JP2000513097A - 電気モータ用のモデル・ベースの故障検出システム - Google Patents
電気モータ用のモデル・ベースの故障検出システムInfo
- Publication number
- JP2000513097A JP2000513097A JP10502852A JP50285298A JP2000513097A JP 2000513097 A JP2000513097 A JP 2000513097A JP 10502852 A JP10502852 A JP 10502852A JP 50285298 A JP50285298 A JP 50285298A JP 2000513097 A JP2000513097 A JP 2000513097A
- Authority
- JP
- Japan
- Prior art keywords
- motor
- model
- motors
- failure
- operating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 69
- 238000005259 measurement Methods 0.000 claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 claims abstract description 16
- 238000012544 monitoring process Methods 0.000 claims abstract description 15
- 238000012360 testing method Methods 0.000 claims description 29
- 230000008859 change Effects 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 10
- 230000003534 oscillatory effect Effects 0.000 claims description 3
- 238000010998 test method Methods 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims 2
- 238000012951 Remeasurement Methods 0.000 claims 1
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000012216 screening Methods 0.000 claims 1
- 230000011664 signaling Effects 0.000 claims 1
- 238000004422 calculation algorithm Methods 0.000 abstract description 25
- 238000012423 maintenance Methods 0.000 abstract description 8
- 238000003745 diagnosis Methods 0.000 abstract description 7
- 238000003908 quality control method Methods 0.000 abstract description 6
- 239000013598 vector Substances 0.000 description 12
- 238000000275 quality assurance Methods 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 230000002950 deficient Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000013399 early diagnosis Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000012774 diagnostic algorithm Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000001845 vibrational spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/04—Bearings
- G01M13/045—Acoustic or vibration analysis
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- General Physics & Mathematics (AREA)
- Control Of Multiple Motors (AREA)
- Control Of Electric Motors In General (AREA)
- Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
(57)【要約】
本発明は、モデル・ベースの故障検出システムと電気モータの監視及びメンテナンス要求の予測のための方法とに関する。本発明のシステム及び方法はソフトウエア・ベースであり、データは非侵入的測定から得られるので、従来のメンテナンス方法よりも実施コストが大きく低減される。システムはセンサに結合されたコンピュータ手段を備え、センサは、入力電圧、電流及びモータ速度の連続的なリアルタイムの情報を提供する。システム及び方法は、マルチバリアブル実験的モデリング・アルゴリズムを用い、モータの機械的な記述を得る。このアルゴリズムは、モデリングされた結果と測定された結果とを比較し、それぞれの信号を減算することによって生成される誤差に関する比較結果を評価する。診断オブザーバは誤差を分析し、モータが無故障であるか又は無故障ではなく動作しているかを判定する。差し迫った故障を検出すると、診断オブザーバは、モータの測定された変数を評価し、基準値からの偏差を判定し、故障しそうな又は故障しているコンポーネントの診断を作成する。本発明の別の実施形態は、分数馬力電動機の製造において特に有用であり、特に、品質管理テストの実施において特に有用である。
Description
【発明の詳細な説明】
電気モータ用のモデル・ベースの故障検出システム
発明の背景
この発明は電気モータに関する。より詳細には、この発明は、電気モータの状
態監視及び予言的メンテナンスのための方法及び装置に関する。
電気モータは、産業機器及びプロセスにおいて広範に使用されており、1つの
ワークステーションから別のワークステーションへ物品を移動させるために、又
は、組み立て機械によって使用される動力工作機械のための電力源として使用さ
れる。
その例の中には、動力ねじまわし、ペンキ噴霧器その他の携帯用機器に圧縮空
気を送るエア・コンプレッサがある。より大きな馬力の電気モータは、建造物や
車両内の冷暖房システムを介して空気を冷却、暖房、移送することにより環境的
制御を維持する。家庭やオフィスにおいては、電気モータはコンピュータから真
空掃除機に至る機器において使用されている。一般に知られているように、こう
した機器は雑音と振動の主要な発生源を構成する。したがって、一層静かで振動
の無いモータに対する増大する市場要求は、故障が無く一層静かなモータの設計
と生産とによってのみ満たされる。
製造環境においては、モータの予期せぬ故障は望ましくないうえ、高くつく。
工業的な背景においては、モータを修理し又は交換するのに要する間、組み立て
ラインの操業を停止するならば、モータの故障は財務上に重大なインパクトを有
する。また、半導体組み立て施設のような製造プロセスによっては、電気モータ
の故障は、環境に対する制御が譲歩されるならば、生産に対する損害を生じるこ
とになる。
したがって、一般に電気モータの信頼性を改善し、特に工業的な応用において
は、障害的な故障を検出し、故障が発生した後ではなくルーチンのメンテナンス
の期間にモータを修理し交換するする要求が増大している。また、電気モータの
製造期間における改善された品質管理の監視によって電気モータの信頼性を向上
させることが望ましい。また、動作期間における性能の監視によってモータの故
障を破局的な故障の前に検出することも望ましい。
最近、複合システムの出力信号を無故障システムの数学モデルから得た出力信
号と比較する故障検出及び診断法方が開発された。これらの信号の比較は、2つ
の信号の差である「誤差」を使って定量化される。誤差の分析は故障の形式を決
定するために実行される。この分析は、誤差を既知の故障を有するシステムのた
めの誤差のデータベースと比較する統計的方法を含む。
最近まで、多変量(マルチバリアブル)システム、即ち、2個以上の入力及び
/又は出力を有するシステムのための正確で実時間のモデルを得ることは困難で
あった。システムのモデルが正確でないならば、誤差は、実際の故障の影響と区
別することが困難なモデル化(モデリング)エラーを含むことになる。
こうしたFDD方法の他の欠点は、故障を分類するための誤差の統計的な試験
に対するデータベースを生成することが困難であるということと関係する。こう
したデータベースの開発は、可能な全部の故障とこうした故障の誤差に対する影
響とについての演繹的(アプリオリ)な情報を必要とする。
したがって、欠陥のある機器と正常な機器とを監視するため、及び、故障を分
類するための故障特性を含むデータベースを開発するために時間が必要である。
このプロセスは高価であり、時間消費的である。また、データベースは特定のF
DD機構の特定の要件と合致しなければならない。
機械的な故障は振動の結果であるから、振動の検出及び分析は多くの従来の検
出機構の共通要素である。こうした技術は、検出された故障と相関付けされた、
以前に経験されたモータ振動パターンを示すライブラリの開発を必要とする。
機械的故障検出の共通の欠点は、実際の故障を検出された特性と相関付けるた
めに、機構が故障特性についての演繹的な情報を必要とするということである。
こうした相関はモータについての広範なデータベースの開発と面倒な分析と専門
知識とを必要とする。
機械的故障検出の他の欠点は、測定値の再生と関連する困難から生じる。例え
ば、加速度計を用いた振動測定は、特性の反復的な検出を保証するために、セン
サの取り付け方法及び位置決めに高度に依存する。センサの適切な取り付け及び
位置決めを行ったとしても、背景の振動や操業中の速度、入力電圧、モータ負荷
等の動作条下の変化によって、特性検出は劣化する。
機械的故障検出に依存するシステムの故障の誤った指示の見込みは高いことを
理解すべきである。例を挙げると、モータのベアリングの条件のアセスメントは
、モータの機械的振動の分析、及び、ベアリングのきずにのみ関係する特定の周
波数(及び/又は何等かの和又は差の周波数及び関連の高調波)の分離を含む。
不幸なことに、振動スペクトル中の他の振動の存在及びそれとの可能な一致は、
所望の信号の検出を妨害することが多い。所望の情報を得るのには高価で複雑な
手段が必要であり、故障の検出又は予言の首尾は、所望するよりも低い。
したがって、モデル化エラーによって起こる紛糾と、モータの故障の誤った指
示と見落とした指示とを除去することが望ましい。また、電気モータの故障の原
因の分析における広範なデータベースや苦労して発展させる専門知識を開発する
必要を回避することが望ましい。更に、故障の存在を指示する情報を入手し処理
するための高価で複雑な手段の必要性を除去することが望ましい。
発明の概要
この発明は、電気モータのメンテナンス要件を監視し予測するためのモデル・
ベースの故障検出システム及び方法に関するものであり、更に詳細には、小馬力
の電気モータに関する。このシステムを使用すると、未知の負荷条件下の動作環
境における電気モータの障害的な機械的故障の早期診断のための情報を得ること
が可能になる。この発明の方法及びシステムはソフトウエアに基づいており、非
破壊測定から得られたデータを利用するので、実現コストは従来のメンテナンス
方法よりもかなり低い。
システムは、多機能データ獲得手段によって電圧センサ、電流センサ及び速度
センサに結合されたコンピュータ手段を備える。これらのセンサは、入力電圧及
び電流の連続した実時間情報、及び、モータの回転速度計(タコメータ)によっ
