JP2000324786A - Unified body type single-pole induction generator of plurality divided magnetic conductors - Google Patents
Unified body type single-pole induction generator of plurality divided magnetic conductorsInfo
- Publication number
- JP2000324786A JP2000324786A JP11161485A JP16148599A JP2000324786A JP 2000324786 A JP2000324786 A JP 2000324786A JP 11161485 A JP11161485 A JP 11161485A JP 16148599 A JP16148599 A JP 16148599A JP 2000324786 A JP2000324786 A JP 2000324786A
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- conductors
- magnetic
- divided
- induction generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Superconductive Dynamoelectric Machines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用の分野】この発明は単極誘導発電機に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a monopolar induction generator.
【0002】[0002]
【従来の技術】この単極誘導発電機は1832年にマイ
ケル ファラデーにより最初に検討されたものである。
統一された磁場のなかに置かれた導体(円盤)を回動さ
せると円盤の周縁部と中心部の間に電圧が生じる。接触
ブラシを周縁部と中心部に設け接続し負荷を掛けると電
流が流れる。電流の流れはN極面から見て右回転の場
合、中心部にプラスが現れ周縁部にマイナスの極性が現
れる。逆回転ではその極性は中心部にマイナスが周縁部
にプラスの極性が現れる。導体と共に磁石を回動しても
磁石を固定し導体だけを回動しても発生電圧に変化はな
い。導体を固定し磁石だけを回動しても電圧は発生しな
い。発生電圧の大きさは回動導体の半径の二乗と回動導
体を貫く磁力線の数と回動速度に比例する。BACKGROUND OF THE INVENTION This unipolar induction generator was first considered by Michael Faraday in 1832.
When a conductor (disk) placed in a unified magnetic field is rotated, a voltage is generated between the periphery and the center of the disk. When contact brushes are provided at the periphery and the center and connected to apply a load, current flows. When the current flows clockwise as viewed from the N-pole surface, a plus appears at the center and a minus polarity appears at the periphery. In reverse rotation, the polarity is negative at the center and positive at the periphery. The generated voltage does not change even if the magnet is rotated together with the conductor or the magnet is fixed and the conductor alone is rotated. No voltage is generated even if the conductor is fixed and only the magnet is rotated. The magnitude of the generated voltage is proportional to the square of the radius of the rotating conductor, the number of lines of magnetic force passing through the rotating conductor, and the rotating speed.
【0003】[0003]
【発明が解決しょうとする課題】上記の単極誘導発電機
は発生電流は大きいのであるが、発生電圧が低い。
(0.6V〜0.7V) 回動導体の回動速度が速く周
縁部に接触ブラシを配置し電圧を取り出す段階で、ブラ
シの摩擦熱による電圧降下が著しく扱が非常に難しく、
使用範囲が限定され現在では殆ど使われていないのが現
状である。この発明で解決しょうとする課題はこの単極
誘導発電機の持っている大きな潜在能力の大きな電流を
引き出すために電圧を上げることと、回動導体の周縁部
回動速度に対する摩擦熱による電圧降下を抑制し得るブ
ラシの考案である。The above-described unipolar induction generator has a large generated current but a low generated voltage.
(0.6V to 0.7V) At the stage where the rotating speed of the rotating conductor is high and the contact brush is arranged on the peripheral edge to take out the voltage, the voltage drop due to the frictional heat of the brush is extremely difficult to handle.
At present, the range of use is limited and hardly used at present. The problem to be solved by the present invention is to increase the voltage in order to draw a large current with a large potential of the unipolar induction generator, and to reduce the voltage drop due to frictional heat with respect to the peripheral portion rotating speed of the rotating conductor. It is a device of a brush which can suppress the noise.
