JP2000308359A - Non-break power supply including a battery charging/ discharging device - Google Patents
Non-break power supply including a battery charging/ discharging deviceInfo
- Publication number
- JP2000308359A JP2000308359A JP11107961A JP10796199A JP2000308359A JP 2000308359 A JP2000308359 A JP 2000308359A JP 11107961 A JP11107961 A JP 11107961A JP 10796199 A JP10796199 A JP 10796199A JP 2000308359 A JP2000308359 A JP 2000308359A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- capacitor
- reactor
- power supply
- igbt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Stand-By Power Supply Arrangements (AREA)
- Inverter Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、バッテリーの充放
電部を備えた無停電電源装置(以下UPSと言う)に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an uninterruptible power supply (hereinafter referred to as UPS) having a battery charging / discharging unit.
【0002】[0002]
【従来の技術】従来方式によるバッテリー充放電回路を
備えたUPSの一例(フロート方式)を図6に示す。2
つのダイオード111と112を直列接続したハーフブ
リッジ形整流器と、ダイオード111と112の接続点
に一端を接続し他端を交流入力電源115の一端に接続
するリアクタ113と、交流入力電源115に並列接続
するコンデンサ114より成るACフィルタとによって
コンバータ部を構成している。2. Description of the Related Art FIG. 6 shows an example (a float type) of a UPS having a battery charge / discharge circuit according to a conventional type. 2
A half-bridge rectifier in which two diodes 111 and 112 are connected in series, a reactor 113 in which one end is connected to a connection point of the diodes 111 and 112 and the other end is connected to one end of an AC input power supply 115, and is connected in parallel to the AC input power supply 115 A converter section is constituted by an AC filter including a capacitor 114 that performs the conversion.
【0003】前記ハーフブリッジ形整流器の両端に並列
接続し、半導体スイッチ同士の接続点を交流電源115
の他端に接続する2つの半導体スイッチ101と102
より成る直列回路と、ダイオード105を介して半導体
スイッチ101のコレクタ端子にプラス極を接続しマイ
ナス極を半導体スイッチ101と102の接続点に接続
したバッテリー103と、前記接続点にプラス極を接続
しマイナス極を半導体スイッチ102のエミッタ端子に
ダイオード106を介して接続したバッテリー104
と、2つのバッテリー103と104の直列回路の両端
に並列接続すると共に、バッテリー同士の接続点にコン
デンサ同士の接続点を接続した直流平滑用の2つのコン
デンサ107と108より成る直列回路とによってバッ
テリー充放電部を構成している。[0003] Both ends of the half-bridge rectifier are connected in parallel, and the connection point between the semiconductor switches is connected to an AC power supply 115.
Semiconductor switches 101 and 102 connected to the other end of the
A battery 103 having a positive electrode connected to the collector terminal of the semiconductor switch 101 via a diode 105 and a negative electrode connected to a connection point between the semiconductor switches 101 and 102, and a positive electrode connected to the connection point. Battery 104 having a negative electrode connected to the emitter terminal of semiconductor switch 102 via diode 106
And a series circuit of two DC smoothing capacitors 107 and 108 connected in parallel to both ends of a series circuit of two batteries 103 and 104 and connected to a connection point of the capacitors at a connection point of the batteries. It constitutes a charge / discharge unit.
【0004】コンデンサ107と108より成る直列回
路の両端に並列接続した2つの半導体スイッチ109と
110を直列接続したインバータと、半導体スイッチ1
09と110同士の接続点およびコンデンサ107と1
08同士の接続点との間に設けたリアクタ115とコン
デンサ116より成るACフィルタとによってインバー
タ部を構成している。An inverter in which two semiconductor switches 109 and 110 connected in parallel to both ends of a series circuit composed of capacitors 107 and 108, and a semiconductor switch 1
09 and 110 and capacitors 107 and 1
An inverter section is constituted by a reactor 115 provided between the connection points 08 and an AC filter including a capacitor 116.
