JP2000239006A - Activated alumina compact for production of hydrogen peroxide, its production, and purification of operating liquid for production of hydrogen peroxide by using the same - Google Patents
Activated alumina compact for production of hydrogen peroxide, its production, and purification of operating liquid for production of hydrogen peroxide by using the sameInfo
- Publication number
- JP2000239006A JP2000239006A JP11270917A JP27091799A JP2000239006A JP 2000239006 A JP2000239006 A JP 2000239006A JP 11270917 A JP11270917 A JP 11270917A JP 27091799 A JP27091799 A JP 27091799A JP 2000239006 A JP2000239006 A JP 2000239006A
- Authority
- JP
- Japan
- Prior art keywords
- activated alumina
- hydrogen peroxide
- production
- compact
- producing hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B15/00—Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
- C01B15/01—Hydrogen peroxide
- C01B15/013—Separation; Purification; Concentration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B15/00—Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
- C01B15/01—Hydrogen peroxide
- C01B15/022—Preparation from organic compounds
- C01B15/023—Preparation from organic compounds by the alkyl-anthraquinone process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/04—Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
- C01F7/06—Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom by treating aluminous minerals or waste-like raw materials with alkali hydroxide, e.g. leaching of bauxite according to the Bayer process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、過酸化水素製造用
活性アルミナ成形体及びその製造方法に関する。詳細に
は、アントラキノン化合物の酸化還元により過酸化水素
を製造するプロセスにおいて、アントラキノン化合物を
含む溶液よりエポキサイドを除去するために用いる過酸
化水素製造用活性アルミナ成形体及びその製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an activated alumina compact for producing hydrogen peroxide and a method for producing the same. More specifically, the present invention relates to an activated alumina molded body for producing hydrogen peroxide used for removing epoxide from a solution containing an anthraquinone compound in a process for producing hydrogen peroxide by redox of an anthraquinone compound, and a method for producing the same.
【0002】[0002]
【従来の技術】従来公知の過酸化水素の製造方法とし
て、アルキルアントラキノン等のアントラキノン化合物
を利用する方法がある。該製造方法では上記の化合物等
を溶媒に溶かして、アントラキノン化合物を含む溶液
(作働液と称する。)を得、還元工程において触媒の存
在下、作働液に水素を添加しアントラキノン化合物をヒ
ドロキノン体に変える。その後、酸化工程において、ア
ントラキノン化合物をキノン体に変えることにより過酸
化水素を生成させる。生成した過酸化水素は水抽出等の
方法により、作働液から分離される。一方、残った作働
液は、再び還元工程に循環される。この様にして、アン
トラキノン化合物は酸化還元を繰り返すが、反応過程に
おいて、副生物としてエポキサイド等が生成することが
知られている。該エポキサイドはアントラキノンのカル
ボニル基に隣接した二個の炭素原子の間に酸素原子が橋
架けした化合物である。作働液中に、不純物であるエポ
キサイドが蓄積すると過酸化水素の収量が低下するの
で、エポキサイドの濃度はでき得る限り低く保つ必要が
ある。作働液よりエポキサイドを除去する方法として、
活性アルミナを用いる方法が知られている。2. Description of the Related Art As a conventionally known method for producing hydrogen peroxide, there is a method utilizing an anthraquinone compound such as an alkylanthraquinone. In the production method, the above-mentioned compound or the like is dissolved in a solvent to obtain a solution containing an anthraquinone compound (referred to as an operation liquid). Turn into a body. Thereafter, in the oxidation step, hydrogen peroxide is generated by converting the anthraquinone compound into a quinone compound. The generated hydrogen peroxide is separated from the working fluid by a method such as water extraction. On the other hand, the remaining working fluid is circulated again to the reduction step. In this way, anthraquinone compounds are repeatedly redox-reduced, but it is known that epoxides and the like are produced as by-products in the reaction process. The epoxide is a compound in which an oxygen atom is bridged between two carbon atoms adjacent to a carbonyl group of anthraquinone. The accumulation of epoxide as an impurity in the working fluid reduces the yield of hydrogen peroxide, so the epoxide concentration must be kept as low as possible. As a method of removing epoxide from working fluid,
A method using activated alumina is known.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、触媒担
体や吸着材として用いられている活性アルミナを適用す
る場合には、充填した初期はある程度の性能が得られる
ものの、性能が劣化しやすく寿命が短い為短期間で入れ
替える必要があった。However, when activated alumina used as a catalyst carrier or an adsorbent is applied, although some performance can be obtained at the initial stage of filling, the performance is easily deteriorated and the life is short. Therefore, it was necessary to replace them in a short period of time.
【0004】[0004]
【課題を解決するための手段】本発明者等は、かかる課
題を解決すべく鋭意検討を行った結果、作働液よりエポ
キサイドを除去するための初期の除去性能が同等以上で
あり、かつ十分に除去できる寿命が長い活性アルミナ成
形体を見出し本発明を完成するに至った。すなわち、本
発明は(1)平均粒子径が0.5mm以上2.0mm未
満であり、BET比表面積が250m2/g以上であ
り、SiO2濃度が0.01重量%〜15重量%である
ことを特徴とする、アントラキノン化合物の酸化還元に
より過酸化水素を製造するプロセスにおいて、アントラ
キノン化合物を含む溶液よりエポキサイドを除去するた
めに用いる過酸化水素製造用活性アルミナ成形体であ
り、Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve such problems, and as a result, the initial removal performance for removing epoxide from the working fluid is equal to or higher than that of the working fluid. The present inventors have found an activated alumina molded body having a long service life that can be easily removed, and have completed the present invention. That is, in the present invention, (1) the average particle diameter is 0.5 mm or more and less than 2.0 mm, the BET specific surface area is 250 m 2 / g or more, and the SiO 2 concentration is 0.01% by weight to 15% by weight. In the process of producing hydrogen peroxide by redox of an anthraquinone compound, characterized in that it is an active alumina molded body for producing hydrogen peroxide used for removing epoxide from a solution containing an anthraquinone compound,
【0005】(2)平均粒子径が0.5mm以上2.0
mm未満であり、BET比表面積が250m2/g以上
であり、SiO2濃度が0.01重量%〜15重量%で
あり、水分が0.5重量%〜10重量%であることを特
徴とする、アントラキノン化合物の酸化還元により過酸
化水素を製造するプロセスにおいて、アントラキノン化
合物を含む溶液よりエポキサイドを除去するために用い
る過酸化水素製造用活性アルミナ成形体であり、(2) The average particle diameter is 0.5 mm or more and 2.0
mm, a BET specific surface area of 250 m 2 / g or more, a SiO 2 concentration of 0.01 wt% to 15 wt%, and a water content of 0.5 wt% to 10 wt%. In a process for producing hydrogen peroxide by redox of an anthraquinone compound, an activated alumina molded body for producing hydrogen peroxide used for removing epoxide from a solution containing an anthraquinone compound,
【0006】(3)再水和性を有し、かつ嵩密度が0.
5g/cm3〜1.2g/cm3gである活性アルミナ粉
末を成形し、再水和した後、焼成することを特徴とする
(1)または(2)に記載の過酸化水素製造用活性アル
ミナ成形体の製造方法であり、(3) It has rehydration properties and has a bulk density of 0.1.
