[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000340916A - Printed wiring board - Google Patents

Printed wiring board

Info

Publication number
JP2000340916A
JP2000340916A JP11148721A JP14872199A JP2000340916A JP 2000340916 A JP2000340916 A JP 2000340916A JP 11148721 A JP11148721 A JP 11148721A JP 14872199 A JP14872199 A JP 14872199A JP 2000340916 A JP2000340916 A JP 2000340916A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
substrate
metal foil
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11148721A
Other languages
Japanese (ja)
Inventor
Hiromitsu Hatano
洋充 羽田野
Motoyoshi Ohashi
基良 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP11148721A priority Critical patent/JP2000340916A/en
Publication of JP2000340916A publication Critical patent/JP2000340916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a printed wiring board, where the existence and stress distortion on not only the surface layer part of the board but also on an inner layer part are measured and various influences by means of distortion can be dissolved at measuring the state change of a distortion gauge due to distortion by stresses in the printed wiring board. SOLUTION: In a printed wiring board 1 formed of a board 3, where plural insulating boards 2 are stacked and a conductor pattern formed on the surface layer of the board 3, metal foil 10 whose conductor resistance change is large is buried in the inner layer of the board 3. Measuring electrodes 15 for connecting them to metal foil 10 are arranged on the surface of the board 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プリント配線板に
生じる応力による歪み等の状態変化を配線板内層に設け
た金属体の導体抵抗の変化に置き換えて測定することに
より、基板内層における応力歪みの存在、値を計測し
て、歪みによる種々の影響を解消することを可能とした
プリント配線板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring stress distortion in an inner layer of a printed circuit board by measuring a change in state such as distortion caused by stress in the printed circuit board by replacing the change in conductor resistance of a metal body provided in the inner layer of the printed circuit board. The present invention relates to a printed wiring board capable of measuring the presence and the value of, and eliminating various effects due to distortion.

【0002】[0002]

【従来の技術】現在、各種の精密機器や機械装置を構成
する電気部品(電装部)、機械部品等に於いて、目視で
は確認が困難な原因に起因してさまざまな障害が発生し
ている。このような原因として、例えば温度、磁気、静
電気、応力歪み等を挙げることができる。各種障害発生
の原因に起因して発生する変化、悪影響は、単純に計測
することが不可能な存在であり、これらを測定するため
には大がかりな装置を必要とする場合が多い。例えば、
応力による歪みの計測に関しては、歪ゲージを用いた計
測が一般的に行われており、機械装置等では、多くの場
面でこの歪みゲージによる歪み測定が実施されている。
歪みゲージは、周知のように圧力、荷重、変位等の物理
量を電気信号に変換する手段であり、例えば金属、半導
体等の抵抗体に歪みが加わった時に電気抵抗値が変化す
るという圧抵抗効果を利用した応力測定手段である。
2. Description of the Related Art At present, various failures have occurred in electrical parts (electrical parts), mechanical parts, and the like constituting various precision instruments and mechanical devices due to causes that are difficult to visually confirm. . Such causes include, for example, temperature, magnetism, static electricity, stress distortion, and the like. Changes and adverse effects caused by the causes of various failures cannot be simply measured, and a large-scale device is often required to measure them. For example,
Regarding the measurement of strain due to stress, measurement using a strain gauge is generally performed, and in a mechanical device or the like, strain measurement using the strain gauge is performed in many situations.
As is well known, a strain gauge is a means for converting a physical quantity such as pressure, load, displacement, or the like into an electric signal. For example, a piezoresistive effect that an electric resistance value changes when a strain is applied to a resistor such as a metal or a semiconductor. This is a stress measuring means utilizing the above.

