[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2001040340A - Binary refrigerating equipment - Google Patents

Binary refrigerating equipment

Info

Publication number
JP2001040340A
JP2001040340A JP2000183844A JP2000183844A JP2001040340A JP 2001040340 A JP2001040340 A JP 2001040340A JP 2000183844 A JP2000183844 A JP 2000183844A JP 2000183844 A JP2000183844 A JP 2000183844A JP 2001040340 A JP2001040340 A JP 2001040340A
Authority
JP
Japan
Prior art keywords
oil
refrigerant
temperature
low
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000183844A
Other languages
Japanese (ja)
Inventor
Kazuo Takemasa
一夫 竹政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000183844A priority Critical patent/JP2001040340A/en
Publication of JP2001040340A publication Critical patent/JP2001040340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide refrigerating equipment that can realize a desired refrigeration capacity and nonproblematic in oil sludge formation and oil deterioration by using a refrigerant composition prepared by adding a specified amount of n-pentane or propane to an azeotrope prepared by mixing trifluoromethane with hexafluoroethane in a specified ratio in the low-temperature-side cooling circuit. SOLUTION: A refrigerant composition is a mixture comprising (A) an azeotrope being a mixture of 39 wt.% trifluoromethane having a specific heat ratio of 1.22 with 61 wt.% hexafluoroethane having a specific heat ratio of 1.09 and having an azeotropic point of about -88 deg.C and at most 14 wt.%, based on component A, (B) n-pentane or propane. Although component A is poorly miscible with an oil, the refrigerant composition is returned to the compressor while it is in the state in which the oil is dissolved in component B. In a binary refrigerating equipment provided with a high-temperature-side cooling circuit and a low-temperature-side cooling circuit and performing cooling by the refrigerant passing the cascade condenser in the low-temperature-side refrigerant, the refrigerant composition is sealed in the low-temperature-side cooling circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は冷凍装置に用いられ、且
つ、オゾン層を破壊する危険性の少ない冷媒組成物と、
それを使用した二元冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant composition used in a refrigeration system and having a low risk of destruction of the ozone layer.
It relates to a binary refrigeration system using the same.

【0002】[0002]

【従来の技術】従来、冷凍機の冷媒として用いられてい
るものにはR12(ジクロロジフルオロメタン)とR5
00(R12とR152a(1,1−ジフルオロエタ
ン)との共沸混合物)が多い。R12の沸点は約−30
℃で、R500の沸点は約−33℃であり通常の冷凍装
置に好適である。更に圧縮機への吸込温度が比較的高く
ても吐出温度が圧縮機のオイルスラッジを引き起こす程
高くならない。更に又、R12は圧縮機のオイルと相溶
性が良く、冷媒回路中のオイルを圧縮機まで引き戻す役
割も果たす。
2. Description of the Related Art Conventionally, R12 (dichlorodifluoromethane) and R5
00 (azeotropic mixture of R12 and R152a (1,1-difluoroethane)). The boiling point of R12 is about -30
At 500C, the boiling point of R500 is about -33C, which is suitable for ordinary refrigeration equipment. Furthermore, even if the suction temperature into the compressor is relatively high, the discharge temperature will not be so high as to cause oil sludge in the compressor. Further, R12 has good compatibility with the oil of the compressor and plays a role of drawing the oil in the refrigerant circuit back to the compressor.

【0003】一方、−80℃以下というより低い温度帯
を得るためには、R503(R23とR13との共沸混
合物)が使用される。R503の沸点は−88.65℃
であり、低温を得るのに最適である。
[0003] On the other hand, in order to obtain a lower temperature range of -80 ° C or lower, R503 (azeotropic mixture of R23 and R13) is used. R503 has a boiling point of -88.65 ° C.
And is optimal for obtaining low temperatures.

【0004】[0004]

【発明が解決しようとする課題】然し乍ら上記各冷媒は
オゾン層を破壊する恐れがあるとされ、その使用が規制
されることとなって来た。即ち、R500を組成するR
12やR503を組成するR13は難分解性の所謂規制
冷媒であり、大気中に放出されてオゾン層に到達すると
オゾン層を破壊する危険があることが解明されてきた。
However, it is said that each of the above refrigerants may destroy the ozone layer, and the use of the refrigerant has been restricted. That is, R that composes R500
It has been elucidated that R13 comprising R12 and R503 is a so-called regulated refrigerant which is hardly decomposable, and has a risk of destroying the ozone layer when it is released into the atmosphere and reaches the ozone layer.