【0005】リアクタ113は昇圧リアクタであって、
入力電圧が正の半波のときに半導体スイッチ101のオ
ンによって蓄積されたエネルギーを、半導体スイッチ1
01のオフによって放出し、バッテリー103とコンデ
ンサ107を同時に充電させる。また、入力電圧が負の
半波のときに半導体スイッチ102のオンによって蓄積
されたエネルギーを、半導体スイッチ102のオフによ
って放出し、バッテリー104とコンデンサ108を同
時に充電させる。即ち、交流入力電圧の極性が変化する
度ごとに、半導体スイッチ101と102を交互にオン
・オフ制御して、バッテリー103とコンデンサ107
もしくはバッテリー104とコンデンサ108を交互に
充電させる。[0005] The reactor 113 is a step-up reactor,
The energy stored by turning on the semiconductor switch 101 when the input voltage is a positive half-wave is
01 is turned off, and the battery 103 and the capacitor 107 are charged at the same time. In addition, when the input voltage is a negative half wave, the energy stored by turning on the semiconductor switch 102 is released by turning off the semiconductor switch 102, and the battery 104 and the capacitor 108 are charged simultaneously. That is, each time the polarity of the AC input voltage changes, the semiconductor switches 101 and 102 are alternately turned on and off to control the battery 103 and the capacitor 107.
Alternatively, the battery 104 and the capacitor 108 are charged alternately.
【0006】交流電源が停電したときは、バッテリー1
03の充電エネルギーはコンデンサ107に蓄積され、
バッテリー104の充電エネルギーはコンデンサ108
に蓄積される。インバータを構成する半導体スイッチ1
09と110を交互にオン・オフ制御すると、コンデン
サ107と108に蓄積されたエネルギーは交流電力に
変換され、リアクタ116とコンデンサ117より成る
フィルタ回路を介して送出される。When the AC power supply fails, the battery 1
03 is stored in the capacitor 107,
The charging energy of the battery 104 is
Is accumulated in Semiconductor switch 1 constituting inverter
When ON and OFF of 09 and 110 are alternately controlled, the energy stored in the capacitors 107 and 108 is converted into AC power, and is transmitted through a filter circuit including the reactor 116 and the capacitor 117.
【0007】[0007]
【発明が解決しようとする課題】フロート方式によるバ
ッテリー充放電回路を備えたUPSにおいては、2組の
バッテリーが必要であり、このため、UPS寸法も大き
く高価格となっていた。また、チョッパ方式にすると回
路構成が複雑になるばかりでなく、バッテリー放電時に
おける上下直流電圧のバランスがとれない欠点があっ
た。In a UPS provided with a battery charging / discharging circuit of the float type, two sets of batteries are required, and therefore, the size of the UPS is large and the price is high. Further, the chopper method not only complicates the circuit configuration, but also has a drawback that the upper and lower DC voltages cannot be balanced at the time of battery discharge.
【0008】[0008]
【課題を解決するための手段】本発明は、上述した従来
技術の欠点を解消するためになされたものであって、バ
ッテリー数量を削減すると共にバッテリー充放電回路の
構成を簡略化した。また、第2の実施例に示すように、
バッテリーのプラス極側にリアクタを設けることによっ
て昇降圧チョッパ方式によるバッテリー充放電回路を構
成した。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks of the prior art, and has reduced the number of batteries and simplified the structure of a battery charge / discharge circuit. Also, as shown in the second embodiment,
By providing a reactor on the positive electrode side of the battery, a battery charge / discharge circuit using a step-up / step-down chopper method was configured.
【0009】[0009]
【発明の実施の形態】以下、本発明の実施例を図面を参
照しながら説明する。図1は、本発明による第1の実施
例のバッテリー充電部を備えたUPSの回路構成を示す
ブロック図であって、コンバータ部20、バッテリー充
放電部30およびインバータ部40によって構成してい
る。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a circuit configuration of a UPS including a battery charging unit according to a first embodiment of the present invention, which is configured by a converter unit 20, a battery charging / discharging unit 30, and an inverter unit 40.