The activity for producing hydrogen peroxide according to (1) or (2), wherein activated alumina powder having a weight of 5 g / cm 3 to 1.2 g / cm 3 g is molded, rehydrated, and fired. A method for producing an alumina molded body,
【0007】(4)アントラキノン化合物の酸化還元に
より過酸化水素を製造するプロセスにおいて、(1)ま
たは(2)に記載の過酸化水素製造用活性アルミナ成形
体を充填した床に作働液を空間速度0.5〜50h-1で
通液してエポキサイドを除去することを特徴とする過酸
化水素製造用作働液の精製方法である。(4) In a process for producing hydrogen peroxide by oxidation-reduction of an anthraquinone compound, the working liquid is space-filled on a bed filled with the activated alumina molded article for producing hydrogen peroxide according to (1) or (2). A method for purifying a working fluid for producing hydrogen peroxide, comprising removing epoxide by passing the solution at a rate of 0.5 to 50 h -1 .
【0008】[0008]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の過酸化水素製造用活性アルミナ成形体は、平均
粒子径が0.5mm以上2.0mm未満であり、BET
比表面積が250m2/g以上であり、SiO2濃度が
0.01重量%〜15重量%であることを特徴とする。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The activated alumina compact for producing hydrogen peroxide of the present invention has an average particle diameter of 0.5 mm or more and less than 2.0 mm, and a BET
The specific surface area is 250 m 2 / g or more, and the SiO 2 concentration is 0.01% by weight to 15% by weight.
【0009】本発明の過酸化水素製造用活性アルミナ成
形体の平均粒子径は、0.5mm以上2.0mm未満、
好ましくは1.0mm以上1.8mm以下である。平均
粒子径が2.0mm以上であると除去性能の劣化が早く
なる。平均粒子径が0.5mm未満であるとカラム等へ
の通液時の抵抗が増加し、十分な除去性能が得られな
い。粒径分布は、通常の工業的に用いられる活性アルミ
ナ粉末と同様な分布、すなわち90%径と10%径の比
が約1.1〜約2程度であればよい。The average particle size of the activated alumina molded article for producing hydrogen peroxide of the present invention is 0.5 mm or more and less than 2.0 mm,
Preferably it is 1.0 mm or more and 1.8 mm or less. When the average particle diameter is 2.0 mm or more, the deterioration of the removal performance is accelerated. If the average particle size is less than 0.5 mm, the resistance during passage through a column or the like increases, and sufficient removal performance cannot be obtained. The particle size distribution may be the same as that of activated alumina powder used in general industrial use, that is, the ratio of 90% diameter to 10% diameter is about 1.1 to about 2.
【0010】前記過酸化水素製造用活性アルミナ成形体
のBET比表面積は、250m2/g以上、好ましくは
300m2/g〜400m2/gである。BET比表面積
が前述した下限より低いと初期の除去活性が低くなる。[0010] BET specific surface area of the hydrogen peroxide produced for the activated alumina formed body, 250 meters 2 / g or more, preferably 300m 2 / g~400m 2 / g. If the BET specific surface area is lower than the above lower limit, the initial removal activity will be low.
【0011】前記過酸化水素製造用活性アルミナ成形体
のSiO2濃度は、0.01重量%〜15重量%、好ま
しくは1重量%〜10重量%である。SiO2濃度が
0.01重量%未満の場合は、初期の除去性能が低くな
る。15%重量より多い場合は、除去性能は得られるも
のの、活性アルミナ成形体の強度が低下する傾向があ
る。The activated alumina molded body for producing hydrogen peroxide has a SiO 2 concentration of 0.01 to 15% by weight, preferably 1 to 10% by weight. If the SiO 2 concentration is less than 0.01% by weight, the initial removal performance will be low. When the amount is more than 15% by weight, although the removal performance is obtained, the strength of the activated alumina molded body tends to decrease.
【0012】本発明の過酸化水素製造用活性アルミナ成
形体は、活性アルミナ成形体を充填した床に最初に作働
液を通液した時の発熱を抑制できることから、水分が約
0.5重量%〜約10重量%であることが好ましい。水
分が約0.5重量%未満の場合は、発熱抑制効果が無
く、また約10重量%より多い場合は、水が脱離して作
働液を汚染する可能性がある。また、製品過酸化水素の
純度低下や着色を防止できることから、過酸化水素製造
用活性アルミナ成形体は、Na2Oが約1%以下、好ま
しくは約0.5%以下であることが推奨される。The activated alumina molded article for producing hydrogen peroxide of the present invention can suppress the heat generation when the working liquid is first passed through the bed filled with the activated alumina molded article. % To about 10% by weight. When the water content is less than about 0.5% by weight, there is no effect of suppressing heat generation, and when the water content is more than about 10% by weight, water may be desorbed to contaminate the working fluid. In addition, it is recommended that the active alumina molded body for producing hydrogen peroxide has Na 2 O of about 1% or less, preferably about 0.5% or less, since the purity of the product hydrogen peroxide and coloration of the product can be prevented. You.
【0013】本発明の過酸化水素製造用活性アルミナ成
形体を用いて作働液を精製するには、例えば、過酸化水
素製造用活性アルミナ成形体を充填した床に作働液を通
液する方法が挙げられ、長時間連続して作働液中のエポ
キサイドを除去するためには温度約50℃〜約100
℃、空間速度0.5〜50h-1の条件が好ましい。ま
た、αアルミナ等の再水和性の無いアルミナ、アルミニ
ウム塩、シリカ、タルク、コージェライト、チタニア、
アルカリ土類塩類、希土類金属塩、ジルコニア、ムライ
ト、シリカアルミナ、セラミック繊維等の無機化合物と
添加混合して用いてもよい。酸化物以外の化合物を添加
した場合は、使用する前に該化合物を分解温度以上で焼
成する必要がある。その他の条件は、通常行われる過酸
化水素製造プロセスにおける作働液精製工程と同様の条
件が適用できる。In order to purify the working liquid using the activated alumina molded article for producing hydrogen peroxide of the present invention, for example, the working liquid is passed through a bed filled with the activated alumina molded article for producing hydrogen peroxide. In order to continuously remove epoxide in the working fluid for a long time, a temperature of about 50 ° C. to about 100 ° C.
C. and a space velocity of 0.5 to 50 h -1 are preferred. Also, non-rehydrating alumina such as α-alumina, aluminum salt, silica, talc, cordierite, titania,
It may be used by mixing with an inorganic compound such as an alkaline earth salt, a rare earth metal salt, zirconia, mullite, silica alumina, and ceramic fiber. When a compound other than an oxide is added, it is necessary to calcine the compound at a decomposition temperature or higher before use. As other conditions, the same conditions as those of the working liquid refining step in the usually performed hydrogen peroxide production process can be applied.
【0014】本発明の過酸化水素製造用活性アルミナ成
形体の製造方法は、再水和性を有し、かつ嵩密度が0.
5g/cm3〜1.2g/cm3gである活性アルミナ粉
末を成形し、再水和した後、焼成することを特徴とす
る。The process for producing an activated alumina compact for producing hydrogen peroxide according to the present invention has rehydration properties and a bulk density of 0.1.