【0005】現在、世界中の研究者は上記規制冷媒の代
替冷媒を研究、模索中である。
At present, researchers around the world are researching and searching for alternative refrigerants to the above-mentioned restricted refrigerants.

【0006】本発明は斯る点に鑑みなされたもので、オ
ゾン層を破壊する危険が大きい規制冷媒を使用すること
なく、−80℃という低温を達成でき、冷凍能力や他の
性能面でもR503の代替冷媒として使用できる冷媒組
成物を提供すると共に、実際に低温を達成できる二元冷
凍装置を提供することを目的とする。
The present invention has been made in view of the above points, and can achieve a low temperature of -80 ° C. without using a regulated refrigerant having a high risk of destruction of the ozone layer. It is an object of the present invention to provide a refrigerant composition that can be used as an alternative refrigerant to a refrigeration system, and to provide a binary refrigeration apparatus that can actually achieve low temperatures.

【0007】[0007]

【課題を解決するための手段】本発明は、請求項1の如
く、トリフルオロメタンとヘキサフルオロエタンとの共
沸混合物からなる冷媒組成物を組成したものである。
According to the present invention, there is provided a refrigerant composition comprising an azeotropic mixture of trifluoromethane and hexafluoroethane.

【0008】また、請求項2の如く、トリフルオロメタ
ンとヘキサフルオロエタンの共沸混合物と、n−ペンタ
ンとの混合物からなり、n−ペンタンを、トリフルオロ
メタンとヘキサフルオロエタンの総重量に対して14%
以下の割合で混合して冷媒組成物を組成したものであ
る。
Further, as claimed in claim 2, the azeotropic mixture comprises a mixture of an azeotropic mixture of trifluoromethane and hexafluoroethane and n-pentane, and n-pentane is added in an amount of 14 to the total weight of trifluoromethane and hexafluoroethane. %
A refrigerant composition was prepared by mixing the following ratios.

【0009】また、請求項3の如く、トリフルオロメタ
ンとヘキサフルオロエタンの共沸混合物と、プロパンと
の混合物からなり、プロパンを、トリフルオロメタンと
ヘキサフルオロエタンの総重量に対して14%以下の割
合で混合して冷媒組成物を組成したものである。
[0009] According to a third aspect of the present invention, there is provided an azeotropic mixture of trifluoromethane and hexafluoroethane and a mixture of propane, wherein propane is contained in a proportion of 14% or less based on the total weight of trifluoromethane and hexafluoroethane. To form a refrigerant composition.

【0010】更に、請求項4の如く、高温側冷媒回路と
低温側冷媒回路を備え、前記低温側冷媒回路中の冷媒の
凝縮を前記高温側冷媒回路中のカスケードコンデンサを
通過する冷媒により行う二元冷凍装置において、前記低
温側冷媒回路に封入される冷媒を、トリフルオロメタン
とヘキサフルオロエタンの共沸混合物と、n−ペンタン
又はプロパンとの混合物とし、n−ペンタン又はプロパ
ンを、トリフルオロメタンとヘキサフルオロエタンの総
重量に対して14%以下の割合で混合してなる冷媒組成
物を使用して二元冷凍装置にしたものである。
Further, a high temperature side refrigerant circuit and a low temperature side refrigerant circuit are provided, and the refrigerant in the low temperature side refrigerant circuit is condensed by the refrigerant passing through a cascade condenser in the high temperature side refrigerant circuit. In the original refrigerating apparatus, the refrigerant sealed in the low-temperature side refrigerant circuit is a mixture of azeotropic mixture of trifluoromethane and hexafluoroethane, and n-pentane or propane, and n-pentane or propane is mixed with trifluoromethane and hexane. This is a binary refrigeration apparatus using a refrigerant composition mixed at a ratio of 14% or less based on the total weight of fluoroethane.