【0010】コンバータ部20は、交流電源に一端を接
続するリアクタ18と、その他端にダイオード同士の接
続点を接続した2つのダイオード16と17より成るハ
ーフブリッジ形整流回路とによって構成している。The converter section 20 is constituted by a reactor 18 having one end connected to an AC power supply and a half-bridge rectifier circuit including two diodes 16 and 17 having a connection point between the diodes at the other end.
【0011】バッテリー充放電部30は、前記ハーフブ
リッジ形整流回路の両端に並列接続した半導体スイッチ
(以下、IGBTと言う)1〜4より成る直列回路と、
IGBT1と2の接続点およびIGBT3と4の接続点
間に並列接続したバッテリー7と、前記IGBT1のコ
レクタ端子にアノード端子を接続したダイオード8のカ
ソード端子およびIGBT2と3の接続点との間に並列
接続したコンデンサ5と、前記IGBT2と3の接続点
とIGBT4のエミッタ端子にカソード端子を接続した
ダイオード9のアノード端子との間に並列接続したコン
デンサ6より成る2つのコンデンサの直列回路とによっ
て構成している。The battery charge / discharge unit 30 includes a series circuit including semiconductor switches (hereinafter, referred to as IGBTs) 1 to 4 connected in parallel to both ends of the half-bridge rectifier circuit,
A battery 7 connected in parallel between the connection point of the IGBTs 1 and 2 and a connection point of the IGBTs 3 and 4 is connected in parallel between the cathode terminal of the diode 8 having the anode terminal connected to the collector terminal of the IGBT 1 and the connection point of the IGBTs 2 and 3. And a series circuit of two capacitors including a capacitor 6 connected in parallel between a connection point of the IGBTs 2 and 3 and an anode terminal of a diode 9 having a cathode terminal connected to an emitter terminal of the IGBT 4. ing.
【0012】インバータ部40は、コンデンサ5と6よ
り成る直列回路の両端に並列接続したIGBT11と1
2より成るハーフブリッジ形インバータ回路と、IGB
T11と12の接続点およびコンデンサ5と6の接続点
との間に設けたリアクタ13とコンデンサ14より成る
ACフィルタとによって構成している。The inverter section 40 includes IGBTs 11 and 1 connected in parallel to both ends of a series circuit comprising capacitors 5 and 6.
And an IGB
An AC filter including a reactor 13 and a capacitor 14 is provided between a connection point between T11 and T12 and a connection point between capacitors 5 and 6.
【0013】次に、本発明の第1の実施例における回路
動作を図3と図4を用いて説明する。図3はバッテリー
充電時における回路動作を示すものであって、図3
(a)と(b)は入力電圧が正の場合、図3(c)と
(d)は入力電圧が負の場合を示す。また、図5は停電
時におけるバッテリー放電時の回路動作を示す。Next, the circuit operation in the first embodiment of the present invention will be described with reference to FIGS. FIG. 3 shows the circuit operation when the battery is charged.
3A and 3B show the case where the input voltage is positive, and FIGS. 3C and 3D show the case where the input voltage is negative. FIG. 5 shows a circuit operation when the battery is discharged during a power failure.