【0004】[0004]
【課題を解決するための手段】本発明を、図面について
説明すれば、単極誘導発電機のローター(1)の材質を
金属磁石(アルニコマグネット係)にし、その両側面に
絶縁導体円盤か絶縁磁性導体円盤もしくは分割し絶縁し
た導体か絶縁磁性導体(金属磁石)(2〜13)を複数
固着する。(以降分割導体とする)分割導体と中心導体
の周縁部には接触しながら回転しその中心部より接触ブ
ラシ(20)(21)にて電圧を取り出すようにした円
形導体か円形磁性導体(金属磁石)で成る摺動回動型磁
性導体ブラシ(A〜L)(M1〜M3)を複数配置す
る。(以降回動ブラシとする)The present invention will be described with reference to the drawings. The rotor (1) of a single-pole induction generator is made of a metal magnet (alnico magnet), and an insulated conductor disk or an insulated disk is provided on both sides of the rotor. A plurality of magnetic conductor disks or divided and insulated conductors or a plurality of insulated magnetic conductors (metal magnets) (2 to 13) are fixed. Circular conductors or circular magnetic conductors (metals) that rotate while contacting the peripheral portions of the divided conductor and the central conductor (hereinafter referred to as divided conductors) and take out voltage from the central portion by contact brushes (20) and (21) A plurality of sliding-rotating magnetic conductor brushes (A to L) (M1 to M3) made of magnets are arranged. (Hereinafter referred to as rotating brush)
【0005】この発電機の回路を図面(1)について説
明すれば各分割磁性導体(2〜13)の周縁部には適当
な圧力を持って各導体に摺接回動する回動ブラシ(A〜
L)を配置し、その中心に接触ブラシ(21)を設け電
圧を取り出すようにする。分割導体を固着したN極面と
S極面の両側面の中心部には、分割導体数に見合った数
の接触ブラシが適当な圧力で各分割導体に摺接するよう
にした、接触ブラシホルダー(23)を分割導体に近接
固定する。回動ブラシ(A)の中心ブラシ(21)と導
体(3)の中心接触ブラシ(b)を結線し、この配線を
回動ブラシ(B〜E)と(c〜f)まで上記同様に結線
する。The circuit of this generator will be described with reference to the drawing (1). A rotating brush (A) that slides and rotates on the peripheral edge of each divided magnetic conductor (2 to 13) with appropriate pressure is attached to each conductor. ~
L) is arranged, and a contact brush (21) is provided at the center thereof to take out a voltage. A contact brush holder (in which the number of contact brushes corresponding to the number of divided conductors is in sliding contact with each divided conductor at an appropriate pressure is provided at the center of both sides of the N pole surface and the S pole surface to which the divided conductors are fixed. 23) is fixed close to the divided conductor. The center brush (21) of the rotating brush (A) and the center contact brush (b) of the conductor (3) are connected, and this wiring is connected to the rotating brushes (BE) and (c-f) in the same manner as described above. I do.
【0006】分割導体(7)の回動ブラシとS極面分割
導体(8)の中心ブラシ(g)を結線する。同様の配線
をブラシ(G〜K)と(h〜l)を上記と同様に結線
し、回転ブラシ(L)と発電機の中心導体(1)の中心
部に接触ブラシ(P)で接続する。発電機の中心ロータ
ー(1)の周縁部にも上記同様の回動ブラシ(M1〜M
3)を複数設置し、その中心軸の接触ブラシ(20)と
N極面の中心ブラシ(a)との電位差を利用する発電機
である。The rotating brush of the divided conductor (7) is connected to the center brush (g) of the S pole face divided conductor (8). Similar wires are connected to the brushes (G to K) and (h to l) in the same manner as described above, and connected to the rotary brush (L) and the center of the center conductor (1) of the generator with the contact brush (P). . The same rotating brushes (M1 to M1) as described above are also provided on the peripheral portion of the center rotor (1) of the generator.
3) is a generator that utilizes a potential difference between the contact brush (20) on the central axis and the central brush (a) on the N pole surface.