It is characterized in that activated alumina powder of 5 g / cm 3 to 1.2 g / cm 3 g is molded, rehydrated, and fired.
【0015】前記製造方法に用いる活性アルミナ粉末
は、再水和性を有し、かつ嵩密度が0.5g/cm3〜
1.2g/cm3であればよく、公知のものが適用可能
である。活性アルミナ粉末の嵩密度が0.5g/cm3
より小さい場合には、成形が困難になり、本発明の過酸
化水素製造用活性アルミナ成形体を得ることができな
い。嵩密度が1.2g/cm3より大きい場合には、理
由は詳らかではないが、高い除去性能を有する活性アル
ミナ成形体が得られない。再水和し得る活性アルミナ粉
末の具体例としては、結晶形がχ、ρ、γ、ηからなる
群より選ばれた少なくとも1種であるアルミナ等が挙げ
られる。The activated alumina powder used in the production method has rehydration properties and has a bulk density of 0.5 g / cm 3 to 0.5 g / cm 3 .
What is necessary is just 1.2 g / cm < 3 >, and a well-known thing can be applied. The bulk density of the activated alumina powder is 0.5 g / cm 3
If it is smaller, molding becomes difficult, and the activated alumina molded article for producing hydrogen peroxide of the present invention cannot be obtained. When the bulk density is more than 1.2 g / cm 3 , the activated alumina molded body having high removal performance cannot be obtained, although the reason is not clear. Specific examples of the rehydratable activated alumina powder include alumina whose crystal form is at least one selected from the group consisting of χ, ρ, γ, and η.
【0016】前記活性アルミナ粉末を得る方法として
は、例えば、ギブサイト型の水酸化アルミニウムを仮
焼する方法(以降、ギブサイト仮焼法と称する場合があ
る。)、アルミニウム塩を中和し、ゲル状の水酸化ア
ルミニウムを得、仮焼する方法、アルミニウム塩を中
和してアルミナゾルを得、仮焼する方法、有機アルミ
ニウム化合物を加水分解し、ゲル状の水酸化アルミニウ
ムを得、仮焼する方法等がある。これらの方法の内、高
強度の成形体が得られること、および経済性の点から
ギブサイト仮焼法が推奨される。具体例としては、バイ
ヤー工程等で得られる平均粒子径が0.1〜200μm
である水酸化アルミニウムを、温度約500℃〜約12
00℃、線速度約5m〜約50mの気流中に約0.1秒
〜約10秒間接触させる方法(瞬間仮焼法)がある。As a method for obtaining the activated alumina powder, for example, a method of calcining gibbsite-type aluminum hydroxide (hereinafter sometimes referred to as a gibbsite calcining method), a method of neutralizing an aluminum salt and forming a gel. Of aluminum hydroxide, calcining, neutralizing aluminum salt to obtain alumina sol, calcining, hydrolyzing organic aluminum compounds to obtain gelled aluminum hydroxide, calcining, etc. There is. Among these methods, the gibbsite calcination method is recommended from the viewpoint of obtaining a high-strength molded article and economical efficiency. As a specific example, the average particle diameter obtained in the buyer step or the like is 0.1 to 200 μm
Aluminum hydroxide at a temperature of about 500 ° C. to about 12 ° C.
There is a method of contacting in an air stream at 00 ° C. and a linear velocity of about 5 m to about 50 m for about 0.1 second to about 10 seconds (flash calcination method).
【0017】また、前記活性アルミナ粉末は、通常、灼
熱減量が約3重量%〜約10重量%であり、平均粒子径
が約1μm〜約20μm、好ましくは約3μm〜10μ
mであり、SiO2が約0.01重量%〜約15重量%
であり、Na2Oが約1重量%以下、好ましくは0.5
重量%以下である。活性アルミナ粉末の平均粒子径が約
20μmを超える場合には、成形を容易にし活性アルミ
ナ成形体の強度が高めるために、粉砕を行うことが好ま
しい。活性アルミナ粉末のNa2Oが約1重量%より高
い場合には、得られる活性アルミナ成形体のNa2Oが
高くなる傾向にあり、製品過酸化水素の純度低下や着色
を引き起こす場合がある。尚、必要に応じて、得られる
活性アルミナ成形体のSiO2が約0.01重量%〜約
15重量%になるように水酸化アルミニウムまたは再水
和性を有する活性アルミナ粉末に珪素含有物質を添加し
てもよい。該珪素含有物質としては、シリカ粉末または
シリカアルミナ粉末等であり、H0−5.6以下の酸点
を有するものが好ましい。The activated alumina powder generally has a loss on ignition of about 3% by weight to about 10% by weight and an average particle size of about 1 μm to about 20 μm, preferably about 3 μm to 10 μm.
m and the SiO 2 content is about 0.01% to about 15% by weight.
And Na 2 O is less than about 1% by weight, preferably 0.5% by weight.
% By weight or less. When the average particle diameter of the activated alumina powder exceeds about 20 μm, it is preferable to carry out pulverization in order to facilitate molding and increase the strength of the activated alumina compact. When Na 2 O of the activated alumina powder is higher than about 1% by weight, the obtained activated alumina molded body tends to have a high Na 2 O, which may cause a reduction in purity and coloring of the hydrogen peroxide product. If necessary, a silicon-containing substance may be added to aluminum hydroxide or a rehydratable activated alumina powder so that the SiO 2 content of the obtained activated alumina molded body is about 0.01% to about 15% by weight. It may be added. The silicon-containing substance is, for example, silica powder or silica alumina powder, and preferably has an acid point of H0-5.6 or less.
【0018】本発明の製造方法において、成形は、例え
ば皿型造粒、押出し成形、圧縮成形、流動成形、破砕成
形等が適用できる。特に、皿型造粒、押出し成形、破砕
成形が推奨される。その形状は、特に限定されるもので
はなく、球状、円柱状、リング状、板状、ハニカム状、
塊状、破砕状等のいずれであってもよい。また、皿型造
粒の場合、得られる活性アルミナ成形体の粒径分布を小
さくするために、活性アルミナ粉末、水とともに造粒核
を添加することは特に有効である。造粒核には、活性ア
ルミナの小粒子や、活性アルミナ成形体製造時に副生す
る破砕品等が使用できる。In the production method of the present invention, for example, dish-shaped granulation, extrusion molding, compression molding, flow molding, crushing molding and the like can be applied. In particular, dish granulation, extrusion molding, and crushing molding are recommended. The shape is not particularly limited, spherical, cylindrical, ring, plate, honeycomb,
It may be in any form such as lump or crushed. In the case of dish-type granulation, it is particularly effective to add granulation nuclei together with activated alumina powder and water in order to reduce the particle size distribution of the obtained activated alumina compact. As the granulation nucleus, small particles of activated alumina, crushed products by-produced during the production of an activated alumina molded body, and the like can be used.