て作られた出力電圧信号の連続した実時間の情報を提供する。コンピュータ手段
はこうした情報を診断オブザーバと共に故障検出及び診断アルゴリズムを連続的
に実行する際に利用する。
システム及び方法は、モータを数学的に記述する微分方程式の階数(オーダー)
である構造と、モータの不変量(invariant)、即ち、インダクタンス、モータ
抵抗、慣性モーメントのようなパラメータ、モータを記述する状態方程式のA、
B、Cマトリクスのような非物理的パラメータ及び他の選択されたパラメータを
決定することによってモータのモデルを得るために、マルチバリアブルの経験的
(実験的)なモデル化アルゴリズムを利用する。好ましい実施の形態においては
、電気モータのモデルは、モータが無故障で動作していることがわかっていると
きに、通常はモータが最初に据え付けられた後に開発される。その後、動作期間
に、モータに印加された実際の入力電圧及び電流に基づいて、モデル出力電圧が
計算され、モータの測定された出力電圧信号と比較される。アルゴリズムは、そ
れぞれの信号の減算を行うことにより発生される誤差を用いて比較を定量化する
。
診断オブザーバは誤差を分析し、モータに故障が無いか又はモータが無故障と
は違った方法で動作してないかを判定する。無故障の動作下では、理想的には誤
差はゼロに等しいが、動作上は、選択された公差スレッショルドを選択して、モ
デル化エラーや、誤差を非ゼロとしてしまう雑音その他のパタベーション(不安
原因)を補償する。
モータ・コンポーネントの質が低下してモータがその意図した動作範囲外で動
作しているとき又は故障が実際に発生したとき、誤差は公差スレッショルドを越
えるゼロではない値を有する。コンピュータ手段が非ゼロの誤差を検出すると、
障害的な故障の可能性があるので、警報が与えられて、機能し得ないモータによ
り生起される影響を最小限にするための適切な措置が取られる。障害的な故障が
検出されると、診断オブザーバはモータの測定された変数を評価し、基準値から
の偏差を判定し、故障と思われる又は故障のコンポーネントの診断を作り出す。
この発明の他の実施の形態においては、小馬力の電気モータ(分数馬力電動機)
の機械的故障を検出し診断するためのシステムが記載される。故障を測定された
信号と相関付けるために広範なデータベースを開発するのではなく、この実施の
形態は無故障のモータの数学的モデルを組み込み、環境的、動作的な歪みや取り
付け歪みに鈍感な被試験モータの動作パラメータを測定する。
この実施の形態は、小馬力の電気モータの製造、とりわけ品質管理試験の実行
の際に特に有用である。複数のモータの製造後に、モータの利用可能な全部の母
集団を用いてベース・モデルを開発するためにマルチバリアブル・システム識別
アルゴリズムが使用される。母集団は多くの故障したモータを含み得るので、公
差スレッショルドを選択してモデルに対してモータを再試験することにより、モ
デルを更に正確にすることが必要であることを理解すべきである。スレッショル
ド外にあるモータは母集団から取り除かれ、残りのモータを用いて修正されたベ
ース・モデルが開発される。修正されたベース・モデルは、その後に製造される
全部のモータの品質管理試験のために、コンピュータ手段に記憶される。
品質管理試験の期間に、インダクタンス、モータ抵抗、摩擦係数、慣性モーメ
ント等のモータのパラメータが、ベース・モータ・モデルにおいて確立された公
差スレッショルドの範囲外になると、被試験モータは故障を有するものと分類さ
れる。被試験モータのパラメータを異なる公差境界をもつベース・モータ・モデ
ルと比較することにより、モータの故障を更に分類し、診断情報を表示すること
が可能になる。
図面の簡単な説明
図1は、この発明の好ましい実施形態を実行するのに有用な電気モータの概略
図である。
図2は、典型的なモータ筐体の上面図である。
図3及び図4は、この発明の1つの実施形態を実行するための典型的な入力及
び出力の波形である。
図5は、この発明の好適な実施形態のシステム・レベル構成の概略図である。
図6は、この発明の一実施形態に係る故障検出及び診断システムのブロック図
を示す。
図7A、7B、8A及び8Bは、この発明の実施形態に係るこの発明の故障検
出及び診断システムの動作のフロー図を示す。
発明の詳細な説明
参照番号を基に図面をより詳細に参照する。図1は、分数馬力電動機のような
電気モータ10を備えるシステムを示す。例示目的のために、モータ10は、ロ
ータ(回転子)巻線12、ステータ14、及びベアリング18によって両端近く
で支持されたシャフト16を備える。プーリ20はシャフト16を負荷(示さず)
に結合する。コレクタ22はロータ12及びアーマチュア24へ又はそれから電
流を通し、アーマチュアは、ステータと関連して、モータの動きを結果として生
じる磁界を発生する。当業者は、モータ10が整流子も巻線ももたないロータを
有し得ることを理解するであろう。モータ10はケース26に取り付けられ、こ
のケースは、ゴミや湿気やその他の外の物を除くようにシールされる。図2はモ
ータの封入されたもの、即ち、ケース26の上面から見た図であり、ケースのベ
ースは、周知のようにネジ及びナット28によってキャップに取り付けられる。
図5を参照すると、本発明によるモータ状態監視システム30の好適な実施形
態が示されている。システム30は、モータ10、電源32、複数のセンサ34
、35、38、多機能(マルチファンクション)ボード37、及びコンピュータ
42を備える。電源は、配線からの電圧又はヒューレット・パッカード社の60
10Aのような電源でよい。電圧が供給されると、モータ12は通常は25ミリ
秒の電力の供給の内にその動作速度になり、そのシャフト16は或る速度で回転
する。その速度は、部分的に、印加される電圧及び負荷に依存する。モータ12
の速度はタコメータ・センサ36によって検出され、マルチファンクション入出
力ボード37によってアナログ信号からデジタル信号に変換され、コンピュータ
42へ送信される。タコメータ・センサ36は、回転速度エンコーダ又はモータ
10にビルトインされる設計のタコメータでよい。マルチファンクション・ボー
ドは、更に、例えば1:100電圧分割プローブであり得る電圧センサ34に、
及び好適には最小応答時間が23ナノ秒の電流センサ35(許容可能な電流セン
サの例には、テクトロニクス6303、100アンペアac/dc電流プローブ
、テクトロニクス502aパワー・モジュール、及びテクトロニクス503b
ac/dc電流プローブ増幅器が含まれる)に結合される。センサ34及び35
からの信号もまたボード37によって調整されてコンピュータ42へ入力される
。
コンピュータ42はセンサのデータをメモリ(示さず)に記憶する。
コンピュータ42は、理想的モータの故障検出及び診断モデルを実施し、これ
もまたメモリに記憶される。好適な実施形態において、モータのモデルは、最初
はマルチバリアブル(多変数)・システム識別アルゴリズムであるエクスペリメ
ンタル・モデリング・ツールボックス(Experimental Modeling Toolbox)(E
MT)を用いて作成される。EMTは、アーメット・デュヤー(Ahmet Duyar)
によって開発されたものであり、現在は、郵便番号33431フロリダ州ボカ・
レイトン、ノース・オーシャン・ブルバード4201、スイート206のアドバ
ンスト・プログノスティック・システムズ社から商業的入手が可能である。EM
Tは実験的モデリング・ツールであり、可能な動作モードの選択された範囲の下
でシステムの特性を提供するように設計された実験から得られた入力と出力の測
定の間の動的関係を記述する数式を発生する。そのような情報は、システムの帯
域、最適のスキャン・レート及び期間、及びシステムの帯域全体にわたってシス
テムを動作させるのに十分な入力信号を含む。当該技術では知られるように、実
験的モデリングは、観察される入力及び出力データに適合すると思われる数学的
関係の選択である。従って、モデリング・プロセスの間に、式が開発され、多種
のシステム・エレメント及びそれらエレメントの相互接続の動作を記述する。
システムの実験的モデルは、マトリクス形式で表されるセット微分方程式によ
り記述される。EMTプログラムは、システムの構造、即ち、システムのオーダ
ー、パラメータ、及び微分方程式の変数の定数係数を決定する。好適な実施形態
では、その構造は、入力及び出力データを用いて情報マトリクスを作ることによ
って決定される。このマトリクスの行単位(row by row)のランクのサーチは、
システムの構造を判断するために用いられる。行単位のランクのサーチの判断に
おける理論的な概念は、1991年12月の「ジャーナル・オブ・ダイナミック
・システムズ、メジャーメント、アンド・コントロール(Journal of Dynamic S
ystems,Measurement,and Control)」Vol.113の第684〜690ペー
ジのアーメット・デュヤー、バスフィ・エルデム、ウォルタ−C.メリル、テン
フウェイ・クオによる「スペース・シャトル・メイン・エンジンのオープンルー
プ・ダイナミックスの状態スペース表現(State Space Representation of the
Open-Loop Dynamics of the Space Shuttle Main Engine)」と題された刊行さ
れた論文により詳細に説明されている。この文献をここに援用する。
ひとたびシステムの構造が決定されると、微分方程式のセットに含まれるパラ
メータの数が知られる。測定されたデータは、未知の係数を含む微分方程式のセ
ットとともに用いられ、幾つかの式を生成する。生成される式の数は未知の係数
の数よりも多い。最小2乗の技術を用いて、当該技術で知られた様式で且つ上述
の論文に記述されたように、未知の係数を判定する。
本発明のモデル・ベースの故障検出及び診断機構は無故障モータを記述し、一
連の式は以下においてより詳細に説明する。モータ10の故障はパラメータを変
化させるので、モータ10の式は、モデルによって生成された期待される式とは
異なる。本発明の機構は分析的冗長性の概念に依存し、モデルにより生成された
信号が、モータ10から得られた測定信号(測定された信号)と比較され、モー
タが適正に動作しているか否かが判定される。モデルは、モータについてのアプ
リオリの情報を作る必要性に取って代わる。比較を基にして、コンピュータ42
は、誤差量を発生して分析することよって、モータが故障無しで動作しているか
を判定する。本発明は、未知の負荷の下で動作するときの電気モータの切迫した
故障の早期の診断に重要な情報の予測を作り出す。
一例として、以下の離散的な状態空間式(discrete state space equation)
で記述される無故障システムを考慮する。
x(k+1)=Ax(k)+Bu(k) (1)
y(k)=Cx(k) (2)
ここにおいて、x、u及びyはそれぞれnx1状態ベクトル、px1入力ベクト
ル及びqx1出力ベクトルであり、kは離散的な時間の増分を示す。A、B及び
Cは、適当な次元をもつシステムの既知の公称マトリクス(パラメータ)である
。例えば、分数馬力電動機を用い、実験的モデルは入力電圧、電流及び速度の測
定(測定値)を用いる。
図3において、モータ10を付勢するために用いられる入力電圧38のグラフ
を示す。好適な実施形態において、入力電圧38はステップ入力であり、実施形
態モデルにおいて、測定電圧(測定された電圧)を含む行ベクトルとして表され
る。図4は、実験的に決定された電流及び測定の出力信号39及び40を示し、
測定された電流及び速度の出力信号は連続的な線(ソリッド・ライン)で示され
ている。結果的なシステムの記述は式(3)及び(4)で表すことができ、例え
ば、状態空間式のAマトリクスは以下の形式である。
0 0 0 0 0 0 0 0 -00010 93.3676
0 0 0 0 0 0 0 0 0.0000 0.0020
1.0000 0 0 0 0 0 0 0 -0.1857 -260.2940
0 1.0000 0 0 0 0 0 0 -0.0001 -0.0920
0 0 1.0000 0 0 0 0 0 0.0258 487.7519
0 0 0 1.0000 0 0 0 0 0.0001 1.0220
0 0 0 0 1.0000 0 0 0 0.4119 -636.3152
0 0 0 0 0 1.0000 0 0 -00002 -2.7525