【0003】ところで、各種機器の電装部に使用される
電気部品としてのプリント配線板は、従来これをネジ締
め等の方法によって機器に取り付ける際に歪み測定を行
ってはいたものの、プリント配線板そのものの歪みを測
定することはほとんどなかった。しかし、最近のプリン
ト配線板については、高密度実装化により多数の部品が
搭載される場合が多くなり、また、搭載部品の中には、
半田接続信頼性が懸念される極小チップ部品や、はんだ
ボール接続を行うBGAやCSP等が多く含まれるよう
になってきている。これらの搭載部品は、いずれもプリ
ント配線板自体の僅かな歪みによって、基板との間の半
田接続性が低下する虞れのある部品である。また、搭載
部品の重量によるストレスや、リフロー接続時やフロー
接続時に加わる熱ストレス、プリント配線板の薄板化等
により、基板に撓み、反り等の変形が発生すると、搭載
したチップ抵抗等のチップ部品にクラックが形成される
チップクラック等のさまざまな障害が発生し、プリント
配線板の歪みに起因した影響を無視できなくなってきて
いる。このため、予めプリント配線板の所要箇所に加わ
る歪みと、それに起因した影響を測定して知っておくこ
とにより、部品の接続不良や、支持安定性の低下等とい
った不具合を回避する対策を立てて、不良品の発生率を
低減する必要がある。即ち、プリント配線板を実機に搭
載した際に発生する歪みに関するデータを取得しておく
ことにより、設計段階において、部品の配置を変更した
り、変形しにくい基板厚を選定する等の変更が可能とな
る。ところで、プリント配線板等に加わる歪みを測定す
る手段としては、例えば歪みゲージをプリント配線板の
適所に貼って歪みの計測を行うことが考えられるが、高
密度化されたプリント配線板上に歪みゲージを貼るスペ
ース確保の問題、歪みゲージを貼ったままのプリント配
線板を機器に組み付けることができない為に機器への組
み付け状態での歪み測定が困難となる問題、配線板の表
層のみでの測定となるため測定可能箇所が局所に限定さ
れて不十分となるという問題、また歪みゲージ自体のコ
ストが高くなるという問題等がある。
[0003] By the way, the printed wiring board as an electric component used for the electrical component of various devices has conventionally been subjected to distortion measurement when it is mounted on the device by a method such as screwing. Was almost never measured. However, with regard to recent printed wiring boards, a large number of components are often mounted due to high-density mounting.
A lot of micro chip parts for which solder connection reliability is a concern, and BGAs and CSPs for solder ball connection, etc. have been increasingly included. Each of these mounted components is a component that may be deteriorated in solder connectivity with a substrate due to slight distortion of the printed wiring board itself. In addition, if the board is bent or deformed by warping due to the stress due to the weight of the mounted parts, the thermal stress applied during reflow connection or flow connection, or the thinning of the printed wiring board, the mounted chip components such as chip resistors Various obstacles such as chip cracks in which cracks are formed occur, and the effects caused by the distortion of the printed wiring board cannot be ignored. For this reason, by measuring and knowing in advance the distortion applied to the required portion of the printed wiring board and the resulting effect, measures have been taken to avoid problems such as poor connection of parts and deterioration in support stability. Therefore, it is necessary to reduce the incidence of defective products. In other words, by acquiring data on the distortion that occurs when the printed wiring board is mounted on the actual machine, it is possible to change the arrangement of components and select a board thickness that is not easily deformed at the design stage. Becomes By the way, as a means for measuring the strain applied to the printed wiring board or the like, for example, it is conceivable to measure the strain by attaching a strain gauge to an appropriate place of the printed wiring board. The problem of securing the space for attaching the gauge, the problem that it is difficult to measure the strain in the state of being assembled to the device because the printed wiring board with the strain gauge attached cannot be assembled to the device, the measurement only on the surface layer of the wiring board Therefore, there is a problem that the measurable portion is limited to a local area and becomes insufficient, and a problem that the cost of the strain gauge itself increases.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記に鑑みて
なされたものであり、プリント配線板に生じる応力によ
る歪み等の状態変化を歪みゲージにより測定する際に、
基板の表層部分のみならず、内層部分についても応力歪
みの存在、値を計測して、歪みによる種々の影響を解消
することを可能としたプリント配線板を提供することを
課題とする。即ち、本発明の歪み測定に使用される歪み
ゲージは、圧抵抗効果を備えた材質から成る薄い金属箔
にて構成されており、応力による歪み等により該金属箔
に発生する微小抵抗変化を歪み量に変換して歪みを測定
するが、プリント配線板にはもともと内層に銅箔が貼ら
れており、同様に内層に導体抵抗変化が大きな金属箔、
例えばNi等の金属箱を一枚内層に設け、フォトエッチ
ングにて歪みゲージを形成することによって簡易な歪み
ゲージの役割を持たせることが可能と考えられる。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and has been made in consideration of a state in which a state change such as a strain due to a stress generated in a printed wiring board is measured by a strain gauge.
It is an object of the present invention to provide a printed wiring board capable of measuring the presence and value of stress strain not only in a surface layer portion of a substrate but also in an inner layer portion and eliminating various effects due to the strain. That is, the strain gauge used for the strain measurement of the present invention is formed of a thin metal foil made of a material having a piezoresistive effect, and a small resistance change generated in the metal foil due to stress or the like is distorted. The amount of distortion is measured by converting it into a quantity, but the printed wiring board originally has copper foil on the inner layer, and the inner layer also has a metal foil with a large change in conductor resistance.
For example, it is considered that a metal box made of Ni or the like is provided in one inner layer, and a strain gauge is formed by photoetching, so that it can have a role of a simple strain gauge.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する為、
請求項1の発明は、複数の絶縁板を積層した基板と、該
基板の少なくとも表層に形成した導体パターンとから成
るプリント配線板において、上記基板の内層に、導体抵
抗変化が大きな金属箔を埋設したことを特徴とする。請
求項2の発明は、上記基板の表層に、上記金属箔と結線
するための測定用電極を配置したことを特徴とする。請
求項3の発明は、上記導体抵抗変化が大きな金属箔とし
て、ニッケルを用いたことを特徴とする。請求項4の発
明は、上記金属箔を、フォトエッチングにより絶縁板上
に形成したことを特徴とする。請求項5の発明は、上記
金属箔を、上記基板を構成する一つの絶縁板上の任意の
位置に複数配置したことを特徴とする。請求項6の発明
は、上記金属箔を、一つの絶縁板上に複数配置すると共
に、各金属箔の向きを多方向に設定したことを特徴とす
る。請求項7の発明は、上記金属箔を、上記基板を構成
する異なった絶縁板上の任意の位置に夫々配置したこと
を特徴とする。請求項8の発明は、上記金属箔と、基板
表層に形成した測定用電極とをスルーホールにて結線し
たことを特徴とする。請求項9の発明は、上記スルーホ
ールを、上記基板に形成した穴内に半田をメッキするこ
とにより形成したことを特徴とする。請求項10の発明
は、複数の絶縁板を積層した基板と、該基板の少なくと
も表層に形成した導体パターンとから成るプリント配線
板において、導体抵抗変化が大きな金属箔を、上記基板
の表面と、該表面側金属箔と対応する基板裏面に、夫々
配置し、両金属箔間をスルーホールにて結線したことを
特徴とする。
In order to solve the above-mentioned problems,
According to a first aspect of the present invention, in a printed wiring board comprising a substrate on which a plurality of insulating plates are stacked and a conductor pattern formed on at least a surface layer of the substrate, a metal foil having a large change in conductor resistance is embedded in an inner layer of the substrate. It is characterized by having done. The invention according to claim 2 is characterized in that a measurement electrode for connecting to the metal foil is arranged on a surface layer of the substrate. The invention according to claim 3 is characterized in that nickel is used as the metal foil having a large conductor resistance change. The invention according to claim 4 is characterized in that the metal foil is formed on an insulating plate by photoetching. The invention of claim 5 is characterized in that a plurality of the metal foils are arranged at arbitrary positions on one insulating plate constituting the substrate. The invention of claim 6 is characterized in that a plurality of the metal foils are arranged on one insulating plate, and the directions of the metal foils are set in multiple directions. The invention according to claim 7 is characterized in that the metal foils are arranged at arbitrary positions on different insulating plates constituting the substrate. The invention according to claim 8 is characterized in that the metal foil and the measurement electrode formed on the surface layer of the substrate are connected by through holes. According to a ninth aspect of the present invention, the through hole is formed by plating a solder in a hole formed in the substrate. The invention according to claim 10 is a printed wiring board comprising a substrate on which a plurality of insulating plates are laminated and a conductor pattern formed on at least a surface layer of the substrate; The present invention is characterized in that the metal foils are arranged on the back surface of the substrate corresponding to the metal foil on the front side, respectively, and both metal foils are connected by through holes.