【0007】この磁性回動体の励磁を目的とする強力な
磁石(14)(希土類係マグネット)を分割動体に近接
固定する。この励磁用固定磁石(14)を電磁石か超伝
導磁石にし、使用目的に応じてこれらを選択する。この
大きな電流を引き出す目的を持って内部抵抗を減らすた
め液体金属ブラシ(ウッド メタル)を使用する。この
発電機全体を構成する外枠(18)を磁性体とし磁気回
路とする。各回転体を支持するベアリングは非磁性導体
ベアリング(セラミック ボール ベアリング)とす
る。以上のような構成をなす複数分割磁性導体一体型単
極誘導発電機。A strong magnet (14) (rare-earth-related magnet) for exciting the magnetic rotating body is fixed close to the divided moving body. The fixed magnet for excitation (14) is an electromagnet or a superconducting magnet, and these are selected according to the purpose of use. A liquid metal brush (wood metal) is used to reduce internal resistance with the purpose of drawing this large current. The outer frame (18) constituting the entire generator is made of a magnetic material and a magnetic circuit. The bearing that supports each rotating body is a non-magnetic conductor bearing (ceramic ball bearing). A monopole induction generator integrated with a plurality of divided magnetic conductors configured as described above.
【0008】[0008]
【作用】上述のように構成して、シャフトを外部動力で
回動すると中心導体(1)と各分割導体(2〜13)は
磁性導体(金属磁石)である(以降回動体とする)こと
と、励磁用磁石(14)の磁力線の中に置かれているの
で回動ブラシ(A〜L)の摺接面と、各中心部接触ブラ
シ(a〜l)の間に電圧が生じる。N極面から見て右回
転の場合、中心導体(1)と各分割導体(2〜13)の
中心部に(+)の極性が現れ、電流は中心部から周縁部
に向かって流れる。中心導体(1)と各分割導体(2〜
13)の周縁部にはその数に見合った、または複数の回
動ブラシ(A〜L)(M1〜M3)が絶縁され敵当な圧
力を持って各分割導体と中心導体に摺動回動するよう設
置してある。(16a〜16c)(M1〜M3)When the shaft is rotated by external power, the center conductor (1) and each of the divided conductors (2 to 13) are magnetic conductors (metal magnets) (hereinafter referred to as a rotating body). Is placed in the line of magnetic force of the exciting magnet (14), so that a voltage is generated between the sliding contact surfaces of the rotating brushes (AL) and the respective center contact brushes (al). In the case of clockwise rotation viewed from the N-pole surface, a polarity of (+) appears at the center of the center conductor (1) and each of the divided conductors (2 to 13), and current flows from the center toward the periphery. The center conductor (1) and each of the divided conductors (2-
13) In the peripheral part, the rotating brushes (AL to M3) (M1 to M3) corresponding to the number or a plurality of rotating brushes are insulated and slidably rotated to each divided conductor and the center conductor with an opposing pressure. It is set to do. (16a-16c) (M1-M3)
【0009】上記の回動ブラシも磁性導体(金属磁石)
でありその極性は、N極面から見て回動導体本体と同じ
ようにN極とし、本体がN極面から見て右回転すると摺
動回動する回動ブラシは左回転となり、現れる電気的極
性は中心が(−)となり周縁部が(+)となる。これに
より各分割磁性導体(2〜13)と回動ブラシ(A〜
L)は電気的に直列につながり、昇圧した電圧は各回動
ブラシの中心部に設置した接触ブラシ(21)により隣
接する分割導体の中心部の接触ブラシ(a〜l)に結線
する。The above rotating brush is also a magnetic conductor (metal magnet).
The polarity is the same as that of the rotating conductor main body when viewed from the N pole surface, and when the main body rotates clockwise as viewed from the N pole surface, the rotating brush that slides and rotates becomes counterclockwise, and the electric current appears. The target polarity is (-) at the center and (+) at the periphery. Thereby, each divided magnetic conductor (2 to 13) and the rotating brush (A to
L) are electrically connected in series, and the boosted voltage is connected to the contact brushes (a to l) at the center of the adjacent divided conductor by the contact brush (21) installed at the center of each rotating brush.
