[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000313970A - Formation of ceramic thin film layer - Google Patents

Formation of ceramic thin film layer

Info

Publication number
JP2000313970A
JP2000313970A JP12304399A JP12304399A JP2000313970A JP 2000313970 A JP2000313970 A JP 2000313970A JP 12304399 A JP12304399 A JP 12304399A JP 12304399 A JP12304399 A JP 12304399A JP 2000313970 A JP2000313970 A JP 2000313970A
Authority
JP
Japan
Prior art keywords
ceramic
thin film
metal
film layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12304399A
Other languages
Japanese (ja)
Inventor
Keiji Mase
恵二 間瀬
Shinji Kanda
真治 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Manufacturing Co Ltd
Original Assignee
Fuji Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Manufacturing Co Ltd filed Critical Fuji Manufacturing Co Ltd
Priority to JP12304399A priority Critical patent/JP2000313970A/en
Publication of JP2000313970A publication Critical patent/JP2000313970A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a thin film layer capable of safely and continuously working a substrate by a simple process, and by which a thin ceramic layer of <=10 μm is formed. SOLUTION: The hyperfine powder with <=100 nm particle size of ceramic, e.g. of metallic oxide, metallic nitride, metallic carbide, metallic boride, metallic sulfide or the like is jetted as a mixed fluid with compressed gas of >=20 m/sec wind velocity, by which a ceramic thin film layer of <=10 μm film thickness is formed on the surface of metal, ceramic, glass, a silicon wafer, crystal, a compd. semiconductor, plastic or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は半導体、ディスプ
レイ、太陽電池等の製作や金属等の表面硬化の目的で行
われてきた絶縁層、誘電体層、半導体層、透明導電層、
耐摩耗性皮膜層に使用されるセラミックの薄膜層の形成
に関し、より詳細には金属酸化物、金属窒化物、金属炭
化物、金属硼化物、金属硫化物等のセラミックの粒径が
100nm以下の超微粉末を圧縮気体との混合流体として
噴射することにより、金属、セラミック、ガラス、シリ
コンウェハー、水晶、化合物半導体、プラスチック等の
表面へ膜厚が10μm 以下のセラミック薄膜層を形成す
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating layer, a dielectric layer, a semiconductor layer, a transparent conductive layer, which has been used for manufacturing semiconductors, displays, solar cells and the like and for hardening surfaces of metals and the like.
Regarding the formation of a ceramic thin film layer used for the wear-resistant coating layer, more specifically, a metal oxide, a metal nitride, a metal carbide, a metal boride, a metal sulfide, etc., having a particle diameter of 100 nm or less. The present invention relates to a method for forming a ceramic thin film layer having a thickness of 10 μm or less on a surface of metal, ceramic, glass, silicon wafer, crystal, compound semiconductor, plastic, or the like by injecting fine powder as a mixed fluid with a compressed gas. is there.

【0002】[0002]

【従来の技術】従来、絶縁層、誘電体層、半導体層、透
明導電層、耐摩耗性皮膜層等の薄膜層を形成する方法と
して一般にPVDと呼ばれる物理的気相成長法と、CV
Dと呼ばれる化学的気相成長法がある。PVD法には真
空蒸着、分子線エビタキシー、イオンプレーティング、
スパッタ蒸着がある。真空蒸着は真空中で蒸着源を熱的
に蒸発、昇華させて蒸着粒子を作り、基板へ蒸着粒子を
輸送し、基板上に蒸着粒子を付着、堆積させて薄膜を形
成させる。分子線エピタキシー(エピタキシャル)は超高
真空中で、クヌーセンセルなどからの分子線源から発せ
られた原材料の分子線を基板表面に到達させて膜形成を
行う。イオンプレーティングは生成した蒸着粒子の一部
をイオン化して加速し、真空中に置かれた基板に蒸着粒
子とそのイオンを照射して、基板上に薄膜を形成させ
る。スパッタ蒸着は高エネルギーの粒子をターゲットに
照射した時に、ターゲットから放出されるターゲット構
成原子を基板上に輸送して薄膜形成を行う。
2. Description of the Related Art Conventionally, as a method of forming a thin film layer such as an insulating layer, a dielectric layer, a semiconductor layer, a transparent conductive layer, and a wear-resistant coating layer, a physical vapor deposition method generally called PVD,
There is a chemical vapor deposition method called D. The PVD method includes vacuum deposition, molecular beam evitaxy, ion plating,
There is sputter deposition. In vacuum deposition, a deposition source is thermally evaporated and sublimated in a vacuum to form deposition particles, the deposition particles are transported to a substrate, and the deposition particles are deposited and deposited on the substrate to form a thin film. In molecular beam epitaxy (epitaxial), a film is formed in an ultra-high vacuum by allowing a molecular beam of a raw material emitted from a molecular beam source from a Knudsen cell or the like to reach the substrate surface. Ion plating ionizes and accelerates a part of the generated vapor-deposited particles, and irradiates the substrate placed in a vacuum with the vapor-deposited particles and their ions to form a thin film on the substrate. In sputter deposition, when a target is irradiated with high-energy particles, target constituent atoms emitted from the target are transported onto a substrate to form a thin film.