【0006】[0006]

【発明の実施の形態】以下、本発明を図面に示した実施
の形態に従って詳細に説明する。図1は本発明を適用し
たプリント配線板の一例の外観斜視図であり、ガラスエ
ポキシ等の絶縁材料から成る薄板(絶縁板)を積層して
形成されたプリント配線板1の内層には歪みゲージとし
て使用される金属箔(金属箔ゲージ)10が、任意の層
内の任意の位置、かつ任意の方向に向けて任意の枚数配
置されている。即ち、プリント配線板1は、複数枚の絶
縁板2を積層一体化して構成した基板3と、基板3の表
面或は裏面に形成された表層導体パターンと、絶縁板
間、即ち基板内層に形成された内層導体パターン4等を
備えている。個々の金属箔10は、例えば図2に示すよ
うな形状にフォトエッチングによって形成することが理
想的である。この金属箔10の両端の端子部10a,1
0bを夫々配線板の表層(表面或は/及び裏面)に露出
した電極に接続し、該電極を図示しない測定器の測定端
子に夫々接続することにより、金属箔10が配置された
プリント配線板部分に対する応力に起因した歪みを電気
的に測定することができる。金属箔10の材質として
は、例えば圧抵抗効果を備えたニッケルNi等の金属材
料を用いる。金属箔10の材質としては、Ni以外であ
っても、導体抵抗の変化が大きな金属材料を使用するこ
とができる。金属箔10を基板3の内層に配置する理由
は、基板外面は部品搭載スペースその他の領域として活
用されていることが多いので、金属箔10を貼り続ける
ことができない為であり、プリント配線板製造時にフォ
トエッチング等の手法により絶縁板2上に金属箔10を
形成することにより、完成したプリント配線板内に歪み
ゲージとしての金属箔を内蔵し続け、機器に対する搭載
後においても、プリント配線板に対する歪みの発生状況
を任意の時期に測定することが可能となる。内蔵型の歪
みゲージとして金属箔10を使用することにより、従来
のように歪みゲージを多数準備する必要がなくなり、貼
り付けるスペースを確保する必要もなくなり、また貼り
付けたり剥離する段取り、手順も不要となり、取扱い、
測定作業が容易化する。また、基板外面のみに歪みゲー
ジを貼った場合には表層部分の歪みしか測定できない
が、内部に金属箔を配置することにより、内部の任意の
位置の歪みも正確に測定することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. FIG. 1 is an external perspective view of an example of a printed wiring board to which the present invention is applied. A strain gauge is provided on an inner layer of a printed wiring board 1 formed by laminating thin plates (insulating plates) made of an insulating material such as glass epoxy. The number of metal foils (metal foil gauges) 10 to be used as a plurality is arranged at an arbitrary position in an arbitrary layer and in an arbitrary direction. That is, the printed wiring board 1 includes a substrate 3 formed by laminating and integrating a plurality of insulating plates 2, a surface conductor pattern formed on the front surface or the back surface of the substrate 3, and a space between the insulating plates, that is, formed on the inner layer of the substrate. Inner conductor pattern 4 and the like. Ideally, each metal foil 10 is formed by, for example, photoetching into a shape as shown in FIG. Terminal portions 10a, 1 at both ends of the metal foil 10
0b are connected to electrodes exposed on the surface layer (front surface and / or back surface) of the wiring board, respectively, and the electrodes are connected to measurement terminals of a measuring device (not shown), respectively. The strain caused by the stress on the portion can be measured electrically. As a material of the metal foil 10, for example, a metal material such as nickel Ni having a piezoresistance effect is used. As a material of the metal foil 10, even if it is other than Ni, a metal material having a large change in conductor resistance can be used. The reason for disposing the metal foil 10 in the inner layer of the substrate 3 is that the outer surface of the substrate is often used as a component mounting space or other area, so that the metal foil 10 cannot be stuck. Sometimes, the metal foil 10 is formed on the insulating plate 2 by a method such as photoetching, so that the metal foil serving as a strain gauge is continuously incorporated in the completed printed wiring board. It is possible to measure the state of occurrence of distortion at any time. By using the metal foil 10 as a built-in strain gauge, there is no need to prepare a large number of strain gauges as in the prior art, and it is not necessary to secure a space for pasting, and no setup or procedure for pasting or peeling is required. And handling,
Measurement work is facilitated. When a strain gauge is attached only to the outer surface of the substrate, only the distortion of the surface layer can be measured. However, by arranging the metal foil inside, the distortion at an arbitrary position inside can be measured accurately.