【0010】この現象は各分割導体(2〜13)と回動
ブラシ(A〜L)の間に於いて同時に発生し、また全て
の分割導体(2〜13)と回動ブラシ(A〜L)が同時
に直列接続するので電圧は高いものとなる。各分割導体
(2〜13)で昇圧した電圧は発電機中心ローター
(1)の中心部ブラシ(P)に接続し、周縁部に設置し
た複数の回動ブラシ(M1〜M3)から接触ブラシ(2
0)を用いて取り出す電圧は、今までの単極誘導発電機
では実現出来なかった高い電圧を取り出すことができ
る。This phenomenon occurs simultaneously between each of the divided conductors (2 to 13) and the rotating brushes (A to L), and all the divided conductors (2 to 13) and the rotating brushes (AL to L). ) Are connected in series at the same time, so that the voltage is high. The voltage boosted by each of the divided conductors (2 to 13) is connected to the central brush (P) of the generator central rotor (1), and from a plurality of rotating brushes (M1 to M3) installed on the peripheral edge, the contact brush ( 2
As for the voltage to be extracted using 0), a high voltage that cannot be realized by the conventional unipolar induction generator can be extracted.
【0011】各回動ブラシ(A〜L)(M1〜M3)の
採用は回動体(分割磁性体と中心導体一体の物)の回動
速度が速く周縁速度に至っては、超高速となり接触ブラ
シを使用した場合その摩擦熱による電圧降下で出力が消
えてしまう。回動ブラシ(A〜L)(M1〜M3)の採
用により摺動面は常に適当な圧力で密着しておりそこに
摩擦熱は発生しないのである。一般的な単極誘導発電機
に使用されている接触ブラシ(黒鉛ブラシ)による摩擦
抵抗も、回動ブラシの採用により軽減でき回動ブラシの
中心部より接触ブラシで電圧を取り出すことにより、摩
擦熱による電圧降下も少なく摩擦抵抗による外部動力の
消費エネルギーも軽減できるのである。The use of each of the rotating brushes (A to L) (M1 to M3) increases the rotating speed of the rotating body (integral of the divided magnetic body and the center conductor) and becomes extremely high when the peripheral speed is reached. If used, the output will disappear due to the voltage drop due to the frictional heat. With the use of the rotating brushes (AL) (M1 to M3), the sliding surfaces are always in close contact with an appropriate pressure, and no frictional heat is generated there. The frictional resistance caused by the contact brush (graphite brush) used in general monopolar induction generators can be reduced by using a rotating brush, and by taking out the voltage with the contact brush from the center of the rotating brush, the frictional heat can be reduced. And the energy consumption of external power by frictional resistance can be reduced.
【0012】これらの回動ブラシの材質は磁性導体(金
属磁石)であるから、自らが回動すると周縁部の摺動面
と中心部のブラシ(20)(21)間に電圧が生じ発電
機全体の出力増大に貢献しているのである。固定磁石
(14)は既に磁石である回動体(分割導体と中心導体
が一体となったもの)を更に励磁し、磁束密度を上げ発
電能力向上の目的をもって設置するものである。この発
電機全体を構成する外枠(18)は磁性体とすることで
磁気回路とし、磁力線の拡散を極力抑えまた磁力の減磁
を最小限に抑える目的で構成するものである。Since the material of these rotating brushes is a magnetic conductor (metal magnet), a voltage is generated between the sliding surface of the peripheral portion and the brushes (20) and (21) of the central portion when the rotating brush itself rotates. This contributes to the overall output increase. The stationary magnet (14) is provided for the purpose of further exciting the rotating body (the one in which the divided conductor and the central conductor are integrated), which are magnets, to increase the magnetic flux density and improve the power generation capacity. The outer frame (18) constituting the whole generator is made of a magnetic material to form a magnetic circuit, which is designed for the purpose of minimizing the diffusion of the lines of magnetic force and minimizing the demagnetization of the magnetic force.
