが好ましい。
The conditions of the physical crushing treatment cannot be unconditionally limited depending on the means used. For example, in the case of crushing by ultrasonic waves, the output is 5 and the output is simplified by using a sonifier manufactured by Branson of the United States. 3 with 50% missing cycles
Preferably, the sonication is performed for 0 minutes. In the case of crushing using a high-pressure homogenizer, high-pressure crushing is preferably performed at 500 kgf / cm 2 for 1 hour using a mini lab manufactured by APV Lanie, Denmark. In the case of crushing by a mill or the like, crushing treatment is preferably performed for 1 hour at a flow rate of 1 l / h using a Dyno mill manufactured by Filey A. Bachoffen of Switzerland.

【0019】また、前記物理的破砕処理は、破砕処理液
を少量遠心管にとり、例えば、3000rpmで10分
間遠心処理を行なった後、沈澱物が得られるかどうかを
確認することで完了する。
The physical crushing treatment is completed by placing a small amount of the crushed liquid in a centrifuge tube, centrifuging at, for example, 3000 rpm for 10 minutes, and then confirming whether a precipitate is obtained.

【0020】次に、物理的破砕処理して得られた処理液
を、遠心分離してPHAを沈殿させる。本発明において
は、かかる遠心分離を行なうことにより、PHA以外の
菌体構成成分とPHAとを容易に分離することができ
る。該遠心分離の条件は、特に限定はなく、室温下で、
1000〜15000rpm、5〜60分間程度行なえ
ばよい。遠心分離は、必要に応じて、複数回行なっても
よい。また、得られたPHAの沈殿物を常法により乾燥
することが好ましい。
Next, the treatment liquid obtained by the physical crushing treatment is centrifuged to precipitate PHA. In the present invention, by performing such a centrifugation, PHA can be easily separated from bacterial cell components other than PHA. The conditions for the centrifugation are not particularly limited, and at room temperature,
It may be performed at 1000 to 15000 rpm for about 5 to 60 minutes. Centrifugation may be performed multiple times, if necessary. Further, the obtained PHA precipitate is preferably dried by a conventional method.

【0021】得られたPHAの純度は、実用化、加工性
及び物性の観点から、90%以上が好ましい。なお、該
純度の測定方法としては、例えば、後述の実施例に記載
の方法が挙げられる。
The purity of the obtained PHA is preferably 90% or more from the viewpoint of practical application, processability and physical properties. In addition, as a method for measuring the purity, for example, a method described in Examples described later can be mentioned.

【0022】また、得られたPHAは、そのままでも高
純度であるが、目的に応じて、公知の精製方法、例え
ば、リゾチーム等の溶菌酵素(特公平4−61638号
公報)、トリプシンやプロナーゼ等の蛋白質分解酵素
(特開平5−336982号公報)、過酸化水素等の過
酸化物(特表平8−502415号公報)等を作用させ
て、更に純度を向上させることができる。
The obtained PHA is highly pure as it is, but depending on the purpose, a known purification method, for example, a lytic enzyme such as lysozyme (Japanese Patent Publication No. 4-61638), trypsin, pronase, etc. (See JP-A-5-336982) and peroxides such as hydrogen peroxide (JP-A-8-502415) to further improve the purity.

【0023】以上のような構成を有する本発明のPHA
の精製分離方法は、従来の方法に比べ、工程数が少な
く、効率よくPHAを得ることができるものである。
The PHA of the present invention having the above configuration
The method for purification and separation of PHA requires less steps than conventional methods and can obtain PHA efficiently.

【0024】本発明により得られたPHAは、実用品と
して十分に高い純度を有するものであり、例えば、プラ
スチック製品、回収不要のインプラント材料、薬物担
体、肥料担体、農業用マルチフィルム、釣糸等の漁具、
コンポスト用ゴミ袋等の原料として好適に用いられる。
The PHA obtained according to the present invention has a sufficiently high purity as a practical product. Examples of the PHA include plastic products, implant materials that do not need to be collected, drug carriers, fertilizer carriers, agricultural multi-films, fishing lines and the like. Fishing gear,
It is suitably used as a raw material for compost garbage bags.