0 0 0 0 0 0 1.0000 0 0.5182 315.4224
0 0 0 0 0 0 0 1.0000 0.0002 2.8204
Bマトリクスは以下の形式である。
−2.6188
0.0012
4.3719
0.0092
−3.5824
−0.0259
1.0257
0.0156
1.0915
0.0000
出力Cマトリクスは、変数を出力と関連づけするものであり、以下の形式である
。
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
モデリング・プログラムによって決定されるシステムの離散的なA、B、Cの
マトリクスに加えて、概算の標準誤差(standard error of estimate)(SEE)
もまた決定される。SEEは、モデリングされた出力と測定された出力とを比較
することによって、モデリング・エラーの概算を供給する。上記の例では、この
モデルに対するSEEは、電流出力に対して2.8%であり、速度出力に対して
0.67%である。
モータ10で故障が発生すると、パラメータ、従って、システム30の応答が
異なってくる。システムの故障のパラメータ及び変数をその下つき文字で示すと
、故障のシステムを記述する式は以下のようである。
xf(k+1)=Af xf(k)+Bf uf(k) (3)
yf(k)=Cf xf(k) (4)
そのもっとも簡略な形では、誤差(residual)ベクトルr(k)は、無故障システ
ムの出力と故障システムの出力との差として規定されることができ、それは以下
のようである。
r(k)=yf(k)−y(k) (5)
ノイズ及びモデリング・エラーがない場合には、誤差ベクトルr(k)は無故障
状態の下で零ベクトルと等しい。誤差ベクトルの値が零でないときは故障の存在
を示す。ノイズ及びモデリング・エラーが存在するとき、その影響は、誤差の大
きさと選択されたスレッショルド値とを比較することによって、故障の影響から
分離されねばならない。無故障状態の下での観察された誤差の分布を用いて、ス
レッショルド値は、(3標準偏差内の)信頼のレベルを選択することによって決
定され、故障の警告及び故障の見落としを最少化する。
ここで図6を参照する。多変数識別アルゴリズムEMTは、モータ10のベー
スライン実験モデル44を作り出すために用いられる。モデル44は、差の式の
パラメータ、即ち、A、B、C、及びそれらの次数(オーダー)、即ち、式(1)
及び(2)におけるnを含む。理論的に導出されたモデルのパラメータに反して、
実験モデルのパラメータは物理的な意味を提供しない。言い換えると、これらの
パラメータにおける変化は、原因と結果の関係を理解するために用いられないか
もしれない。パラメータの物理的意味は失われるが、実験モデルは、モータ10
の十分に正確な式を提供する。なぜなら、それは仮定を用いて導出されないから
である。しかしながら、システム30は、モータ10は最初は無故障であるとい
う仮定以外のモータ10の構造についてのアプリオリの情報に依存する必要性を
除く。
モデル44の出力は、モデル出力を得るために電圧センサ34、速度センサ3
6、及び電流センサ26から得られた測定値を用いてコンピュータ42によって
EMTアルゴリズムを用いて求められる。モデル出力は、加算器(summer)46
で示されたところで、モータの出力と比較され、誤差r(k)を生成する。比較器
48は、もし誤差ベクトルr(k)が零ベクトルと等しいと判定すると、それに対
応して、モータは無故障状態の下で動作していると判定する。もし比較器48が
、誤差ベクトルR(k)が非零の値を有すると判定すると、1又はそれ以上の故障
が示される。しかしながら、ノイズ及びモデリング・エラーが典型的に存在する
ので、誤差ベクトルr(k)の値は最初に、選択されたスレッショルド値と比較さ
れ、誤った読み取りを除去する。もし誤差の値がスレッショルドよりも低ければ
、その非零の値は、そのようなノイズ又はモデリング・エラーに起因するもので
ある可能性が高く、モータ10は無故障であると考えられる。次に、システム3
0は、ボックス50で示されるように、システムの無故障の特性を報告する。し
かしながら、もし誤差の値がスレッショルドを越えると、故障が示され、システ
ム30は故障の分析52を開始する。分析52を基にして、54で故障が分類さ
れてユーザに報告され、又は将来の参照のためにコンピュータ42に保持される
。
モデル・ベースの診断ルーチンを用いることにより、無故障状態の下のモータ
の現在の応答をモデル化することができ、続いて、動作中の同じモータの現在の
応答と比較することができる。本発明において、コンピュータ42は、電気モー
タの機械的故障を予測するため、検出するため、及び分類するために故障検出ア
ルゴリズムを反復して行う手段を含む。本発明のシステム及び方法は、生産環境
及び動作環境の両方で用いることができる。
故障の分類は、パラメータ又はモータ10で発生する変化を判定し、理論的に
得たモデルの物理的パラメータを用いることによって、その変化をモータの故障
と関連付けることによって達成される。DC電圧入力を与えた、直流又は交流の
いずれでも動作することができるユニバーサル・モータ(交直両用電動機)を記
述する簡略化した理論的な式(6)及び(7)を考慮する。
L di/dt+Ri=V+k1 w i (6)
J dw/dt+fw=k2 i2+M (7)
ここで、L、R、J及びfはそれぞれ、モータのインダクタンス、抵抗、慣性モ
ーメント、及び摩擦係数であり、k1及びk2はモータの定数である。式(6)
及び(7)において、出力変数である電流及び速度はi及びwで示され、入力変
数である電圧はVで示される。負荷はMで示される。
MCMアルゴリズムにおいて、負荷Mは一般的には使用できず、また、容易に
測定できない。従って、診断オブザーバによって用いるために、式(6)及び(7)
に演算を行って負荷の項を除去する必要がある。1つの実施形態において、診断
オブザーバ(observer)は、単に、モデルを負荷から独立した式(6)を基にす
る。そのような環境において診断オブザーバには部分的な情報が与えられるが、
モータの摩擦及び定数k2は入手できず、未知の故障の報告のパーセンテージが
高くなり得る。従って、もしそのような情報が必要であれば、診断オブザーバは
式(7)の導関数をとり、それは負荷の項を一定の負荷と仮定して除去する。当
業者には明白であるように、例えば、式(6)及び(7)をマトリクスの形式で
表して両側を適当なマトリクス演算子で乗算するような、負荷の項を除去するた
めの他の使用可能な数学的手段を用いることもできる。
再び図1及び2を参照する。一般的な機械的な故障は、バランスのとれていな
いロータ12、不均一にトルクをかけられたネジ28、欠陥のあるベアリング1
8やコレクタ22やプーリ20により起こり得る。これらの機械的な故障は、モ
ータ10を設置して負荷Mをかけて動作したときに、振動やノイズを発生する原
因となる。機械的な振動は物理的なずれを示唆し、ベアリングのきずによる振動
は、シャフト16の周期的なずれを引き起こすと認識される。電気モータにおい
て、駆動シャフトはアーマチュア組立体により回転される。
機械的な故障はロータの整合を狂わせる原因となり、更に、エア・ギャップを
非対称とする。そしてインダクタンス、抵抗及びモータの定数パラメータを変化
させる。これらのすべては式(6)に含まれる。
モータを通過する電流は、部分的に、アーマチュアとステータ(又は界磁コイ
ル)の間のエア・ギャップにおける磁界の関数である。駆動シャフトにもたらさ
れる周期的なずれは、エア・ギャップの対称性及びエア・ギャップにおける磁界
に影響する。エア・ギャップにおける磁界は、モータを通る電流に影響する。エ
ア・ギャップにおける磁界への摂動的影響は周期的であり且つ既知の周波数であ
るので、電流への影響もそれと同様である。
従って、インダクタンス・パラメータLの公称値における変化は、バランスの
とれていないロータの故障(欠陥)と関連する。抵抗パラメータRにおける観察
される変化は、コレクタの故障を示すものとして考慮される。ベアリングの故障
は、インダクタンス係数における変化が振動的なふるまいを呈示するとき及び/
又はインダクタンス係数と摩擦係数の両方が並んで変化するときに、それと判定
される。
無故障パラメータ及び故障パラメータと、無故障パラメータの標準偏差がテー
ブル1及び2に示されている。テーブル1において、所与の電圧V及び負荷Mに
対して、モデル44によって予測された電流及び速度出力値が、選択された公差
パラメータ(3標準偏差)及び電流及び速度の測定値の例とともに示されている
。留意されるように、電流測定値は、3標準偏差よりも多く、予測された値を越
える。従って、故障が示される。
テーブル1 故障のモータ10のパラメータはテーブル2で検査される。留意されるように
、故障のモータ10のインダクタンスLは、1標準偏差よりも多く、モデル44
によって予測された対応するインダクタンス・パラメータを越え、他方、他のす
べてのパラメータは、予測された値に1標準偏差を足したものより低い。上述の
ように、このタイプの故障はロータのバランスの不均衡の故障を示し、それは、
シ
ステム30の故障分類エレメント54によって報告される。
テーブル2
図7A〜7Bのフローチャートは、モデル44が作られた後にシステム30を
実装するステップをまとめたものである。特定的には、選択された間隔(インタ
ーバル)に、ステップ62でコンピュータ42はモデル44をメモリにロードし
、ステップ64でコンピュータ42の表示部にユーザに対する情報を表示する。
モータ10の監視を開始する命令を受信すると、予め指定された間隔で又は連続
的に、ステップ66及び68で、システム30はセンサ34〜38からデータの
獲得を開始する。データの獲得は、ユーザにより決定され得るレートで続けられ
る。コンピュータ42は誤差の値r(k)を計算し、これが、ステップ72で、モ
デル44によって作られた予測された誤差と比較される。もし誤差がスレッショ
ルド境界内であれば、モータは無故障で動作しており、ステップ74で、ユーザ
に対してこの情報がコンピュータ42のディスプレイに表示される。しかしなが
ら、もし故障が示されると、この情報が、ステップ76において、ディスプレイ
に表示される。
ひとたび故障が検出されると、システム30は、故障を評価し、ユーザに診断
情報を提供することができる。本発明の予測の特徴を用いて、費用のかかる予定
外の突然の故障を避けることが可能である。図7Bに示すように、モデル44の
診断オブザーバ部は、ステップ78で、モータ10の物理的パラメータ、即ち、
電流i及び測定wを求め、これらのパラメータをモデル44の対応するパラメー
タと比較する(また、テーブル2を参照せよ)。この比較を基にして、システム
30は、ステップ82で、モータの故障又は性能低下に対する機械的な根拠を分
類して表示することが可能である。モデル44は、モータについてのアプリオリ
の情報を開発する必要性に取って代わるものである。
コンピュータ42によって実行されるアルゴリズムは、図7A及び7Bにおい
て、モータ状態監視(Motor Condition Monitor)(MCM)と呼ばれる。モー
タの状態の監視における基本的概念は、モータが満足いく状態で動作しているこ
とが知られている時に求められたパラメータ、例えば、モータが無故障で動作し
ていることが知られている時にそれが最初に動作状態にされた時に求められパラ
メータを参照して、それらと同じパラメータの変化を断続的に又は連続的に観察
することである。モータの後の動作の間に、基準(参照)出力からの出力の偏差
が得られる。次に、この偏差は所定のスレッショルド値と比較される。もしその
偏差がスレッショルド値を越えると、故障が検出される。その故障は、診断モデ
ルのパラメータを求めて、それらパラメータを、再びそれらパラメータに適当な
スレッショルド値を用いて、それらの初期値と比較することによって分類される
。
電気モータの製造において、上記のMCMのシステム及び方法の説明において
説明したように1つのモータから得られるパラメータを用いるのではなく、製造
プロセスの変化の範囲を包含するモデルを作ることが可能である。この概念は、
製造プロセスの間のテスト手順及の一部として及び、特に、モータを送り出す直
前に殆どの製造者が採用する品質保証(quality assurance)プロセス・ステッ