【0013】回動ブラシ ホルダー(16a〜16c)
で支持する回動ブラシは対峙する回動ブラシとは絶縁し
てあり、上記の全ての回動体を支持するボールベアリン
グのボールは非磁性導体とし、磁力線によるボールの回
転を妨げる現象の抑制と、各回動ブラシ(A〜L)(M
1〜M3)と各導体との絶縁が目的である。Rotating brush holder (16a to 16c)
The rotating brush supported by is insulated from the facing rotating brush, the ball of the ball bearing supporting all the rotating bodies is a non-magnetic conductor, and the phenomenon of hindering the rotation of the ball by the lines of magnetic force is suppressed, Each rotating brush (AL) (M
1 to M3) and each conductor.
【0014】液体金属ブラシの液体金属(ウッド メタ
ル)は融点が70度Cであるから、ヒーターで加熱し液
体の状態を保ち合成プラスチックシールを使用し回動体
の摺動面に直接摺接設置する。これにより電流の発生が
大きい中心ローター(1)の摺接面に設置すると摺接面
積が拡大し、電気抵抗少なく大電流を損失することなく
取り出すことができるのである。Since the liquid metal (wood metal) of the liquid metal brush has a melting point of 70 ° C., it is heated by a heater to maintain a liquid state, and is placed in direct sliding contact with the sliding surface of the rotating body by using a synthetic plastic seal. . As a result, when it is installed on the sliding surface of the central rotor (1) where a large amount of current is generated, the sliding area is increased, and the electric current is small and a large current can be taken out without loss.
【0015】[0015]
【実施例】他の実施例として上記の発電機の励磁を目的
とするところの固定磁石を、超伝導磁石に変更し使用し
た場合の実施例を説明する。今現在、希土類系マグネッ
トの磁束密度最高値は1.2テスラ(1テスラ=100
00ガウス)くらいであるが、超伝導に至っては10〜
30テスラの物が数多く作られている。10テスラくら
いの小型機を超伝導状態に保持し続けるには、超伝導コ
イルを4.2Kにヘリウムを使用し冷却しなければなら
ないが、今現在の冷凍技術をもってすれば冷凍機に使用
する電力は1KW〜1.5KWですむのである。この超
伝導を利用した大型(50メガボルトアンペア〜100
0メガボルトアンペア)機が世界で開発中である。Another embodiment will be described in which the fixed magnet intended for exciting the generator is replaced with a superconducting magnet and used. At present, the highest magnetic flux density of the rare-earth magnet is 1.2 Tesla (1 Tesla = 100
00 gauss), but 10-
Many 30 Tesla items are made. In order to keep a small machine of about 10 Tesla in a superconducting state, the superconducting coil must be cooled using helium at 4.2K, but with the current refrigeration technology, the electric power used for the refrigerator is required. Is 1KW to 1.5KW. Large (50 megavolt amps-100
A 0 megavolt amp) machine is under development worldwide.
【0016】この内容を調べてみると、超伝導コイルの
超強力な磁力を利用できるため 、発電機全体の大きさ
や重量をいままでの2/1〜3/1にする事が出来る。
しかし、発電機全体の効率を計算すると全体で約1%の
効率改善にしかならないと言う。その理由は、超伝導コ
イルが発生する膨大な磁力線の数に起因し、発電機全体
の質量が小さくなっても発電機を回転させる外部動力の
消費エネルギーは以前とあまり変わらないと言うことで
ある。巨大な励磁磁力と回転子の間には巨大な作用反作
用の物理法則が働くからである。磁束を横切るコイルに
はその磁力に比例する電流が発生し、励磁磁束に対する
反作用が発生する。これ故に全体の効率として消費エネ
ルギー的に1%前後の効率改善にしかならないのであ
る。When examining the contents, since the super-strong magnetic force of the superconducting coil can be used, the size and weight of the entire generator can be reduced to 2/1 to 3/1.