【0019】再水和は、例えば室温〜約200℃、好ま
しくは約50℃〜約150℃の水蒸気中または水蒸気含
有ガス中で約10分〜1週間程度保持して行う方法等が
挙げられる。The rehydration can be carried out, for example, by a method in which the rehydration is carried out in steam at room temperature to about 200 ° C., preferably about 50 ° C. to about 150 ° C. or in a steam-containing gas for about 10 minutes to 1 week.
【0020】焼成は、例えば温度は約200℃〜約50
0℃、時間は約10分〜約100時間の範囲内で行えば
よく、焼成装置としては箱型電気炉、トンネル炉、遠赤
外線焼成機、マイクロ波加熱機、通気焼成装置、シャフ
ト炉、反射炉等が適用できる。尚、再水和させた活性ア
ルミナ成形体を均一焼成するため、活性アルミナ成形体
をサヤ上に薄く広げて焼成する方法、加熱ガスとの接触
が高められる方法が推奨される。The firing is performed, for example, at a temperature of about 200 ° C. to about 50 ° C.
The heating may be performed at 0 ° C. for a time within the range of about 10 minutes to about 100 hours. Examples of the firing apparatus include a box-type electric furnace, a tunnel furnace, a far-infrared firing machine, a microwave heater, a ventilation firing apparatus, a shaft furnace, and a reflection furnace. Furnace etc. can be applied. In order to uniformly bake the rehydrated activated alumina molded body, a method in which the activated alumina molded body is thinly spread on a sheath and fired, and a method in which contact with a heated gas is enhanced are recommended.
【0021】本発明の過酸化水素製造用活性アルミナ成
形体の製造に際しては、最初に、再水和性を有し、かつ
嵩密度が0.5g/cm3〜1.2g/cm3である活性
アルミナ粉末に水および造粒核を添加し、皿型造粒機等
により成形体を得、次いで、得られた成形体を蓋付容器
に入れ、水蒸気等により成形体を再水和せしめ、次い
で、再水和させた成形体を篩別後、箱型電気炉等にて焼
成し、活性アルミナ成形体を得る。また、活性アルミナ
成形体の水分を約0.5重量%〜約10重量%にするた
めの方法としては、焼成後に加湿ガスまたは/及び水と
接触させる方法等がある。具体例としては、焼成後の活
性アルミナ成形体に湿潤空気を供給する方法、または水
を所定量スプレーで散布する方法がある。さらに、活性
アルミナ成形体の細孔容積を増やす方法としては、例え
ば用いる活性アルミナ粉末の粒径分布を小さくする方
法、再水和時の処理温度を低くする方法、再水和時にス
テアリン酸等を添加する方法、再水和時の処理時間を短
くする方法、若しくは成形時に有機起孔材を添加する方
法またはそれらの組み合わせた方法等が挙げられる。
尚、得られた活性アルミナ成形体を、さらに篩別および
/または選別を行なってから用いてもよい。[0021] In preparing the hydrogen peroxide manufacturing activated alumina formed body of the present invention, first, a re-hydration, and the bulk density is 0.5g / cm 3 ~1.2g / cm 3 Water and granulation nuclei are added to the activated alumina powder, and a molded body is obtained by a dish-type granulator or the like.Then, the obtained molded body is placed in a container with a lid, and the molded body is rehydrated with steam or the like. Next, the rehydrated molded body is sieved and then fired in a box-type electric furnace or the like to obtain an activated alumina molded body. Further, as a method for adjusting the water content of the activated alumina compact to about 0.5% by weight to about 10% by weight, there is a method of contacting with a humidified gas or / and water after firing. Specific examples include a method of supplying moist air to the fired activated alumina molded body, and a method of spraying a predetermined amount of water with a spray. Further, as a method of increasing the pore volume of the activated alumina molded body, for example, a method of reducing the particle size distribution of the activated alumina powder to be used, a method of lowering the processing temperature at the time of rehydration, stearic acid at the time of rehydration, etc. Examples thereof include a method of adding, a method of shortening the treatment time at the time of rehydration, a method of adding an organic pore former at the time of molding, and a method of combining them.
The obtained activated alumina compact may be used after further sieving and / or sorting.
【0022】本発明の製造方法により得られる活性アル
ミナ成形体は、平均粒子径が0.5mm以上2.0mm
未満、好ましくは1.0mm以上1.8mm以下であ
り、BET比表面積が250m2/g以上、好ましくは
300m2/g〜400m2/gであり、SiO2濃度が
0.01重量%〜15重量%、好ましくは1重量%〜1
0重量であり、アントラキノン化合物の酸化還元により
過酸化水素を製造するプロセスにおいて、アントラキノ
ン化合物を含む溶液よりエポキサイドを除去するために
好適に用いることができる。The activated alumina molded article obtained by the production method of the present invention has an average particle diameter of 0.5 mm or more and 2.0 mm or more.
Less, preferably not less than 1.0mm 1.8mm or less, BET specific surface area of 250 meters 2 / g or more, preferably from 300m 2 / g~400m 2 / g, SiO 2 concentration of 0.01% to 15 % By weight, preferably 1% by weight to 1%
It is 0% by weight, and can be suitably used for removing epoxide from a solution containing an anthraquinone compound in a process for producing hydrogen peroxide by redox of an anthraquinone compound.
【0023】また、本発明の製造方法により得られる活
性アルミナ成形体は、通常、充填密度が0.5g/cm
3〜1.0g/cm3、磨耗率が0.1%〜2.0%、耐
圧強度が1kg〜20kg、半径10Å以上の細孔容積
が0.1cm3/g〜1cm3/g、半径250Å以上の
細孔容積が0.01cm3/g〜0.2cm3/gであ
る。The activated alumina molded article obtained by the production method of the present invention usually has a packing density of 0.5 g / cm.
3 ~1.0g / cm 3, 0.1% ~2.0% wear rate, pressure resistance 1Kg~20kg, more pore volume radius 10Å is 0.1cm 3 / g~1cm 3 / g, the radius 250Å or more of the pore volume is 0.01cm 3 /g~0.2cm 3 / g.
【0024】[0024]
【実施例】以下に実施例により本発明をさらに詳細に説
明するが、本発明はかかる実施例により制限を受けるも
のではない。EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention.
【0025】活性アルミナ粉末の物性 平均粒子径(μm): レーザー散乱式粒度分布計〔リ
ード アンド ノースラップ(LEED&NORTHR
UP)社製マイクロトラック〕により、50重量%径を
測定した。 灼熱減量(%):活性アルミナ粉末2gを白金ルツボに
入れ、1100℃2時間加熱する。加熱時の重量減少Δ
wより、灼熱減量(=Δw/2×100)を求めた。 嵩密度(g/cm3) :活性アルミナ粉末100gを
200cm3シリンダーに入れ、シリンダーを30mm
の高さから100回繰り返し落下させた。活性アルミナ
粉末の容積Vより、嵩密度(=100/V)を求めた。 結晶形:X線回折法により測定した。Physical Properties of Activated Alumina Powder Average Particle Diameter (μm): Laser Scattering Type Particle Size Distribution Analyzer [LEED & NORTHHR
UP), a 50% by weight diameter was measured. Loss on ignition (%): 2 g of activated alumina powder is placed in a platinum crucible and heated at 1100 ° C. for 2 hours. Weight loss during heating Δ
The burning loss (= Δw / 2 × 100) was determined from w. Bulk density (g / cm 3 ): 100 g of activated alumina powder is put in a 200 cm 3 cylinder, and the cylinder is 30 mm
From the height of 100 times repeatedly. The bulk density (= 100 / V) was determined from the volume V of the activated alumina powder. Crystal form: measured by X-ray diffraction method.