プに対して、電気モータの機械的故障の検出及び診断のための方法を開発するた
めに用いられる。品質保証のアプリケーションに対して、本発明の方法を用いる
モータ品質監視(Motor Quality Monitor)(MQM)と呼ばれる方法及びアル
ゴリズムを以下に説明する。
MQMアルゴリズムの基本的機能は、電気モータをテストし、テスト結果を表
示し、実験的テストを制御し(即ち、以下に詳細に説明するベース・モデルを作
り出し)、アーカイバル目的のために測定データ及びデジタル化データをメモリ
に記憶することである。
無故障モータを識別するための信頼できる技術も測定もないので、最初に、典
型的な無故障モータのモデル(「ベース・モデル」)を得る方法が開発される。
MQMの方法のより詳細な説明を図8A〜8Fに示す。MQM方法は2つの基
本的機能を包含する。それらは、(1)ベース・モータ・モデルの開発(作成)
と、(2)分数馬力電動機の進行中の品質保証テストとである。ユーザは、コン
ピュータ42のディスプレイ・デバイスに呈示されるメニューから何れかの機能
を選択することができる。好適な実施形態において、例えば、ユーザが以下の3
つのオプションの1つを選択する前に、「ユーザ規定の」パラメータ、スレッシ
ョルド境界(リミット)及びテストされるモータの数、が入力される。3つのオ
プションとは、「ベース・モータ・モデルの開発(作成)」、「ベース・モータ
・モデルを選択」、「品質保証テスト」である。
ステップ90において、もしベース・モータが使用可能でなければ、ステップ
92のオプション「ベース・モータ・モデルの開発」を最初に選択する必要があ
り、ユーザは、ステップ94で、もしデフォールト設定と異なる場合には、テー
ブル3に呈示された情報を供給するように尋ねられる。
テーブル3 オプション「ベース・モータ・モデルの開発」の選択は、MQMが最初にイン
ストールされるときに必須である。ユーザは、異なるタイプの電気モータに対す
る又は、更には、異なる公差乗数をもつ同じタイプの電気モータに対するベース
・
モータを作成するオプションを有する。モータのモデル、そのパラメータ、及び
それらの標準偏差は、獲得されて指定されたデータ・ファイルに記憶される。
ステップ96で、ベース・モータ・モデルは、殆ど無故障モータを含むことが
知られるモータのグループから作成される。本発明の1つの好適な実施形態にお
いて、電気モータのグループから得られたデータはベース・モータ・モデルを作
成するために用いられる。当業者には理解されるように、そのようなモータのグ
ループは、無故障モータと、製造及びテスト・プロセスの生来の非効率に起因し
て幾らかの故障モータとを含み得る。
EMTソフトウエア・プログラムを用いて、ステップ98〜100で、選択さ
れたモータのタイプの実験的モデルが作成され、それは選択されたモータのタイ
プの特性を表す。ステップ102〜104で、モデルに対して、明らかなモデリ
ング・エラー及びスレッショルド・エラーが求められる(評価される)。
グループから作成したベース・モータ・モデルを用いて、次に、ステップ10
6で、グループのモータの各々が、SEEの投影された標準偏差から得た公差値
を用いて実験的ベース・モータ・モデルに対してテストされる。ステップ108
〜112で、もしグループ内の1つのモータの出力が、それぞれの公差値よりも
多く実験的モデルの出力からずれている場合には、そのモータはそのグループか
ら取り除かれ、データ・ファイルは故障データを取り除くように仕立てられる。
次に、グループに残ったモータのサブセットのテスト・データを用いて更なるベ
ース・モータ・モデルの改善が請け負われる。実験的モデルによって設定された
公差値から外れた出力を有するすべてのモータを除いた後に、ステップ114で
、出力が実験的モデルに対して選択された公差ファクタ内にあるモータのみをそ
のグループが含むまで、そのグループのモデリング・エラー、平均、及び標準偏
差を求めることによって、実験的モデルを更に改善することができる。この反復
的なプロセスを繰り返した後に、実験的モデルは、同じ仕様に製造される無故障
モータの特性を表す。ステップ116で、実験的モデルは、将来の参照のために
、コンピュータ42のメモリに保持されるデータベースにベース・モータ・モデ
ルとして記憶される。
もしベース・モータ・モデルが既に存在するならば、単にベース・モータ・モ
デルをコンピュータ42のアクティブのメモリに再ロードし、ユーザがオプショ
ン「ベース・モータ・モデルを選択」を選択して「品質保証テスト」を開始する
ことによって、上記のプロセスは短くできる。ユーザには多種のオプションが呈
示される。例えば、ベース・モータ・モデルは、ユニバーサルのくま取り磁極の
誘導電動機、同期電動機、又はその他の分数馬力電動機に対応するようにすると
よい。再び図8Aを参照する。オプション「ベース・モータ・モデルを選択」が
選択された場合又はオプション「品質保証テスト」が選択された場合に、ステッ
プ120で、テスト中のモータに対する適当なベース・モータ・モデルがコンピ
ュータのメモリにロードされ、デフォールトのモータ・タイプに対するテストが
開始する。この時に、ユーザは、ステップ122及び124で、故障検出及び故
障分類のための公差乗数に対する調節を入力することができる。次に、ステップ
126〜128で、MQMアルゴリズムは適当な故障検出スレッショルド及び故
障分類スレッショルドを計算する。
図8BはMQMアルゴリズムの測定部分を示し、そこでは、モータ出力の測定
値は、品質保証目的のために製造プロセスの間の電気モータのテストの間に選択
されたスレッショルド値を用いてベース・モータ・モデルから得られた出力と比
較される。スレッショルド値は、公差乗数によって実験的ベース・モータの作成
に用いられた公差値を乗算することによって決定される。MQMアルゴリズムは
、通常の製造における変分に起因するモータの出力の許容可能な変化を考慮する
品質保証エンジニアによって乗数が決定されることを可能とする。もし偏差が予
め選択されたスレッショルド値を越えるならば、テストされているモータは故障
していると定められる。
特定的には、ひとたびベース・モータ・モデルが選択されると、ユーザは、ス
テップ130〜134で、テーブル4にまとめられた「品質保証テスト」を行う
ために必要なパラメータを入力する。
「品質保証テスト」を実行しているときに、アルゴリズムは、選択されたモー
タ・タイプ及び適当な公差乗数に従って、故障検出境界及び故障分類境界を計算
する。ステップ134で、アルゴリズムはデータ獲得を開始し、リアルタイムの
電圧、速度及び電流の信号をテスト中のモータから得る。これらの信号は、ステ
ップ130〜132で、以前に入力されたスキャン・レート値及びスキャン時間
値を用いてデジタル化される。ステップ136で、デジタル化された信号はメモ
リに記憶され、ステップ140で、バターワース・ソフトウエア・フィルタ又は
任意の商業的に入手可能なフィルタ製品を用いてノイズを除くために前処理され
る。
リアルタイムの電圧、速度及び電流の信号はベース・モデル・モータによって
用いられ、ステップ142及び144で、現在の状況の下にあるモータのモデリ
ングされた状態式(state representation)が決定される。ステップ146で示
されるように、ベース・モデル・モータの誤差の概算(見積もり)と、テスト中
のモータの実際の誤差とが計算され、ステップ148で、比較される。次に、計
算された誤差の偏差が故障検出スレッショルド値と比較される。もしテストされ
ているモータの出力の偏差が公差境界内であれば、モータは無故障モータとして
識別されてステップ150でメッセージが表示され又は記録される。
モータに故障があることが検出されたときには、ステップ152でメッセージ
が表示され、ステップ154に示されるように、上述と類似の様式で診断モデル
を用いて故障の分類が行われる。まとめると、電気モータを記述(説明)する理
論的に導出した式(6)及び(7)が、診断モデルとして用いられる。診断モデ
ルの物理的パラメータは、上述のモータのグループから得られたデータから実験
的に決定される。診断モデルの物理的パラメータとその関連の標準偏差とはコン
ピュータ42のメモリに記憶される。
モータの故障が検出されると、故障のモータの物理的パラメータはMQMアル
ゴリズムによって求められ、ステップ156〜162で、ベース・モータ・モデ
ルの対応するパラメータと比較される。この比較の結果は、モータの故障を分類
して診断情報を表示するために用いられる。
もし誤差の偏差がスレッショルド値を越えるならば、コンピュータ42の表示
部の情報部で、モータの状態は「故障を発見」と分類されるか又は類似の同様の
言葉で分類される。ひとたび識別されると、故障モータの物理的パラメータが求
められる。これらのパラメータは、故障分類スレッショルド値を用いてベース・
モータ・モデルの物理的パラメータと比較される(テーブル4を参照)。ユニバ
ーサル電気モータについては、物理的パラメータは、インダクタンス、抵抗及び
摩擦係数、及び式(5)及び(6)に示されたモータ定数である。故障モータか
らのパラメータの各々は、上述の故障分類スレッショルド値と比較される。そし
て、故障を分類するための1つの可能な判断木(デシジョン・ツリー)の代表的
なサンプルがステップ164〜170に示されている。例えば、もし故障モータ
のインダクタンス・パラメータが、インダクタンスに対する故障分類スレッショ
ルド値を越えれば、その判断として「バランスをチェックせよ」と表示される。
もし故障モータの抵抗パラメータが、抵抗に対する故障分類スレッショルド値
を越えれば、その判断として「コレクタをチェックせよ」と表示される。
もし故障モータのインダクタンス・パラメータと抵抗パラメータの両方が故障
分類スレッショルド値を越えれば、その判断として「ベアリングをチェックせよ」
と表示される。
もし1つより多くのスレッショルド値を同時に越えれば、すべての結果的な判
断が表示される。
もしすべてのパラメータの大きさが対応するスレッショルド値よりも低ければ
、その判断としてディスプレイの情報部分に「分類されず」と表示する。これは
、モータの出力における各パラメータにおける変化の累積的影響に起因して起こ
り得る。そのような状況において、モデルは、累積してモデル出力がスレッショ
ルド値を越えるように影響する複数の小さい故障を有し得る。しかしながら、ス
レッショルド値はユーザが選択するので、各パラメータに対する公差値を狭くす
ることが可能であり、それによって、そのような周辺的な故障を検出することが
可能である。
MQM方法は、故障の診断及び予防的メンテナンスの目的のために電気モータ
修理場における使用に特に適する。そのようなアプリケーションにおいて、サイ
ズや製造者が異なる幾つかの電気モータに対するベース・モータ・モデルがコン
ピュータ42に記憶される。欠陥のあるモータを受け取ると、修理工は、テスト
されるモータのベース・モータ・モデルを選択し、故障検出及び診断を行う。
この方法及び装置はまた、状態の監視及び予測的メンテナンスのアプリケーシ
ョンに用いることもできる。この実施形態、第3の実施形態、において、MQM
アルゴリズムは、断続的又は連続的の何れかの状態監視のアプリケーションのた
めにMCMアルゴリズムに取って代わる。
本発明の更に別の実施形態において、MQMアルゴリズムとMCMアルゴリズ
ムがそれぞれ直接に、電圧、速度及び電流を測定するためのデータ獲得能力が既
に存在する現存の品質保証又は状態監視システムとともに用いられる。
まとめとして、MCMアルゴリズム及びMQMアルゴリズムはかなり似ている
が、それぞれ互いに2つの点で異なる。第1に、MCMアルゴリズムにおいて、
システムはベース・モータ・モデルを作成しない。これは、状態監視の特性に起
因し、システムは1つのモータの監視のみについて考慮されている。この理由の
ため、MCM方法は、監視されるモータのカスタム化されたモデルを都合よく用
いる。カスタム化されたモデルは、モータが無故障状態の下で動作していること
が知られているときに作成される。それに対して、MQM方法は、通常多数のも
のと関連する変分を包含するベース・モデルを作成する。従って、マージンをも
って動作するモータは、MQMモデルにおいて設定されたテスト・スレッショル
ドをパスすることが可能であるが、しかし、連続した低下はMCMによって検出