However, calculating the efficiency of the generator as a whole only improves the efficiency by about 1%. The reason is that due to the huge number of magnetic field lines generated by the superconducting coil, even if the mass of the generator as a whole is reduced, the energy consumption of external power to rotate the generator is not much different from before. . This is because a huge physical law of action and reaction acts between the huge exciting magnetic force and the rotor. A current proportional to the magnetic force is generated in the coil crossing the magnetic flux, and a reaction to the exciting magnetic flux is generated. For this reason, the overall efficiency is only about 1% improvement in energy consumption.
【0017】そこで上記の本発明である、回動導体(分
割導体と中心導体が一体の物)(以降回動導体とする)
をこの10テスラ位の強磁場の中に設置した場合を考え
てみる。超伝導コイルの特徴として、今までのコイルの
ように鉄心を使用していないところである。鉄は2.2
テスラで飽和してしまい10テスラまでの磁束密度を必
要としない。コイル中心は空芯でありそこに上記の回動
導体の材質を非磁性体導体とし、最強磁場の位置に回動
導体を近接設置し外部動力で回動すると、上記発電機の
ように逆トルクが大きく掛からないのである。作用反作
用の法則はこの発電機ついて言えばその発生は最小限に
抑えられている。回動導体の位置する全体が均一な磁場
の中に置かれているため、回動導体の内部に作用反作用
の原因となる渦電流の発生が発現しないのである。Therefore, the rotating conductor (the divided conductor and the central conductor are integrated) according to the present invention (hereinafter referred to as the rotating conductor).
Is installed in a strong magnetic field of about 10 Tesla. One of the features of superconducting coils is that they do not use an iron core unlike conventional coils. 2.2 for iron
It saturates at Tesla and does not require a magnetic flux density of up to 10 Tesla. The center of the coil is an air core, and the material of the rotating conductor is a non-magnetic conductor, and the rotating conductor is installed close to the position of the strongest magnetic field. Does not take much. The law of action-reaction is minimized for this generator. Since the entire rotating conductor is located in a uniform magnetic field, no eddy current is generated inside the rotating conductor, which causes an action reaction.
【0018】[0018]
【考案の効果】上述のようにこの発電機の最大の特徴
は、励磁磁界が強力でも、電機子に掛かる作用反作用の
現象が極めて小さく超伝導コイルの特徴を最大限に活用
することができる発電機を供給するものである。As described above, the greatest feature of this generator is that even if the exciting magnetic field is strong, the phenomenon of the action reaction applied to the armature is extremely small, and the power generation that can make the best use of the features of the superconducting coil. Machine.
【図1】本発明の実施例を示す回路図FIG. 1 is a circuit diagram showing an embodiment of the present invention.
【図2】本発明の実施例を示す正面外枠断面図一部回路
図FIG. 2 is a front outer frame sectional view showing an embodiment of the present invention;
【図3】本発明の実施例を示す側面外枠断面図一部カッ
ト図FIG. 3 is a side sectional view of the outer frame showing an embodiment of the present invention;
【図4】本発明の実施例を示す側面外枠断面図及び一部
部品撤去図(回動ブラシホルダー16a 16c M
3)FIG. 4 is a cross-sectional view of a side outer frame showing an embodiment of the present invention and a partially removed view (rotating brush holders 16a to 16c M);
3)
【図5】本発明の実施例を示す外枠断面斜視図一部回路
図FIG. 5 is a perspective view, partly in section, of an outer frame showing an embodiment of the present invention.