【0003】CVD法には、熱CVDとプラズマCVD
がある。熱CVDはガスで供給される薄膜構成材料に対
して熱エネルギーにより適当な温度に加温された基板表
面あるいは気相中で原料ガスを熱分解して分解生成物や
化学反応により薄膜を形成する。プラズマCVDは一定
の圧力の原料ガスを放電しプラズマ状態にすると化学的
に活性なイオンやラジカルが生成し、この活性な粒子に
より基板表面での化学反応が促進して薄膜を形成する。
[0003] CVD methods include thermal CVD and plasma CVD.
There is. In thermal CVD, a raw material gas is thermally decomposed on a substrate surface or a gas phase heated to an appropriate temperature by thermal energy with respect to a thin film constituting material supplied by a gas, and a thin film is formed by a decomposition product or a chemical reaction. . In plasma CVD, when a raw material gas at a certain pressure is discharged into a plasma state, chemically active ions and radicals are generated, and the active particles promote a chemical reaction on the substrate surface to form a thin film.

【0004】[0004]

【発明が解決しようとする課題】真空蒸着、分子線エビ
タキシー、イオンプレーティング、スパッタ蒸着などの
PVD法では高真空中で行われるため高耐真空装置内で
加熱等の作業が行われており、装置が高価になること
と、被加工物たる基板を前記真空加工装置へ連続搬送
し、加工をすることが難しい。また大型の基板を加工す
るときには前記装置内を完全に真空にするまで長時間を
要し、生産性が落ちる欠点がある。
In the PVD method such as vacuum deposition, molecular beam arbitration, ion plating, sputter deposition, etc., since operations are performed in a high vacuum, work such as heating is performed in a high vacuum resistant device. The apparatus becomes expensive, and it is difficult to continuously transport a substrate as a workpiece to the vacuum processing apparatus for processing. Further, when processing a large-sized substrate, it takes a long time to completely evacuate the inside of the apparatus, and there is a disadvantage that productivity is reduced.

【0005】CVD法ではガスを使用して薄膜形成を行
うため外部と完全に遮断する必要がる。そのためPVD
と同じように基板を連続して加工装置内へ搬送すること
が困難となる。また使用するガスも毒性のあるものがあ
り、あるいは非常に発火しやすいものを使用する点で、
ガスの管理が煩雑となる。
In the CVD method, since a thin film is formed using a gas, it is necessary to completely shut off the outside from the outside. Therefore PVD
It becomes difficult to continuously transport the substrate into the processing apparatus in the same manner as described above. In addition, the gas used is toxic or very ignitable,
Gas management becomes complicated.

【0006】そこで、比較的簡単なプロセスで基板を安
全に連続加工できる薄膜層を形成する方法の開発が望ま
れていた。
[0006] Therefore, there has been a demand for the development of a method of forming a thin film layer that can safely and continuously process a substrate by a relatively simple process.

【0007】[0007]

【課題を解決するための手段】真空装置を使用しないで
10μm以下の薄いセラミック層を形成する方法とし
て、本願発明は金属酸化物、金属窒化物、金属炭化物、
金属硼化物、金属硫化物等のセラミックの粒径が100
nm以下の超微粉末を風速が20m/sec以上の圧縮気体と
の混合流体として噴射することにより、金属、セラミッ
ク、ガラス、シリコンウェハー、水晶、化合物半導体、
プラスチック等の表面へ膜厚が10μm以下のセラミッ
ク薄膜層を形成させる方法に関する。
SUMMARY OF THE INVENTION As a method for forming a thin ceramic layer of 10 μm or less without using a vacuum apparatus, the present invention relates to metal oxides, metal nitrides, metal carbides, and the like.
The particle size of ceramics such as metal borides and metal sulfides is 100
By injecting ultrafine powder of nm or less as a mixed fluid with compressed gas whose wind speed is 20 m / sec or more, metal, ceramic, glass, silicon wafer, crystal, compound semiconductor,
The present invention relates to a method for forming a ceramic thin film layer having a thickness of 10 μm or less on a surface of plastic or the like.

【0008】一般的に、粒子間の付着力及び、粒子と基
材との付着力としては、液架橋力とファンデルワース力
と静電気力があり、それらが複合して付着が行われる。
粒子径が小さくなればなるほど表面積が大きくなり、そ
れにともない表面エネルギーも大きくなる。また一般的
に100nm以下の超微粒子は、超微粒子同士の融着が、
大きな粒径のものと比較すると、低温で開始する。粒子
が圧縮気体にて噴射され基板に衝突したときの衝撃によ
り圧縮応力および剪断応力が生じ、同時に発熱がおこ
る。
In general, the adhesive force between particles and the adhesive force between particles and a substrate include a liquid crosslinking force, a van der Waals force, and an electrostatic force.
The smaller the particle size, the larger the surface area and accordingly the surface energy. Also, generally ultrafine particles of 100 nm or less, fusion of ultrafine particles,
It starts at a lower temperature when compared to the larger particle size. Particles are jetted with a compressed gas and collide with the substrate to generate a compressive stress and a shear stress, and generate heat at the same time.