【0025】[0025]

【実施例】本実施例で用いた微生物は、アエロモナス・
キャビエ由来のPHA合成酵素群遺伝子を導入したアル
カリゲネス・ユウトロファス AC32(寄託番号FE
RM P−15786)である。これを、J. Bacterio
l., 179, 4821-4830 頁 (1997) に記載の方法で培養し
〔培地: Na2HPO4・12H2O 11.3g 、KH2PO4 1.9g 、(N
H4)2SO4 6g、プロエキス(播州調味料(株)製)10g 、
MgSO4・7H2O 1g 、ヤシ油50g 、微量金属元素溶液(組
成: FeCl3・6H2O 16.2g、 CaCl2・2H2O 10.3g、CoCl2
・6H2O 0.2g 、 NiCl2・6H2O 0.1g 、 CrCl3・6H2O 0.1
g 、 CuSO4・5H2O0.2g/1l 0.1N HCl) 5ml/1l 、pH
6.7、培養温度30℃、培養時間72時間〕、ポリ
(D−3−ヒドロキシブチレート−co−D−3−ヒド
ロキシヘキサノエート)(以下、ポリ(3HB−co−
3HH)、3HBユニット:3HHユニット=90:1
0(モル比)、分子量約100万) を約50重量%(乾
燥重量)含有した菌体を得た。次にこれを遠心分離処理
(5000rpm、10min)によって培養液から分
離し、得られたペースト状菌体に水を加えて100g/
l(湿菌体換算)の水性懸濁液とした。この水性懸濁液
を用いて、以下に示す実施例を行なったが、本発明はこ
れらの実施例等によりなんら限定されるものではない。
EXAMPLES The microorganisms used in this example were Aeromonas
Alcaligenes eutrophus AC32 (Deposit No. FE) into which a PHA synthase gene derived from caviae was introduced.
RM P-15786). This is J. Bacterio
. l, 179, was cultured by the method described on pages 4821-4830 (1997) [the medium: Na 2 HPO 4 · 12H 2 O 11.3g, KH 2 PO 4 1.9g, (N
H 4 ) 2 SO 4 6 g, professional extract (Banshu Seasoning Co., Ltd.) 10 g,
MgSO 4 · 7H 2 O 1g, coconut oil 50 g, trace metal elements solution (composition: FeCl 3 · 6H 2 O 16.2g , CaCl 2 · 2H 2 O 10.3g, CoCl 2
· 6H 2 O 0.2g, NiCl 2 · 6H 2 O 0.1g, CrCl 3 · 6H 2 O 0.1
g, CuSO 4 · 5H 2 O0.2g / 1l 0.1N HCl) 5ml / 1l, pH
6.7, culture temperature 30 ° C., culture time 72 hours], poly (D-3-hydroxybutyrate-co-D-3-hydroxyhexanoate) (hereinafter referred to as poly (3HB-co-
3HH), 3HB unit: 3HH unit = 90: 1
0 (molar ratio), a molecular weight of about 1,000,000) was obtained in about 50% by weight (dry weight). Next, this was separated from the culture solution by centrifugation (5000 rpm, 10 min), and water was added to the obtained paste-form cells to obtain 100 g /
1 (wet cell equivalent) aqueous suspension. The following examples were carried out using this aqueous suspension, but the present invention is not limited to these examples.

【0026】なお、菌体から分離して得られたポリ(3
HB−co−3HH)の純度は、以下のようにして決定
した。すなわち、菌体より分離して得られた沈殿物の乾
燥物10mgを、クロロホルム1mlに溶解したのち、
メタノール0.85mlと濃硫酸0.25mlを加えて
100℃で140分間処理した。これを冷却後、硫酸ア
ンモニア飽和水溶液0.5mlを加えて激しく攪拌して
静置し、下層部をキャピラリーガスクロマトグラフィー
にて分析して、分離物中のポリ(3HB−co−3H
H)の純度を求めた。
The poly (3) obtained by separating the cells from the cells
The purity of HB-co-3HH) was determined as follows. That is, after dissolving 10 mg of the dried product of the precipitate obtained by separating the cells from the cells, 1 ml of chloroform was dissolved.
0.85 ml of methanol and 0.25 ml of concentrated sulfuric acid were added, and the mixture was treated at 100 ° C. for 140 minutes. After cooling, 0.5 ml of a saturated aqueous solution of ammonium sulfate was added, and the mixture was vigorously stirred and allowed to stand. The lower layer was analyzed by capillary gas chromatography, and the poly (3HB-co-3H) in the separated product was analyzed.
H) purity was determined.