1は単極誘導発電機の磁性導体円盤 2〜7はN極面分割磁性導体 8〜13はS極面分割磁性導体 14は励磁用固定磁石 15は発電機固定用ボルトナット 16a〜16cは分割磁性導体用回動ブラシホルダー 17は磁気回路を通る磁力線 18は発電機外枠 19は磁石固定用ネジ穴 20はM1〜M3用接触ブラシ 21は摺接接触回動ブラシ(A〜L)用接触ブラシ 22は分割導体中心部接触ブラシ用端子 23は各分割導体中心部接触ブラシ用ホルダー 24は磁石固定用ボルト A〜FはN極用G〜LはS極用分割導体周縁部回動ブラ
シ a〜fはN極用g〜lはS極用分割導体中心部接触ブラ
シ M1〜M3は中心導体用摺接触回動ブラシ Pは中心導体円盤用接触ブラシ1 is a magnetic conductor disk of a unipolar induction generator 2 to 7 are N-pole split magnetic conductors 8 to 13 are S-pole split magnetic conductors 14 is a fixed magnet for excitation 15 is a bolt and nut 16a to 16c for fixing the generator Rotating brush holder for magnetic conductor 17 Magnetic field lines passing through a magnetic circuit 18 Generator outer frame 19 Screw holes for fixing magnets 20 Contact brushes for M1 to M3 21 Contact for sliding contact rotating brush (AL) A brush 22 is a terminal for a brush contacting the center of the divided conductor. 23 is a holder for the brush contacting the center of the divided conductor. 24 is a bolt for fixing the magnet. A to F are G-L for the N pole. F is for the N pole g-1 is the contact brush for the center of the divided conductor for the S pole M1 to M3 are the sliding contact rotating brushes for the center conductor P is the contact brush for the center conductor disk
Claims (3)
(1)の両側面に絶縁した複数の導体円盤か分割し絶縁
した複数の導体(2〜13)を固着し回動体と成し全て
の導体の周縁部と中心部に接触ブラシ(a〜1)(P)
もしくは回動体に適当な圧力を持って接触しながら回動
体の回動と共に回動しその中心部に接触ブラシを設置し
電気を取り出す摺接接触回動ブラシ(A〜L)(M1〜
M3)を複数有し全ての導体を直列結線することを特徴
とした複数分割磁性導体一体型単極誘導発電機。1. A rotor (conductor disk) of a monopolar induction generator
A plurality of insulated conductor discs or a plurality of divided and insulated conductors (2 to 13) are fixed to both side surfaces of (1) to form a rotating body, and contact brushes (a to 1) are formed on the periphery and center of all conductors. ) (P)
Alternatively, a contact-contact rotating brush (A to L) (M1 to
M3) A single-pole induction generator integrated with a plurality of divided magnetic conductors, wherein all the conductors are connected in series.
電機のローター(導体円盤)(1)とその両側面に固着
した複数の絶縁導体円盤か複数の絶縁分割導体(2〜1
3)の材質を磁性導体(金属磁石)にし磁性導体回動体
としその励磁を目的とする磁石(14)を回動体に近接
固定し磁気回路(18)を有することを特徴とした複数
分割磁性導体一体型単極誘導発電機。2. A rotor (conductor disk) (1) of the above-mentioned monopole induction generator integrated with a plurality of divided magnetic conductors and a plurality of insulated conductor disks fixed to both side surfaces thereof or a plurality of insulated divided conductors (2 to 1).
A magnetic conductor (metal magnet) is used as the material of 3), and a magnetic conductor rotating body is used. A magnet (14) for the purpose of excitation is fixed to the rotating body close to the magnetic body (18), and a magnetic circuit (18) is provided. Integrated monopolar induction generator.
電機のローター(円盤)(1)と複数分割磁性導体(2
〜13)と一体と成ったなった回動体の励磁を目的とす
るところの励磁用磁石(14)を電磁石もしくは超伝導
磁石にしその磁場のなかでこの回動体を回動させその周
縁部から液体金属ブラシ(ウッド メタル)を使用し電
力を得ることを特徴とした複数分割磁性導体一体型単極
誘導発電機。3. A rotor (disk) (1) and a plurality of divided magnetic conductors (2) of the above-mentioned monopole induction generator integrated with a plurality of divided magnetic conductors.