【0007】図3は本発明を適用したプリント配線板の
要部断面図であり、ガラスエポキシ等の絶縁材料から成
る絶縁板2を複数枚積層した多層構造の基板3は、その
表面または裏面に銅、アルミ等から成る通常の配線パタ
ーンを有すると共に、必要に応じて配線パターンはスル
ーホール11aを介して内層に配置された銅箔等から成
る内部パターン4と電気的に接続される。スルーホール
11a,11b,11cは、基板3を貫通、或は貫通し
ない穴の内壁と、開口部周縁に半田等をメッキにより被
覆することにより形成する。歪みゲージとして使用され
る金属箔10は、この実施の形態では上から2層目と3
層目の絶縁板2間に形成されており、金属箔10の2つ
の端子部10a,10bは、基板表面から形成された穴
と該穴内壁に被覆形成した半田とから成るスルーホール
11bにより、基板表面に配置した測定用電極15と電
気的に接続(結線)されている。つまり、図2に示した
如き構造の金属箔10を内層に配置すると共に各端子部
10a,10bをスルーホール11bを介して表面の測
定用電極15に夫々接続する。図示しない測定器の測定
端子を測定用電極15に接続した状態で金属箔10に通
電して微小抵抗変化を歪み量に変換して歪みを測定す
る。つまり、この実施の形態では、導体抵抗変化が大き
な金属材料から成る金属箔10を基板表層に設けた測定
用電極15と結線することにより、このプリント配線板
を機器本体の電装部に組み込んだ後においても、任意の
時期に応力に起因した歪みの値と、その影響を測定する
ことが可能となる。上述のように、導体抵抗変化が大き
な金属材料としては、ニッケルNi等の金属箔が好まし
い。この金属箔10は、個々の絶縁板上に導体パターン
を形成する際の工程と同様に、フォトエッチングにより
金属箔ゲージとして形成することが好ましい。つまり、
設備費やランイニグコストが高い特殊技術を用いずに、
通常のプリント配線板製造技術にて容易に形成すること
ができ、製造コスト増を招くことがない。
FIG. 3 is a cross-sectional view of a principal part of a printed wiring board to which the present invention is applied. A substrate 3 having a multilayer structure in which a plurality of insulating plates 2 made of an insulating material such as glass epoxy is laminated on a front surface or a back surface thereof. It has a normal wiring pattern made of copper, aluminum or the like, and if necessary, the wiring pattern is electrically connected to the internal pattern 4 made of copper foil or the like disposed in an inner layer via a through hole 11a. The through holes 11a, 11b, and 11c are formed by coating the inner wall of the hole that does not penetrate the substrate 3 or the periphery of the opening with solder or the like by plating. In this embodiment, the metal foil 10 used as the strain gauge is the second and third layers from the top.
The two terminal portions 10a and 10b of the metal foil 10 are formed between the insulating plates 2 of the layer, and the two terminal portions 10a and 10b are formed by a through hole 11b formed of a hole formed from the substrate surface and a solder formed on the inner wall of the hole. It is electrically connected (connected) to the measurement electrode 15 arranged on the substrate surface. That is, the metal foil 10 having the structure as shown in FIG. 2 is arranged in the inner layer, and the terminals 10a and 10b are respectively connected to the measurement electrodes 15 on the surface via the through holes 11b. The metal foil 10 is energized in a state where the measuring terminal of the measuring device (not shown) is connected to the measuring electrode 15 to convert a minute resistance change into a strain amount to measure the strain. That is, in this embodiment, the metal foil 10 made of a metal material having a large conductor resistance change is connected to the measuring electrode 15 provided on the surface layer of the substrate, so that the printed wiring board is incorporated into the electrical unit of the device body. It is also possible to measure the value of the strain caused by the stress at any time and the effect thereof. As described above, as a metal material having a large change in conductor resistance, a metal foil such as nickel Ni is preferable. This metal foil 10 is preferably formed as a metal foil gauge by photoetching in the same manner as in the step of forming a conductor pattern on each insulating plate. That is,
Without using special technology with high equipment costs and run-in costs,
It can be easily formed by ordinary printed wiring board manufacturing technology, and does not cause an increase in manufacturing cost.