【0011】[0011]

【作用】請求項1の構成により、トリフルオロメタン
(R23)は塩素を含まないHFCであり、ヘキサフル
オロエタン(R116)はフッ素と炭素のみからなるF
Cであって、いずれもオゾン層破壊問題における規制の
対象となっておらず、また、その沸点は、トリフルオロ
メタン(R23)が−82.5℃、ヘキサフルオロエタ
ン(R116)が−78.5℃と低く、共沸点は−88
℃程度となることから、R503の代替冷媒として十分
に冷凍能力を発揮できる。
According to the structure of the first aspect, trifluoromethane (R23) is an HFC containing no chlorine, and hexafluoroethane (R116) is an FFC composed of only fluorine and carbon.
C, none of which is subject to regulation on the problem of ozone depletion, and its boiling point is -82.5 ° C for trifluoromethane (R23) and -78.5 for hexafluoroethane (R116). ° C, azeotropic point -88
Since the temperature is about ℃, the refrigeration ability can be sufficiently exhibited as a substitute refrigerant for R503.

【0012】尚、トリフルオロメタン(R23)は、比
熱比が1.22と若干高目であるため、冷媒回路に封入
した場合には、吐出温度が上昇する懸念があるが、比熱
比が1.09とかなり低いヘキサフルオロエタン(R1
16)を所定量混合しているため、吐出温度の上昇は抑
制することができる。この結果、所望とする冷凍能力を
実現できると共にオイルスラッジやオイルの劣化を抑制
できる。
Since the specific heat ratio of trifluoromethane (R23) is slightly higher at 1.22, there is a concern that the discharge temperature will increase when the trifluoromethane (R23) is sealed in a refrigerant circuit. Hexafluoroethane (R1
Since 16) is mixed in a predetermined amount, an increase in the discharge temperature can be suppressed. As a result, a desired refrigeration capacity can be realized, and deterioration of oil sludge and oil can be suppressed.

【0013】更に、トリフルオロメタン(R23)とヘ
キサフルオロエタン(R116)の共沸混合物は、オイ
ルとの相溶性が悪いが、この問題については冷媒回路中
にオイルセパレータを設け、このセパレータにて完全に
オイルを分離して圧縮機へ戻すようにすることにより解
決でき、油上りによる圧縮機のロック等の心配はない。
Further, the azeotropic mixture of trifluoromethane (R23) and hexafluoroethane (R116) has poor compatibility with oil. To solve this problem, an oil separator is provided in the refrigerant circuit, and the separator is completely used. The problem can be solved by separating the oil to the compressor and returning to the compressor.

【0014】請求項2の構成により、特にオイルセパレ
ータにて完全にオイルを分離するまでもなく、圧縮機に
オイルを戻す冷媒組成物とすることができる。即ち、n
−ペンタンは沸点が+36.07℃と高いが、圧縮機の
オイルとの相溶性が良好であり、n−ペンタンを所定量
混合することにより、n−ペンタンにオイルを溶け込ま
せた状態で圧縮機まで帰還させることができ、圧縮機の
油上がりによるロック等の弊害を防止できる。ここで、
n−ペンタンは沸点が高いため、あまり多量に混合する
と蒸発温度が上昇して目的とする低温が得られない。こ
のため、n−ペンタンを、14重量%以下の割合で混合
することにより、蒸発温度を上昇させずにオイルを圧縮
機へ帰還させることができる。
According to the second aspect of the present invention, it is possible to provide a refrigerant composition which returns oil to the compressor without completely separating the oil particularly by the oil separator. That is, n
−Pentane has a high boiling point of + 36.07 ° C., but has good compatibility with the oil of the compressor, and is mixed with a predetermined amount of n-pentane to dissolve the oil in n-pentane. Can be returned, and the adverse effects such as lock due to oil rising of the compressor can be prevented. here,
Since n-pentane has a high boiling point, if it is mixed in too much, the evaporation temperature rises and the desired low temperature cannot be obtained. Therefore, by mixing n-pentane at a ratio of 14% by weight or less, the oil can be returned to the compressor without increasing the evaporation temperature.