されないことがありそうもない。なぜなら、MCMモデルは個々のモータに対し
て特定的であるからである。
2つのアルゴリズム間に起こる第2の差異は、MCMが動作要求によって必然
的に束縛されることである。例えば、モータに印加される入力信号は、アプリケ
ーションにより課せられる要求に依存する。モデル44に印加される入力は、M
QMテストの間に印加されるものよりも入力信号が「豊富(rich)」ではないで
あろうことが、理解されるであろう。更に、MCMテストの下では、モータに与
えられる実際の負荷は未知であり、かつセンサ34〜38から測定が得られる期
間の間に変化し得る。これらの状況の下で、負荷により影響されないモデルの部
分のみがモデリングされる。一例として、式(6)のみが、診断オブザーバを用
いて結果を得るために、測定された電圧及び速度の入力信号を用いて現在の信号
をモデリングするために用いられる。代替の実施形態において、例えば一定負荷
の場合における式(7)の導関数をとるような、技術が、未知の負荷項を除くた
めに用いられ得る。そのような実施形態では、式(6)及び式(7)の導関数は
組み合わされ、診断オブザーバにより得られる結果を向上させることができる。
特定の例示的な好適な実施形態を説明し、図面に示したが、それらの実施形態
は単なる例示であり、発明を制限するものではないことを理解すべきである。
更に、本発明は、本発明の精神及び範囲から逸脱することなく多種の変更及び
変形が当業者により可能であり、ここに示し且つ説明した特定の構成及び設計に
制限されないことを理解すべきである。
─────────────────────────────────────────────────────
フロントページの続き
(81)指定国 EP(AT,BE,CH,DE,
DK,ES,FI,FR,GB,GR,IE,IT,L
U,MC,NL,PT,SE),OA(BF,BJ,CF
,CG,CI,CM,GA,GN,ML,MR,NE,
SN,TD,TG),AP(GH,KE,LS,MW,S
D,SZ,UG,ZW),EA(AM,AZ,BY,KG
,KZ,MD,RU,TJ,TM),AL,AM,AT
,AU,AZ,BA,BB,BG,BR,BY,CA,
CH,CN,CU,CZ,DE,DK,EE,ES,F
I,GB,GE,HU,IL,IS,JP,KE,KG
,KP,KR,KZ,LC,LK,LR,LS,LT,
LU,LV,MD,MG,MK,MN,MW,MX,N
O,NZ,PL,PT,RO,RU,SD,SE,SG
,SI,SK,TJ,TM,TR,TT,UA,UG,
US,UZ,VN
(72)発明者 オスマン,トゥーウリュル・ドゥラクバジ
ャ
トルコ共和国81020 イスタンブール,ア
ジバデム,シテシ・ベ・ブロク・デ・7,
テキン・ソカク ナンバー 9
(72)発明者 エヴレン,アルバス
トルコ共和国81090 イスタンブール,イ
ネニュ・チャド ナンバー 42,マイス・
マハルレシ 19,サリコナク・アパートメ
ント デ・11
(72)発明者 シェラフェトティノーリュ,ア・ハカン
トルコ共和国81030 チフテハヴュザラル,
パパトヤリ・ソカク 5ア/9
【要約の続き】
て特に有用であり、特に、品質管理テストの実施におい
て特に有用である。
Claims (1)
- 【特許請求の範囲】 1. 未知の負荷で動作するモータの動作状態を監視する故障検出システムで あって、 選択された動作パラメータを測定するために前記モータに結合されたセンサと 、前記センサに結合されたコンピュータ手段とを備え、該コンピュータ手段は、 前記モータが無故障状態で動作しているときに零である理想的誤差を決定し、零 ではないスレッショルド公差レベルを選択し、前記理想的誤差は不変量により乗 算された前記選択された動作パラメータを乗算し且つその結果生成されたものを 和算することにより導出されるものであり、且つ、動作の間に前記モータの複数 の誤差を判定し、前記コンピュータ手段はメモリ及びディスプレイ・デバイスを 有し、前記メモリにおいて前記複数の誤差の各々と前記理想的誤差とを比較し、 前記ディスプレイ・デバイスに、前記複数の誤差が前記スレッショルド公差より も小さい場合に、前記モータが無故障状態の下で動作しているかどうかを示すメ ッセージを、又は、前記複数の誤差の少なくとも1つが前記スレッショルド公差 を越える場合に、前記モータは故障が切迫した状態で動作しているかどうかを示 すメッセージを表示する、 システム。 2. 請求項1に記載のシステムであって、前記動作パラメータは前記モータ の印加される電圧、出力電流、及び速度を含み、前記動作パラメータはアナログ ・センサで測定される、システム。 3. 請求項2に記載のシステムであって、前記動作パラメータはアナログ・ センサで測定される、システム。 4. 請求項3に記載のシステムであって、前記システムが更に、データ獲得 手段を備え、前記センサを前記コンピュータ手段に結合し、前記のアナログ信号 を、該アナログ信号のデジタル表現に変換する、システム。 5. 請求項2に記載のシステムであって、前記モータは電気モータである、 システム。 6. 請求項2に記載のシステムであって、前記モータは分数馬力電動機であ る、システム。 7. 電気モータが実際に破滅的な故障を起こす前に、前記モータの故障の原 因となり得る機械的故障を検出するための、前記モータの動作を監視する方法で あって、 複数のセンサによって前記モータに結合されたコンピュータ上で前記モータの モデルを作成するステップと、 前記センサで前記モータの複数の動作信号を測定するステップと、 線形的離散時間状態式を解くために、測定された前記複数の動作信号を適用す るステップと、 誤差を計算することにより前記モデルにより提案された解と前記状態式の解と を比較するステップと、 前記の比較するステップを基にして、検出される故障なしに前記モータが動作 しているかどうかを判定するステップと、 検出される故障をもって前記モータが動作している場合に前記変化を機械的故 障と相関させ、予期しなかったモータの故障を避けるために前記の故障の存在を 知らせるステップと、前記モータの動作の間の選択されたインターバルに、前記 のモデルを作成するステップ以外の前記ステップを繰り返すステップと を備える方法。 8. 請求項7に記載の方法であって、前記の複数の動作信号を測定するステ ップは、選択されたインターバルの間の前記モータの電流出力、前記モータに印 加される電圧、前記モータの速度の測定を含む、方法。 9. 請求項7に記載の方法であって、前記モータは分数馬力電動機である、 方法。 10. 請求項8に記載の方法であって、前記の前記モータのモデルを作成す るステップは、前記モータのインダクタンス及び抵抗に対するモータの不変量を 得ることと、以下の式 L di/dt+Ri=V+k1 w i に従って前記不変量を前記の測定された信号と組み合わせることとを含み、上記 の式においてk1はモータの定数である、 方法。 11. 請求項8に記載の方法であって、前記の前記モータの機械的故障を相 関させて故障の存在を知らせるステップは、更に、 前記のL di/dt動作パラメータの変化に応答して、ロータのバランスが とれていないことを示すステップと、 前記のRiパラメータの変化に応答して、コレクタの故障を示すステップと、 前記のL di/dtパラメータの振動的変化に応答して、ベアリングの故障 を示すステップと、 前記のL di/dtパラメータと前記のfwパラメータの両方の変化に応答 して、ベアリングの故障を示すステップとを含む、 方法。 12. 請求項8に記載の方法であって、前記インターバルは好適には400 ミリ秒から1000ミリ秒の間である、方法。 13. 請求項12に記載の方法であって、前記動作パラメータは500Hz から24kHzの間のサンプリング周波数でサンプリングされる、方法。 14. 電気モータにおける故障を監視及び検出する方法であって、 前記電気モータが無故障で動作しているときに、複数のセンサを用いて該電気 モータの電圧、電流及び速度を測定するステップと、 前記電気モータの測定された前記電圧、電流及び速度を一定の不変量で乗算す るステップと、 離散的状態空間式 x(k+1)=Ax(k)+Bu(k) y(k)=Cx(k) を計算してその結果を保持するステップと、 前記の測定するステップ及び前記の乗算するステップを繰り返すステップと、 離散的状態空間式 xf(k+1)=Af xf(k)+Bf uf(k) yf(k)=Cfx(k) の結果を計算するステップと、 y(k)とyf(k)との間の差を比較するステップと、 その差が選択されたスレッショルドを越えるまで、前記の繰り返すステップ、 前記の計算するステップ、及び前記の比較するステップのシーケンスを繰り返す ステップと を備える方法。 15. 請求項14に記載の方法であって、更に、前記ステップのシーケンス の結果として、前記選択されたスレッショルドを越える差がでたときに、 インダクタンス、モータの抵抗、モータの慣性、及びモータの定数に対するパ ラメータ・スレッショルド値を選択するステップと、 各生成されたもの、L di/dt、Ri、J dw/dt、fw、k1wi、 及びi2 k2を、前記の選択されたスレッショルド値の対応するものと比較す るステップと を備える方法。 16. 請求項15に記載の方法であって、前記の比較するステップの結果を 表示するステップを更に備える方法。 17. モータのグループの製造品質をスクリーニングするため及び電気モー タの故障の原因となり得る機械的故障を検出するための方法であって、 無故障で動作するモータと1以上の未知の故障をもって動作するモータとから なるモータのグループを選択するステップと、 前記モータの複数の動作信号を測定し、以下の離散的状態空間式 x(k+1)=Ax(k)+Bu(k) y(k)=Cx(k) を解くために前記動作信号を適用する測定ステップと、 コンピュータ手段で前記モータの実験的モデルを作成する作成ステップであっ て、前記モデルは、そのグループ・モデルの平均についての2標準偏差を基にし たスレッショルド公差を有する、ステップと、 前記複数の動作信号を再測定することによって前記グループからの各モータを テストし、もしテスト中の前記モータの式がスレッショルド境界を越えたならば そのモータを前記モータのグループから除くテスト・ステップと、 前記グループ内のすべてのモータがスレッショルド境界内にあるようになるま で、前記の測定ステップ、作成ステップ、テスト・ステップを繰り返すステップ と、 前記グループに残ったモータを基にして前記モータの前記実験的モデルを改善 するステップと、 前記実験的モデルを前記コンピュータ手段に記憶するステップと を備える方法。 18. 請求項17に記憶の方法であって、前記テスト・ステップは、 複数のセンサを用いて前記モータの電圧、電流及び速度を測定するステップと 、 測定された前記電気モータの電圧、電流及び速度を、選択された不変量で乗算 するステップと、 離散的状態空間式 xf(k+1)=Af xf(k)+Bf uf(k) yf(k)=Cfx(k) の結果を計算するステップと、 y(k)とyf(k)との間の差を比較するステップとを含む、 方法。 19. 請求項17に記憶の方法であって、前記モータのグループと異なる複 数のモータが前記実験的モデルに対してテストされるところにおいて、更に、 前記複数のモータの各々の前記電圧、電流及び速度を測定するステップと、 前記離散的状態空間式を解くために前記の測定された複数の動作信号を適用す るステップと、 誤差を計算することによって前記実験的モデルによって提案された解と前記状 態式の解とを比較するステップと、 前記の比較するステップを基にして、前記モータが検出される故障なしで動作 しているかどうかを判定するステップと を備える方法。 20. 請求項19に記憶の方法であって、更に、 検出される故障をもって前記モータが動作している場合に前記変化を機械的故 障と相関させ、予期しないモータの故障を避けるために前記の故障の存在を知ら せる相関ステップと、 を備える方法。 21. 請求項20に記憶の方法であって、前記相関ステップは 以下の式 L di/dt+Ri=V+k1 w i J dw/dt+fw=k2 i2+M を計算するステップを備え、ここにおいてk1及びk2はモータの定数である、 方法。 