【0008】また、図示しないが、この歪みゲージとし
ての金属箔10は、同一の層内の任意の場所に複数配置
してもよいし、個々の歪みゲージの方向は、測定の対象
となる歪みに応じてこれを異ならせ、結果として同一内
層内の複数の金属箔が多方向に向けて配置された状態と
してもよい。この結果、プリント配線板の各位置におけ
る状態変化を電気抵抗変化に置き換えて測定したり、方
向性のある状態変化を電気抵抗変化に置き換えて測定す
ることができる。更に、歪みゲージとしての金属箔10
を異なった絶縁板間、つまり異なった複数の内層の任意
に位置に配置してもよい。この結果、内層における任意
の厚み方向位置の状態変化や、表層付近の状態変化を夫
々抵抗変化に置き換えて測定することができる。次に、
図2中の右端部のスルーホール11cは、基板3の表面
に形成した表面側金属箔10Aと、表面側金属箔10A
と対応する基板裏面に形成した裏面側金属箔10Bとを
接続する手段である。表面側金属箔10A及び裏面側金
属箔10Bの各端子部10a,10bは、基板表層に露
出しているので、図示しない測定器の測定端子を当接し
た測定が可能である。このような構成は、通常のプリン
ト配線板製造技術により容易に実現することができ、基
板の表層(表面及び裏面)の状態変化を電気信号として
外部に取り出して測定に供することができる。特に、基
板の表裏面に夫々配置した金属箔を組み合わせ使用する
ことにより、精度の高い状態変化を測定することが可能
となる。なお、高精度の測定結果を望まなければ、基板
3内に配置された既存の銅箔(例えば符号4で示す)を
用いて従来の配線技術により金属箔ゲージを作成するこ
とも考えられる。
Although not shown, a plurality of metal foils 10 as strain gauges may be arranged at arbitrary positions in the same layer, and the direction of each strain gauge depends on the strain to be measured. May be made different depending on the situation, and as a result, a plurality of metal foils in the same inner layer may be arranged in multiple directions. As a result, it is possible to measure by replacing the state change at each position of the printed wiring board with the electric resistance change, or by replacing the directional state change with the electric resistance change. Further, a metal foil 10 as a strain gauge
May be arranged between different insulating plates, that is, at arbitrary positions of different inner layers. As a result, a change in state at an arbitrary position in the thickness direction in the inner layer and a change in state near the surface layer can be measured by replacing each with a change in resistance. next,
The through hole 11c at the right end in FIG. 2 is composed of the front side metal foil 10A formed on the surface of the substrate 3 and the front side metal foil 10A.
And means for connecting the back side metal foil 10B formed on the corresponding back side of the substrate. Since the terminal portions 10a and 10b of the front-side metal foil 10A and the back-side metal foil 10B are exposed on the surface of the substrate, it is possible to perform measurement by abutting a measurement terminal of a measuring device (not shown). Such a configuration can be easily realized by a normal printed wiring board manufacturing technique, and a change in the state of the surface layer (front surface and back surface) of the substrate can be taken out as an electric signal and used for measurement. In particular, by using a combination of the metal foils disposed on the front and back surfaces of the substrate, it is possible to measure a state change with high accuracy. If a high-precision measurement result is not desired, it is conceivable to create a metal foil gauge by a conventional wiring technique using an existing copper foil (for example, indicated by reference numeral 4) arranged in the substrate 3.