【0027】実施例1 上記のポリ(3HB−co−3HH)含有微生物菌体の
懸濁液1000mlに、10g/lとなるようにドデシ
ル硫酸ナトリウムを加えて、室温で1時間攪拌した。次
にこれを「ダイノーミル」(スイス、ウィリー・エー・
バックオフェン社製)を用いて1l/hの流速で1時
間、破断処理した。得られた処理液を遠心分離(800
0rpm、10min)して沈殿物を集めた。該沈殿物
を乾燥後、ポリ(3HB−co−3HH)の純度を決定
したところ94%であった。
Example 1 Sodium dodecyl sulfate was added at a concentration of 10 g / l to 1,000 ml of the above-mentioned suspension of poly (3HB-co-3HH) -containing microbial cells, and the mixture was stirred at room temperature for 1 hour. This is then called "Dynomill" (Willie A., Switzerland)
The rupture treatment was carried out at a flow rate of 1 l / h for 1 hour using a backoffen. The obtained treatment liquid is centrifuged (800
(0 rpm, 10 min) and the precipitate was collected. After drying the precipitate, the purity of poly (3HB-co-3HH) was determined to be 94%.

【0028】実施例2 上記のポリ(3HB−co−3HH)含有微生物菌体の
懸濁液1000mlに、10g/lとなるようにドデシ
ル硫酸ナトリウムを加えて、室温で1時間攪拌した。次
にこれを「ミニラボ」(デンマーク、APVラニー社
製)を用いて500kgf/cm2 で1時間、破断処理
した。得られた処理液を遠心分離(8000rpm、1
0min)して沈殿物を集めた。該沈殿物を乾燥後、ポ
リ(3HB−co−3HH)の純度を決定したところ9
5%であった。
Example 2 Sodium dodecyl sulfate was added to a suspension of the above poly (3HB-co-3HH) -containing microbial cells at a concentration of 10 g / l and stirred at room temperature for 1 hour. Next, this was subjected to a breaking treatment at 500 kgf / cm 2 for 1 hour using “Minilab” (manufactured by APV Lanie, Denmark). The processing solution obtained is centrifuged (8000 rpm, 1
0 min) and the precipitate was collected. After drying the precipitate, the purity of poly (3HB-co-3HH) was determined.
5%.

【0029】実施例3 実施例1においてドデシル硫酸ナトリウムをドデシルス
ルホン酸ナトリウムに変更した以外は同様の操作を行な
った。該沈殿物を乾燥後、ポリ(3HB−co−3H
H)の純度を決定したところ94%であった。
Example 3 The same operation was performed as in Example 1, except that sodium dodecyl sulfate was changed to sodium dodecyl sulfonate. After drying the precipitate, poly (3HB-co-3H)
The purity of H) was determined to be 94%.

【0030】比較例1 実施例1において「ダイノーミル」による破断操作を行
なわなかった以外は同様の操作を行なった。その結果、
遠心分離しても沈殿物は得ることはできず、ポリマーは
全く分離できなかった。
Comparative Example 1 The same operation was performed as in Example 1 except that the breaking operation was not performed using a “Dynomill”. as a result,
No precipitate could be obtained by centrifugation, and no polymer could be separated.

【0031】比較例2 実施例1においてドデシル硫酸ナトリウム処理を行なわ
なかった以外は同様の操作を行なった。その結果、遠心
分離して得られた沈殿物の純度は、懸濁前のポリ(3H
B−co−3HH)含有微生物菌体の純度と同じ50%
であった。
Comparative Example 2 The same operation was performed as in Example 1, except that the treatment with sodium dodecyl sulfate was not performed. As a result, the purity of the precipitate obtained by centrifugation was as high as that of the poly (3H
50% same as the purity of B-co-3HH) -containing microbial cells
Met.

【0032】比較例3 ポリ(3HB−co−3HH)含有微生物菌体の懸濁液
100mlを「ダイノーミル」を用いて1l/hの流速
で1時間破断処理した後、10g/lになるようにドデ
シル硫酸ナトリウムを加えて室温で1時間攪拌した。得
られた菌体懸濁液は非常に粘重で、遠心分離処理しても
ポリ(3HB−co−3HH)を得ることはできなかっ
た。
COMPARATIVE EXAMPLE 3 100 ml of a suspension of poly (3HB-co-3HH) -containing microbial cells was subjected to a breaking treatment at a flow rate of 1 l / h for 1 hour by using a "Dynomill" so that the suspension became 10 g / l. Sodium dodecyl sulfate was added and stirred at room temperature for 1 hour. The obtained cell suspension was very viscous, and poly (3HB-co-3HH) could not be obtained by centrifugation.