22. モータのグループにおける故障を検出するため及び前記故障の修正の ための診断情報を作成するための、モデル・ベースの故障検出及び診断システム であって、 以下の式 x(k+1)=Ax(k)+Bu(k)及び y(k)=Cx(k) に従って無故障モータの平均を表すシステム・モデルを生成する手段を備え、上 記式においてA、B、Cは前記システム・モデルのパラメータを表し、 前記モータのパラメータを測定して前記システム・モデルと比較することによ ってシステムの故障を判定する判定手段を備える、 システム。 23. 請求項22に記憶のシステムであって、前記判定手段は、メモリ及び ディスプレイ・デバイスを含むコンピュータを備え、該コンピュータ手段は、前 記メモリにおいて前記モータの各々を表す前記式と前記システム・モデルを表す 式とを比較し、前記ディスプレイ・デバイスに、前記モータの各々を表す前記式 と前記システム・モデルを表す前記式との差が選択されたスレッショルド公差よ りも小さい場合に、前記モータの各々が無故障状態の下で動作しているかどうか を示すメッセージを、又は、前記モータの各々を表す前記式と前記システム・モ デルを表す前記式との差が前記スレッショルド公差を越える場合に、前記モータ の各々は故障が切迫した状態で動作しているかどうかを示すメッセージを表示す る、 システム。 24. 請求項22に記憶のシステムであって、前記モータは分数馬力電動機 である、システム。 25. 共通のモータのタイプであって、未知の動作状況にある複数のモータ をテストする方法であって、 前記モータの電圧、電流、及び速度を測定するステップと、 測定された前記電気モータの電圧、電流、及び速度を、選択された不変量で乗 算する乗算するステップと、 離散的状態空間式 x(k+1)=Ax(k)+Bu(k) y(k)=Cx(k) の結果を計算して保持する計算するステップと、 前記の測定するステップ及び乗算するステップを反復するステップと、 離散的状態空間式 xf(k+1)=Af xf(k)+Bf uf(k) yf(k)=Cfx(k) の結果を計算するステップと、 y(k)とyf(k)との間の差を比較するステップと、 前記差が選択されたスレッショルドを越えるまで、前記の反復するステップ、 計算するステップ、比較するステップのステップのシーケンスを繰り返すステッ プと、 を備える方法。 26. 請求項25に記載の方法であって、更に、前記ステップのシーケンス の結果として、前記選択されたスレッショルドを越える差がでたときに、 インダクタンス、モータの抵抗、モータの慣性及びモータの定数に対するパラ メータ・スレッショルド値を選択するステップと、 以下の式 L di/dt+Ri=V+k1 w i J dw/dt+fw=k2 i2+M の各項を、選択された前記スレッショルド値の対応するものと比較するステップ と、 を備える方法。 27. 請求項26に記載の方法であって、前記の比較するステップの結果を 表示することを更に含む方法。 28. 請求項26に記載の方法であって、前記の比較するステップは更に、 前記のL di/dt動作パラメータの変化に応答して、ロータのバランスが とれていないことを示すステップと、 前記のRiパラメータの変化に応答して、コレクタの故障を示すステップと、 前記のL di/dtパラメータの振動的変化に応答して、ベアリングの故障 を示すステップと、 前記のL di/dtパラメータと前記のfwパラメータの両方の変化に応答 して、ベアリングの故障を示すステップとを含む、 方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TR96/00527A TR199600527A2 (xx) | 1996-06-24 | 1996-06-24 | Elektrik motorlar� i�in model bazl� hata tespit ve te�his sistemi. |
TR96/527 | 1996-06-24 | ||
PCT/TR1997/000008 WO1997049977A1 (en) | 1996-06-24 | 1997-06-20 | Model-based fault detection system for electric motors |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000513097A true JP2000513097A (ja) | 2000-10-03 |
JP2000513097A5 JP2000513097A5 (ja) | 2005-09-08 |
Family
ID=21620853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10502852A Abandoned JP2000513097A (ja) | 1996-06-24 | 1997-06-20 | 電気モータ用のモデル・ベースの故障検出システム |
Country Status (17)
Country | Link |
---|---|
EP (1) | EP0909380B1 (ja) |
JP (1) | JP2000513097A (ja) |
CN (1) | CN1143126C (ja) |
AT (1) | ATE289681T1 (ja) |
AU (1) | AU3201797A (ja) |
BR (1) | BR9710152A (ja) |
CA (2) | CA2356538C (ja) |
CZ (1) | CZ295659B6 (ja) |
DE (1) | DE69732569T2 (ja) |
HU (1) | HU223725B1 (ja) |
IL (1) | IL127686A (ja) |
PL (1) | PL331205A1 (ja) |
RU (1) | RU2155328C1 (ja) |
SI (1) | SI9720042A (ja) |
SK (1) | SK179098A3 (ja) |
TR (2) | TR199600527A2 (ja) |
WO (1) | WO1997049977A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102494894A (zh) * | 2011-11-17 | 2012-06-13 | 高丙团 | 风力发电机组音频监测和故障诊断系统及其方法 |
KR101218441B1 (ko) * | 2011-05-04 | 2013-01-04 | 한양대학교 산학협력단 | 매입형 영구자석 동기 모터 제어 시스템 및 그의 센서 고장 검출 방법 |
KR101432786B1 (ko) | 2013-11-14 | 2014-09-23 | 엠앤디테크놀로지 주식회사 | 모터의 고장진단방법 및 그 시스템 |
CN105974796A (zh) * | 2016-06-16 | 2016-09-28 | 航天恒星科技有限公司 | 一种多驱动网络设备的故障诊断与容错控制方法 |
JP2017158323A (ja) * | 2016-03-02 | 2017-09-07 | トヨタ自動車株式会社 | 車両の制御装置 |
CN108983090A (zh) * | 2017-06-02 | 2018-12-11 | 天津市松正电动汽车技术股份有限公司 | 一种电机霍尔零点调节装置及其调节方法 |
KR20190014074A (ko) | 2016-07-25 | 2019-02-11 | 미쓰비시덴키 가부시키가이샤 | 전동기의 진단 장치 |
WO2022186382A1 (ja) * | 2021-03-05 | 2022-09-09 | 株式会社タダノ | 故障予兆検出システムおよび作業車 |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2127153B1 (es) * | 1997-07-29 | 1999-12-01 | Univ Oviedo | Metodo para la proteccion y deteccion de fallos incipientes en el aislamiento de motores electricos mediante automatas programables. |
US6529135B1 (en) * | 1999-10-12 | 2003-03-04 | Csi Technology, Inc. | Integrated electric motor monitor |
EP1308800B1 (en) | 2000-08-07 | 2010-03-17 | Mitsui Chemicals, Inc. | Production control method |
US7031950B2 (en) * | 2000-12-14 | 2006-04-18 | Siemens Corporate Research, Inc. | Method and apparatus for providing a virtual age estimation for remaining lifetime prediction of a system using neural networks |
EP1752898A3 (en) * | 2001-03-08 | 2009-07-22 | California Institute Of Technology | Exception analysis for multimissions |
EP1724717A3 (en) * | 2001-03-08 | 2009-07-22 | California Institute Of Technology | Real-time spatio-temporal coherence estimation for autonomous mode identification and invariance tracking |
AU2002248549B2 (en) * | 2001-03-08 | 2005-01-20 | California Institute Of Technology | Real-time spatio-temporal coherence estimation for autonomous mode identification and invariance tracking |
US6892127B2 (en) * | 2003-02-28 | 2005-05-10 | General Electric Company | Methods and apparatus for assessing gas turbine engine damage |
DE102006025010A1 (de) † | 2006-05-26 | 2007-11-29 | Khs Ag | Stellantrieb |
US8676356B2 (en) * | 2009-01-09 | 2014-03-18 | Eaton Corporation | System and method for motor parameter estimation |
DE102009054959B4 (de) * | 2009-12-18 | 2022-08-25 | Robert Bosch Gmbh | Verfahren zur Fehlererkennung in einem Steuergerät |
KR20120049672A (ko) * | 2010-11-09 | 2012-05-17 | 현대자동차주식회사 | 정기적 차량 관리 시스템 및 그 방법 |
CN102680233A (zh) * | 2011-03-17 | 2012-09-19 | 北汽福田汽车股份有限公司 | 电动机故障诊断设备及方法 |
RU2479096C2 (ru) * | 2011-04-18 | 2013-04-10 | Государственное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" | Способ диагностирования электрических и механических повреждений асинхронного двигателя с короткозамкнутым ротором |
JP5644666B2 (ja) * | 2011-05-17 | 2014-12-24 | 東芝三菱電機産業システム株式会社 | 電動機の予防保全装置 |