【0014】入力電圧が正の半波のときは、IGBT1
と2の同時オンに伴う回路短絡によってリアクタ18に
エネルギーが蓄積されると同時に、バッテリー7からI
GBT2、コンデンサ6、ダイオード9、IGBT4の
還流ダイオードを経由してコンデンサ6にバッテリー電
圧が印加される。(図3(a)参照) 次に、IGBT1オン、IGBT2オフとなると、リア
クタ18に蓄積されたエネルギーは、ダイオード16と
8を経由してコンデンサ5を充電させる。また、ダイオ
ード16、IGBT1、バッテリー7、IGBT3の還
流ダイオードを経由してリアクタ18のエネルギーはバ
ッテリー7を充電させる。なお、図3(e)は、図3
(a)と(b)に示すIGBT1(S1)〜IGBT4
(S4)のスイッチング動作を示す。例えば、S2のTr
とOFFはIGBT2(S2)がオンとオフになった時
を示し、S3のDiはIGBT3(S3)の還流ダイオー
ドを介して電流が流れることを示す。When the input voltage is a positive half wave, the IGBT 1
At the same time as energy is stored in the reactor 18 due to a short circuit due to the simultaneous ON of
A battery voltage is applied to the capacitor 6 via the GBT 2, the capacitor 6, the diode 9, and the freewheeling diode of the IGBT 4. Next, when the IGBT 1 is turned on and the IGBT 2 is turned off, the energy stored in the reactor 18 charges the capacitor 5 via the diodes 16 and 8. In addition, the energy of the reactor 18 charges the battery 7 via the reflux diode of the diode 16, the IGBT1, the battery 7, and the IGBT3. FIG. 3 (e) is the same as FIG.
(A) and shown in (b) IGBT1 (S 1) ~IGBT4
The switching operation of (S 4 ) is shown. For example, Tr of S 2
And OFF indicates when the IGBT 2 (S 2) is turned on and off, D i of S 3 indicates that a current flows through the freewheeling diode of IGBT3 (S 3).
【0015】入力電圧が負の半波のときは、IGBT3
と4の同時オンに伴う回路短絡によってリアクタ18に
エネルギーが蓄積されると同時に、バッテリー7からI
GBT1の還流ダイオード、ダイオード8、コンデンサ
5、IGBT3を経由してコンデンサ5にバッテリー電
圧が印加される。(図3(c)参照) 次に、IGBT3オフ、IGBT4オンとなると、リア
クタ18に蓄積されたエネルギーは、コンデンサ6、ダ
イオード9と17、リアクタ18を経由してコンデンサ
6を充電させる。また、IGBT2の還流ダイオード、
バッテリー7、IGBT4、ダイオード17を経由して
リアクタ18のエネルギーはバッテリー7を充電する。
なお、図3(f)は、図3(c)と(d)に示すIGB
T1(S1)〜IGBT4(S4)のスイッチング動作を
示す。When the input voltage is a negative half wave, the IGBT 3
When energy is stored in the reactor 18 due to a short circuit caused by the simultaneous turning on of
A battery voltage is applied to the capacitor 5 via the freewheeling diode of the GBT 1, the diode 8, the capacitor 5, and the IGBT 3. Next, when the IGBT 3 is turned off and the IGBT 4 is turned on, the energy stored in the reactor 18 charges the capacitor 6 via the capacitor 6, the diodes 9 and 17, and the reactor 18. Also, the freewheeling diode of the IGBT2,
The energy of the reactor 18 via the battery 7, the IGBT 4 and the diode 17 charges the battery 7.
FIG. 3F shows the IGB shown in FIGS. 3C and 3D.
Showing a switching operation of the T1 (S 1) ~IGBT4 (S 4).
【0016】停電となったときは、IGBT2と3を交
互にオン・オフ制御して、バッテリー7の充電エネルギ
ーをコンデンサ5と6を介して放電させる。IGBT3
がオンの時は、バッテリー7、IGBT1の還流ダイオ
ード、ダイオード8、コンデンサ5、IGBT3を経由
してコンデンサ5にバッテリー電圧を印加する。IGB
T2がオンの時は、バッテリー7、IGBT2、コンデ
ンサ6、ダイオード9、IGBT4の還流ダイオードを
経由してコンデンサ6にバッテリー電圧が印加される。
(図5(a)と(b)参照) なお、図5(c)は、バッテリー放電時におけるIGB
T1(S1)〜IGBT4(S4)のスイッチング動作を
示す。When a power failure occurs, the IGBTs 2 and 3 are alternately turned on and off so that the charging energy of the battery 7 is discharged via the capacitors 5 and 6. IGBT3
Is ON, a battery voltage is applied to the capacitor 5 via the battery 7, the freewheeling diode of the IGBT1, the diode 8, the capacitor 5, and the IGBT3. IGB
When T2 is on, the battery voltage is applied to the capacitor 6 via the battery 7, the IGBT2, the capacitor 6, the diode 9, and the freewheeling diode of the IGBT4.