【0009】[0009]

【発明の効果】以上のように本発明は、金属箔から成る
歪みゲージを内蔵したプリント配線板を使うことで、歪
みゲージを多数準備する必要がなくなり、また基板表面
に貼るスペースを考慮する必要もなくなる。また貼る段
取り、手順も必要がなくなり、非常に扱いやすくなる。
併せてプリント配線板が製品に組み付けられた場合は、
任意の場面で必要に応じて歪み測定を行うことも可能に
なる。即ち、請求項1の発明によれば、導体抵抗変化の
大きな金属箔を基板の内層に配置したので、外部応力等
に起因したプリント配線板の様々な状態変化を抵抗変化
に置き換えて測定することができる。請求項2の発明に
よれば、基板表層(表面又は/及び裏面)に、測定用電
極を配置し、内層に配置した導体抵抗変化の大きな金属
箔と結線したので、抵抗変化についての情報を電気信号
として外部に取り出すことができる。請求項3の発明に
よれば、上記導体抵抗変化の大きな金属箔としてNi等
の金属を用いているので、通常のプリント配線板製造工
程にて金属箔を形成することが可能であり、生産性を高
めることができる。請求項4の発明によれば、フォトエ
ッチングにより金属箔ゲージを形成するので、複雑高価
な特殊技術を使わず、通常のプリント配線板製造技術に
て安易に形成することができる。
As described above, the present invention eliminates the need for preparing a large number of strain gauges by using a printed wiring board having a built-in strain gauge made of metal foil, and also requires consideration of the space to be attached to the substrate surface. Is also gone. In addition, there is no need for a setup or procedure for pasting, which makes it very easy to handle.
If the printed wiring board is assembled to the product at the same time,
It is also possible to perform distortion measurement at any occasion as needed. In other words, according to the first aspect of the present invention, since the metal foil having a large change in the conductor resistance is disposed in the inner layer of the substrate, various changes in the state of the printed wiring board caused by external stress and the like are replaced with changes in the resistance. Can be. According to the second aspect of the present invention, the measurement electrode is arranged on the surface layer (front surface and / or back surface) of the substrate and connected to the metal foil having a large change in conductor resistance arranged in the inner layer. It can be taken out as a signal. According to the invention of claim 3, since a metal such as Ni is used as the metal foil having a large conductor resistance change, it is possible to form the metal foil in a normal printed wiring board manufacturing process, and to improve productivity. Can be increased. According to the fourth aspect of the present invention, since the metal foil gauge is formed by photoetching, the metal foil gauge can be easily formed by a normal printed wiring board manufacturing technique without using a complicated and expensive special technique.

【0010】請求項5の発明によれば、同一内層の複数
箇所に金属箔ゲージが配置されており、リント基板の各
位置にての状態変化を抵抗変化に置き換え測定すること
ができる。請求項6の発明によれば、同一内層内に多方
向に箔ゲージが配置されており、方向性のある状態変化
を抵抗変化に置き換え測定することできる。請求項7の
発明によれば、基板を構成する複数の絶縁板上に夫々金
属箔ゲージが配置されており、表層、内層におけるとこ
ろの状態変化を測定することできる。請求項8の発明に
よれば、金属箔と表層に設けた測定用電極とがスルーホ
ールにて結線されているので、通常のプリント配線板製
造技術にて安易に電気信号の経路を形成することでき
る。請求項9の発明によれば、上記スルーホールを、上
記基板に形成した穴内に半田をメッキすることにより形
成したので、通常のプリント配線板製造技術にて安易に
形成でき、電気信号として状態変化を外部に取り出すこ
とができる。請求項10の発明によれば、基板の最上部
(表面)と最下部(裏面)に夫々金属箔ゲージが相対的
に配置されており、これらの組み合わせにより精度の高
い状態変化を測定することできる。
According to the fifth aspect of the present invention, the metal foil gauges are arranged at a plurality of positions in the same inner layer, and the change in the state at each position of the lint substrate can be measured by replacing the change in the state with the change in resistance. According to the invention of claim 6, the foil gauges are arranged in multiple directions in the same inner layer, and the measurement can be performed by replacing a directional state change with a resistance change. According to the invention of claim 7, the metal foil gauge is arranged on each of the plurality of insulating plates constituting the substrate, and it is possible to measure the state change in the surface layer and the inner layer. According to the invention of claim 8, since the metal foil and the measurement electrode provided on the surface layer are connected by the through holes, it is possible to easily form the path of the electric signal by a normal printed wiring board manufacturing technique. it can. According to the ninth aspect of the present invention, since the through hole is formed by plating solder in the hole formed in the substrate, the through hole can be easily formed by a normal printed wiring board manufacturing technique, and the state changes as an electric signal. Can be taken out. According to the tenth aspect of the present invention, the metal foil gauges are relatively arranged at the uppermost portion (front surface) and the lowermost portion (back surface) of the substrate, and a highly accurate state change can be measured by a combination thereof. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したプリント配線板の一例の外観
斜視図。
FIG. 1 is an external perspective view of an example of a printed wiring board to which the present invention has been applied.