【0033】以上の結果より、実施例1〜3で得られた
ポリ(3HB−co−3HH)は、いずれも界面活性剤
を使用していない比較例2で得られたものに比べ、高純
度のものであることがわかる。
From the above results, the poly (3HB-co-3HH) obtained in Examples 1 to 3 was higher in purity than that obtained in Comparative Example 2 in which no surfactant was used. It turns out that it is.

【0034】また、実施例1〜3及び比較例1〜3の結
果より、ポリ(3HB−co−3HH)の分離精製方法
には、物理的破砕処理と界面活性剤の添加の両方が必要
であるが、界面活性剤の添加処理液を物理的破砕処理す
ることにより顕著な効果が得られる。
From the results of Examples 1 to 3 and Comparative Examples 1 to 3, the method for separating and purifying poly (3HB-co-3HH) requires both physical crushing treatment and addition of a surfactant. However, a remarkable effect can be obtained by physically crushing the treatment solution containing the surfactant.

【0035】[0035]

【発明の効果】本発明によれば、高純度のポリ−3−ヒ
ドロキシアルカン酸(PHA)を効率よく、極めて簡便
に得られるため、本発明は、PHAの工業的生産の効率
向上およびコストの低減に大きく寄与するものである。
また、本発明により得られるPHAは、実用品として十
分に高い純度を有するものであり、例えば、プラスチッ
ク製品、回収不要のインプラント材料、薬物担体、肥料
担体、農業用マルチフィルム、釣糸等の漁具、コンポス
ト用ゴミ袋等の原料として好適に用いられる。
According to the present invention, high-purity poly-3-hydroxyalkanoic acid (PHA) can be obtained efficiently and extremely easily. Therefore, the present invention improves the efficiency of industrial production of PHA and reduces cost. This greatly contributes to reduction.
The PHA obtained by the present invention has a sufficiently high purity as a practical product, for example, a plastic product, an implant material that does not need to be collected, a drug carrier, a fertilizer carrier, an agricultural multi-film, fishing gear such as a fishing line, It is suitably used as a raw material for compost garbage bags.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 圭司 兵庫県西宮市大森町11−33 Fターム(参考) 4B064 AD83 BA18 CA02 CA19 CC24 CE02 CE03 DA01 DA16  ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Keiji Matsumoto 11-33 Omoricho, Nishinomiya-shi, Hyogo F-term (reference) 4B064 AD83 BA18 CA02 CA19 CC24 CE02 CE03 DA01 DA16

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ポリ−3−ヒドロキシアルカン酸を含有
する微生物菌体の懸濁液に界面活性剤を添加し、得られ
る混合液を物理的破砕処理することを特徴とするポリ−
3−ヒドロキシアルカン酸の分離精製方法。
1. A method for preparing a poly (3-hydroxyalkanoic acid) comprising adding a surfactant to a suspension of microbial cells containing poly-3-hydroxyalkanoic acid and subjecting the resulting mixture to physical disruption.
A method for separating and purifying 3-hydroxyalkanoic acid.
【請求項2】 ポリ−3−ヒドロキシアルカン酸が、D
−3−ヒドロキシブチレート(3HB)とD−3−ヒド
ロキシヘキサノエート(3HH)との2成分共重合体ま
たはD−3−ヒドロキシブチレート(3HB)とD−3
−ヒドロキシバレレート(3HV)とD−3−ヒドロキ
シヘキサノエート(3HH)との3成分共重合体である
請求項1記載の分離精製方法。
2. The method according to claim 1, wherein the poly-3-hydroxyalkanoic acid is D
Binary copolymer of -3-hydroxybutyrate (3HB) and D-3-hydroxyhexanoate (3HH) or D-3-hydroxybutyrate (3HB) and D-3
The separation and purification method according to claim 1, which is a three-component copolymer of -hydroxyvalerate (3HV) and D-3-hydroxyhexanoate (3HH).
【請求項3】 ポリ−3−ヒドロキシアルカン酸を含有
する微生物が、アエロモナス・キャビエ由来のポリ−3
−ヒドロキシアルカン酸合成酵素群遺伝子が導入された
菌株である請求項1または2記載の分離精製方法。
3. The method according to claim 1, wherein the microorganism containing poly-3-hydroxyalkanoic acid is poly-3 derived from Aeromonas caviae.
The method for separating and purifying according to claim 1 or 2, wherein the strain is a strain into which a gene for a hydroxyalkanoate synthase group has been introduced.
JP22684199A 1999-08-10 1999-08-10 Method for separating and purifying poly-3-hydroxyalkanoic acid Expired - Fee Related JP3930667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22684199A JP3930667B2 (en) 1999-08-10 1999-08-10 Method for separating and purifying poly-3-hydroxyalkanoic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22684199A JP3930667B2 (en) 1999-08-10 1999-08-10 Method for separating and purifying poly-3-hydroxyalkanoic acid