EP2538376B1 (fr) * | 2011-06-20 | 2019-06-12 | Safran Helicopter Engines | Système de prescription de maintenance d'un moteur d'hélicoptère |
US9845012B2 (en) | 2011-07-06 | 2017-12-19 | General Electric Company | System and method for predicting mechanical failure of a motor |
CN102435948B (zh) * | 2011-09-30 | 2014-07-09 | 深圳众为兴技术股份有限公司 | 一种动负荷模拟测试仪及模拟测试方法 |
US9760660B2 (en) | 2011-10-06 | 2017-09-12 | Cae Inc. | Methods of developing a mathematical model of dynamics of a vehicle for use in a computer-controlled vehicle simulator |
CN104105877B (zh) * | 2011-12-07 | 2017-09-22 | 流量控制有限责任公司 | 使用具有空转和过电流保护的多电压电子器件的泵 |
CN102866016B (zh) * | 2012-10-18 | 2015-07-22 | 徐州重型机械有限公司 | 移动起重机发动机故障快速诊断仪以及诊断方法 |
EP2933647A1 (en) | 2014-04-14 | 2015-10-21 | ABB Technology AG | A model based diagnostic of induction machine |
EP2988187B1 (en) * | 2014-08-22 | 2017-03-29 | ABB Schweiz AG | A method for assessing the condition of rotating machinery connected to an electric motor |
CN104680232A (zh) * | 2014-10-28 | 2015-06-03 | 芜湖杰诺瑞汽车电器系统有限公司 | 基于rvm的发动机故障检测方法 |
CN104569819B (zh) * | 2015-01-12 | 2017-06-16 | 清华大学 | 一种异步牵引电机的故障检测方法 |
KR102034652B1 (ko) * | 2015-05-21 | 2019-10-21 | 카스타니엔바움 게엠바하 | 엑추에이터에 의해 구동되는 로봇 관절을 개루프/폐루프 제어하는 방법 및 장치 |
JP2018526713A (ja) * | 2015-06-12 | 2018-09-13 | シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft | 複合工業システムのモデルベースの故障解析を実行するための方法および装置 |
EP3151072B1 (de) | 2015-09-29 | 2020-07-29 | Siemens Aktiengesellschaft | Verfahren und system zur fehlererkennung und überwachung bei einem elektronisch geregelten oder gesteuerten maschinenteil |
CN105277883A (zh) * | 2015-10-28 | 2016-01-27 | 林蓉瑶 | 一种电机故障监测及报警装置 |
CN106199261B (zh) * | 2016-07-04 | 2019-03-05 | 芯海科技(深圳)股份有限公司 | 基于互联网的电器老化度持续检测系统及检测方法 |
CN106646192A (zh) * | 2016-11-25 | 2017-05-10 | 广州周立功单片机科技有限公司 | 电机驱动器硬件自检方法和系统 |
WO2018098554A1 (en) * | 2016-12-02 | 2018-06-07 | S. A. Armstrong Limited | Performance parameterization of process equipment and systems |
LU93350B1 (de) * | 2016-12-12 | 2018-07-03 | Phoenix Contact Gmbh & Co Kg Intellectual Property Licenses & Standards | Verfahren zur Überwachung einer elektromechanischen Komponente eines Automatisierungssystems |
CN106707119A (zh) * | 2016-12-23 | 2017-05-24 | 中国二冶集团有限公司 | 大型电机轴承的绝缘检测方法 |
US10928814B2 (en) | 2017-02-24 | 2021-02-23 | General Electric Technology Gmbh | Autonomous procedure for monitoring and diagnostics of machine based on electrical signature analysis |
CN107178514B (zh) * | 2017-05-04 | 2019-08-20 | 山东大学 | 风机机组非侵入式能效诊断方法与系统 |
US10403116B2 (en) * | 2017-06-20 | 2019-09-03 | General Electric Company | Electrical signature analysis of electrical rotating machines |
RU181087U1 (ru) * | 2017-10-19 | 2018-07-04 | федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" | Устройство диагностики двигателей переменного тока с преобразователем частоты |
RU2716172C2 (ru) * | 2018-03-14 | 2020-03-06 | Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) | Способ диагностики асинхронных двигателей с короткозамкнутым ротором |
DE102018204669A1 (de) * | 2018-03-27 | 2019-10-02 | Continental Teves Ag & Co. Ohg | Verfahren zum Überwachen einer Steuerung |
CN108777556B (zh) * | 2018-06-29 | 2022-03-18 | 江苏大学 | 两电机调速系统的无模型自适应鲁棒解耦控制方法 |
EP3648337B1 (en) * | 2018-10-30 | 2022-06-08 | Roche Diagnostics GmbH | Method of estimating an operating state of a drive system and drive system |
US10495544B1 (en) * | 2019-01-15 | 2019-12-03 | Caterpillar Inc. | Failure detection device for detecting an issue with a part of a machine |
CN110007232B (zh) * | 2019-05-23 | 2021-09-03 | 广东工业大学 | 一种鼠笼式异步电机运行效率的预测方法及相关装置 |
CN110907824A (zh) * | 2019-11-06 | 2020-03-24 | 天津工业大学 | 一种基于高频信号耦合注入的电机故障检测系统 |
DE102020200667A1 (de) | 2020-01-21 | 2021-07-22 | Volkswagen Aktiengesellschaft | Verfahren zur Bestimmung des Verbrauchs eines elektrischen Antriebsmotors |
CN111459906B (zh) * | 2020-03-02 | 2022-11-15 | 西安工业大学 | 一种电机数据库的建立方法 |
CN111476471B (zh) * | 2020-03-30 | 2023-10-27 | 北京四方继保工程技术有限公司 | 一种基于综合能源模型的综合能源故障诊断系统及方法 |
CN111409113A (zh) * | 2020-05-09 | 2020-07-14 | 廊坊市智恒机器人科技有限公司 | 一种机器人故障检测系统 |
JP7409222B2 (ja) * | 2020-05-14 | 2024-01-09 | マツダ株式会社 | 移動体の制御装置 |
CN112648140B (zh) * | 2020-12-21 | 2022-03-18 | 北京华能新锐控制技术有限公司 | 基于信号重构的风电机组桨距角编码器故障容错方法 |
CN112684235B (zh) * | 2020-12-24 | 2024-02-23 | 浙江可胜技术股份有限公司 | 定日镜用减速机在线智能故障诊断方法及系统 |
CN112688608B (zh) * | 2020-12-25 | 2022-08-02 | 北京航空航天大学 | 一种三相永磁同步电机控制系统的故障诊断方法 |
BR112023018184A2 (pt) * | 2021-03-10 | 2023-10-03 | Ksb Se & Co Kgaa | Método de detecção de anomalias de vibração em um dispositivo eletrônico e sistema associado |
CN114063456B (zh) * | 2021-11-15 | 2023-06-02 | 哈尔滨工业大学 | 利用自回归模型和卡尔曼滤波算法的故障预测与预警方法 |
CN114545908B (zh) * | 2022-04-28 | 2022-07-19 | 中汽研汽车检验中心(天津)有限公司 | 车用液压系统模型构建和仿真方法,及整车仿真系统 |
CN114962172B (zh) * | 2022-04-28 | 2024-09-03 | 西安热工研究院有限公司 | 一种风力机塔筒螺栓故障预警方法及系统 |
CN117332233B (zh) * | 2023-10-07 | 2024-05-31 | 江苏丰昌机电科技有限公司 | 一种电机智能化维护系统 |
CN117289129B (zh) * | 2023-11-27 | 2024-02-06 | 四川省医学科学院·四川省人民医院 | 用于手术机器人的微型减速电机检测实验台及检测方法 |
CN117791971B (zh) * | 2023-12-11 | 2024-06-21 | 爱克玛电驱动系统(苏州)有限公司 | 一种具有故障诊断报警功能的筒轴电机 |
CN118131037B (zh) * | 2024-01-19 | 2024-09-24 | 淮阴工学院 | 基于大数据的永磁电机运行监测方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5519300A (en) * | 1993-06-29 | 1996-05-21 | Liberty Technologies, Inc. | Method and apparatus for analysis of polyphase electrical motor systems |
DE4421950C2 (de) * | 1993-12-09 | 1998-06-04 | Peter Mueller | Einrichtung zum Diagnostizieren und Regeln eines Verbrennungs- oder Elektromotors |