(See FIGS. 5A and 5B.) FIG. 5C shows the IGB when the battery is discharged.
Showing a switching operation of the T1 (S 1) ~IGBT4 (S 4).
【0017】ハーフブリッジ形インバータ回路を構成す
るIGBT11と12は、バッテリー充放電部のIGB
T1〜4のスイッチング動作とは無関係に、バッテリー
充電時も放電時も交互にオン・オフ制御され、コンデン
サ5と6を介して直流電力を交流電力に変換して、AC
フィルタを介して送出する。The IGBTs 11 and 12 constituting the half-bridge type inverter circuit are the IGBs of the battery charging / discharging unit.
Irrespective of the switching operation of T1 to T4, on / off control is performed alternately during charging and discharging of the battery, and DC power is converted into AC power through capacitors 5 and 6 to obtain AC power.
Send out through a filter.
【0018】本発明における第2の実施例の回路構成は
図2に示す通りであり、バッテリー7のプラス極側にリ
アクタ10を設けた点を除いて、第1の実施例と同一で
ある。第2の実施例における回路動作を図4(a)〜
(f)によって説明する。図4(a)と(b)は入力電
圧が正の半波の場合であり、図4(c)と(d)は入力
電圧が負の半波の場合である。バッテリーを充電させる
場合には、リアクタ10は降圧リアクタとして機能する
のでバッテリー電圧を低く設定できる。バッテリーを放
電させる場合には、リアクタ10は昇圧リアクタとなる
ので、バッテリー放電電圧を高めることができる。な
お、図4(e)から明らかなように、入力電圧が正の半
波の場合には、バッテリー充電を定電流制御するように
IGBT1をオン・オフさせる。また、図4(f)に示
すように、入力電圧が負の半波の場合には、バッテリー
充電を定電流制御するようにIGBT4をオン・オフさ
せる。The circuit configuration of the second embodiment of the present invention is as shown in FIG. 2, and is the same as that of the first embodiment except that a reactor 10 is provided on the positive electrode side of the battery 7. The circuit operation in the second embodiment is shown in FIG.
This will be described with reference to FIG. 4A and 4B show the case where the input voltage has a positive half-wave, and FIGS. 4C and 4D show the case where the input voltage has a negative half-wave. When charging the battery, the reactor 10 functions as a step-down reactor, so that the battery voltage can be set low. When discharging the battery, the reactor 10 is a boost reactor, so that the battery discharge voltage can be increased. As is clear from FIG. 4E, when the input voltage is a positive half-wave, the IGBT 1 is turned on / off so as to control the battery charging at a constant current. Further, as shown in FIG. 4F, when the input voltage is a negative half-wave, the IGBT 4 is turned on / off so as to control the battery charging at a constant current.
【0019】[0019]
【発明の効果】以上説明したように、本発明によるバッ
テリー充放電部を備えたUPSは、バッテリー放電時の
上下直流電圧のバランスがとれ、バッテリー数量も少な
くてよいので回路構成が簡単になる。このため、部品点
数が少ないので、小形化と低価格化を図ることができ
る。As described above, the UPS having the battery charging / discharging unit according to the present invention can balance the upper and lower DC voltages at the time of discharging the battery and can reduce the number of batteries, thereby simplifying the circuit configuration. Therefore, the number of parts is small, so that downsizing and cost reduction can be achieved.