【0009】この衝撃力と発熱により、付着がおこる
が、粒子径が小さいほうが、表面エネルギーが大きく、
低温で融着するため、基材に対する付着力が高く粒子間
同士の衝撃による付着力も高くなる。
Adhesion occurs due to the impact force and heat generation. The smaller the particle size, the larger the surface energy.
Since the fusion is performed at a low temperature, the adhesion to the substrate is high, and the adhesion due to the impact between the particles is also high.

【0010】実際にテストをしたところ100nm以下、
好ましくは50nm以下の粒径のセラミック基材やセラミ
ックの粒子同士の付着による結合力が非常に高くなるこ
とがわかった。
When an actual test was conducted,
It has been found that the bonding strength due to the adhesion between the ceramic base material and the ceramic particles, preferably having a particle size of 50 nm or less, is extremely high.

【0011】使用装置としては、噴射装置のみで真空装
置など大がかりな装置は必要でなく、粉末で加工するた
めガスの管理も必要ない。また加工工程として連続搬送
及び連続加工により、大型の被加工物表面に10μm以
下のセラミック層を形成することが容易に行える。
As a device to be used, a large-scale device such as a vacuum device is not required only with an injection device, and gas management is not required since the device is processed with powder. Further, a ceramic layer having a size of 10 μm or less can be easily formed on the surface of a large workpiece by continuous conveyance and continuous processing as a processing step.

【0012】[0012]

【発明の実施の形態】セラミック微粉末を用いて薄膜層
を形成するための装置としては、既知のサンドブラスト
装置を使用して、図1の工程1のようにセラミックの超
微粉末を圧縮気体との混合流体として被加工物1に噴射
し、被加工物1に衝突したときの衝撃力により基材に付
着し、さらに粒子同士が付着し、膜厚が10μm以下の
セラミック層8を形成する。
BEST MODE FOR CARRYING OUT THE INVENTION As a device for forming a thin film layer using ceramic fine powder, a known sandblasting device is used, and as shown in step 1 of FIG. Is sprayed onto the workpiece 1 as a mixed fluid, and adheres to the base material by the impact force when the workpiece 1 collides with the workpiece 1. Further, the particles adhere to each other to form a ceramic layer 8 having a film thickness of 10 μm or less.

【0013】サンドブラスト装置としては、ノズルの内
部でエゼクター現象を利用してセラミックの超微粉末を
ノズルに引き込み噴射する既知のサクション式あるい
は、前記超微粉沫に圧力をかけて噴射する直圧式ブラス
ト装置を用いることができる。
As a sand blasting device, a known suction type in which a ceramic ultra-fine powder is drawn into a nozzle by utilizing an ejector phenomenon inside the nozzle and jetted, or a direct pressure type blasting device in which a pressure is applied to the ultra-fine powder to jet the same. Can be used.

【0014】下記の条件にて粒子径の違いによるセラミ
ック粉末の付着性のテストを行った。
A test was conducted on the adhesion of the ceramic powder depending on the particle size under the following conditions.

【0015】 使用装置:不二製作所製SC−4S型 使用ノズル:サクション式φ7mmノズル 加工圧力:4kg/cm2 ノズル距離:80mm ガラス基板サイズ:150mm×150mm 厚さ:3mm テストしたセラミック:TiO2, ZnO, BaTiO3, SiO2, TiO
2, Al2O3, Fe2O3, ZrO2 平均粒径20〜100nm, 110〜150nm, 1μmの
セラミックにて噴射テストを行い、カッターにより薄膜
層から基材に達する幅1mmの線を縦横11本づつ交叉し
て引き、薄膜層上から15mmのセロハンテープを貼着し
て一気に剥離する付着強度テストを行ったところ、平均
粒径20〜100nmで全く剥離は無く、強力に付着して
いることがわかった。
Apparatus used: SC-4S type manufactured by Fuji Seisakusho Nozzle used: suction type φ7 mm nozzle Processing pressure: 4 kg / cm 2 Nozzle distance: 80 mm Glass substrate size: 150 mm × 150 mm Thickness: 3 mm Ceramic tested: TiO 2 , ZnO, BaTiO 3 , SiO 2 , TiO
2 , Al 2 O 3 , Fe 2 O 3 , ZrO 2 An average particle size of 20 to 100 nm, 110 to 150 nm, 1 μm ceramic is subjected to an injection test, and a 1 mm width line from the thin film layer to the base material is cut by a cutter. When 11 pieces were crossed and pulled, a 15 mm cellophane tape was stuck from the top of the thin film layer, and an adhesion strength test was performed to peel off at a stretch. I understand.