【0026】活性アルミナ成形体の物性 平均粒子径(μm): 篩別法により50重量%径を求
めた。 BET比表面積(m2/g): 窒素吸着法により測定
した。 SiO2(%): JIS H1901に準じて測定し
た。 Na2O(%): JIS H1901に準じて測定し
た。 水分(%): 200℃加熱時の重量減少より求めた。 充填密度(g/cm3): 活性アルミナ成形体100
gを200cm3シリンダーに入れ、シリンダーを30
mmの高さから100回繰り返し落下させた。活性アル
ミナ成形体の容積Vより、充填密度(=100/V)を
求めた。 摩耗率(%): JIS−K1464に準じて測定し
た。 耐圧強度(kg): 強度試験器により試料10個の破
壊強度を測定し、それらの平均値より求めた。 細孔容積(cm3/g): Hg圧入法(カンタクロー
ム社製、オートスキャン33型、ポロシメーター)によ
り測定した。Physical Properties of Activated Alumina Molded Body Average Particle Diameter (μm): A 50% by weight diameter was determined by a sieving method. BET specific surface area (m 2 / g): Measured by a nitrogen adsorption method. SiO 2 (%): Measured according to JIS H1901. Na 2 O (%): Measured according to JIS H1901. Moisture (%): Calculated from weight loss when heated at 200 ° C. Packing density (g / cm 3 ): Activated alumina molded body 100
Put the g to 200cm 3 cylinder, 30 cylinder
It was repeatedly dropped 100 times from a height of mm. The packing density (= 100 / V) was determined from the volume V of the activated alumina compact. Wear rate (%): Measured according to JIS-K1464. Compressive strength (kg): The breaking strength of ten samples was measured by a strength tester, and the average strength was determined. Pore volume (cm 3 / g): Measured by the Hg intrusion method (manufactured by Cantachrome, Autoscan 33, porosimeter).
【0027】初期除去性能(%): 過酸化水素プラン
ト作働液の還元工程後の液600gに対して活性アルミ
ナ成形体180gを入れ、加温状態で200rpmで攪
拌しながら6時間、接触させた。接触前後の液中エポキ
サイド濃度をガスクロマトグラフィーにより測定した。
(初液濃度−6時間後濃度)/初液濃度を除去性能
(%)とした。Initial removal performance (%): 180 g of the activated alumina compact was added to 600 g of the hydrogen peroxide plant working solution after the reduction step, and the mixture was contacted for 6 hours while stirring at 200 rpm in a heated state. . The epoxide concentration in the liquid before and after the contact was measured by gas chromatography.
(Initial solution concentration—concentration after 6 hours) / initial solution concentration was defined as the removal performance (%).
【0028】200時間除去性能(%): 活性アルミ
ナ成形体30mlを加温のためジャケット付きガラス製
カラムに充填した。過酸化水素プラント作働液の還元工
程後の液をSV0.6h-1で通液し、カラムの入口エポ
キサイド濃度と出口エポキサイド濃度をガスクロマトグ
ラフィーにより測定した。(入口エポキサイド濃度−出
口エポキサイド濃度)/入口エポキサイド濃度を除去性
能(%)とし、除去性能の経時変化を調べた。200時
間通液後の除去性能を200時間除去性能とした。200 hours removal performance (%): 30 ml of the activated alumina compact was packed in a jacketed glass column for heating. The liquid after the reduction step of the working liquid of the hydrogen peroxide plant was passed at SV 0.6 h -1 , and the concentration of epoxide at the inlet and the concentration of epoxide at the outlet of the column were measured by gas chromatography. The removal performance (%) was defined as (inlet epoxide concentration-outlet epoxide concentration) / inlet epoxide concentration, and the change over time in the removal performance was examined. The removal performance after passing for 200 hours was defined as the removal performance for 200 hours.
【0029】通液開始時の温度(℃): 活性アルミナ
成形体180gを魔法瓶に入れた後、過酸化水素プラン
ト作働液の酸化工程後の液600gを添加し温度変化を
調べた。最高温度を通液開始時の温度(℃)とした。Temperature at the start of liquid passing (° C.): After 180 g of the activated alumina compact was placed in a thermos bottle, 600 g of the hydrogen peroxide plant working liquid after the oxidation step was added and the temperature change was examined. The maximum temperature was defined as the temperature (° C.) at the start of the liquid supply.
【0030】実施例1 バイヤー法により得られたギブサイト(水酸化アルミニ
ウム、Al2O3に対しSiO2 0.02%含む)を約
700℃の加熱ガス中に投入して瞬間仮焼し、再水和し
得る活性アルミナ粉末(灼熱減量が6%であり,平均粒
子径が8μmであり、嵩密度が0.7g/cm3であ
り、結晶形はχおよびρアルミナであった。)を得た。Example 1 Gibbsite (aluminum hydroxide, containing 0.02% of SiO 2 with respect to Al 2 O 3 ) obtained by the Bayer method was charged into a heating gas at about 700 ° C., and then calcined instantaneously. A hydratable activated alumina powder (having a loss on ignition of 6%, an average particle size of 8 μm, a bulk density of 0.7 g / cm 3 and crystal forms of χ and ρ alumina) was obtained. Was.
【0031】該活性アルミナ粉末1kgに対し水を約
0.7kg、および直径0.4〜1.4mmの造粒核
(活性アルミナ)を約0.15kgを加え,皿型造粒機
により直径約1−2mmの球状成形体を得た。球状成形
体を蓋付容器に入れ密閉し、温度80℃、16時間保持
して部分的に再水和せしめた。次に、再水和させた球状
成形体を篩別後、この成形体を電気炉に入れ400℃ま
で昇温、2時間保持して、活性アルミナ成形体を得た。
粒径1.18〜2.36mmの歩留まりは85%であっ
た。About 0.7 kg of water and about 0.15 kg of a granulation nucleus (activated alumina) having a diameter of 0.4 to 1.4 mm are added to 1 kg of the activated alumina powder, and a diameter of about 0.15 kg is added by a dish granulator. A 1-2 mm spherical molded body was obtained. The spherical molded body was placed in a lidded container, sealed, and kept at a temperature of 80 ° C. for 16 hours to partially rehydrate. Next, after the rehydrated spherical compact was sieved, the compact was placed in an electric furnace, heated to 400 ° C. and maintained for 2 hours to obtain an activated alumina compact.
The yield with a particle size of 1.18 to 2.36 mm was 85%.
【0032】活性アルミナ成形体は、平均粒子径1.5
mm、BET比表面積347m2/g、SiO2 0.0
2%、Na2O 0.27%、水分0%、充填密度0.