【0015】請求項3の構成によっても、特にオイルセ
パレータにて完全にオイルを分離するまでもなく、圧縮
機にオイルを戻す冷媒組成物とすることができる。即
ち、プロパンも圧縮機のオイルとの相溶性が良好であ
り、プロパンを所定量混合することにより、プロパンに
オイルを溶け込ませた状態で圧縮機まで帰還させること
ができ、圧縮機の油上がりによるロック等の弊害を防止
できる。ここで、プロパンは沸点が−42.75℃と低
いため、蒸発温度に与える影響はそれ程ないが、可燃性
であるため、爆発の危険があり取扱いに難点がある。し
かし、プロパンの混合割合を14%以下とすることによ
り、プロパンを不燃域に維持することができ、爆発等の
心配は無くなる。このため、プロパンを、14重量%以
下の割合で混合することにより、爆発等の危険を防止し
つつオイルを圧縮機へ帰還させることができる。
According to the third aspect of the present invention, it is possible to obtain a refrigerant composition that returns the oil to the compressor without completely separating the oil by the oil separator. That is, propane also has good compatibility with the oil of the compressor, and by mixing propane in a predetermined amount, the oil can be returned to the compressor in a state where the oil is dissolved in the propane, and the propane oil rises. Evils such as locking can be prevented. Here, propane has a low boiling point of −42.75 ° C. and thus has little effect on the evaporation temperature. However, since it is flammable, there is a danger of explosion and handling is difficult. However, by setting the mixing ratio of propane to 14% or less, propane can be maintained in a non-combustible region, and there is no fear of explosion and the like. Therefore, by mixing propane at a ratio of 14% by weight or less, oil can be returned to the compressor while preventing danger such as explosion.

【0016】請求項4の構成により、実際の冷媒回路に
おいて、オイル戻りを良好とし、爆発等の危険を伴うこ
となく、蒸発器にて−83℃程度の低温を達成すること
ができ、規制冷媒を使用せずに血液保冷等の医療用フリ
ーザーとして実用化できる。
According to the fourth aspect of the present invention, in the actual refrigerant circuit, the oil return can be made good and a low temperature of about -83 ° C. can be achieved in the evaporator without danger of explosion. It can be put to practical use as a medical freezer for blood cooling etc. without using.

【0017】[0017]

【実施例】次に図面において実施例を説明する。図1は
本発明の冷媒組成物を封入してなる二元冷凍装置の冷媒
回路図である。S1は高温側冷媒サイクルを、また、S
2は低温側冷媒サイクルを示している。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 is a refrigerant circuit diagram of a binary refrigeration apparatus in which the refrigerant composition of the present invention is sealed. S1 represents the high-temperature side refrigerant cycle, and S1
2 indicates a low-temperature side refrigerant cycle.

【0018】高温側冷媒サイクルS1を構成する圧縮機
1の吐出側配管2は補助凝縮器3に接続され、補助凝縮
器3は圧縮機1のオイルクーラー4、補助凝縮器5、低
温側冷媒サイクルS2を構成する圧縮機6のオイルクー
ラー7、凝縮機8、乾燥器9、キャピラリーチューブ1
0を順次経て、カスケードコンデンサ11に接続され、
受液器12を経て吸込側配管13により圧縮機1に接続
されている。14は各凝縮器3,5及び8の冷却用ファ
ンである。
A discharge side pipe 2 of the compressor 1 constituting the high temperature side refrigerant cycle S1 is connected to an auxiliary condenser 3, and the auxiliary condenser 3 is an oil cooler 4, an auxiliary condenser 5, and a low temperature side refrigerant cycle of the compressor 1. Oil cooler 7, condenser 8, dryer 9, and capillary tube 1 of compressor 6 constituting S2
0, sequentially connected to the cascade capacitor 11,
It is connected to the compressor 1 via a suction pipe 13 via a liquid receiver 12. 14 is a cooling fan for each of the condensers 3, 5 and 8.

【0019】低温側冷媒サイクルS2の圧縮機6の吐出
側配管15は、オイルセパレータ16に接続され、そこ
で分離された圧縮機オイルは、リターン配管17にて圧
縮機6に戻される。一方、冷媒は、配管18に流入して
吸込側熱交換器19と熱交換した後、カスケードコンデ
ンサ11内の配管20内を通過して凝縮し、乾燥器2
1、キャピラリーチューブ2を経て入口管23より蒸発
器24に流入し、出口管25より出て吸込側熱交換器1
9を経て圧縮機6の吸込側配管26より圧縮機6に戻る
構成である。27は膨張タンクであり、キャピラリーチ
ューブ28を介して吸込側配管26に接続されている。
The discharge pipe 15 of the compressor 6 of the low-temperature side refrigerant cycle S2 is connected to an oil separator 16, and the separated compressor oil is returned to the compressor 6 through a return pipe 17. On the other hand, the refrigerant flows into the pipe 18 and exchanges heat with the suction-side heat exchanger 19, then passes through the pipe 20 in the cascade condenser 11, condenses, and is dried.
1. The heat exchanger 1 flows into the evaporator 24 from the inlet pipe 23 via the capillary tube 2 and exits from the outlet pipe 25.
This is a configuration that returns to the compressor 6 from the suction side pipe 26 of the compressor 6 via the compressor 9. Reference numeral 27 denotes an expansion tank, which is connected to a suction side pipe 26 via a capillary tube 28.