【0016】セラミック粒子の形成方法として細分化法
と生長法があり、細分化法は粗粒子から粉砕により得る
方法であるが、粒径が1 μm以下になると効率良く微粒
子を得るのは困難となる。生長法ではイオン,原子,分
子から核生成と成長の2つの過程により粒子を作る方法
であり、粒径が1μm以下の超微粒子を容易に得ること
ができる。そのため超微粒子を得る方法としては生長法
が用いられる。 生長法はさらに液相法と気相法に分類
される。
As a method for forming ceramic particles, there are a fragmentation method and a growth method. The fragmentation method is a method of obtaining fine particles by grinding, but it is difficult to obtain fine particles efficiently when the particle size is 1 μm or less. Become. In the growth method, particles are formed from ions, atoms, and molecules by two processes of nucleation and growth, and ultrafine particles having a particle size of 1 μm or less can be easily obtained. Therefore, a growth method is used as a method for obtaining ultrafine particles. The growth method is further classified into a liquid phase method and a gas phase method.

【0017】気相法は成分蒸気の凝縮や気体成分の化学
反応によって各種形態の固体を析出する。
In the gas phase method, various forms of solids are deposited by condensation of component vapors and chemical reaction of gas components.

【0018】準備されるセラミックの超微粉として Si
3N4, TiN, ZrN, VN, AlN, BN, NbN,TaN, Zr3N4, SiC, T
iC, TaC, NbC, Mo2C, WC, ZrC, SiO2, TiO2, Al2O3, Fe
2O3,ZrO2,NiO, CoO, SnO2, Nb2O5, MoO3, WO3, B2O3, V
2O5, ZnO, Cr2O3, NiFe2O4,HfO2, HfO2, ThO2, Y2O3, D
y2O3, Yb2O3, MgO, ITOがある。
Si as an ultrafine powder of ceramic to be prepared
3 N 4 , TiN, ZrN, VN, AlN, BN, NbN, TaN, Zr 3 N 4 , SiC, T
iC, TaC, NbC, Mo 2 C, WC, ZrC, SiO 2 , TiO 2 , Al 2 O 3 , Fe
2 O 3 , ZrO 2 , NiO, CoO, SnO 2 , Nb 2 O 5 , MoO 3 , WO 3 , B 2 O 3 , V
2 O 5 , ZnO, Cr 2 O 3 , NiFe 2 O 4 , HfO 2 , HfO 2 , ThO 2 , Y 2 O 3 , D
y 2 O 3, Yb 2 O 3, MgO, there are ITO.

【0019】液相法は金属塩溶液から微粒子を生成させ
る方法で沈殿法及び溶媒蒸発法に大別される。
The liquid phase method is a method of forming fine particles from a metal salt solution, and is roughly classified into a precipitation method and a solvent evaporation method.

【0020】液相法では組成の制御が容易で多成分系化
合物粒子の合成や微量成分の添加が気相法に比べ容易で
ある。作成されるセラミックの超微粉としてBaTiO3, Sr
TiO3, BaZrO3, Ba(Ti1-xZrx)O3, Sr(Ti1-xZrx)O3, (Ba
1-xSrx)TiO3,MnFe2O4, CoFe2O4, NiFe2O4, ZnFe2O4, (M
n1-xZnx)Fe2O4, Zn2GeO4, PbWO4,SrAs2O6, BaSnO3, SrS
nO3, PbSnO3, CaSnO3, MgSnO3, SrGeO3, PbGeO3, SrTeO
3,Pb(Ti1-xZrx)O3, Pb1-xLax(ZryTi1-y)1-x/4O3, Sr(Zn
1/3Nb2/3)O3,Ba(Zn1/3Nb2/3)O3, Sr(Zn1/3Ta2/3)O3, Ba
(Zn1/3Ta2/3)O3, Sr(Fe1/2Sb1/2)O3,Ba(Fe1/2Sb1/2)O3,
Sr(Co1/3Sb2/3)O3, Ba(Co1/3Sb2/3)O3, Sr(Ni1/3S
b2/3)O3,NiFe2O4, CuFe2O4, MgFe2O4(Ni1-xZnx)Fe2O4,
(Co1-xZnx)Fe2O4, BaFe12O19,SrFe12O19, PbFe12O19, R
3Fe5O12(R=Sm, Gd, Y, Eu, Tb), Tb3Al5O12,R3Gd5O12(R
=Sm, Gd, Y, Er), RFeO3(R=Sm, Y, La, Nb, Gd, Tb), L
aAlO3,NbAlO3, R4Al2O9(R=Sm, Eu, Gd, Tb), Co3As
2O8, (BaxSr1-x)Nb2O6, PZT,GeO2, PbO, As2O3, Sb2O5,
Bi2O3, TeO2, CuO, ZnO, TiO2, ZrO2, Mn3O4,Fe3O4, C
oAl2O4, Cu2Cr2O4, PbCrO4, PbCrO4, CoFe2O4, MgFe
2O4,(Mg,Mn)Fe2O4, MnFe2O4, (Mn,Zn)Fe2O4, (Ni,Zn)Fe
2O4, ZnFe2O4などがある。
In the liquid phase method, the composition can be easily controlled, and the synthesis of multi-component compound particles and the addition of trace components are easier than in the gas phase method. BaTiO 3 , Sr as super fine powder of ceramic to be created
TiO 3 , BaZrO 3 , Ba (Ti 1-x Zr x ) O 3 , Sr (Ti 1-x Zr x ) O 3 , (Ba
1-x Sr x ) TiO 3 , MnFe 2 O 4 , CoFe 2 O 4 , NiFe 2 O 4 , ZnFe 2 O 4 , (M
n 1-x Zn x ) Fe 2 O 4 , Zn 2 GeO 4 , PbWO 4 , SrAs 2 O 6 , BaSnO 3 , SrS
nO 3 , PbSnO 3 , CaSnO 3 , MgSnO 3 , SrGeO 3 , PbGeO 3 , SrTeO
3 , Pb (Ti 1-x Zr x ) O 3 , Pb 1-x La x (Zr y Ti 1-y ) 1-x / 4 O 3 , Sr (Zn
1/3 Nb 2/3 ) O 3 , Ba (Zn 1/3 Nb 2/3 ) O 3 , Sr (Zn 1/3 Ta 2/3 ) O 3 , Ba
(Zn 1/3 Ta 2/3 ) O 3 , Sr (Fe 1/2 Sb 1/2 ) O 3 , Ba (Fe 1/2 Sb 1/2 ) O 3 ,
Sr (Co 1/3 Sb 2/3 ) O 3 , Ba (Co 1/3 Sb 2/3 ) O 3 , Sr (Ni 1/3 S
b 2/3 ) O 3 , NiFe 2 O 4 , CuFe 2 O 4 , MgFe 2 O 4 (Ni 1-x Zn x ) Fe 2 O 4 ,
(Co 1-x Zn x ) Fe 2 O 4 , BaFe 12 O 19 , SrFe 12 O 19 , PbFe 12 O 19 , R
3 Fe 5 O 12 (R = Sm, Gd, Y, Eu, Tb), Tb 3 Al 5 O 12 , R 3 Gd 5 O 12 (R
= Sm, Gd, Y, Er), RFeO 3 (R = Sm, Y, La, Nb, Gd, Tb), L
aAlO 3 , NbAlO 3 , R 4 Al 2 O 9 (R = Sm, Eu, Gd, Tb), Co 3 As
2 O 8 , (Ba x Sr 1-x ) Nb 2 O 6 , PZT, GeO 2 , PbO, As 2 O 3 , Sb 2 O 5 ,
Bi 2 O 3 , TeO 2 , CuO, ZnO, TiO 2 , ZrO 2 , Mn 3 O 4 , Fe 3 O 4 , C
oAl 2 O 4 , Cu 2 Cr 2 O 4 , PbCrO 4 , PbCrO 4 , CoFe 2 O 4 , MgFe
2 O 4 , (Mg, Mn) Fe 2 O 4 , MnFe 2 O 4 , (Mn, Zn) Fe 2 O 4 , (Ni, Zn) Fe
2 O 4 , ZnFe 2 O 4 and the like.

【0021】これらの気相法及び液相法で作成された粒
径が100nm以下好ましくは50nm以下の金属酸化物、
金属窒化物、金属炭化物、金属硼化物、金属硫化物等の
セラミックの粒径が100nm以下の超微粉末を圧縮気体
にて噴射することにより、金属、セラミック、ガラス、
シリコンウェハー、水晶、化合物半導体、プラスチック
等の表面へセラミックを付着させることにより膜厚が1
0μm以下のセラミック薄膜層を形成する。
A metal oxide having a particle size of 100 nm or less, preferably 50 nm or less, produced by these gas phase method and liquid phase method;
Metal nitrides, metal carbides, metal borides, metal sulfides and other ceramics have a particle size of 100 nm or less by injecting ultrafine powder with a compressed gas to produce metals, ceramics, glass,
By attaching ceramic to the surface of silicon wafer, crystal, compound semiconductor, plastic, etc., the film thickness becomes 1
A ceramic thin film layer of 0 μm or less is formed.

【0022】実施例1 酸化亜鉛薄膜層の形成 図1のように平均粒径20nmの酸化亜鉛粉末(セラミッ
ク超微粉末15)をシリコンウェハー(被加工物1)に
下記の条件にて高圧圧縮空気との混合流体として噴射
し、膜厚1μmの酸化亜鉛層を形成させた。
Example 1 Formation of Zinc Oxide Thin Film Layer As shown in FIG. 1, zinc oxide powder (ceramic ultrafine powder 15) having an average particle size of 20 nm was applied to a silicon wafer (workpiece 1) under high-pressure compressed air under the following conditions. To form a zinc oxide layer having a thickness of 1 μm.