67g/cm3、磨耗率0.2%、耐圧強度2kg、半
径10Å以上の細孔容積0.60cm3/g、半径25
0Å以上の細孔容積0.16cm3/gであった。該活
性アルミナ成形体の200時間除去性能は40%であっ
た。The activated alumina compact has an average particle size of 1.5
mm, BET specific surface area 347 m 2 / g, SiO 2 0.0
2% Na 2 O 0.27% water 0% packing density 0.
67 g / cm 3 , wear rate 0.2%, compressive strength 2 kg, pore volume with a radius of 10 ° or more 0.60 cm 3 / g, radius 25
The pore volume of 0 ° or more was 0.16 cm 3 / g. The 200-hour removal performance of the activated alumina molded body was 40%.
【0033】実施例2 バイヤー法により得られたギブサイトを約700℃の加
熱ガス中に投入して瞬間仮焼し、再水和し得る活性アル
ミナ粉末(灼熱減量が6%であり,平均粒子径が15μ
mであり、嵩密度が1.0g/cm3であった。)を得
た。Example 2 Gibbsite obtained by the Bayer method was poured into a heated gas at about 700 ° C. and calcined instantaneously to be rehydrated. An activated alumina powder (having a loss on ignition of 6% and having an average particle diameter of 6%) Is 15μ
m and the bulk density was 1.0 g / cm 3 . ) Got.
【0034】該活性アルミナ粉末1kgに対し水を約
0.5kg、および直径0.4〜1.4mmの造粒核
(活性アルミナ)を約0.15kgを加え,皿型造粒機
により直径約1〜2mmの球状成形体を得た。球状成形
体を蓋付容器に入れ密閉し、温度80℃、16時間保持
して部分的に再水和せしめた。次に、再水和させた球状
成形体を篩別後、この成形体を電気炉に入れ400℃ま
で昇温、2時間保持して、活性アルミナ成形体を得た。
粒径1.18〜2.36mmの歩留まりは80%であっ
た。About 1 kg of the activated alumina powder, about 0.5 kg of water and about 0.15 kg of a granulation nucleus (activated alumina) having a diameter of 0.4 to 1.4 mm are added, and the diameter of the granulated powder is adjusted by a dish granulator. A 1-2 mm spherical molded body was obtained. The spherical molded body was placed in a lidded container, sealed, and kept at a temperature of 80 ° C. for 16 hours to partially rehydrate. Next, after the rehydrated spherical compact was sieved, the compact was placed in an electric furnace, heated to 400 ° C. and maintained for 2 hours to obtain an activated alumina compact.
The yield with a particle size of 1.18 to 2.36 mm was 80%.
【0035】活性アルミナ成形体は、平均粒子径1.6
mm、BET比表面積が323m2/g、SiO2 0.
02%、Na2O 0.27%、水分0%、充填密度
0.78g/cm3、磨耗率0.8%、耐圧強度5k
g、半径10Å以上の細孔容積0.48cm3/g、半
径250Å以上の細孔容積0.08cm3/gであっ
た。該活性アルミナ成形体の初期除去性能は28%、2
00時間除去性能は30%であった。また通液開始時の
温度は80℃であった。The activated alumina compact has an average particle size of 1.6.
mm, BET specific surface area is 323 m 2 / g, SiO 2
02%, Na 2 O 0.27%, moisture 0%, packing density 0.78 g / cm 3 , wear rate 0.8%, pressure resistance 5k
g, pore volume with a radius of 10 ° or more was 0.48 cm 3 / g, and pore volume with a radius of 250 ° or more was 0.08 cm 3 / g. The activated alumina molded body has an initial removal performance of 28%, 2
The 00 hour removal performance was 30%. The temperature at the start of the liquid passing was 80 ° C.
【0036】実施例3 実施例1と同じ再水和し得る活性アルミナ粉末1kgに
対して市販のシリカアルミナ粉(SiO2含有量が15
重量%であり、最強酸点がH0−5.6であり、全酸量
が0.14mmol/gであった)0.035kgを添
加し混合粉を得た。次に、該混合粉1kgに対して水約
0.7kgおよび直径0.4〜1.4mmの造粒核(活
性アルミナ)約0.15kgを添加し、皿型造粒機によ
り直径約1〜2mmの球状成形体を得た。球状成形体を
蓋付容器に入れ密閉し、温度80℃、16時間保持して
部分的に再水和せしめた。次に、再水和させた球状成形
体を篩別後、この成形体を電気炉に入れ400℃まで昇
温、2時間保持して、活性アルミナ成形体を得た。粒径
1.18〜2.36mmの歩留まりは80%であった。Example 3 A commercial silica alumina powder (SiO 2 content of 15 kg) was added to 1 kg of the same rehydratable activated alumina powder as in Example 1.
%, The strongest acid point was H0-5.6, and the total acid amount was 0.14 mmol / g). Next, about 0.7 kg of water and about 0.15 kg of granulation nuclei (activated alumina) having a diameter of 0.4 to 1.4 mm are added to 1 kg of the mixed powder, and the diameter of about 1 to 1 kg is added by a dish granulator. A 2 mm spherical molded body was obtained. The spherical molded body was placed in a lidded container, sealed, and kept at a temperature of 80 ° C. for 16 hours to partially rehydrate. Next, after the rehydrated spherical compact was sieved, the compact was placed in an electric furnace, heated to 400 ° C. and maintained for 2 hours to obtain an activated alumina compact. The yield with a particle size of 1.18 to 2.36 mm was 80%.
【0037】活性アルミナ成形体は、平均粒子径1.5
mm、BET比表面積271m2/g、SiO2 3%、
Na2O 0.35%、水分0%、充填密度0.68g
/cm3、磨耗率0.6%、耐圧強度1kg、半径10
Å以上の細孔容積0.15cm3/g、半径250Å以
上の細孔容積0.15cm3/gであった。該活性アル
ミナ成形体の初期除去性能は90%であった。The activated alumina compact had an average particle size of 1.5
mm, BET specific surface area 271 m 2 / g, SiO 2 3%,
Na 2 O 0.35% water content 0%, the packing density 0.68g
/ Cm 3 , wear rate 0.6%, pressure resistance 1kg, radius 10
Å or more pore volume 0.15 cm 3 / g, were radius 250Å or more pore volume 0.15 cm 3 / g. The initial removal performance of the activated alumina compact was 90%.
【0038】実施例4 実施例2の活性アルミナ成形体500gを金属バットに
ひろげ、金属バット上に相対湿度90%の空気を流しな
がら重量変化を測定し、523gになったところで加湿
を停止した。得られた活性アルミナ成形体の水分は3.
8%であった。該活性アルミナ成形体の200時間除去
性能は33%であり、通液開始時の温度は55℃であっ
た。Example 4 500 g of the activated alumina molded body of Example 2 was spread in a metal vat, and the weight change was measured while flowing air having a relative humidity of 90% over the metal vat. Humidification was stopped when it reached 523 g. The water content of the obtained activated alumina compact was 3.
8%. The 200-hour removal performance of the activated alumina molded body was 33%, and the temperature at the start of liquid passage was 55 ° C.