【0020】高温側冷媒サイクルS1には、R22(ク
ロロジフルオロメタン、CHCLF2)が封入される。
R22の沸点は大気圧で−40.75℃であり、このR
22が各凝縮器3,5及び8にて凝縮し、キャピラリー
チューブ10にて減圧されてカスケードコンデンサ11
に流入して蒸発する。ここで、カスケードコンデンサ1
1は−40℃程となる。
In the high-temperature side refrigerant cycle S1, R22 (chlorodifluoromethane, CHCLF 2 ) is sealed.
The boiling point of R22 is −40.75 ° C. at atmospheric pressure.
22 is condensed in each of the condensers 3, 5 and 8, and is decompressed in the capillary tube 10 and
And evaporates. Here, the cascade capacitor 1
1 is about −40 ° C.

【0021】低温側冷媒サイクルS2には、R23(ト
リフルオロメタン、CHF3)とR116(ヘキサフル
オロエタン、C26)とn−ペンタン(C512)との
共沸混合物が封入される。ここで、R23とR116の
混合比は、39:61であると共に、n−ペンタンは、
R23とR116の総重量に対して14%以下の割合で
混合して組成される。この結果、共沸点が−88℃とい
うかなり低温の冷媒組成物を封入することとなる。そし
て、圧縮機6から吐出された冷媒及び圧縮機オイルは、
オイルセパレータ16に流入する。そこで、気相部分と
液相部分とに分離され、オイルの大部分は液相であるた
め、リターン配管17より圧縮機6に戻れる。気相の冷
媒とオイルは、配管18を通り吸込側熱交換器19と熱
交換し、更に、カスケードコンデンサ11にて高温側冷
媒サイクルS1内の冷媒の蒸発によって冷却されて凝縮
する。その後、キャピラリーチューブ22にて減圧され
た後、蒸発器24に流入して蒸発する。この蒸発器24
は、図示しない冷凍庫の壁面に熱交換関係に取り付けら
れて庫内を冷却する。ここで、蒸発器24での蒸発温度
は−88℃に達する。
An azeotropic mixture of R23 (trifluoromethane, CHF 3 ), R116 (hexafluoroethane, C 2 F 6 ) and n-pentane (C 5 H 12 ) is sealed in the low-temperature side refrigerant cycle S2. . Here, the mixing ratio of R23 and R116 is 39:61, and n-pentane is
The composition is mixed at a ratio of 14% or less to the total weight of R23 and R116. As a result, a refrigerant composition having a considerably low azeotropic point of −88 ° C. is sealed. And the refrigerant and compressor oil discharged from the compressor 6 are:
It flows into the oil separator 16. Then, the oil is separated into a gaseous phase portion and a liquid phase portion, and most of the oil is in a liquid phase. The gas-phase refrigerant and oil exchange heat with the suction-side heat exchanger 19 through the pipe 18, and are further cooled and condensed by the cascade condenser 11 by evaporation of the refrigerant in the high-temperature side refrigerant cycle S1. Thereafter, the pressure is reduced by the capillary tube 22, and then flows into the evaporator 24 to evaporate. This evaporator 24
Is mounted on a wall of a freezer (not shown) in a heat exchange relationship to cool the inside of the refrigerator. Here, the evaporation temperature in the evaporator 24 reaches −88 ° C.

【0022】このように構成された二元冷凍装置におい
て、低温側冷媒サイクルS2に封入される冷媒組成物で
あるトリフルオロメタン(R23)は塩素を含まないH
FCであり、ヘキサフルオロエタン(R116)はフッ
素と炭素のみからなるFCであって、いずれもオゾン層
破壊問題における規制の対象となっておらず、また、そ
の沸点は、トリフルオロメタン(R23)が−82.5
℃、ヘキサフルオロエタン(R116)が−78.5℃
と低く、共沸点は−88℃程度となることから、R50
3の代替冷媒として十分に冷凍能力を発揮できる。
In the binary refrigeration system configured as described above, trifluoromethane (R23), which is a refrigerant composition sealed in the low-temperature side refrigerant cycle S2, contains chlorine-free H.
Hexafluoroethane (R116) is an FC that consists only of fluorine and carbon, and is not subject to regulations on the problem of ozone depletion, and its boiling point is trifluoromethane (R23). -82.5
° C, hexafluoroethane (R116) is -78.5 ° C
And the azeotropic point is about -88 ° C,
As an alternative refrigerant of No. 3, it can sufficiently exhibit refrigeration capacity.

【0023】尚、トリフルオロメタン(R23)は、比
熱比が1.22と若干高目であるため、冷媒回路中で
は、吐出温度が上昇する懸念があるが、比熱比が1.0
9とかなり低いヘキサフルオロエタン(R116)を6
1重量%混合しているため、吐出温度の上昇は抑制する
ことができる。この結果、所望とする冷凍能力を実現で
きると共にオイルスラッジやオイルの劣化を抑制でき
る。
Since the specific heat ratio of trifluoromethane (R23) is slightly higher at 1.22, there is a concern that the discharge temperature will rise in the refrigerant circuit.
Hexafluoroethane (R116), which is considerably lower than 9,
Since 1% by weight is mixed, an increase in the discharge temperature can be suppressed. As a result, a desired refrigeration capacity can be realized, and deterioration of oil sludge and oil can be suppressed.

【0024】ここで、比熱比の値K(Cp/Cv)は下
記の(1)式で示す如く、断熱圧縮における圧縮機の吐
出ガス温度に大きな影響を及ぼすものであって組成物の
分子量が大きい程小さい値を示す。
Here, the value of the specific heat ratio K (Cp / Cv) has a great effect on the discharge gas temperature of the compressor in adiabatic compression as shown by the following equation (1), and the molecular weight of the composition is Larger values indicate smaller values.

【0025】[0025]

【数1】 (Equation 1)

【0026】更に、トリフルオロメタン(R23)とヘ
キサフルオロエタン(R116)の共沸混合物はオイル
との相溶性が悪いが、n−ペンタンを14重量%以下混
合することにより解決できる。即ち、n−ペンタンは沸
点が+36.07℃と高いが、圧縮機オイルとの相溶性
が良好であり、n−ペンタンを14重量%の範囲で混合
することにより、n−ペンタンにオイルを溶け込ませた
状態で圧縮機まで帰還させることができ、圧縮機の油上
がりによるロック等の弊害を防止できる。この結果、特
にオイルセパレータ16にて完全にオイルを分離するま
でもなく、圧縮機6にオイルを戻すことができる。ここ
で、n−ペンタンは沸点が高いため、あまり多量に混合
すると蒸発温度が上昇して目的とする低温が得られない
が、n−ペンタンを、14重量%以下の割合で混合する
ことにより、蒸発温度を上昇させずしかもn−ペンタン
が不燃域に維持しつつオイルを圧縮機へ帰還させること
ができる。
Furthermore, the azeotropic mixture of trifluoromethane (R23) and hexafluoroethane (R116) has poor compatibility with oil, but can be solved by mixing n-pentane at 14% by weight or less. That is, n-pentane has a high boiling point of + 36.07 ° C., but has good compatibility with compressor oil, and the oil is dissolved in n-pentane by mixing n-pentane in a range of 14% by weight. In this state, the compressor can be returned to the compressor, so that it is possible to prevent a problem such as lock caused by oil rising of the compressor. As a result, the oil can be returned to the compressor 6 without completely separating the oil by the oil separator 16. Here, since n-pentane has a high boiling point, if it is mixed in too much, the evaporation temperature rises and the desired low temperature cannot be obtained. However, by mixing n-pentane at a ratio of 14% by weight or less, The oil can be returned to the compressor without increasing the evaporation temperature and while maintaining the n-pentane in the non-combustible region.

【0027】このように、本実施例の二元冷凍装置によ
れば、オイル戻りを良好とし、爆発等の危険を伴うこと
なく、蒸発器にて−88℃程度の低温を達成することが
でき、規制冷媒を使用せずに血液保冷等の医療用フリー
ザーとして実用化できる。
As described above, according to the binary refrigerating apparatus of the present embodiment, it is possible to achieve a low temperature of about -88 ° C. in the evaporator without causing a danger of explosion or the like, with good oil return. It can be put to practical use as a medical freezer for blood cooling etc. without using a regulated refrigerant.

【0028】また、n−ペンタンは工場生産ではないの
で、フリーザー等で使用する場合には容易に入手でき、
実用的である。
Also, since n-pentane is not produced in a factory, it can be easily obtained when used in a freezer or the like.
It is practical.

【0029】また、トリフルオロメタン(R23)と、
ヘキサフルオロエタン(R116)と、プロパンとは、
いずれもガス状態であるため、封入の作業性やサービス
性を工場できる。
Trifluoromethane (R23);
Hexafluoroethane (R116) and propane
Since both are in the gas state, the workability and serviceability of the sealing can be achieved at the factory.

【0030】尚、本実施例ではトリフルオロメタン(R
23)とヘキサフルオロエタン(R116)とn−ペン
タンとの混合物にて説明したが、n−ペンタンの代わり
にR290(プロパン、C38)を同様の割合で混合し
ても同様の効果が得られる。即ち、プロパンも圧縮機オ
イルとの相溶性が良好であり、プロパンを14重量%混
合することにより、プロパンにオイルを溶け込ませた状
態で圧縮機6まで帰還させることができ、圧縮機6の油
上がりによるロック等の弊害を防止できる。ここで、プ
ロパンは沸点が−42.75℃と低いため、蒸発温度に
与える影響はそれ程ないが、可燃性であるため、爆発の
危険があり取扱に難点がある。しかし、プロパンの混合
割合を14重量%以下とすることにより、プロパンを不
燃域に維持することができ、爆発等の心配は無くなる。
In this embodiment, trifluoromethane (R
23), a mixture of hexafluoroethane (R116) and n-pentane has been described, but the same effect can be obtained by mixing R290 (propane, C 3 H 8 ) in the same ratio instead of n-pentane. can get. That is, propane also has good compatibility with the compressor oil. By mixing propane at 14% by weight, the propane can be returned to the compressor 6 in a state where the oil is dissolved in the propane. It is possible to prevent adverse effects such as locking due to rising. Here, propane has a low boiling point of −42.75 ° C. and thus has little effect on the evaporation temperature, but since it is flammable, there is a danger of explosion and handling is difficult. However, by setting the mixing ratio of propane to 14% by weight or less, propane can be maintained in a nonflammable region, and there is no fear of explosion or the like.

【0031】[0031]

【発明の効果】以上のように本発明によれば、トリフル
オロメタン(R23)は塩素を含まないHFCであり、
ヘキサフルオロエタン(R116)はフッ素と炭素のみ
からなるFCであって、いずれもオゾン層破壊問題にお
ける規制の対象となっておらず、また、その沸点は、ト
リフルオロメタン(R23)が−82.5℃、ヘキサフ
ルオロエタン(R116)が−78.5℃と低く、共沸
点は−88℃程度となることから、R503の代替冷媒
として十分に冷凍能力を発揮できる。
As described above, according to the present invention, trifluoromethane (R23) is an HFC containing no chlorine,
Hexafluoroethane (R116) is an FC comprising only fluorine and carbon, none of which is subject to regulation on the problem of depletion of the ozone layer, and its boiling point is -82.5% for trifluoromethane (R23). ° C, hexafluoroethane (R116) is as low as -78.5 ° C, and the azeotropic point is about -88 ° C, so that it can sufficiently exhibit refrigeration ability as a substitute refrigerant for R503.

【0032】尚、トリフルオロメタン(R23)は、比
熱比が1.22と若干高目であるため、冷媒回路に封入
した場合には、吐出温度が上昇する懸念があるが、比熱
比が1.09とかなり低いヘキサフルオロエタン(R1
16)を所定量混合しているため、吐出温度の上昇は抑
制することができる。この結果、冷凍装置に封入した場
合には、所望とする冷凍能力を実現できると共にオイル
スラッジやオイルの劣化を抑制できる。
Since the specific heat ratio of trifluoromethane (R23) is slightly higher at 1.22, there is a concern that the discharge temperature will increase when the trifluoromethane (R23) is sealed in a refrigerant circuit. Hexafluoroethane (R1
Since 16) is mixed in a predetermined amount, an increase in the discharge temperature can be suppressed. As a result, when sealed in a refrigeration apparatus, desired refrigeration capacity can be achieved, and deterioration of oil sludge and oil can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の冷媒組成物を封入した二元冷凍装置の
冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of a binary refrigeration apparatus in which a refrigerant composition of the present invention is sealed.