【図1】本発明による第1の実施例のバッテリー充放電
部を備えたUPSの回路構成を示すブロック図。FIG. 1 is a block diagram showing a circuit configuration of a UPS including a battery charge / discharge unit according to a first embodiment of the present invention.
【図2】本発明による第2の実施例のバッテリー充放電
部を備えたUPSの回路構成を示すブロック図。FIG. 2 is a block diagram showing a circuit configuration of a UPS including a battery charge / discharge unit according to a second embodiment of the present invention.
【図3】第1の実施例におけるバッテリー充電時におけ
る回路動作の説明図。FIG. 3 is an explanatory diagram of a circuit operation at the time of charging the battery in the first embodiment.
【図4】第2の実施例におけるバッテリー充電時におけ
る回路動作の説明図。FIG. 4 is an explanatory diagram of a circuit operation at the time of charging a battery in a second embodiment.
【図5】バッテリー放電時における回路動作の説明図。FIG. 5 is an explanatory diagram of a circuit operation at the time of battery discharge.
【図6】従来技術によるバッテリー充放電部を備えたU
PSの回路構成を示すブロック図。FIG. 6 shows a conventional U having a battery charging / discharging unit.
FIG. 2 is a block diagram showing a circuit configuration of a PS.
1〜4,11,12 半導体スイッチ(IGBT) 7 バッテリー 10,13,18 リアクタ 5,6,14 コンデンサ 8,9,16,17 ダイオード 1-4,11,12 Semiconductor switch (IGBT) 7 Battery 10,13,18 Reactor 5,6,14 Capacitor 8,9,16,17 Diode
Claims (2)
直列接続したハーフブリッジ形整流回路と、ダイオード
(16)と(17)の接続点と交流電源の一端との間を
直列接続するリアクタ(18)とによって構成したコン
バータ部と、 前記ハーフブリッジ形整流回路の両端に並列接続した4
つの半導体スイッチ(1),(2),(3)および
(4)より成る直列回路と、半導体スイッチ(1)と
(2)の接続点および半導体スイッチ(3)と(4)の
接続点との間に設けたバッテリー(7)と、半導体スイ
ッチ(1)のコレクタ端子にアノード端子を接続したダ
イオード(8)と前記交流電源の他端と接続する半導体
スイッチ(2)と(3)の接続点との間に並列接続した
コンデンサ(5)、および前記半導体スイッチ(2)と
(3)の接続点と半導体スイッチ(4)のエミッタ端子
にカソード端子を接続したダイオード(9)との間に並
列接続したコンデンサ(6)より成る2つのコンデンサ
の直列回路とによって構成したバッテリー充放電部と、 前記2つのコンデンサの直列回路の両端に並列接続した
2つの半導体スイッチ(11)と(12)より成るハー
フブリッジ形インバータ回路と、半導体スイッチ(1
1)と(12)の接続点およびコンデンサ(5)と
(6)の接続点との間に設けたリアクタ(13)とコン
デンサ(14)より成るACフィルタとによって構成し
たインバータ部より成るバッテリー充放電部を備えた無
停電電源装置。1. A half-bridge rectifier circuit in which two diodes (16) and (17) are connected in series, and a reactor that connects in series between a connection point between the diodes (16) and (17) and one end of an AC power supply. And (4) a parallel connection between both ends of the half-bridge rectifier circuit.
A series circuit composed of two semiconductor switches (1), (2), (3) and (4), a connection point between the semiconductor switches (1) and (2) and a connection point between the semiconductor switches (3) and (4). A battery (7) provided between the AC power supply and a diode (8) having a collector terminal connected to the anode terminal of the semiconductor switch (1) and a semiconductor switch (2) connected to the other end of the AC power supply. And a capacitor (5) connected in parallel between the point and a diode (9) having a cathode terminal connected to the emitter terminal of the semiconductor switch (2) and the emitter terminal of the semiconductor switch (4). A battery charging / discharging unit configured by a series circuit of two capacitors including a capacitor (6) connected in parallel; and two semiconductor switches (parallel connected to both ends of the series circuit of the two capacitors). A half-bridge type inverter circuit composed of 11) and (12); and a semiconductor switch (1).
A battery charging unit comprising an inverter unit constituted by a reactor (13) and an AC filter comprising a capacitor (14) provided between a connection point between 1) and (12) and a connection point between capacitors (5) and (6). Uninterruptible power supply with discharge unit.
イッチ(1)と(2)の接続点とバッテリー(7)のプ
ラス極との間にリアクタ(10)を設けたことを特徴と
する請求項1に記載のバッテリー充放電部を備えた無停
電電源装置。2. A reactor (10) is provided between a connection point between the semiconductor switches (1) and (2) constituting a battery charging / discharging unit and a positive electrode of the battery (7). An uninterruptible power supply comprising the battery charge / discharge unit according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11107961A JP2000308359A (en) | 1999-04-15 | 1999-04-15 | Non-break power supply including a battery charging/ discharging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11107961A JP2000308359A (en) | 1999-04-15 | 1999-04-15 | Non-break power supply including a battery charging/ discharging device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000308359A true JP2000308359A (en) | 2000-11-02 |
Family
ID=14472464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11107961A Withdrawn JP2000308359A (en) | 1999-04-15 | 1999-04-15 | Non-break power supply including a battery charging/ discharging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000308359A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003019780A1 (en) * | 2001-08-28 | 2003-03-06 | Koninklijke Philips Electronics N.V. | Half-bridge circuit |
CN106410910A (en) * | 2016-10-28 | 2017-02-15 | 上海追日电气有限公司 | Three-level bidirectional charge and discharge circuit |
-
1999
- 1999-04-15 JP JP11107961A patent/JP2000308359A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003019780A1 (en) * | 2001-08-28 | 2003-03-06 | Koninklijke Philips Electronics N.V. | Half-bridge circuit |
CN106410910A (en) * | 2016-10-28 | 2017-02-15 | 上海追日电气有限公司 | Three-level bidirectional charge and discharge circuit |
CN106410910B (en) * | 2016-10-28 | 2019-04-05 | 上海追日电气有限公司 | A kind of three level Bidirectional charging-discharging circuits |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101015282B1 (en) | ??/?? converter | |
US6747880B2 (en) | Self-powered synchronous rectifiers | |
JP5693820B2 (en) | Power supply | |
EP1052763A1 (en) | Low loss synchronous rectifier for application to clamped-mode power converters | |
JPH09327176A (en) | Ac/dc converter circuit | |
JP2000116120A (en) | Power converter | |
JP5034729B2 (en) | Power supply circuit for driving semiconductor switching element | |
JP2000295790A (en) | Uninterruptive power supply with battery charge and discharge section | |
JP2000308359A (en) | Non-break power supply including a battery charging/ discharging device | |
JP3656779B2 (en) | DC-DC converter | |
JP5278568B2 (en) | Power supply circuit for driving semiconductor switching element | |
JPH0833341A (en) | Power factor improving switching power supply circuit | |
JPH0638405A (en) | Uninterruptible ac power supply device | |
JP2004357457A (en) | Charge pump drive circuit | |
JPH09233822A (en) | Ac-dc converter | |
JPH09252576A (en) | Sunbber circuit of dc-dc converter | |
US20240283286A1 (en) | Multiple input converter and an uninterruptible power supply including the same | |
WO2024060386A1 (en) | Rectifying converter for uninterruptible power supply and control method therefor | |
JP3993704B2 (en) | Active filter device | |
JPH0734629B2 (en) | Power converter | |
JP3588909B2 (en) | Rectified smooth DC power supply | |
JPH05211730A (en) | Uninterruptible power supply | |
JPH07222369A (en) | Charger/discharger for battery | |
JP3259345B2 (en) | Snubber circuit in semiconductor power converter | |
JP2003143867A (en) | Snubber energy regenerating circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060704 |