Publications (2)

Publication Number Publication Date
JP2001046094A true JP2001046094A (en) 2001-02-20
JP3930667B2 JP3930667B2 (en) 2007-06-13

Family

ID=16851417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22684199A Expired - Fee Related JP3930667B2 (en) 1999-08-10 1999-08-10 Method for separating and purifying poly-3-hydroxyalkanoic acid

Country Status (1)

Country Link
JP (1) JP3930667B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091444A1 (en) * 2002-04-26 2003-11-06 Kaneka Corporation Method of separating poly-3-hydroxyalkanoic acid
WO2004029266A1 (en) * 2002-09-30 2004-04-08 Kaneka Corporation Method of purifying 3-hydroxyalkanoic acid copolymer
WO2004065608A1 (en) * 2003-01-20 2004-08-05 Kaneka Corporation Method of collecting highly pure polyhydroxyalkanoate from microbial cells
US6828074B2 (en) 2001-04-27 2004-12-07 Canon Kabushiki Kaisha Binder resin containing polyhydroxyalkanoate, toner containing the binder resin, and image-forming method and image-forming apparatus which make use of the toner
WO2005059153A1 (en) 2003-12-19 2005-06-30 Tianan Biologic Material Co., Ltd. Ningbo A METHOD FOR SEPARATING, EXTRACTING AND PURIFING POLY- β -HYDROXYALKANOATES (PHA’s) DIRECTLY FROM BACTERIAL FERMENTED BROTH
JP2006168159A (en) * 2004-12-15 2006-06-29 Kaneka Corp Manufacturing method of biodegradable film
JP2007028987A (en) * 2005-07-27 2007-02-08 Asahi Breweries Ltd Method for separating and purifying polyhydroxyalkanoic acid
JP2008193940A (en) * 2007-02-13 2008-08-28 Honda Motor Co Ltd Method for purifying polyhydroxybutyrate
WO2010116681A1 (en) * 2009-03-30 2010-10-14 株式会社カネカ Method for collecting polyhydroxyalkanoate
WO2018070492A1 (en) * 2016-10-13 2018-04-19 株式会社カネカ Method for producing polyhydroxyalkanoic acid