【0023】付着加工条件 使用装置:不二製作所製SCM−1ADE−401型 噴射圧力:5kg/cm2 ノズル距離:80mm ノズルチップ径:7mm 実施例2 プラズマディスプレイの背面板に輝度をあげるための反
射層形成及び、アドレス電極の保護層の形成を目的とし
て隔壁の周りに酸化チタン層を形成する。
Adhesion processing conditions Apparatus used: SCM-1ADE-401 manufactured by Fuji Manufacturing Co., Ltd. Injection pressure: 5 kg / cm 2 Nozzle distance: 80 mm Nozzle tip diameter: 7 mm Example 2 Reflection for increasing brightness on the back plate of plasma display A titanium oxide layer is formed around the partition wall for the purpose of forming a layer and forming a protective layer of the address electrode.

【0024】ガラス基板にサンドブラスト用感光性ドラ
イフィルムによりパターニングを行い、マスキングを形
成後、サンドブラストによりガラス基板を加工して深さ
120μm ピッチ220μm 隔壁幅50μm のプラズマ
ディスプレイ用隔壁を形成後ニッケルのアドレス電極を
形成した。
After patterning the glass substrate with a photosensitive dry film for sandblasting and forming masking, the glass substrate is processed by sandblasting to form a plasma display partition having a depth of 120 μm, a pitch of 220 μm, and a partition width of 50 μm. Was formed.

【0025】すなわち、図3及び図4に示すように、工
程1にて200mm×300mmで厚み3mmのソーダガラス
上の中心に150mm×250mm内に170μm 幅で深さ
120μm の溝をピッチ220μm で全面加工して溝加
工したガラス板を形成する。
That is, as shown in FIGS. 3 and 4, a groove having a width of 170 .mu.m and a depth of 120 .mu.m is formed at a pitch of 220 .mu.m in a center of 150 mm.times.250 mm in a center on a 200 mm.times.300 mm and 3 mm thick soda glass. Processing to form a grooved glass sheet.

【0026】この加工したガラス基板上に工程2でドラ
イフィルムラミネータ10によりドライフィルム6をラ
ミネート後、工程3で100 ℃に加熱してドライフィルム
を軟化させ前記溝の中にもドライフィルムを密着させ
た。
After laminating the dry film 6 on the processed glass substrate by the dry film laminator 10 in step 2, it is heated to 100 ° C. in step 3 to soften the dry film and bring the dry film into close contact with the groove. Was.

【0027】次に工程4で平行光線で溝の中心部80μ
m のみ紫外線があたらないようなパターンのガラスマス
ク18を載置して紫外線露光を行った。
Next, in step 4, a parallel light beam is applied to the center of the groove at 80 μm.
A glass mask 18 having a pattern such that only the m was not exposed to the ultraviolet light was placed thereon, and the ultraviolet exposure was performed.

【0028】工程5で炭酸ナトリウム0.3%水溶液1
6にて現像を行い、溝の中心部のみドライフィルムが無
い状態にドライフィルムのパターニングを行った。
In step 5, 0.3% aqueous solution of sodium carbonate 1
The development was performed in step 6, and the dry film was patterned without the dry film only in the center of the groove.

【0029】サクション圧力5kg/cm2 、圧送圧力2kg/
cm2にて不二製作所製ハイパーノズルを使用して平均粒
径15μm の錫のビーズ(低融点金属粉末)を噴射幅8
0μm で厚み約1μm の錫の膜を溝の中に形成する。
A suction pressure of 5 kg / cm 2 and a pressure of 2 kg / cm 2
Injection of tin beads (low-melting metal powder) with an average particle size of 15 μm using a Fuji Hyper nozzle at cm 2
A 0 μm, about 1 μm thick tin film is formed in the trench.

【0030】工程8〜工程10において、剥離液19に
て前記ドライフィルムを剥離後、工程10にてパターニ
ングされた錫(低融点金属)上に電気メッキを行い膜厚
6μm のニッケル(パターニングされた耐熱性金属5)
を錫上に付着させ。これによりガラスを直接加工したプ
ラズマディスプレイの背面基板にアドレス電極を形成し
た。
In steps 8 to 10, after the dry film was peeled off with a stripping solution 19, electroplating was performed on tin (low melting point metal) patterned in step 10 to form a 6 μm thick nickel (patterned). Heat resistant metal 5)
On tin. As a result, address electrodes were formed on the rear substrate of the plasma display in which glass was directly processed.

【0031】図2に示すように、上述の工程によりアド
レス電極を形成したプラズマデイスプレイの背面板とな
るガラス基板2に対して、工程2で、このガラス基板2
上にスクリーン印刷でレジスト3をベタ印刷して隔壁の
上部のみレジスト層4を形成した。工程3及び4でサク
ション式ノズル21より酸化チタン(Ti02)の粉末
(平均粒径7nm)を噴射し膜厚3μm の酸化チタン層
(金属化合物層8)を隔壁の内側に形成させた。
As shown in FIG. 2, the glass substrate 2 serving as the back plate of the plasma display on which the address electrodes have been formed in the above-described steps is subjected to a
The resist 3 was solid-printed thereon by screen printing to form a resist layer 4 only on the upper part of the partition. Powder (average particle size 7 nm) titanium oxide layer of injected thickness 3μm the titanium oxide from the suction-type nozzle 21 (Ti0 2) (metal compound layer 8) was formed on the inner side of the partition wall in the steps 3 and 4.