【符号の説明】[Explanation of symbols]

S1 高温側冷媒サイクル S2 低温側冷媒サイクル 1,6 圧縮機 11 カスケードコンデンサ 24 蒸発器 S1 High-temperature side refrigerant cycle S2 Low-temperature side refrigerant cycle 1,6 Compressor 11 Cascade condenser 24 Evaporator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温側冷媒回路と低温側冷媒回路を備
え、前記低温側冷媒回路中の冷媒の凝縮を前記高温側冷
媒回路中のカスケードコンデンサを通過する冷媒により
行う二元冷凍装置において、前記低温側冷媒回路に封入
される冷媒を、比熱比が高めのトリフルオロメタンを3
9重量%、比熱比が低めのヘキサフルオロエタンを61
重量%混合した共沸混合物と、n−ペンタン又はプロパ
ンとの混合物とし、このn−ペンタン又はプロパンを、
トリフルオロメタンとヘキサフルオロエタンの総重量に
対して14%以下の割合で混合してなる冷媒組成物を使
用した二元冷凍装置。
1. A binary refrigeration apparatus comprising a high-temperature side refrigerant circuit and a low-temperature side refrigerant circuit, wherein condensation of refrigerant in the low-temperature side refrigerant circuit is performed by refrigerant passing through a cascade condenser in the high-temperature side refrigerant circuit. The refrigerant sealed in the low-temperature side refrigerant circuit was replaced with trifluoromethane with a higher specific heat ratio.
9% by weight of hexafluoroethane having a lower specific heat ratio
% Of an azeotrope and n-pentane or propane, and the n-pentane or propane is
A binary refrigeration apparatus using a refrigerant composition obtained by mixing trifluoromethane and hexafluoroethane at a ratio of 14% or less based on the total weight.
JP2000183844A 2000-01-01 2000-06-19 Binary refrigerating equipment Pending JP2001040340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000183844A JP2001040340A (en) 2000-01-01 2000-06-19 Binary refrigerating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000183844A JP2001040340A (en) 2000-01-01 2000-06-19 Binary refrigerating equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10249812A Division JPH11158461A (en) 1992-04-10 1998-09-03 Refrigerant composition and two-way refrigerator using the same

Publications (1)

Publication Number Publication Date
JP2001040340A true JP2001040340A (en) 2001-02-13

Family

ID=18684360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000183844A Pending JP2001040340A (en) 2000-01-01 2000-06-19 Binary refrigerating equipment

Country Status (1)

Country Link
JP (1) JP2001040340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147338A1 (en) * 2014-03-27 2015-10-01 パナソニックヘルスケアホールディングス株式会社 Two-stage cascade refrigeration device
JP2016070571A (en) * 2014-09-29 2016-05-09 パナソニックヘルスケア株式会社 Refrigeration device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147338A1 (en) * 2014-03-27 2015-10-01 パナソニックヘルスケアホールディングス株式会社 Two-stage cascade refrigeration device
JP2016070571A (en) * 2014-09-29 2016-05-09 パナソニックヘルスケア株式会社 Refrigeration device

Similar Documents

Publication Publication Date Title
JP5927339B2 (en) Dual refrigeration equipment
JP3244296B2 (en) Refrigerant composition and binary refrigeration apparatus using the same
US5265443A (en) Refrigerating unit
KR100652080B1 (en) Refrigeration apparatus
JPH07504889A (en) Refrigerant composition and method of use thereof
WO2015147338A1 (en) Two-stage cascade refrigeration device
JP4651255B2 (en) Refrigerant composition and refrigeration circuit using the same
JP6181401B2 (en) Dual refrigeration equipment
JP2001040340A (en) Binary refrigerating equipment
US6951115B2 (en) Refrigerant composition and refrigerating circuit using the same
JP2983969B2 (en) Cooling method
JP2865475B2 (en) Refrigerant composition and binary refrigeration apparatus using the same
JP2014196869A (en) Cascade refrigeration system
JP2562723B2 (en) Refrigerant composition and refrigeration system
JPH0660306B2 (en) Refrigerant composition
JPH08165465A (en) Cooling medium composition and refrigerating system
CN115584241A (en) Mixed refrigerant, refrigerating system and refrigerator
JPH09318182A (en) Absorption room cooler
JPH03260557A (en) Binary refrigerating plant
JPH08170075A (en) Working fluid
JPH0418486A (en) Refrigerant composition
JPH0737609B2 (en) Refrigerant composition

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525