【図2】本発明の一例としての金属箔(金属箔ゲージ)
の構成例を示す図。
FIG. 2 shows a metal foil (metal foil gauge) as an example of the present invention.
The figure which shows the example of a structure of FIG.

【図3】本発明のプリント配線板の断面図。FIG. 3 is a cross-sectional view of the printed wiring board of the present invention.

【符号の説明】[Explanation of symbols]

1 プリント配線板、2 絶縁板、3 基板、4 内層
導体パターン、10 金属箔(金属箔ゲージ)、10
a,10b 端子部、11a,11b,11c スルー
ホール、15 測定用電極。
1 printed wiring board, 2 insulating plate, 3 substrate, 4 inner layer conductor pattern, 10 metal foil (metal foil gauge), 10
a, 10b Terminal part, 11a, 11b, 11c Through hole, 15 Measurement electrode.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5E317 AA24 BB02 BB12 BB15 BB18 CC31 CD29 GG20 5E338 AA03 BB63 BB75 EE60 5E346 AA02 AA12 AA14 CC01 CC25 CC32 CC34 CC37 CC40 DD12 DD22 DD32 DD33 FF01 FF22 GG34 HH40  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5E317 AA24 BB02 BB12 BB15 BB18 CC31 CD29 GG20 5E338 AA03 BB63 BB75 EE60 5E346 AA02 AA12 AA14 CC01 CC25 CC32 CC34 CC37 CC40 DD12 DD22 DD32 DD33 FF01 FF22 GG34 HH40

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 複数の絶縁板を積層した基板と、該基板
の少なくとも表層に形成した導体パターンとから成るプ
リント配線板において、 上記基板の内層に、導体抵抗変化が大きな金属箔を埋設
したことを特徴とするプリント配線板。
1. A printed wiring board comprising a substrate on which a plurality of insulating plates are laminated and a conductor pattern formed on at least a surface layer of the substrate, wherein a metal foil having a large change in conductor resistance is embedded in an inner layer of the substrate. A printed wiring board characterized by the above.
【請求項2】 上記基板の表層に、上記金属箔と結線す
るための測定用電極を配置したことを特徴とする請求項
1記載のプリント配線板。
2. The printed wiring board according to claim 1, wherein a measurement electrode for connecting to the metal foil is arranged on a surface layer of the substrate.
【請求項3】 上記導体抵抗変化が大きな金属箔とし
て、ニッケルを用いたことを特徴とする請求項1又は2
記載のプリント配線板。
3. The method according to claim 1, wherein nickel is used as the metal foil having a large change in conductor resistance.
The printed wiring board as described.
【請求項4】 上記金属箔を、フォトエッチングにより
絶縁板上に形成したことを特徴とする請求項1、2又は
3記載のプリント配線板。
4. The printed wiring board according to claim 1, wherein the metal foil is formed on the insulating plate by photoetching.
【請求項5】 上記金属箔を、上記基板を構成する一つ
の絶縁板上の任意の位置に複数配置したことを特徴とす
る請求項1、2、3、又は4記載のプリント配線板。
5. The printed wiring board according to claim 1, wherein a plurality of the metal foils are arranged at arbitrary positions on one insulating plate constituting the substrate.
【請求項6】 上記金属箔を、一つの絶縁板上に複数配
置すると共に、各金属箔の向きを多方向に設定したこと
を特徴とする請求項1、2、3、4、又は5記載のプリ
ント配線板。
6. The method according to claim 1, wherein a plurality of the metal foils are arranged on one insulating plate, and directions of the metal foils are set in multiple directions. Printed wiring board.
【請求項7】 上記金属箔を、上記基板を構成する異な
った絶縁板上の任意の位置に夫々配置したことを特徴と
する請求項1、2、3、4、5又は6記載のプリント配
線板。
7. The printed wiring according to claim 1, wherein the metal foil is arranged at an arbitrary position on a different insulating plate constituting the substrate. Board.
【請求項8】 上記金属箔と、基板表層に形成した測定
用電極とをスルーホールにて結線したことを特徴とする
請求項1、2、3、4、5、6、又は7記載のプリント
配線板。
8. The print according to claim 1, wherein the metal foil and a measurement electrode formed on a surface layer of the substrate are connected by through holes. Wiring board.
【請求項9】 上記スルーホールを、上記基板に形成し
た穴内に半田をメッキすることにより形成したことを特
徴とする請求項1、2、3、4、5、6、7又は8記載
のプリント配線板。
9. The print according to claim 1, wherein the through holes are formed by plating solder in the holes formed in the substrate. Wiring board.
【請求項10】 複数の絶縁板を積層した基板と、該基
板の少なくとも表層に形成した導体パターンとから成る
プリント配線板において、 導体抵抗変化が大きな金属箔を、上記基板の表面と、該
表面側金属箔と対応する基板裏面に、夫々配置し、両金
属箔間をスルーホールにて結線したことを特徴とするプ
リント配線板。
10. A printed wiring board comprising a substrate on which a plurality of insulating plates are laminated, and a conductor pattern formed on at least the surface layer of the substrate. A printed wiring board, wherein each of the metal foils is disposed on the back surface of the substrate corresponding to the side metal foil, and both metal foils are connected by through holes.
JP11148721A 1999-05-27 1999-05-27 Printed wiring board Pending JP2000340916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11148721A JP2000340916A (en) 1999-05-27 1999-05-27 Printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11148721A JP2000340916A (en) 1999-05-27 1999-05-27 Printed wiring board