【0032】工程5でレジスト層を剥離した。In step 5, the resist layer was removed.

【0033】酸化チタンは白色の顔料として使用されて
おり、放電したときの反射層となり電極の保護層として
も使用できた。
Titanium oxide was used as a white pigment, became a reflective layer when discharging, and could be used as a protective layer of the electrode.

【0034】 使用装置:不二製作所製SCM−5ADNH−401型 噴射圧力:5kg/cm2 ノズル距離:80mm ノズルチップ径:7mmApparatus used: SCM-5ADNH-401 manufactured by Fuji Manufacturing Co., Ltd. Injection pressure: 5 kg / cm 2 Nozzle distance: 80 mm Nozzle tip diameter: 7 mm

【図面の簡単な説明】[Brief description of the drawings]

【図1】セラミックの薄膜を形成させた図FIG. 1 illustrates a ceramic thin film formed thereon.

【図2】プラズマディスプレイの隔壁を、ガラス板を加
工して形成後に光の反射と保護層の目的で酸化チタン超
微粉末を噴射する工程図
FIG. 2 is a process diagram of jetting ultrafine titanium oxide powder for the purpose of light reflection and a protective layer after forming a partition of a plasma display by processing a glass plate.

【図3】プラズマディスプレイの背面板作成でガラス板
を直接サンドブラストで加工し、加工した溝に低融点金
属パターンを形成後、電気メッキを行い電極を形成した
工程図の工程1から工程7迄を示す。
FIG. 3 is a view showing a process of forming a back plate of a plasma display by directly sandblasting a glass plate, forming a low-melting-point metal pattern in the processed groove, and performing electroplating to form an electrode; Show.

【図4】上記工程の工程8から工程10までを示す。FIG. 4 shows steps 8 to 10 of the above steps.

【符号の説明】[Explanation of symbols]

1 被加工物 2 ガラス板を直接加工して隔壁を形成したプラズマデ
ィスプレイの電極入り背面板 3 レジスト 4 パターニングされたレジスト 8 セラミック薄膜層 15セラミック微粉末及び圧縮気体の混合流体
REFERENCE SIGNS LIST 1 workpiece 2 back plate with electrodes of plasma display electrode formed directly by processing a glass plate to form a partition 3 resist 4 patterned resist 8 ceramic thin film layer 15 mixed fluid of ceramic fine powder and compressed gas

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属酸化物、金属窒化物、金属炭化物、金
属硼化物、金属硫化物等のセラミックの粒径が100nm
以下の超微粉末を風速が20m/sec 以上の圧縮気体と
の混合流体として噴射することにより、金属、セラミッ
ク、ガラス、シリコンウェハー、水晶、化合物半導体、
プラスチック等の表面へ前記セラミックを膜厚が10μ
m以下で付着させることを特徴とするセラミック薄膜層
の形成方法。
1. A ceramic having a particle size of 100 nm, such as a metal oxide, a metal nitride, a metal carbide, a metal boride, or a metal sulfide.
By injecting the following ultrafine powder as a mixed fluid with a compressed gas having a wind speed of 20 m / sec or more, metal, ceramic, glass, silicon wafer, crystal, compound semiconductor,
The thickness of the ceramic is 10μ on the surface of plastic etc.
A method for forming a ceramic thin film layer, wherein the ceramic thin film layer is adhered to a thickness of not more than m.
JP12304399A 1999-04-28 1999-04-28 Formation of ceramic thin film layer Pending JP2000313970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12304399A JP2000313970A (en) 1999-04-28 1999-04-28 Formation of ceramic thin film layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12304399A JP2000313970A (en) 1999-04-28 1999-04-28 Formation of ceramic thin film layer

Publications (1)

Publication Number Publication Date
JP2000313970A true JP2000313970A (en) 2000-11-14

Family

ID=14850805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12304399A Pending JP2000313970A (en) 1999-04-28 1999-04-28 Formation of ceramic thin film layer

Country Status (1)

Country Link
JP (1) JP2000313970A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027348A1 (en) * 1999-10-12 2001-04-19 National Institute Of Advanced Industrial Science And Technology Composite structured material and method for preparation thereof and apparatus for preparation thereof
JP2003183848A (en) * 2001-04-12 2003-07-03 National Institute Of Advanced Industrial & Technology Composite structure and manufacturing method thereof
JP2007297650A (en) * 2006-04-27 2007-11-15 Fuji Kihan:Kk Boronization method
JP2008277862A (en) * 2000-10-11 2008-11-13 National Institute Of Advanced Industrial & Technology Electrostatic chuck and manufacturing method thereof
US8114473B2 (en) 2007-04-27 2012-02-14 Toto Ltd. Composite structure and production method thereof
JP2013199674A (en) * 2012-03-23 2013-10-03 Nisshin Steel Co Ltd Stainless steel material with good insulation and method for producing the same
KR20230092255A (en) * 2021-12-17 2023-06-26 국방과학연구소 Transparent conductive ceramic laminate comprising perovskite conductor
CN118685771A (en) * 2024-08-29 2024-09-24 四川苏克流体控制设备股份有限公司 A production process of hard-sealed ball valve based on laser cladding