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828074B2 (en) 2001-04-27 2004-12-07 Canon Kabushiki Kaisha Binder resin containing polyhydroxyalkanoate, toner containing the binder resin, and image-forming method and image-forming apparatus which make use of the toner
US7314740B2 (en) 2002-04-26 2008-01-01 Kaneka Corporation Method of separating poly-3-hydroxyalkanoic acid
WO2003091444A1 (en) * 2002-04-26 2003-11-06 Kaneka Corporation Method of separating poly-3-hydroxyalkanoic acid
WO2004029266A1 (en) * 2002-09-30 2004-04-08 Kaneka Corporation Method of purifying 3-hydroxyalkanoic acid copolymer
US7435566B2 (en) 2002-09-30 2008-10-14 Kaneka Corporation Method of purifying 3-hyroxyalkanoic acid copolymer
US7393668B2 (en) 2003-01-20 2008-07-01 Kaneka Corporation Method of collecting highly pure polyhydroxyalkanoate from microbial cells
WO2004065608A1 (en) * 2003-01-20 2004-08-05 Kaneka Corporation Method of collecting highly pure polyhydroxyalkanoate from microbial cells
CN100572544C (en) * 2003-01-20 2009-12-23 株式会社钟化 Reclaim the method for high purity polyhydroxyalkanoatefrom from microbial cells
JPWO2004065608A1 (en) * 2003-01-20 2006-05-18 株式会社カネカ Method for recovering high-purity polyhydroxyalkanoate from microbial cells
JP2007524345A (en) * 2003-12-19 2007-08-30 寧波天安生物材料有限公司 Method for directly separating, extracting and purifying poly-β-hydroxyalkanoates (PHAs) from bacterial fermentation broth
WO2005059153A1 (en) 2003-12-19 2005-06-30 Tianan Biologic Material Co., Ltd. Ningbo A METHOD FOR SEPARATING, EXTRACTING AND PURIFING POLY- β -HYDROXYALKANOATES (PHA’s) DIRECTLY FROM BACTERIAL FERMENTED BROTH
JP4777778B2 (en) * 2003-12-19 2011-09-21 寧波天安生物材料有限公司 Method for directly separating, extracting and purifying poly-β-hydroxyalkanoates (PHAs) from bacterial fermentation broth
JP2006168159A (en) * 2004-12-15 2006-06-29 Kaneka Corp Manufacturing method of biodegradable film
JP4520843B2 (en) * 2004-12-15 2010-08-11 株式会社カネカ Method for producing biodegradable film
JP2007028987A (en) * 2005-07-27 2007-02-08 Asahi Breweries Ltd Method for separating and purifying polyhydroxyalkanoic acid
JP2008193940A (en) * 2007-02-13 2008-08-28 Honda Motor Co Ltd Method for purifying polyhydroxybutyrate
WO2010116681A1 (en) * 2009-03-30 2010-10-14 株式会社カネカ Method for collecting polyhydroxyalkanoate
WO2018070492A1 (en) * 2016-10-13 2018-04-19 株式会社カネカ Method for producing polyhydroxyalkanoic acid
JPWO2018070492A1 (en) * 2016-10-13 2019-07-25 株式会社カネカ Method for producing polyhydroxyalkanoic acid
JP6993980B2 (en) 2016-10-13 2022-02-04 株式会社カネカ Method for producing polyhydroxyalkanoate

Also Published As

Publication number Publication date
JP3930667B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
Jiang et al. Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process
Harding et al. Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis
CN100572544C (en) Reclaim the method for high purity polyhydroxyalkanoatefrom from microbial cells
Rhu et al. Polyhydroxyalkanoate (PHA) production from waste
Zhou et al. Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy
Wong et al. Current developments in biotechnology and bioengineering: solid waste management
KR100526840B1 (en) Method and apparatus for producing polyhydroxyalkanoate
JP2001046094A (en) Separation and purification of poly-3-hydroxyalkanoic acid
Zhang et al. Coupling of polyhydroxyalkanoate production with volatile fatty acid from food wastes and excess sludge
JP2013521802A (en) Production of polyhydroxyalkanoates
Elhami et al. Extraction of low molecular weight polyhydroxyalkanoates from mixed microbial cultures using bio-based solvents
JP2004058010A (en) Method of treating organic waste containing molded article made of biodegradable resin
Xiong et al. Chemical digestion method to promote activated sludge cell wall breaking and optimize the polyhydroxyalkanoate (PHA) extraction process
JPWO2004029266A1 (en) Method for purifying 3-hydroxyalkanoic acid copolymer
JP2008054541A (en) Method for separating and purifying 3-hydroxyalkanoic acid copolymer produced by fermentation
JP4126511B2 (en) Method for recovering poly-3-hydroxybutyric acid from microbial cells
JPH0731487A (en) Separation of bio-polyester from bio-polyester-containing microbial cell
JPWO2003091444A1 (en) Method for separating poly-3-hydroxyalkanoic acid
US20080118963A1 (en) Method Of Coagulating Poly-3-Hydroxyalkanoic Acid
JP3930668B2 (en) Method for extracting poly-3-hydroxyalkanoic acid
JP4007580B2 (en) Method and apparatus for producing polyhydroxyalkanoate
JP4231801B2 (en) Method for solubilizing polylactic acid biodegradable plastics
JP2005206735A (en) Method for recovering energy from polylactic acid-based biodegradable plastic
JP2009195179A (en) Method for extracting polyhydroxyalkanoic acid
Salvatori et al. Chlorine-free Extractions of Mixed-Culture Polyhydroxyalkanoates Produced from Fermented Sewage Sludge at Pilot Scale

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070309

R150 Certificate of patent or registration of utility model

Ref document number: 3930667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees