[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000302594A - Cleaning method of polycrystalline silicon - Google Patents

Cleaning method of polycrystalline silicon

Info

Publication number
JP2000302594A
JP2000302594A JP2000033308A JP2000033308A JP2000302594A JP 2000302594 A JP2000302594 A JP 2000302594A JP 2000033308 A JP2000033308 A JP 2000033308A JP 2000033308 A JP2000033308 A JP 2000033308A JP 2000302594 A JP2000302594 A JP 2000302594A
Authority
JP
Japan
Prior art keywords
cleaning
tank
polycrystalline silicon
filter
pore size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000033308A
Other languages
Japanese (ja)
Inventor
Takeshi Sasaki
剛 佐々木
Hiroyuki Takashina
啓幸 高階
Kenji Hori
憲治 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Polycrystalline Silicon Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Polycrystalline Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Mitsubishi Materials Polycrystalline Silicon Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP2000033308A priority Critical patent/JP2000302594A/en
Publication of JP2000302594A publication Critical patent/JP2000302594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polycrystalline silicon cleaning method excellent in cleaning effect. SOLUTION: The system used for this cleaning method is a multistage cleaning system provided with at least two cleaning tanks each having a circulation passage for withdrawing a cleaning liquid from the bottom of the cleaning tank, filtering the withdrawn cleaning liquid and thereafter returning the filtered cleaning liquid to the cleaning tank. More specifically, in this multistage cleaning system, a first cleaning tank 10 provided with a filter having >=0.1 μm pore size in a filtration section 13 installed in a circulation passage 11, and a second cleaning tank 30 provided with a filter having <0.1 μm pore size in a filtration section 33 installed in a circulation passage 31, are placed. The cleaning method comprises firstly performing cleaning in the first cleaning vessel 10 and thereafter performing cleaning in the second cleaning tank 30, to subject fine particles sticking to polycrystalline silicon to acid cleaning and stepwise removal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシリコン単結晶の製
造に用いられる表面の清浄度が高い多結晶シリコンを得
るための洗浄方法に関する。詳しくは、表面に付着した
粒子および表面酸化層内に含まれる不純物金属濃度が
0.8重量ppb未満であって炭素濃度が0.3×1016ato
ms/cc未満の高清浄多結晶シリコンを得るための洗浄方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cleaning method for obtaining polycrystalline silicon having a high surface cleanliness used for producing a silicon single crystal. More specifically, the concentration of the particles adhering to the surface and the impurity metal contained in the surface oxide layer is less than 0.8 wt ppb and the carbon concentration is 0.3 × 10 16 ato.
The present invention relates to a cleaning method for obtaining highly purified polycrystalline silicon of less than ms / cc.

【0002】[0002]

【従来の技術】現在、単結晶シリコンは、チョクラルス
キー法(CZ法)やフローテイングゾーン法(FZ法)によ
って主に製造されている。これらの方法は何れも多結晶
シリコンを原料として用いており、この多結晶シリコン
は一般にシーメンス法と呼ばれる方法によって棒状のも
のが製造されている。CZ法ではこの棒状の多結晶シリ
コンを任意の大きさに破砕または切断して塊状とし、こ
れをルツボで溶解し、このシリコン融液から単結晶シリ
コンを引き上げる。一方、FZ法では多結晶シリコン棒
の表面を研削して形状を整えた後に、一方の端部から他
端に向かって加熱することにより単結晶化する。
2. Description of the Related Art At present, single crystal silicon is mainly manufactured by the Czochralski method (CZ method) or the floating zone method (FZ method). Each of these methods uses polycrystalline silicon as a raw material, and this polycrystalline silicon is generally manufactured in a rod shape by a method called a Siemens method. In the CZ method, the rod-shaped polycrystalline silicon is crushed or cut into an arbitrary size to form a lump, which is dissolved in a crucible, and single-crystal silicon is pulled up from the silicon melt. On the other hand, in the FZ method, after the surface of the polycrystalline silicon rod is ground to adjust its shape, the rod is heated from one end to the other end to form a single crystal.

【0003】このように半導体材料として用いられるシ
リコン単結晶は多結晶シリコンを原料として製造される
ため、多結晶シリコンの清浄度が単結晶シリコンの収率
(単結晶化率)に大きな影響を与える。そこで、従来は多
結晶シリコンの清浄度を可能な限り高めるために、薬液
によって多結晶シリコンを洗浄して表面の微粉や不純物
金属を低減している。
[0003] Since the silicon single crystal used as a semiconductor material is manufactured using polycrystalline silicon as a raw material, the cleanliness of the polycrystalline silicon is reduced by the yield of the single crystal silicon.
(Single crystallization ratio). Therefore, conventionally, in order to increase the cleanliness of the polycrystalline silicon as much as possible, the polycrystalline silicon is washed with a chemical solution to reduce fine powder and impurity metals on the surface.

【0004】[0004]

【発明が解決しようとする課題】多結晶シリコンの表面
は平滑に見えても微細な凹凸が多数存在し、この凹凸に
不純物金属の微粒子やシリコンの微粒子が入り込んでお
り、洗浄工程でこの微粒子を十分に除去する必要があ
る。この微粒子が残留していると多結晶シリコンを溶融
して単結晶を引き上げたときに、これが起点となって結
晶転位が生じるために単結晶化率を低下させる原因とな
る。ところが、従来の多結晶シリコンの洗浄ではこの微
粒子が十分に除去されない問題がある。
The surface of polycrystalline silicon has many fine irregularities even though it looks smooth. Fine particles of impurity metal and silicon are contained in these irregularities. Must be sufficiently removed. When the fine particles remain, when polycrystalline silicon is melted and a single crystal is pulled up, this becomes a starting point to cause crystal dislocation, which causes a reduction in the single crystallization ratio. However, there is a problem that the fine particles are not sufficiently removed by the conventional cleaning of polycrystalline silicon.

【0005】例えば、米国特許第5820688号に
は、洗浄液を槽底から抜き出し、再びこの洗浄液を洗浄
槽内に浸漬した半導体材料に槽底から噴射して洗浄する
方法が記載されているが、多結晶シリコンを洗浄する場
合、このような槽底から洗浄液を吹き上げる方法では、
多結晶シリコンから洗い出された微粒子が洗浄槽内に滞
留してシリコン表面に再吸着するため、十分な洗浄効果
が得られない。
For example, US Pat. No. 5,820,688 describes a method in which a cleaning liquid is withdrawn from the bottom of a tank, and the cleaning liquid is again jetted from a bottom of the tank to a semiconductor material immersed in the cleaning tank for cleaning. When cleaning crystalline silicon, such a method of blowing up the cleaning liquid from the bottom of the tank,
Since the fine particles washed out of the polycrystalline silicon stay in the cleaning tank and re-adsorb to the silicon surface, a sufficient cleaning effect cannot be obtained.

【0006】一方、シリコンウエハーの洗浄において
は、洗浄槽から抜き出した洗浄液を濾過して槽上部に戻
すことにより槽内の液流が下方に向かうようにした洗浄
方法も知られているが、シリコンウエハーに付着してい
る微粒子の状態が多結晶シリコンの微粒子とは異なるた
めに、抜き出した洗浄液をウエハーの場合と同様に濾過
しても多結晶シリコンの洗浄では微粒子に対して十分な
除去効果が得られない。多結晶シリコンに付着している
粒子の大きさに対応した孔径のフィルターを用いる必要
があり、かつ多段洗浄など洗浄方法にも工夫が必要であ
る。
On the other hand, in the case of cleaning a silicon wafer, a cleaning method is also known in which a cleaning liquid extracted from a cleaning tank is filtered and returned to the upper part of the tank so that the liquid flow in the tank is directed downward. Since the state of the fine particles attached to the wafer is different from that of the polycrystalline silicon, even if the extracted cleaning liquid is filtered in the same manner as in the case of the wafer, the cleaning effect of the polycrystalline silicon does not sufficiently remove the fine particles. I can't get it. It is necessary to use a filter having a pore size corresponding to the size of the particles attached to the polycrystalline silicon, and it is necessary to devise a cleaning method such as multi-stage cleaning.

【0007】本発明は、多結晶シリコンについて、従来
の洗浄方法における上記問題を解決したものであり、多
結晶シリコン表面に付着する微粒子を効果的に除去し、
シリコン単結晶の引き上げ等において、高い単結晶化率
を達成できる洗浄方法を提供することを目的とする。
The present invention solves the above-mentioned problems in the conventional cleaning method for polycrystalline silicon, and effectively removes fine particles adhering to the polycrystalline silicon surface.
It is an object of the present invention to provide a cleaning method capable of achieving a high single crystallization rate in pulling a silicon single crystal or the like.

【0008】[0008]

【課題を解決するための手段】本発明者等は多結晶シリ
コンの洗浄方法について検討を重ね、多結晶シリコン表
面の微粉量は洗浄槽内における微粒子の再吸着が大きく
影響し、さらに微粒子の粒径も大きな影響を有すること
を見い出した。本発明の洗浄方法は上記知見に基づくも
のであり、洗浄槽内において、液中に含まれる不純物金
属微粒子やシリコン微粒子が多結晶シリコン表面に再吸
着するのを防止すると共に、特定の粒径範囲の微粒子を
効果的に除去して洗浄効果を高めたものである。
Means for Solving the Problems The present inventors have repeatedly studied a method for cleaning polycrystalline silicon, and the amount of fine particles on the surface of polycrystalline silicon is greatly affected by the re-adsorption of fine particles in the cleaning tank, The diameter has also been found to have a significant effect. The cleaning method of the present invention is based on the above findings, and in the cleaning tank, while preventing the impurity metal fine particles and silicon fine particles contained in the liquid from re-adsorbing to the polycrystalline silicon surface, a specific particle size range. Are effectively removed to enhance the cleaning effect.

【0009】すなわち、本発明は、(1)多結晶シリコ
ン塊の酸洗浄方法であって、洗浄液を洗浄槽の槽底から
抜き出して濾過した後に再び洗浄槽に循環する循環路を
備えた洗浄槽を少なくとも二段設けた多段洗浄系とし、
上記洗浄系には循環路の濾過部に孔径0.1μm以上のフ
ィルターを有する第一洗浄槽と、循環路の濾過部に孔径
0.1μm未満のフィルターを有する第二洗浄槽とを設
け、第一洗浄槽の洗浄後に第二洗浄槽の洗浄を行うこと
により、多結晶シリコンに付着している微細粒子を酸洗
浄と共に段階的に除去することを特徴とする多結晶シリ
コンの洗浄方法に関する。
That is, the present invention relates to (1) a method for acid-cleaning a polycrystalline silicon lump, wherein the cleaning liquid is extracted from the bottom of the cleaning tank, filtered, and then circulated again to the cleaning tank. A multi-stage washing system with at least two stages,
The washing system is provided with a first washing tank having a filter having a pore size of 0.1 μm or more in a filtration section of a circulation path, and a second washing tank having a filter having a pore diameter of less than 0.1 μm in a filtration section of the circulation path. The present invention relates to a method for cleaning polycrystalline silicon, characterized in that by cleaning a second cleaning tank after cleaning one cleaning tank, fine particles adhering to the polycrystalline silicon are removed stepwise together with acid cleaning.

【0010】本発明の洗浄方法は以下の態様を含む。
(2)第一洗浄槽の濾過部に孔径0.2〜0.5μmのフ
ィルターが設けられており、第二洗浄槽の濾過部に孔径
0.05〜0.1μmのフィルターが設けられている上記
(1)の洗浄方法、(3)第一洗浄槽および第二洗浄槽の
濾過部に孔径0.5mm以上のプレフィルターが設けられ
ており、さらに第一洗浄槽の濾過部に孔径0.2〜0.3
μm、0.3〜0.4μm、0.4〜0.5μmの1種または
2種以上のフィルターが設けられている上記(1)または
(2)の洗浄方法。(4) 洗浄液として、濃度70wt%硝
酸1に対して濃度50wt%フッ化水素酸0.01〜0.5
および水10未満の容量比で調製したフッ硝酸液、また
は濃度50wt%フッ化水素酸1に対して水5〜200の
容量比で調製したフッ化水素酸液を用いる上記(1),(2)
または(3)に記載する多結晶シリコンの洗浄方法。
(5)洗浄槽容量Aに対する洗浄液の循環量Bの比(B/
A)を0.05〜1.0として洗浄を行う上記(1)〜(4)のい
ずれかに記載する多結晶シリコンの洗浄方法。(6)
洗浄後の多結晶シリコン表面の酸化層内に含まれる不純
物の金属濃度が0.8重量ppb未満であって、炭素濃度が
0.3×1016atoms/cc未満である上記(1)〜(5)のいず
れかに記載する多結晶シリコンの洗浄方法。
[0010] The cleaning method of the present invention includes the following aspects.
(2) A filter having a pore size of 0.2 to 0.5 μm is provided in the filtration section of the first cleaning tank, and a filter having a pore size of 0.05 to 0.1 μm is provided in the filtration section of the second cleaning tank. the above
(1) The washing method of (1), a pre-filter having a pore diameter of 0.5 mm or more is provided in the filtration section of the first washing tank and the second washing tank, and a pre-filter of 0.2 mm in the filtration section of the first washing tank. ~ 0.3
(1) or one or more filters provided with one or two or more filters of μm, 0.3 to 0.4 μm, 0.4 to 0.5 μm.
The washing method of (2). (4) As a cleaning liquid, a concentration of 50 wt% hydrofluoric acid is 0.01 to 0.5 with respect to a nitric acid concentration of 70 wt%.
And a hydrofluoric acid solution prepared with a volume ratio of water less than 10 or a hydrofluoric acid solution prepared with a volume ratio of water of 5 to 200 with respect to 1 of hydrofluoric acid having a concentration of 50 wt%. )
Or the method for cleaning polycrystalline silicon according to (3).
(5) The ratio of the circulation amount B of the cleaning liquid to the cleaning tank capacity A (B /
The method for cleaning polycrystalline silicon according to any one of the above (1) to (4), wherein the cleaning is performed with A) being 0.05 to 1.0. (6)
The above (1) to (1), wherein the metal concentration of impurities contained in the oxide layer on the surface of the polycrystalline silicon after the cleaning is less than 0.8 wt ppb and the carbon concentration is less than 0.3 × 10 16 atoms / cc. 5) The method for cleaning polycrystalline silicon according to any one of the above items.

【0011】[0011]

【発明の実施の形態】以下、本発明を実施形態に基づい
て詳細に説明する。本発明の洗浄方法を実施する装置構
成例を図1に示す。図示するように、本発明の洗浄方法
は、多結晶シリコン塊50を洗浄するための複数の洗浄
槽10,20,30,40が進行方向に沿って直列に設置
された多段洗浄系を形成している。図1には4個の洗浄
槽が示されているが、洗浄槽の個数は必要に応じて増減
される。これらの洗浄槽のうち洗浄槽10,20,30が
酸洗浄槽であり、洗浄液の酸が満たされている。最後の
洗浄槽40は仕上げの水洗浄槽である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. FIG. 1 shows an example of an apparatus configuration for implementing the cleaning method of the present invention. As shown in the figure, the cleaning method of the present invention forms a multi-stage cleaning system in which a plurality of cleaning tanks 10, 20, 30, and 40 for cleaning a polycrystalline silicon lump 50 are arranged in series along a traveling direction. ing. FIG. 1 shows four washing tanks, but the number of washing tanks may be increased or decreased as necessary. Of these cleaning tanks, the cleaning tanks 10, 20, and 30 are acid cleaning tanks, and are filled with the acid of the cleaning liquid. The last washing tank 40 is a finished water washing tank.

【0012】本発明の洗浄方法は、この酸洗浄槽のうち
少なくとも2つ、図示する例では、最初の洗浄槽10
(第一洗浄槽)と三番目の洗浄槽30(第二洗浄槽)には洗
浄液を槽底から抜き出して濾過した後に再び洗浄槽に循
環する循環路11,31が設けられている。この循環路
11,31には洗浄液に含まれる微粒子を除去するため
の濾過部12,13,32,33がおのおの介設されてい
る。この濾過部には所定の孔径のフィルターが設けられ
ている。また、循環路11,31には洗浄液を槽底から
抜き出して循環するための送液ポンプ14,34が介設
されている。第一洗浄槽10と第二洗浄槽30の間には
中間洗浄槽20が設けられている。
The cleaning method of the present invention uses at least two of the acid cleaning tanks, in the illustrated example, the first cleaning tank 10.
The (first washing tank) and the third washing tank 30 (second washing tank) are provided with circulation paths 11, 31 for extracting the washing liquid from the tank bottom, filtering the washing liquid, and then circulating the washing liquid again to the washing tank. Filters 12, 13, 32, and 33 for removing fine particles contained in the cleaning liquid are provided in the circulation paths 11, 31, respectively. The filter is provided with a filter having a predetermined pore size. The circulation paths 11 and 31 are provided with liquid feed pumps 14 and 34 for extracting and circulating the cleaning liquid from the bottom of the tank. An intermediate cleaning tank 20 is provided between the first cleaning tank 10 and the second cleaning tank 30.

【0013】多結晶シリコン塊50は、先ず第一洗浄槽
10に浸されて酸洗浄された後に、引き上げられて中間
洗浄槽20に移され、ここで、酸洗浄された後に第二洗
浄槽30に移されて更に酸洗浄された後に引き上げられ
て最後の水洗浄槽40に移され、ここから引き上げられ
て系外に送られる。第一洗浄槽10と第二洗浄槽30の
酸洗浄液は送液ポンプ14,34によっておのおの洗浄
槽10,30から抜き出され、濾過部12,13,32,3
3を経由して再び洗浄槽10,30に戻される。このと
き、洗浄槽中の液流が下方に向かうように洗浄液は槽底
から抜き出され、濾過部を経て洗浄槽の上部に戻され
る。
The polycrystalline silicon lump 50 is first immersed in the first cleaning tank 10 to be pickled and then picked up and transferred to the intermediate cleaning tank 20, where it is pickled and then washed in the second cleaning tank 30. After being further washed with an acid, it is lifted and then moved to the last water washing tank 40, where it is lifted and sent out of the system. The acid cleaning liquid in the first cleaning tank 10 and the acid cleaning liquid in the second cleaning tank 30 are drawn out of the cleaning tanks 10 and 30 by the liquid feed pumps 14 and 34, respectively, and are filtered.
The cleaning tank 10 is returned to the cleaning tanks 10 and 30 again via the line 3. At this time, the cleaning liquid is withdrawn from the bottom of the cleaning tank so that the liquid flow in the cleaning tank is directed downward, and returned to the upper part of the cleaning tank via the filtration unit.

【0014】洗浄槽中の洗浄液をオーバフローによって
入れ替える従来の方法では、液面の洗浄液は頻繁に交換
されるが槽底の洗浄液は滞留し、シリコン表面から洗い
出された微粒子が次第に槽底に蓄積し、この微粒子が液
面に浮き上がり多結晶シリコン表面に再吸着するように
なる。微粒子はシリコン表面に電気的な相互作用によっ
て吸着されており比較的強固である。このためシリコン
表面に再度吸着された微粒子を水洗浄で十分に洗い流す
のは難しく、できるだけ微粒子の再吸着を防止する必要
がある。
In the conventional method in which the cleaning liquid in the cleaning tank is replaced by overflow, the cleaning liquid on the liquid surface is frequently changed, but the cleaning liquid on the tank bottom stays, and fine particles washed out from the silicon surface gradually accumulate on the tank bottom. Then, the fine particles float on the liquid surface and re-adsorb to the polycrystalline silicon surface. The fine particles are adsorbed on the silicon surface by an electric interaction and are relatively strong. For this reason, it is difficult to sufficiently wash the fine particles re-adsorbed on the silicon surface by water washing, and it is necessary to prevent the fine particles from being re-adsorbed as much as possible.

【0015】本発明の洗浄方法では、洗浄液を槽底から
抜き出して濾過した後に再び洗浄槽の上部に循環するの
で、洗浄槽内の液流が槽上部から槽底に向かうようにな
り、多結晶シリコン表面から洗い出された微粒子が液面
に浮遊せずに循環路に導かれて効率よく槽外に排出され
るので、シリコン表面から洗い出された微粒子が槽内に
滞留せず、従って、微粒子の再吸着が防止される。
In the cleaning method of the present invention, the cleaning liquid is extracted from the bottom of the tank, filtered, and then circulated again to the upper part of the cleaning tank. Since the fine particles washed from the silicon surface are guided to the circulation path without floating on the liquid surface and efficiently discharged out of the tank, the fine particles washed from the silicon surface do not stay in the tank, and therefore, Re-adsorption of the fine particles is prevented.

【0016】さらに、本発明の洗浄方法は、循環路の濾
過部に設けたフィルターの孔径を特定することによって
微粒子の除去効果を高めている。多結晶シリコンの洗浄
ではシリコン表面から洗い出された多様な粒径の不純物
金属粒子やシリコン微粒子が洗浄廃液に含まれている。
このような微粒子に対して従来の洗浄方法では0.1μm
以下の微粒子の洗浄効果が不十分である。この微粒子を
孔径の小さなフィルターを用いて一度に濾別しようとす
るとフィルターの負担が大きくなり、短時間で目詰まり
を生じる。
Further, in the cleaning method of the present invention, the effect of removing fine particles is enhanced by specifying the pore size of the filter provided in the filtration section of the circulation path. In the cleaning of polycrystalline silicon, impurity metal particles and silicon fine particles having various particle sizes washed out from the silicon surface are contained in the cleaning waste liquid.
The conventional cleaning method for such fine particles is 0.1 μm.
The cleaning effect of the following fine particles is insufficient. If the fine particles are to be filtered at once using a filter having a small pore size, the load on the filter increases, and clogging occurs in a short time.

【0017】そこで、本発明の洗浄方法では、循環路を
有する洗浄槽を少なくとも二段設けた多段洗浄系とし、
洗浄の進行工程に従ってフィルターの孔径が次第に小さ
くなるように所定孔径のフィルターを段階的に設置する
ことにより微粒子の除去効果を高めている。具体的に
は、本発明では第一洗浄槽10の濾過部13に孔径0.
1μm以上のフィルターを設け、第二洗浄槽30の濾過
部33に孔径0.1μm未満のフィルターを設けている。
なお、本発明ではこのように循環路の濾過部に孔径0.
1μm以上のフィルターを設けたものを第一洗浄槽と云
い、循環路の濾過部に孔径0.1μm未満のフィルターを
設けたものを第二洗浄槽と云う。この第一洗浄槽または
第二洗浄槽のフィルターは複数の孔径のものを組み合わ
せて使用しても良く、また、フィルターの孔径を変えた
複数の洗浄槽を第一洗浄槽とし、同様にフィルターの孔
径を変えた複数の洗浄槽を第二洗浄槽としても良い。
Therefore, in the cleaning method of the present invention, a multi-stage cleaning system having at least two stages of cleaning tanks having circulation paths is provided.
The effect of removing fine particles is enhanced by installing a filter having a predetermined pore size stepwise so that the pore size of the filter gradually decreases in accordance with the progress of the washing. Specifically, in the present invention, the filtration unit 13 of the first cleaning tank 10 has a pore size of 0.
A filter having a diameter of 1 μm or more is provided, and a filter having a pore diameter of less than 0.1 μm is provided in the filtration section 33 of the second washing tank 30.
In the present invention, the filtration part of the circulation path has a pore size of 0.
The one provided with a filter of 1 μm or more is referred to as a first cleaning tank, and the one provided with a filter having a pore size of less than 0.1 μm in a filtration section of a circulation path is referred to as a second cleaning tank. The filters of the first washing tank or the second washing tank may be used in combination of those having a plurality of pore sizes.Also, a plurality of washing tanks having different filter pore sizes may be used as the first washing tank. A plurality of cleaning tanks having different hole diameters may be used as the second cleaning tank.

【0018】図示する例では、さらに濾過部13,33
の前にプレ濾過部12、32が設けられている。このプ
レ濾過部12,32のフィルター孔径は0.5mm以上が適
当であり、通常は1mm程度が良い。比較的粗粒なシリコ
ン粒子等をここで除去することにより濾過部13,33
の負担を軽減する。多結晶シリコンを複数の洗浄槽に移
し替える場合、カゴ等の内部でシリコン塊どうしが押し
付けられて表面のシリコン粒子が擦り落とされ、比較的
粗い粒子が生じることがあるので、プレ濾過部でこれを
予め除去すると良い。洗浄槽10,30の槽底から抜き
出された洗浄液はプレ濾過部12,32を経て濾過部1
3,33に導かれる。
In the illustrated example, the filtration units 13 and 33
The pre-filtration units 12 and 32 are provided in front of. The filter pore diameter of the pre-filtration sections 12 and 32 is suitably 0.5 mm or more, and usually about 1 mm. By removing relatively coarse silicon particles and the like here, the filtration units 13 and 33 are removed.
To reduce the burden of When transferring polycrystalline silicon to a plurality of cleaning tanks, silicon chunks are pressed against each other inside a basket or the like, causing silicon particles on the surface to be rubbed off and relatively coarse particles may be generated. Should be removed in advance. The cleaning liquid extracted from the tank bottoms of the cleaning tanks 10 and 30 passes through the pre-filtration units 12 and 32 and the filtration unit 1.
It is led to 3,33.

【0019】このように、孔径0.1μm以上のフィルタ
ーを設けた第一洗浄槽10と孔径0.1μm未満のフィル
ターを設けた第二洗浄槽30とによる多段洗浄を行うこ
とにより、比較的粗い粒子が第一洗浄槽10で除去さ
れ、さらに粒径0.1μm以下の微細な粒子が第二洗浄槽
30で除去されるので各フィルターの負担が小さく、し
かも粒径0.1μm以下の微粒子に対する洗浄効果を高め
ることができる。
As described above, by performing multi-stage cleaning by the first cleaning tank 10 provided with a filter having a pore diameter of 0.1 μm or more and the second cleaning tank 30 provided with a filter having a pore diameter of less than 0.1 μm, a relatively rough surface is obtained. Since the particles are removed in the first washing tank 10 and the fine particles having a particle diameter of 0.1 μm or less are removed in the second washing tank 30, the load on each filter is small, and the fine particles having a particle diameter of 0.1 μm or less are removed. The cleaning effect can be enhanced.

【0020】第一洗浄槽10の循環路の濾過部13に設
けるフィルターの孔径は、0.2〜0.3μm、0.3〜
0.4μm、あるいは0.4〜0.5μmの範囲が適当であ
る。なお、多結晶シリコン表面から洗い出される微粒子
の粒径に応じて、フィルターの孔径を選択し、また、異
なった2種以上の孔径のフィルターを多段に設けて微粒
子の除去効果を高めると良い。
The filter provided in the filtration section 13 of the circulation path of the first washing tank 10 has a pore size of 0.2 to 0.3 μm, and 0.3 to 0.3 μm.
An appropriate range is 0.4 μm, or a range of 0.4 to 0.5 μm. It is preferable to select the pore size of the filter in accordance with the particle size of the fine particles washed out from the surface of the polycrystalline silicon, and to increase the effect of removing the fine particles by providing filters having two or more different types of pore sizes in multiple stages.

【0021】第二洗浄槽30の循環路の濾過部33に設
けるフィルターの孔径は0.05〜0.1μmが適当であ
る。孔径0.05μm未満のフィルターでは濾過の負担が
大きくなり、フィルターの交換頻度が増加する。
The pore size of the filter provided in the filtration section 33 in the circulation path of the second washing tank 30 is suitably 0.05 to 0.1 μm. With a filter having a pore size of less than 0.05 μm, the burden of filtration increases, and the frequency of filter replacement increases.

【0022】第一洗浄槽10および第二洗浄槽30の何
れにおいても、洗浄液の循環量B(リットル/min)は、洗浄槽
容量A(L)に対する比(B/A)が0.05〜1.0となる範
囲が適当である。この比が0.05未満ではフィルター
の除去効率が大幅に低下し、また1.0より大きいとフ
ィルターやポンプの負担が大きくなるので好ましくな
い。
In each of the first cleaning tank 10 and the second cleaning tank 30, the circulation amount B (liter / min) of the cleaning liquid is such that the ratio (B / A) to the cleaning tank capacity A (L) is 0.05 to 5%. An appropriate range is 1.0. If this ratio is less than 0.05, the removal efficiency of the filter is greatly reduced, and if it is more than 1.0, the load on the filter and the pump is increased, which is not preferable.

【0023】酸洗浄液の組成は、特に限定されないが、
濃度70wt%硝酸1に対して濃度50wt%フッ化水素酸
0.01〜0.5および水10未満の容量比で調製したフ
ッ硝酸液、または、濃度50wt%フッ化水素酸1に対し
て水5〜200の容量比で調製したフッ化水素酸液が好
ましい。また、洗浄液の液温は30℃以上が適当であ
る。
The composition of the acid washing solution is not particularly limited.
Hydrofluoric nitric acid solution prepared with a concentration ratio of 0.01 to 0.5 and a water concentration of less than 10 with a concentration of 50 wt% hydrofluoric acid to a concentration of 70 wt% nitric acid 1 or a water solution with a concentration of 50 wt% hydrofluoric acid to 1 Hydrofluoric acid solutions prepared at a volume ratio of 5-200 are preferred. Further, the temperature of the cleaning liquid is suitably 30 ° C. or higher.

【0024】図示する洗浄系は第一洗浄槽10、中間洗
浄槽20、第二洗浄槽30、および水洗浄槽40を直列
に配設した例であるが、洗浄槽の配置構成は図示する例
に限らない。例えば、5槽の洗浄槽を一列に配設した酸
洗浄系に2槽の洗浄槽を連設した水洗浄系において、酸
洗浄系の少なくとも2槽に本発明の循環路を設け、ある
いは更に水洗浄系の洗浄槽に本発明の循環路を有する洗
浄槽を用いるなど種々の洗浄系に本発明を適用すること
ができる。
The illustrated cleaning system is an example in which a first cleaning tank 10, an intermediate cleaning tank 20, a second cleaning tank 30, and a water cleaning tank 40 are arranged in series. Not limited to For example, in a water cleaning system in which two cleaning tanks are connected to an acid cleaning system in which five cleaning tanks are arranged in a row, at least two of the acid cleaning systems are provided with the circulation path of the present invention, or are further provided with water. The present invention can be applied to various cleaning systems, such as using the cleaning tank having the circulation path of the present invention as the cleaning tank of the cleaning system.

【0025】[0025]

【実施例】以下、本発明を実施例によって具体的に示
す。なお、これらの実施例は本発明の範囲を限定するも
のではない。
EXAMPLES The present invention will be specifically described below with reference to examples. Note that these examples do not limit the scope of the present invention.

【0026】実施例1 濾過部に孔径0.3μmのPTFE製フィルターを設置し
た容量100リットルの第一洗浄槽と、濾過部に孔径0.1
μmのPTFE製フィルターを設置した容量100リットル
の第二洗浄槽とを用いて図1に示す構成の洗浄装置を形
成した。この洗浄装置を用いて多結晶シリコン10kgを
洗浄した。第一洗浄槽および第二洗浄槽の洗浄液とし
て、フッ硝酸液(濃度70wt%硝酸:濃度50wt%フッ酸=
10:1vol比)を用い、槽底から抜き出す洗浄液の循環
量を20リットル/minとし、液温30℃に保った。多結晶シ
リコン塊を第一洗浄槽のフッ硝酸液に5分間浸した後に
引き上げて中間洗浄槽の洗浄水に浸した後、第二洗浄槽
30のフッ硝酸液に5分間浸して酸洗浄を行った。引き
続き、多結晶シリコン塊を第二洗浄槽から引き上げ、2
5℃の水で5分間洗浄し、70℃の温風乾燥器内で乾燥
した。乾燥した多結晶シリコンを希フッ酸に浸漬して表
面酸化膜を溶解させた後に、希フッ素中の重金属濃度を
ICP質量分析計によって測定した。また、炭素濃度を
FT−IR計によって測定した。さらに、シリコン単結
晶の引き上げ試験を行い、単結晶の収率(単結晶化率)の
平均値(5回平均)を求めた。この結果を表1に示した。
Example 1 A first washing tank having a capacity of 100 liters, in which a PTFE filter having a pore size of 0.3 μm was installed in the filtration section, and a pore size of 0.1 in the filtration section.
A cleaning apparatus having the structure shown in FIG. 1 was formed using a 100-liter second cleaning tank provided with a μm PTFE filter. Using this washing apparatus, 10 kg of polycrystalline silicon was washed. Hydrofluoric acid solution (concentration 70 wt% nitric acid: concentration 50 wt% hydrofluoric acid =
(10: 1 vol ratio), the circulation rate of the washing liquid extracted from the bottom of the tank was set to 20 l / min, and the liquid temperature was maintained at 30 ° C. The polycrystalline silicon lump is immersed in the hydrofluoric nitric acid solution of the first cleaning tank for 5 minutes, then pulled up and immersed in the cleaning water of the intermediate cleaning tank, and then immersed in the hydrofluoric nitric acid solution of the second cleaning tank 30 for 5 minutes to perform acid cleaning. Was. Subsequently, the polycrystalline silicon mass is lifted from the second cleaning tank,
The plate was washed with 5 ° C. water for 5 minutes and dried in a 70 ° C. hot air drier. After the dried polycrystalline silicon was immersed in diluted hydrofluoric acid to dissolve the surface oxide film, the heavy metal concentration in the diluted fluorine was measured by an ICP mass spectrometer. Further, the carbon concentration was measured by an FT-IR meter. Further, a pulling test of a silicon single crystal was performed, and an average value (average of 5 times) of a single crystal yield (single crystallization ratio) was obtained. The results are shown in Table 1.

【0027】実施例2 濾過部に孔径0.05μmのPTFE製フィルターおよび
孔径0.5μmのPTFE製フィルターを設け、洗浄液と
してフッ酸液(濃度50wt%フッ酸:水=1:20vol
比)を用い、洗浄液の循環量を10リットル/minとした以外
は実施例1と同様にして多結晶シリコンを洗浄し、その
不純物量および単結晶化率等を調べた。この結果を表1
に示した。
Example 2 A PTFE filter having a pore size of 0.05 μm and a PTFE filter having a pore size of 0.5 μm were provided in the filtration section, and a hydrofluoric acid solution (concentration of 50 wt% hydrofluoric acid: water = 1: 20 vol.) Was used as a cleaning solution.
Ratio), the polycrystalline silicon was cleaned in the same manner as in Example 1 except that the circulation amount of the cleaning liquid was changed to 10 liter / min, and the amount of impurities, the rate of single crystallization, and the like were examined. Table 1 shows the results.
It was shown to.

【0028】比較例1 容量100リットルの洗浄槽に多結晶シリコン10kgを浸漬
し、洗浄液を循環ポンプを用いて10リットル/minの量で循
環させ、孔怪0.1μmのPTFE製フィルターを用いて
濾過した。洗浄液としてフッ硝酸液(濃度70wt%硝
酸:濃度50wt%フッ酸=10:1vol比)を用い、3
0℃で3分間洗浄を行った(一段洗浄)。酸洗浄後、2
5℃の水槽で5分間洗浄し、70℃の温風乾燥器内で乾
燥させた。このその不純物量および単結晶化率等を実施
例1と同様にして調べた。この結果を表1に示した。
COMPARATIVE EXAMPLE 1 10 kg of polycrystalline silicon was immersed in a cleaning tank having a capacity of 100 liters, and the cleaning liquid was circulated at a rate of 10 liters / min using a circulating pump. Filtered. A hydrofluoric nitric acid solution (concentration 70 wt% nitric acid: concentration 50 wt% hydrofluoric acid = 10: 1 vol ratio) was used as a cleaning solution, and 3
Washing was performed at 0 ° C. for 3 minutes (one-step washing). After acid cleaning, 2
The plate was washed in a 5 ° C. water bath for 5 minutes, and dried in a 70 ° C. hot air drier. The amount of impurities and the rate of single crystallization were examined in the same manner as in Example 1. The results are shown in Table 1.

【0029】比較例2 孔径0.3μmのPTFE製フィルターと孔径0.6μmの
PTFE製フィルターをおのおの用い、洗浄液の循環量
を10リットル/minとした以外は実施例1と同様にして多結
晶シリコンを洗浄して、その不純物量および単結晶化率
等を調べた。この結果を表1に示した。
Comparative Example 2 Polycrystalline silicon was prepared in the same manner as in Example 1 except that a PTFE filter having a pore size of 0.3 μm and a PTFE filter having a pore size of 0.6 μm were used, and the circulation rate of the cleaning solution was 10 liter / min. Was washed, and its impurity amount, single crystallization ratio, and the like were examined. The results are shown in Table 1.

【0030】比較例3 洗浄液の循環量を1リットル/minとした以外は実施例1と同
様にして多結晶シリコンを洗浄し、その不純物量および
単結晶化率等を調べた。この結果を表1に示した。
Comparative Example 3 Polycrystalline silicon was cleaned in the same manner as in Example 1 except that the circulation amount of the cleaning liquid was changed to 1 liter / min, and the amount of impurities and the rate of single crystallization were examined. The results are shown in Table 1.

【0031】表1に示すように、実施例1,2に対して
比較例1〜3の残留金属量は格段に多く、比較例1〜3
の残留金属量の合計は実施例1,2の約3〜4倍、残留
炭素濃度は約2倍であり、洗浄効果が大幅に異なる。こ
のため比較例1〜3の単結晶化率は60%台に止まり、
実施例1,2の単結晶化率は70%であるのに対して大
幅に低い。
As shown in Table 1, the amounts of residual metals in Comparative Examples 1 to 3 are much larger than those in Examples 1 and 2,
Is about 3 to 4 times that of Examples 1 and 2 and the residual carbon concentration is about 2 times, and the cleaning effect is greatly different. For this reason, the single crystallization ratios of Comparative Examples 1 to 3 remain at the 60% level,
The single crystallization ratio of Examples 1 and 2 is significantly lower than 70%.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【発明の効果】本発明の洗浄方法は多結晶シリコン塊に
対して優れた洗浄効果を発揮し、特に付着微粒子の除去
効果に優れており、高い清浄度を有する多結晶シリコン
を得ることができる。具体的には、例えば、洗浄後の多
結晶シリコン表面の酸化層内に含まれる不純物の金属濃
度が0.8重量ppb未満であって、炭素濃度が0.3×1
16atoms/cc未満の多結晶シリコンを得ることができ
る。また、表面に付着した0.1μm以下のシリコン微粒
子が極めて少ない多結晶シリコンを得ることができる。
本発明の方法によって洗浄した多結晶シリコンを用いる
ことにより、シリコン単結晶の引き上げにおいて単結晶
化率が大幅に向上する。
The cleaning method of the present invention exerts an excellent cleaning effect on a polycrystalline silicon lump, and is particularly excellent in an effect of removing adhering fine particles, so that polycrystalline silicon having high cleanliness can be obtained. . Specifically, for example, the metal concentration of impurities contained in the oxide layer on the surface of the polycrystalline silicon after cleaning is less than 0.8 wt. Ppb, and the carbon concentration is 0.3 × 1.
Polycrystalline silicon of less than 0 16 atoms / cc can be obtained. Further, it is possible to obtain polycrystalline silicon having very few silicon microparticles of 0.1 μm or less attached to the surface.
By using the polycrystalline silicon washed by the method of the present invention, the single crystallization ratio is greatly improved in pulling a silicon single crystal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の洗浄系を示すフロー図FIG. 1 is a flowchart showing a cleaning system of the present invention.

【符号の説明】[Explanation of symbols]

10−第一洗浄槽、11−循環路、12−プレ濾過部、
13−濾過部、20−中間洗浄槽、30−第二洗浄槽、
31−循環路、32−プレ濾過部、33−濾過部、40
−水洗浄槽、50−多結晶シリコン。
10-first washing tank, 11-circulation path, 12-pre-filtration unit,
13-filtration unit, 20-intermediate washing tank, 30-second washing tank,
31-circulation path, 32-pre-filtration section, 33-filtration section, 40
-Water wash tank, 50-polycrystalline silicon.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高階 啓幸 三重県四日市市三田町5番地 三菱マテリ アルポリシリコン株式会社内 (72)発明者 堀 憲治 東京都千代田区大手町1丁目5番地1号 三菱マテリアルシリコン株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Takashina 5 Mitacho, Yokkaichi-shi, Mie Mitsubishi Materi AlPolysilicon Co., Ltd. (72) Inventor Kenji Hori 1-5-1, Otemachi, Chiyoda-ku, Tokyo Mitsubishi Materials Silicon Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 多結晶シリコン塊の酸洗浄方法であっ
て、洗浄液を洗浄槽の槽底から抜き出して濾過した後に
再び洗浄槽に循環する循環路を備えた洗浄槽を少なくと
も二段設けた多段洗浄系とし、上記洗浄系には循環路の
濾過部に孔径0.1μm以上のフィルターを有する第一洗
浄槽と、循環路の濾過部に孔径0.1μm未満のフィルタ
ーを有する第二洗浄槽とを設け、第一洗浄槽の洗浄後に
第二洗浄槽の洗浄を行うことにより、多結晶シリコンに
付着している微細粒子を酸洗浄と共に段階的に除去する
ことを特徴とする多結晶シリコンの洗浄方法。
An acid cleaning method for a polycrystalline silicon lump, wherein a cleaning liquid is extracted from the bottom of a cleaning tank, filtered, and then provided with at least two cleaning tanks having a circulation path for recirculating the cleaning liquid to the cleaning tank. A washing system, wherein the washing system has a first washing tank having a filter having a pore size of 0.1 μm or more in a filtration section of a circulation path, and a second washing tank having a filter having a pore size of less than 0.1 μm in a filtration section of the circulation path. And cleaning the second cleaning tank after cleaning the first cleaning tank, thereby removing fine particles adhering to the polycrystalline silicon step by step together with the acid cleaning. Method.
【請求項2】 第一洗浄槽の濾過部に孔径0.2〜0.5
μmのフィルターが設けられており、第二洗浄槽の濾過
部に孔径0.05〜0.1μmのフィルターが設けられて
いる請求項1に記載する多結晶シリコンの洗浄方法。
2. The filtration part of the first washing tank has a pore size of 0.2 to 0.5.
2. The method for cleaning polycrystalline silicon according to claim 1, wherein a filter having a pore size of 0.05 to 0.1 [mu] m is provided in the filtration section of the second cleaning tank, wherein a filter having a pore size of [mu] m is provided.
【請求項3】 第一洗浄槽および第二洗浄槽の濾過部に
孔径0.5mm以上のプレフィルターが設けられており、
さらに第一洗浄槽の濾過部に孔径0.2〜0.3μm、0.
3〜0.4μm、0.4〜0.5μmの1種または2種以上
のフィルターが設けられている請求項1または2に記載
する多結晶シリコンの洗浄方法。
3. A pre-filter having a pore diameter of 0.5 mm or more is provided in a filtration section of the first washing tank and the second washing tank,
Further, the filtration part of the first washing tank has a pore size of 0.2 to 0.3 μm and a pore size of 0.2 μm.
3. The method for cleaning polycrystalline silicon according to claim 1, wherein one or more filters of 3 to 0.4 [mu] m and 0.4 to 0.5 [mu] m are provided.
【請求項4】 洗浄液として、濃度70wt%硝酸1に対
して濃度50wt%フッ化水素酸0.01〜0.5および水
10未満の容量比で調製したフッ硝酸液、または濃度5
0wt%フッ化水素酸1に対して水5〜200の容量比で
調製したフッ化水素酸液を用いる請求項1、2または3
に記載する多結晶シリコンの洗浄方法。
4. A hydrofluoric nitric acid solution prepared at a volume ratio of 0.01 to 0.5 and a water concentration of less than 10 to 50% by weight of hydrofluoric acid and 1 to 70% by weight of nitric acid as a cleaning solution, or a concentration of 5%.
4. A hydrofluoric acid solution prepared in a volume ratio of water of 5 to 200 with respect to 1% of hydrofluoric acid of 0 wt%.
3. The method for cleaning polycrystalline silicon described in 1. above.
【請求項5】 洗浄槽容量Aに対する洗浄液の循環量B
の比(B/A)を0.05〜1.0として洗浄を行う請求項1
〜4のいずれかに記載する多結晶シリコンの洗浄方法。
5. A circulation amount B of the cleaning liquid with respect to a cleaning tank capacity A.
The cleaning is performed with the ratio (B / A) of 0.05 to 1.0.
5. The method for cleaning polycrystalline silicon according to any one of items 1 to 4.
【請求項6】 洗浄後の多結晶シリコン表面の酸化層内
に含まれる不純物の金属濃度が0.8重量ppb未満であっ
て、炭素濃度が0.3×1016atoms/cc未満である請求
項1〜5のいずれかに記載する多結晶シリコンの洗浄方
法。
6. The method according to claim 1, wherein the metal concentration of impurities contained in the oxide layer on the surface of the polycrystalline silicon after the cleaning is less than 0.8 wt. Ppb, and the carbon concentration is less than 0.3 × 10 16 atoms / cc. Item 6. The method for cleaning polycrystalline silicon according to any one of Items 1 to 5.
JP2000033308A 1999-02-18 2000-02-10 Cleaning method of polycrystalline silicon Pending JP2000302594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000033308A JP2000302594A (en) 1999-02-18 2000-02-10 Cleaning method of polycrystalline silicon

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-39608 1999-02-18
JP3960899 1999-02-18
JP2000033308A JP2000302594A (en) 1999-02-18 2000-02-10 Cleaning method of polycrystalline silicon

Publications (1)

Publication Number Publication Date
JP2000302594A true JP2000302594A (en) 2000-10-31

Family

ID=26379000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000033308A Pending JP2000302594A (en) 1999-02-18 2000-02-10 Cleaning method of polycrystalline silicon

Country Status (1)

Country Link
JP (1) JP2000302594A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288331A (en) * 2004-03-31 2005-10-20 Mitsubishi Materials Polycrystalline Silicon Corp Washing and dewatering apparatus for polycrystalline silicon
JP2006062948A (en) * 2004-08-26 2006-03-09 Mitsubishi Materials Corp Method of cleaning silicon for semiconductor material, polycrystalline silicon chunk and cleaning apparatus
WO2006126365A1 (en) * 2005-05-23 2006-11-30 Sumitomo Titanium Corporation Method for cleaning polycrystalline silicon
CN100372762C (en) * 2006-01-25 2008-03-05 昆明理工大学 Method for preparing solar grade polysilicon
EP2039654A2 (en) 2007-09-04 2009-03-25 Mitsubishi Materials Corporation Washing method, Washing apparatus for polycrystalline silicon and method of producing polycrystalline
JP2009179554A (en) * 2009-04-27 2009-08-13 Osaka Titanium Technologies Co Ltd Cleaning method of polycrystal silicon
JP2009184922A (en) * 2002-11-14 2009-08-20 Hemlock Semiconductor Corp Flowable chip, and method for using the same
WO2010073725A1 (en) 2008-12-26 2010-07-01 三菱マテリアル株式会社 Method for washing polycrystalline silicon, washing device, and method for producing polycrystalline silicon
US7905963B2 (en) * 2008-11-28 2011-03-15 Mitsubishi Materials Corporation Apparatus and method for washing polycrystalline silicon
JP2011063471A (en) * 2009-09-16 2011-03-31 Shin-Etsu Chemical Co Ltd Polycrystalline silicon mass and method for manufacturing the same
JP2011068554A (en) * 2009-08-31 2011-04-07 Mitsubishi Materials Corp Cleaning unit and method for polycrystalline silicon block
JP2013032274A (en) * 2011-07-29 2013-02-14 Wacker Chemie Ag Cleaning method of polycrystalline silicon grind
CN102962224A (en) * 2012-11-06 2013-03-13 安徽日能中天半导体发展有限公司 Method for cleaning parent polycrystalline carbon head material
CN103253674A (en) * 2012-02-21 2013-08-21 瓦克化学股份公司 Chunk polycrystalline silicon and process for cleaning polycrystalline silicon chunks
JP2014233653A (en) * 2013-05-31 2014-12-15 三菱マテリアル株式会社 Method and apparatus for cleaning polycrystalline silicon
US8926749B2 (en) 2002-02-20 2015-01-06 Hemlock Semi Conductor Flowable chips and methods for the preparation and use of same, and apparatus for use in the methods
JP2016222470A (en) * 2015-05-27 2016-12-28 信越化学工業株式会社 Polycrystal silicon piece
CN112209383A (en) * 2020-11-11 2021-01-12 江苏鑫华半导体材料科技有限公司 Electronic grade polysilicon cleaning system and method
JP7522065B2 (en) 2020-03-25 2024-07-24 高純度シリコン株式会社 Method for cleaning polycrystalline silicon chunks

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9909231B2 (en) 2002-02-20 2018-03-06 Hemlock Semiconductor Operations Llc Flowable chips and methods for the preparation and use of same, and apparatus for use in the methods
US8926749B2 (en) 2002-02-20 2015-01-06 Hemlock Semi Conductor Flowable chips and methods for the preparation and use of same, and apparatus for use in the methods
JP2009184922A (en) * 2002-11-14 2009-08-20 Hemlock Semiconductor Corp Flowable chip, and method for using the same
JP2014058447A (en) * 2002-11-14 2014-04-03 Hemlock Semiconductor Corp Fluid chip and method of using the same
JP4553109B2 (en) * 2004-03-31 2010-09-29 三菱マテリアル株式会社 Polycrystalline silicon cleaning and dehydrating equipment
JP2005288331A (en) * 2004-03-31 2005-10-20 Mitsubishi Materials Polycrystalline Silicon Corp Washing and dewatering apparatus for polycrystalline silicon
JP2012224541A (en) * 2004-08-26 2012-11-15 Mitsubishi Materials Corp Polycrystalline silicon chunk of silicon for semiconductor material
JP2006062948A (en) * 2004-08-26 2006-03-09 Mitsubishi Materials Corp Method of cleaning silicon for semiconductor material, polycrystalline silicon chunk and cleaning apparatus
JP2006327838A (en) * 2005-05-23 2006-12-07 Sumitomo Titanium Corp Method for washing polycrystalline silicon
JP4554435B2 (en) * 2005-05-23 2010-09-29 株式会社大阪チタニウムテクノロジーズ Polycrystalline silicon cleaning method
WO2006126365A1 (en) * 2005-05-23 2006-11-30 Sumitomo Titanium Corporation Method for cleaning polycrystalline silicon
CN100372762C (en) * 2006-01-25 2008-03-05 昆明理工大学 Method for preparing solar grade polysilicon
EP2039654A2 (en) 2007-09-04 2009-03-25 Mitsubishi Materials Corporation Washing method, Washing apparatus for polycrystalline silicon and method of producing polycrystalline
EP2192086A3 (en) * 2008-11-28 2011-11-30 Mitsubishi Materials Corporation Apparatus and method for washing polycrystalline silicon
US8875720B2 (en) 2008-11-28 2014-11-04 Mitsubishi Materials Corporation Apparatus and method for washing polycrystalline silicon
US7905963B2 (en) * 2008-11-28 2011-03-15 Mitsubishi Materials Corporation Apparatus and method for washing polycrystalline silicon
US9238876B2 (en) 2008-12-26 2016-01-19 Mitsubishi Materials Corporation Method of washing polycrystalline silicon, apparatus for washing polycrystalline silicon, and method of producing polycrystalline silicon
WO2010073725A1 (en) 2008-12-26 2010-07-01 三菱マテリアル株式会社 Method for washing polycrystalline silicon, washing device, and method for producing polycrystalline silicon
JP2009179554A (en) * 2009-04-27 2009-08-13 Osaka Titanium Technologies Co Ltd Cleaning method of polycrystal silicon
JP2011068554A (en) * 2009-08-31 2011-04-07 Mitsubishi Materials Corp Cleaning unit and method for polycrystalline silicon block
US8887744B2 (en) 2009-08-31 2014-11-18 Mitsubishi Materials Corporation Rinsing apparatus and rinsing method for polycrystalline silicon lump
JP2014111532A (en) * 2009-08-31 2014-06-19 Mitsubishi Materials Corp Method for cleaning polycrystalline silicon lump
US9421583B2 (en) 2009-08-31 2016-08-23 Mitsubishi Materials Corporation Rinsing apparatus and rinsing method for polycrystalline silicon lump
JP2011063471A (en) * 2009-09-16 2011-03-31 Shin-Etsu Chemical Co Ltd Polycrystalline silicon mass and method for manufacturing the same
US11440804B2 (en) 2009-09-16 2022-09-13 Shin-Etsu Chemical Co., Ltd. Process for producing polycrystalline silicon mass
JP2013032274A (en) * 2011-07-29 2013-02-14 Wacker Chemie Ag Cleaning method of polycrystalline silicon grind
US9120674B2 (en) 2011-07-29 2015-09-01 Wacker Chemie Ag Process for cleaning polycrystalline silicon chunks
US9776876B2 (en) 2012-02-21 2017-10-03 Wacker Chemie Ag Chunk polycrystalline silicon and process for cleaning polycrystalline silicon chunks
KR101549734B1 (en) * 2012-02-21 2015-09-02 와커 헤미 아게 Chunk polycrystalline silicon and process for cleaning polycrystalline silicon chunks
US9209009B2 (en) 2012-02-21 2015-12-08 Wacker Chemie Ag Chunk polycrystalline silicon and process for cleaning polycrystalline silicon chunks
JP2013170122A (en) * 2012-02-21 2013-09-02 Wacker Chemie Ag Chunk polycrystalline silicon, and method for cleaning polycrystalline silicon chunk
CN103253674B (en) * 2012-02-21 2016-03-16 瓦克化学股份公司 Polysilicon fragment and the method for purifying polycrystalline silicon fragment
CN103253674A (en) * 2012-02-21 2013-08-21 瓦克化学股份公司 Chunk polycrystalline silicon and process for cleaning polycrystalline silicon chunks
CN102962224A (en) * 2012-11-06 2013-03-13 安徽日能中天半导体发展有限公司 Method for cleaning parent polycrystalline carbon head material
CN102962224B (en) * 2012-11-06 2014-11-12 安徽日能中天半导体发展有限公司 Method for cleaning parent polycrystalline carbon head material
JP2014233653A (en) * 2013-05-31 2014-12-15 三菱マテリアル株式会社 Method and apparatus for cleaning polycrystalline silicon
JP2016222470A (en) * 2015-05-27 2016-12-28 信越化学工業株式会社 Polycrystal silicon piece
JP7522065B2 (en) 2020-03-25 2024-07-24 高純度シリコン株式会社 Method for cleaning polycrystalline silicon chunks
CN112209383A (en) * 2020-11-11 2021-01-12 江苏鑫华半导体材料科技有限公司 Electronic grade polysilicon cleaning system and method
CN112209383B (en) * 2020-11-11 2024-08-06 江苏鑫华半导体科技股份有限公司 Electronic grade polysilicon cleaning system and method

Similar Documents

Publication Publication Date Title
JP2000302594A (en) Cleaning method of polycrystalline silicon
JP5427330B2 (en) Polycrystalline silicon lump of silicon for semiconductor materials
US8034313B2 (en) Recovery method of silicon slurry
WO2010125942A1 (en) Method for cleaning silicon sludge
JPWO2007097046A1 (en) Silicon particle processing method and apparatus
JP2007313454A (en) Method for washing polycrystalline silicon with pure water and apparatus for washing polycrystalline silicon with pure water
CN107879370A (en) The preparation method of oil-free carbonated rare earth
JP4957385B2 (en) Method for producing silicon single crystal
JP4125344B2 (en) Purification method of alkaline aqueous solution
JP3600837B2 (en) How to clean silicon pieces
JPH0692243B2 (en) Method and apparatus for refining metallic silicon
JP7458833B2 (en) Silicon raw material cleaning equipment
JPH0867511A (en) Production of polycrystal silicon
JP3781571B2 (en) Silicon raw material cleaning device and circulating pump protection filter used therefor
JP2008156185A (en) Raw material for manufacturing silicon single crystal, method for manufacturing the same, and method for manufacturing silicon single crystal
JP2009023851A (en) Method for producing raw material for producing silicon single crystal, and method for producing silicon single crystal
JP6784640B2 (en) Filter cleaning liquid processing equipment and processing method for ultra filter equipment
RU2255046C1 (en) Method for preparing copper sulfate
KR101408245B1 (en) Cleaning method for used oil filtering system
JP2014162687A (en) Method for purifying polycrystalline silicon obtained by the zinc reduction method
CN112010300B (en) Method for treating waste material containing abrasive particles
KR101070226B1 (en) Specific-gravity difference separation of silicon using the modified heavy liquid
JP3794247B2 (en) Granular semiconductor material cleaning equipment
JPH0867510A (en) Mechanical workpiece of polycrystal silicon
TWI614212B (en) Method for recycling silicon and silicon carbide from silicon slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080912

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20080912

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519