The magnet (14) for exciting the rotating body which is integrated with the magnets (13) to (13) is an electromagnet or a superconducting magnet, and the rotating body is rotated in the magnetic field so that the liquid flows from the periphery. A multi-pole magnetic conductor integrated monopolar induction generator characterized by obtaining power using a metal brush (wood metal).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11161485A JP2000324786A (en) | 1999-04-30 | 1999-04-30 | Unified body type single-pole induction generator of plurality divided magnetic conductors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11161485A JP2000324786A (en) | 1999-04-30 | 1999-04-30 | Unified body type single-pole induction generator of plurality divided magnetic conductors |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000324786A true JP2000324786A (en) | 2000-11-24 |
Family
ID=15735986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11161485A Pending JP2000324786A (en) | 1999-04-30 | 1999-04-30 | Unified body type single-pole induction generator of plurality divided magnetic conductors |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000324786A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6822361B1 (en) * | 2002-09-30 | 2004-11-23 | Energy & Propulsion Systems Llc | Orbiting multi-rotor homopolar system |
JP2008172235A (en) * | 2007-01-10 | 2008-07-24 | Siemens Magnet Technology Ltd | Emergency degaussing unit for superconductive magnet |
JP2009296869A (en) * | 2008-05-02 | 2009-12-17 | Isamu Takehara | Power-generating electric motor |
-
1999
- 1999-04-30 JP JP11161485A patent/JP2000324786A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6822361B1 (en) * | 2002-09-30 | 2004-11-23 | Energy & Propulsion Systems Llc | Orbiting multi-rotor homopolar system |
JP2008172235A (en) * | 2007-01-10 | 2008-07-24 | Siemens Magnet Technology Ltd | Emergency degaussing unit for superconductive magnet |
JP2009296869A (en) * | 2008-05-02 | 2009-12-17 | Isamu Takehara | Power-generating electric motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Soderlund et al. | A permanent-magnet generator for wind power applications | |
JP2009178038A (en) | Rotor-stator structure for electric machine | |
JP2008546367A (en) | Superconducting non-periodic homopolar electromechanical force transducer | |
Gieras et al. | Performance analysis of a coreless permanent magnet brushless motor | |
US9000647B2 (en) | High efficiency high output density electric motor | |
Hull et al. | Magnetomechanics of internal-dipole, Halbach-array motor/generators | |
JP6503590B2 (en) | Electric rotating machine and bulk magnetizing method | |
JP2007185094A (en) | Motor | |
CN203278585U (en) | Halbach parallel rotor hybrid excitation synchronous motor | |
KR101937285B1 (en) | Magnet generator and generating method | |
Bala et al. | The performance enhancement of BLDC motor using Halbach array rotor | |
Ahmad et al. | Development of double rotation vertical axis generator with double rotation of wind turbine | |
Morimura et al. | Single Halbach field magnet desined from dual Halbach field magnet for rotating machines | |
JP2007252199A (en) | Electric motor | |
CN114362593A (en) | Water solution ion separation and collection device | |
JP2000324786A (en) | Unified body type single-pole induction generator of plurality divided magnetic conductors | |
KR102195432B1 (en) | One Body Electric Driving and Electric Power Generating Apparatus | |
Kurt et al. | Design and analysis of an axial-field permanent magnet generator with multiple stators and rotors | |
CN100502205C (en) | Electromagnetic permanent magnet electric machine | |
JP2013223417A (en) | Fixed permanent magnet generator | |
Jenal et al. | 2D-FEA based design study of salient rotor three-phase permanent magnet flux switching machine with concentrated winding | |
JP3172205U (en) | High efficiency and powerful motor integrated with generator | |
RU116714U1 (en) | MAGNETO-DISK MACHINE | |
Davey et al. | The use of very thin TFMs in electromechanical devices | |
Bolund et al. | Rotor configuration impact on generator ventilation needs |