【0039】比較例1 バイヤー法により得られたギブサイトを約700℃の加
熱ガス中に投入して瞬間仮焼し、再水和し得る活性アル
ミナ粉末(灼熱減量が6%であり,平均粒子径が14μ
mであり、嵩密度が1.4g/cm3であった。)を得
た。Comparative Example 1 Gibbsite obtained by the Bayer method was charged into a heated gas at about 700 ° C. and calcined instantaneously to be rehydrated. An activated alumina powder (loss on ignition was 6%, average particle size Is 14μ
m, and the bulk density was 1.4 g / cm 3 . ) Got.
【0040】該活性アルミナ粉末1kgに対し水を約
0.5kg、および直径1.2〜2.4mmの造粒核
(活性アルミナ)を約0.15kgを加え,皿型造粒機
により直径約2−5mmの球状成形体を得た。球状成形
体を蓋付容器に入れ密閉し、温度80℃、16時間保持
して部分的に再水和せしめた。次に、再水和させた球状
成形体を篩別後、この成形体を電気炉に入れ400℃ま
で昇温、2時間保持して、活性アルミナ成形体を得た。
粒径2.36〜4.75mmの歩留まりは92%であっ
た。About 1 kg of the activated alumina powder, about 0.5 kg of water and about 0.15 kg of a granulation nucleus (activated alumina) having a diameter of 1.2 to 2.4 mm are added, and the diameter of the granulated powder is adjusted by a dish granulator. A 2-5 mm spherical compact was obtained. The spherical molded body was placed in a lidded container, sealed, and kept at a temperature of 80 ° C. for 16 hours to partially rehydrate. Next, after the rehydrated spherical compact was sieved, the compact was placed in an electric furnace, heated to 400 ° C. and maintained for 2 hours to obtain an activated alumina compact.
The yield with a particle size of 2.36 to 4.75 mm was 92%.
【0041】活性アルミナ成形体は、平均粒子径3.5
mm、BET比表面積285m2/g、SiO2 0.0
2%、Na2O 0.32%、水分0%、充填密度0.
84g/cm3、磨耗率0.2%、耐圧強度20kg、
半径10Å以上の細孔容積0.35cm3/g、半径2
50Å以上の細孔容積0.03cm3/gであった。該
活性アルミナ成形体の200時間除去性能は15%であ
った。The activated alumina compact had an average particle size of 3.5.
mm, BET specific surface area 285 m 2 / g, SiO 2 0.0
2% Na 2 O 0.32% water 0% packing density 0.
84 g / cm 3 , wear rate 0.2%, pressure resistance 20 kg,
Pore volume 0.35 cm 3 / g with a radius of 10 ° or more, radius 2
The pore volume at 50 ° or more was 0.03 cm 3 / g. The 200-hour removal performance of the activated alumina molded body was 15%.
【0042】比較例2 バイヤー法により得られたギブサイトを約700℃の加
熱ガス中に投入して瞬間仮焼し、再水和し得る活性アル
ミナ粉末(灼熱減量が6%であり,平均粒子径が14μ
mであり、嵩密度が1.4g/cm3であった)を得
た。Comparative Example 2 Gibbsite obtained by the Bayer method was poured into a heated gas at about 700 ° C., and calcined instantaneously to be rehydrated. An activated alumina powder (having a loss on ignition of 6% and having an average particle diameter of 6%) Is 14μ
m and the bulk density was 1.4 g / cm 3 ).
【0043】該活性アルミナ粉末1kgに対し水を約
0.5kg、および直径0.4〜1.4mmの造粒核
(活性アルミナ)を約0.15kgを加え,皿型造粒機
により直径約2−5mmの球状成形体を得た。球状成形
体を蓋付容器に入れ密閉し、温度80℃、16時間保持
して部分的に再水和せしめた。次に、再水和させた球状
成形体を篩別後、この成形体を電気炉に入れ700℃ま
で昇温、2時間保持して、活性アルミナ成形体を得た。About 1 kg of the activated alumina powder, about 0.5 kg of water and about 0.15 kg of a granulation nucleus (activated alumina) having a diameter of 0.4 to 1.4 mm were added, and the diameter of the granulated powder was increased by a dish granulator. A 2-5 mm spherical compact was obtained. The spherical molded body was placed in a lidded container, sealed, and kept at a temperature of 80 ° C. for 16 hours to partially rehydrate. Next, after the rehydrated spherical compact was sieved, the compact was placed in an electric furnace, heated to 700 ° C. and maintained for 2 hours to obtain an activated alumina compact.
【0044】活性アルミナ成形体は、平均粒子径1.6
mm、BET比表面積130m2/g、SiO2 0.0
2%、Na2O 0.32%、水分0%、充填密度0.
80g/cm3、磨耗率1.3%、耐圧強度3kg、半
径10Å以上の細孔容積0.40cm3/g、半径25
0Å以上の細孔容積0.03cm3/gであった。活性
アルミナ成形体の初期除去性能は10%であった。The activated alumina compact has an average particle size of 1.6.
mm, BET specific surface area 130 m 2 / g, SiO 2 0.0
2% Na 2 O 0.32% water 0% packing density 0.
80 g / cm 3 , wear rate 1.3%, pressure resistance 3 kg, pore volume of radius 10 ° or more 0.40 cm 3 / g, radius 25
The pore volume of 0 ° or more was 0.03 cm 3 / g. The initial removal performance of the activated alumina compact was 10%.
【0045】[0045]
【発明の効果】以上詳述した如く、本発明の過酸化水素
製造用活性アルミナ成形体は、従来の活性アルミナ成形
体に比較して、作働液よりエポキサイドを除去するため
の初期の除去性能が同等以上であり、かつ十分に除去で
きる寿命が長い。また、本発明の過酸化水素製造用活性
アルミナ成形体の製造方法は、前記過酸化水素製造用活
性アルミナ成形体を簡易に提供し得る。さらに、本発明
の過酸化水素製造用活性アルミナ成形体を用いる過酸化
水素製造用作働液の精製方法は、長時間連続して作働液
中のエポキサイドを除去することができる。As described above in detail, the activated alumina molded body for producing hydrogen peroxide of the present invention has an initial removal performance for removing epoxide from the working liquid as compared with the conventional activated alumina molded body. Is equal to or greater than the above, and the service life that can be sufficiently removed is long. Further, the method for producing an activated alumina molded article for producing hydrogen peroxide of the present invention can easily provide the activated alumina molded article for producing hydrogen peroxide. Further, the method for purifying the working liquid for hydrogen peroxide production using the activated alumina molded body for producing hydrogen peroxide of the present invention can remove epoxide in the working liquid continuously for a long time.
Claims (4)
未満であり、BET比表面積が250m2/g以上であ
り、SiO2濃度が0.01重量%〜15重量%である
ことを特徴とする、アントラキノン化合物の酸化還元に
より過酸化水素を製造するプロセスにおいて、アントラ
キノン化合物を含む溶液よりエポキサイドを除去するた
めに用いる過酸化水素製造用活性アルミナ成形体。An average particle diameter of 0.5 mm or more and 2.0 mm or more
A process for producing hydrogen peroxide by oxidation-reduction of an anthraquinone compound, characterized by having a BET specific surface area of at least 250 m 2 / g and a SiO 2 concentration of 0.01 to 15% by weight. The activated alumina compact for producing hydrogen peroxide used for removing epoxide from a solution containing an anthraquinone compound according to the above.