Publications (1)

Publication Number Publication Date
JP2000340916A true JP2000340916A (en) 2000-12-08

Family

ID=15459128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11148721A Pending JP2000340916A (en) 1999-05-27 1999-05-27 Printed wiring board

Country Status (1)

Country Link
JP (1) JP2000340916A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069707A1 (en) * 2004-01-16 2005-07-28 Ibiden Co., Ltd. Multilayer printed wiring board and test body for printed wiring board
KR100623866B1 (en) 2004-07-01 2006-09-19 주식회사 팬택 Print Circuit Board to Improvement Discharge Induction Function of Static Electricity and Mobile Communication Terminal with The Same
KR100733287B1 (en) 2005-12-30 2007-06-29 주식회사액트 Printed circuit board for intercepting electro magnetic and preventing electro-static and method of manufactutring the same
KR100733386B1 (en) 2005-12-01 2007-06-29 주식회사액트 Printed circuit board for intercepting electro magnetic and preventing electro-static and manufactutring method thereof
JP2012255715A (en) * 2011-06-09 2012-12-27 Osao Miyazaki Stress sensor
WO2017158028A1 (en) * 2016-03-15 2017-09-21 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with integrated strain gauge
WO2017206769A1 (en) * 2016-05-30 2017-12-07 华为技术有限公司 Printed circuit board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069707A1 (en) * 2004-01-16 2005-07-28 Ibiden Co., Ltd. Multilayer printed wiring board and test body for printed wiring board
US7812261B2 (en) 2004-01-16 2010-10-12 Ibiden Co., Ltd. Multilayer printed wiring board and test body for printed wiring board
KR100623866B1 (en) 2004-07-01 2006-09-19 주식회사 팬택 Print Circuit Board to Improvement Discharge Induction Function of Static Electricity and Mobile Communication Terminal with The Same
KR100733386B1 (en) 2005-12-01 2007-06-29 주식회사액트 Printed circuit board for intercepting electro magnetic and preventing electro-static and manufactutring method thereof
KR100733287B1 (en) 2005-12-30 2007-06-29 주식회사액트 Printed circuit board for intercepting electro magnetic and preventing electro-static and method of manufactutring the same
JP2012255715A (en) * 2011-06-09 2012-12-27 Osao Miyazaki Stress sensor
WO2017158028A1 (en) * 2016-03-15 2017-09-21 At & S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with integrated strain gauge
US11081436B2 (en) 2016-03-15 2021-08-03 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with integrated strain gauge
WO2017206769A1 (en) * 2016-05-30 2017-12-07 华为技术有限公司 Printed circuit board
CN107449349A (en) * 2016-05-30 2017-12-08 华为终端(东莞)有限公司 Printed circuit board (PCB)

Similar Documents

Publication Publication Date Title
US7096748B2 (en) Embedded strain gauge in printed circuit boards
US20060231622A1 (en) Printed circuit board with integral strain gage
KR101926922B1 (en) Wiring board for device testing
CN101662895A (en) Multilayer circuit board, manufacturing method thereof and method for detecting alignment of circuit board
WO2018154899A1 (en) Elastic body and force sensor provided with said elastic body
KR101550484B1 (en) Wiring board for electronic component inspection device, and its manufacturing method
EP3054275B1 (en) Sensor module and method for producing sensor module
US11081436B2 (en) Component carrier with integrated strain gauge
JP2000340916A (en) Printed wiring board
WO2017206769A1 (en) Printed circuit board
WO2018154898A1 (en) Elastic body and force sensor provided with said elastic body
JP7455585B2 (en) How to interconnect sensor units and substrates and carriers
JP5774332B2 (en) Ceramic substrate for probe card and manufacturing method thereof
US11895776B2 (en) Flexible printed wiring board, joined body, pressure sensor and mass flow controller
JP5338513B2 (en) Pattern drawer structure and semiconductor device
WO2018154935A1 (en) Strain element and force sensor including strain element
US8064218B2 (en) Multilayer wiring board and electrical connecting apparatus using the same
US10834812B2 (en) Wiring board
JP4848676B2 (en) Component-embedded substrate, component-embedded module using the component-embedded substrate, and method of manufacturing the component-embedded substrate
JP2009031192A5 (en)
JP4131137B2 (en) Interposer substrate continuity inspection method
JP2000162239A (en) Vertical probe card
EP4460157A1 (en) Multilayer substrate and jig
WO2006091188A1 (en) Printed circuit board with integral strain gage
JP6064532B2 (en) Manufacturing method of component-embedded substrate