-
1996
- 1996-06-24 TR TR96/00527A patent/TR199600527A2/xx unknown
-
1997
- 1997-06-20 CA CA002356538A patent/CA2356538C/en not_active Expired - Lifetime
- 1997-06-20 AU AU32017/97A patent/AU3201797A/en not_active Abandoned
- 1997-06-20 SI SI9720042A patent/SI9720042A/sl not_active IP Right Cessation
- 1997-06-20 CA CA002260773A patent/CA2260773C/en not_active Expired - Lifetime
- 1997-06-20 TR TR1998/02541T patent/TR199802541T2/xx unknown
- 1997-06-20 IL IL12768697A patent/IL127686A/en not_active IP Right Cessation
- 1997-06-20 EP EP97927586A patent/EP0909380B1/en not_active Expired - Lifetime
- 1997-06-20 AT AT97927586T patent/ATE289681T1/de not_active IP Right Cessation
- 1997-06-20 CN CNB971974519A patent/CN1143126C/zh not_active Expired - Fee Related
- 1997-06-20 BR BR9710152-4A patent/BR9710152A/pt not_active Application Discontinuation
- 1997-06-20 PL PL97331205A patent/PL331205A1/xx unknown
- 1997-06-20 DE DE69732569T patent/DE69732569T2/de not_active Expired - Lifetime
- 1997-06-20 WO PCT/TR1997/000008 patent/WO1997049977A1/en active IP Right Grant
- 1997-06-20 RU RU99101059/06A patent/RU2155328C1/ru not_active IP Right Cessation
- 1997-06-20 SK SK1790-98A patent/SK179098A3/sk unknown
- 1997-06-20 CZ CZ19984308A patent/CZ295659B6/cs not_active IP Right Cessation
- 1997-06-20 JP JP10502852A patent/JP2000513097A/ja not_active Abandoned
- 1997-06-20 HU HU9903554A patent/HU223725B1/hu not_active IP Right Cessation
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101218441B1 (ko) * | 2011-05-04 | 2013-01-04 | 한양대학교 산학협력단 | 매입형 영구자석 동기 모터 제어 시스템 및 그의 센서 고장 검출 방법 |
CN102494894A (zh) * | 2011-11-17 | 2012-06-13 | 高丙团 | 风力发电机组音频监测和故障诊断系统及其方法 |
KR101432786B1 (ko) | 2013-11-14 | 2014-09-23 | 엠앤디테크놀로지 주식회사 | 모터의 고장진단방법 및 그 시스템 |
JP2017158323A (ja) * | 2016-03-02 | 2017-09-07 | トヨタ自動車株式会社 | 車両の制御装置 |
CN105974796A (zh) * | 2016-06-16 | 2016-09-28 | 航天恒星科技有限公司 | 一种多驱动网络设备的故障诊断与容错控制方法 |
KR20190014074A (ko) | 2016-07-25 | 2019-02-11 | 미쓰비시덴키 가부시키가이샤 | 전동기의 진단 장치 |
CN108983090A (zh) * | 2017-06-02 | 2018-12-11 | 天津市松正电动汽车技术股份有限公司 | 一种电机霍尔零点调节装置及其调节方法 |
CN108983090B (zh) * | 2017-06-02 | 2022-04-08 | 天津市松正电动汽车技术股份有限公司 | 一种电机霍尔零点调节装置及其调节方法 |
WO2022186382A1 (ja) * | 2021-03-05 | 2022-09-09 | 株式会社タダノ | 故障予兆検出システムおよび作業車 |
JPWO2022186382A1 (ja) * | 2021-03-05 | 2022-09-09 | ||
JP7501777B2 (ja) | 2021-03-05 | 2024-06-18 | 株式会社タダノ | 故障予兆検出システムおよび作業車 |
Also Published As
Publication number | Publication date |
---|---|
CZ295659B6 (cs) | 2005-09-14 |
CN1233325A (zh) | 1999-10-27 |
CN1143126C (zh) | 2004-03-24 |
EP0909380B1 (en) | 2005-02-23 |
DE69732569D1 (de) | 2005-03-31 |
HUP9903554A3 (en) | 2000-05-29 |
BR9710152A (pt) | 2000-01-11 |
ATE289681T1 (de) | 2005-03-15 |
IL127686A (en) | 2001-04-30 |
CZ9804308A3 (cs) | 2005-01-12 |
AU3201797A (en) | 1998-01-14 |
DE69732569T2 (de) | 2006-01-26 |
EP0909380A1 (en) | 1999-04-21 |
PL331205A1 (en) | 1999-07-05 |
HU223725B1 (hu) | 2004-12-28 |
WO1997049977A1 (en) | 1997-12-31 |
TR199802541T2 (xx) | 1999-02-22 |
CA2260773C (en) | 2002-09-10 |
SK179098A3 (en) | 2000-02-14 |
SI9720042A (sl) | 1999-12-31 |
TR199600527A2 (xx) | 1998-01-21 |
CA2356538C (en) | 2005-08-23 |
HUP9903554A2 (hu) | 2000-02-28 |
CA2260773A1 (en) | 1997-12-31 |
IL127686A0 (en) | 1999-10-28 |
CA2356538A1 (en) | 1997-12-31 |
RU2155328C1 (ru) | 2000-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000513097A (ja) | 電気モータ用のモデル・ベースの故障検出システム | |
US6014598A (en) | Model-based fault detection system for electric motors | |
US20240068864A1 (en) | Systems and methods for monitoring of mechanical and electrical machines | |
US7089154B2 (en) | Automatic machinery fault diagnostic method and apparatus | |
US9759774B2 (en) | Anomaly diagnosis system, method, and apparatus | |
EP1111550B1 (en) | Method and system for monitoring the condition of an individual machine | |
US5629870A (en) | Method and apparatus for predicting electric induction machine failure during operation | |
KR101474187B1 (ko) | 소자의 모니터링 방법 | |
US20020138217A1 (en) | Dynamically configurable process for diagnosing faults in rotating machines | |
KR20190072165A (ko) | 모터 고장 진단 시스템 | |
US20120330577A1 (en) | Vibration severity analysis apparatus and method for rotating machinery | |
KR100532237B1 (ko) | 전기모터용모델기초오류검출시스템 | |
Afshar et al. | Generalized roughness bearing fault diagnosis using time series analysis and gradient boosted tree | |
WO2021144593A1 (en) | Vibro-electric condition monitoring | |
MXPA99000473A (en) | Fault detection system based on model for electri motors | |
Babu et al. | Review on various signal processing techniques for predictive maintenance | |
Alekseev et al. | Data measurement system of compressor units defect diagnosis by vibration value | |
WO2024201717A1 (ja) | 真空ポンプ装置および真空ポンプの異常判定方法 | |
Galar et al. | Application of dynamic benchmarking of rotating machinery for e-maintenance | |
JP2003232703A (ja) | 異常診断装置 | |
Schossler et al. | Analysis of the Possibility of Mechanical Devices Supervision Based on the Measurement of the Vibration level and SVM Classifiers | |
Martins et al. | Data Analytics Towards Predictive Maintenance for Industrial Ovens | |
US20070283189A1 (en) | Method and a Device for Diagnosing Technical Equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040621 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050201 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20070227 |