未満であり、BET比表面積が250m2/g以上であ
り、SiO2濃度が0.01重量%〜15重量%であ
り、水分が0.5重量%〜10重量%であることを特徴
とする、アントラキノン化合物の酸化還元により過酸化
水素を製造するプロセスにおいて、アントラキノン化合
物を含む溶液よりエポキサイドを除去するために用いる
過酸化水素製造用活性アルミナ成形体。2. An average particle size of 0.5 mm or more and 2.0 mm or more
Less than BET specific surface area of 250 m 2 / g or more, SiO 2 concentration of 0.01 to 15% by weight, and water of 0.5 to 10% by weight. An activated alumina molded body for producing hydrogen peroxide used for removing epoxide from a solution containing an anthraquinone compound in a process for producing hydrogen peroxide by redox of an anthraquinone compound.
/cm3〜1.2g/cm3gである活性アルミナ粉末を
成形し、再水和した後、焼成することを特徴とする、請
求項1または2に記載の過酸化水素製造用活性アルミナ
成形体の製造方法。3. It has a rehydration property and has a bulk density of 0.5 g.
/ Cm 3 by molding the active alumina powder is to 1.2 g / cm 3 g, after rehydration, and firing, activated alumina molding production of hydrogen peroxide according to claim 1 or 2 How to make the body.
過酸化水素を製造するプロセスにおいて、請求項1また
は2に記載の過酸化水素製造用活性アルミナ成形体を充
填した床に作働液を空間速度0.5〜50h-1で通液し
てエポキサイドを除去することを特徴とする過酸化水素
製造用作働液の精製方法。4. A process for producing hydrogen peroxide by oxidation-reduction of an anthraquinone compound, wherein a working liquid is applied to a bed filled with the activated alumina compact for producing hydrogen peroxide according to claim 1 or 2 at a space velocity of 0. A method for purifying a working liquid for producing hydrogen peroxide, comprising removing epoxide by passing the solution at 5 to 50 h -1 .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11270917A JP2000239006A (en) | 1998-12-24 | 1999-09-24 | Activated alumina compact for production of hydrogen peroxide, its production, and purification of operating liquid for production of hydrogen peroxide by using the same |
KR1019990060228A KR20000052548A (en) | 1998-12-24 | 1999-12-22 | Activated alumina moldings, method for preparing the same and method for the purification of hydroperoxide solution using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36706498 | 1998-12-24 | ||
JP10-367064 | 1998-12-24 | ||
JP11270917A JP2000239006A (en) | 1998-12-24 | 1999-09-24 | Activated alumina compact for production of hydrogen peroxide, its production, and purification of operating liquid for production of hydrogen peroxide by using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000239006A true JP2000239006A (en) | 2000-09-05 |
Family
ID=26549455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11270917A Pending JP2000239006A (en) | 1998-12-24 | 1999-09-24 | Activated alumina compact for production of hydrogen peroxide, its production, and purification of operating liquid for production of hydrogen peroxide by using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2000239006A (en) |
KR (1) | KR20000052548A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002274974A (en) * | 2001-03-16 | 2002-09-25 | Sumitomo Chem Co Ltd | Porous ceramic spherical body and method of manufacturing the same |
JP2008208015A (en) * | 2007-02-28 | 2008-09-11 | Sumitomo Chemical Co Ltd | METHOD OF MANUFACTURING gamma-ALUMINA FORMED BODY |
EP2042235A1 (en) | 2007-07-11 | 2009-04-01 | Mitsubishi Gas Chemical Company, Inc. | Method for producing regeneration catalyst for working solution usable for hydrogen peroxide production |
JP2010070437A (en) * | 2008-09-22 | 2010-04-02 | Sumitomo Chemical Co Ltd | Method for producing active alumina molded body |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107298454B (en) * | 2017-08-01 | 2019-02-22 | 广西壮族自治区化工研究院 | A method of activated alumina is prepared using discarded anthraquinone regenerative agent |
-
1999
- 1999-09-24 JP JP11270917A patent/JP2000239006A/en active Pending
- 1999-12-22 KR KR1019990060228A patent/KR20000052548A/en not_active Application Discontinuation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002274974A (en) * | 2001-03-16 | 2002-09-25 | Sumitomo Chem Co Ltd | Porous ceramic spherical body and method of manufacturing the same |
JP2008208015A (en) * | 2007-02-28 | 2008-09-11 | Sumitomo Chemical Co Ltd | METHOD OF MANUFACTURING gamma-ALUMINA FORMED BODY |
EP2042235A1 (en) | 2007-07-11 | 2009-04-01 | Mitsubishi Gas Chemical Company, Inc. | Method for producing regeneration catalyst for working solution usable for hydrogen peroxide production |
JP2010070437A (en) * | 2008-09-22 | 2010-04-02 | Sumitomo Chemical Co Ltd | Method for producing active alumina molded body |
Also Published As
Publication number | Publication date |
---|---|
KR20000052548A (en) | 2000-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100445543B1 (en) | Doped titanium dioxide, a process for its preparation, a photocatalyst and an absorbent for UV radiation containing the titanium dioxide, and the purifying processes using the titanium dioxide | |
EP1216092B1 (en) | Silicon-containing titanium dioxyde, method for preparing the same and catalytic compositions thereof | |
JPH01301518A (en) | Production of titanium dioxide | |
WO2015067654A1 (en) | A tin-containing zeolitic material having a bea framework structure | |
US7294328B2 (en) | Method for producing α-alumina formed body | |
CA2062658C (en) | Process for the preparation of a catalyst for the hydration of olefins to give alcohols | |
JP2000239006A (en) | Activated alumina compact for production of hydrogen peroxide, its production, and purification of operating liquid for production of hydrogen peroxide by using the same | |
AU610647B2 (en) | Silica extrudates | |
JPS61293551A (en) | Molded catalyst and its production | |
JP2732262B2 (en) | How to purify arsine | |
JPH03275527A (en) | Porous silica glass powder | |
JP2620127B2 (en) | Silica-alumina extrudate | |
JP2002274974A (en) | Porous ceramic spherical body and method of manufacturing the same | |
JPS6325211A (en) | Production of trichlorosilane | |
JP2003047851A (en) | Catalyst for producing ethylene oxide, method of producing the catalyst and method of producing ethylene oxide using the catalyst | |
JP3603570B2 (en) | Method for producing transition alumina molded body | |
USRE29145E (en) | Catalyst for sulfuric acid contact process | |
JP3849753B2 (en) | Method for producing ethyl alcohol | |
JP4222853B2 (en) | Method for producing alkali-resistant chemically modified silica gel | |
KR920008518B1 (en) | Process for preparing cerium(ii) oxide having high specific surface | |
JP3381226B2 (en) | How to remove carbon dioxide from exhaust gas | |
JPH03181334A (en) | Production of carrier for synthesis of nucleic acid | |
KR100203199B1 (en) | Preparation of spherical aluminosilicate carrier | |
JP4574598B2 (en) | Method for producing dual pore silica-alumina composite oxide | |
TW202344305A (en) | Resin hydrogenation catalyst and method for manufacturing same |