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553376B2 (en) 1999-10-12 2009-06-30 Toto Ltd. Apparatus for forming composite structures
US7736731B2 (en) 1999-10-12 2010-06-15 National Institute Of Advanced Industrial Science And Technology Composite structure and method for forming the same
US7993701B2 (en) 1999-10-12 2011-08-09 Toto Ltd. Composite structure forming method
US7153567B1 (en) 1999-10-12 2006-12-26 Toto Ltd. Composite structure and method and apparatus for forming the same
KR100724070B1 (en) * 1999-10-12 2007-06-04 도토기키 가부시키가이샤 Composite structure, manufacturing method and apparatus thereof
KR100767395B1 (en) * 1999-10-12 2007-10-17 토토 가부시키가이샤 Composite structured material
JP3348154B2 (en) 1999-10-12 2002-11-20 独立行政法人産業技術総合研究所 Composite structure, method of manufacturing the same, and manufacturing apparatus
WO2001027348A1 (en) * 1999-10-12 2001-04-19 National Institute Of Advanced Industrial Science And Technology Composite structured material and method for preparation thereof and apparatus for preparation thereof
JP2008277862A (en) * 2000-10-11 2008-11-13 National Institute Of Advanced Industrial & Technology Electrostatic chuck and manufacturing method thereof
JP2003183848A (en) * 2001-04-12 2003-07-03 National Institute Of Advanced Industrial & Technology Composite structure and manufacturing method thereof
JP2007297650A (en) * 2006-04-27 2007-11-15 Fuji Kihan:Kk Boronization method
US8114473B2 (en) 2007-04-27 2012-02-14 Toto Ltd. Composite structure and production method thereof
JP2013199674A (en) * 2012-03-23 2013-10-03 Nisshin Steel Co Ltd Stainless steel material with good insulation and method for producing the same
KR20230092255A (en) * 2021-12-17 2023-06-26 국방과학연구소 Transparent conductive ceramic laminate comprising perovskite conductor
KR102619845B1 (en) 2021-12-17 2024-01-02 국방과학연구소 Transparent conductive ceramic laminate comprising perovskite conductor
CN118685771A (en) * 2024-08-29 2024-09-24 四川苏克流体控制设备股份有限公司 A production process of hard-sealed ball valve based on laser cladding

Similar Documents

Publication Publication Date Title
JP3500393B2 (en) Composite structure and manufacturing method thereof
KR101257177B1 (en) The film formation method of zirconia membrane
WO2001027348A1 (en) Composite structured material and method for preparation thereof and apparatus for preparation thereof
JP2000313970A (en) Formation of ceramic thin film layer
Lebedev et al. Substrate heating effects on hardness of an α-Al2O3 thick film formed by aerosol deposition method
WO2007026649A1 (en) Vapor deposition head device and method of coating by vapor deposition
KR20140003336A (en) Deposition method
KR101497854B1 (en) Film forming method
Akedo et al. Aerosol deposition (AD) and its applications for piezoelectric devices
KR101671097B1 (en) Deposition method, deposition apparatus and structure
JP3897631B2 (en) Composite structure and manufacturing method thereof
JP2011162855A (en) Method for depositing yttria film
US20040123896A1 (en) Selective heating and sintering of components of photovoltaic cells with microwaves
JP2003119575A (en) Composite structure forming method and composite structure forming apparatus
CN100362133C (en) A kind of preparation method of hard wear-resistant protective film
KR101986306B1 (en) Vacuum suspension plasma spray aparattus and vacuum suspension plasma spray method
WO2007105670A1 (en) Method for fabricating film-formed body by aerosol deposition
JP3995994B2 (en) Constituent member of jig for semiconductor manufacturing apparatus and manufacturing method thereof
JP2006326523A (en) Film deposition method, piezoelectric film formed by the film deposition method, piezoelectric element with the piezoelectric film, and ink jet apparatus using the piezoelectric element
KR20100052628A (en) Deposition apparatus of solid powder with thermal shock control units &amp; temperature control method for eliminating thermal shock in solid powder spray deposition
JP2000302439A (en) Method for forming thin film layer of metal compound
JP2002194560A (en) Low temperature forming method for brittle material structures
US7179718B2 (en) Structure and method of manufacturing the same
WO2007105674A1 (en) Method for fabricating film-formed body by aerosol deposition
JP2003273194A (en) Electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A977 Report on retrieval

Effective date: 20070726

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071121