JP2000232188A - Granular semiconductor sealing material and semiconductor device using the same - Google Patents
Granular semiconductor sealing material and semiconductor device using the sameInfo
- Publication number
- JP2000232188A JP2000232188A JP11034623A JP3462399A JP2000232188A JP 2000232188 A JP2000232188 A JP 2000232188A JP 11034623 A JP11034623 A JP 11034623A JP 3462399 A JP3462399 A JP 3462399A JP 2000232188 A JP2000232188 A JP 2000232188A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- granular
- powdery
- encapsulating material
- granular semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体封止に用い
られる粉粒状半導体封止材料およびそれを用いた半導体
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a granular semiconductor encapsulating material used for semiconductor encapsulation and a semiconductor device using the same.
【0002】[0002]
【従来の技術】半導体封止に用いられる封止材料として
は、タブレット状に成形された成形体を用いるのが一般
的である。このタブレット状の成形体は、通常、つぎの
ようにして製造される。すなわち、まず、エポキシ樹
脂,硬化剤,無機質充填剤等を含有する組成物を溶融混
練した後、圧延,冷却,粉砕の各工程を経て、粉砕物を
得る。そして、得られた粉砕物を、重量基準または体積
基準で必要分計量し、円柱状の成形型を用いて加圧成形
する。このようにして、タブレット状の成形体が製造さ
れる。2. Description of the Related Art As a sealing material used for semiconductor encapsulation, a molded article formed into a tablet is generally used. This tablet-shaped molded body is usually produced as follows. That is, first, after a composition containing an epoxy resin, a curing agent, an inorganic filler, and the like is melt-kneaded, a pulverized product is obtained through rolling, cooling, and pulverizing steps. Then, the obtained pulverized material is weighed as required on a weight basis or a volume basis, and is pressure-formed using a cylindrical mold. In this way, a tablet-shaped molded body is manufactured.
【0003】上記タブレット状成形体を用いての半導体
封止方法としては、主にトランスファー方式とマルチプ
ランジャー方式に大別される。トランスファー方式は、
1つのポット(封止材料投入口)に投入した半導体封止
材料を加熱溶融させた後、ランナーと呼ばれる溝を経由
させて、数百個の半導体素子等が配置されているキャビ
ティー(金型)内に注入することにより半導体封止を行
う方式である。一方、マルチプランジャー方式は、1つ
のポットの近傍に1〜数個程度の半導体素子等を配置し
た態様を同一金型内に複数個存在するようにしたもの
で、ランナーやポット底部に残るカル等に費やされる封
止材の量を極端に少なくし、またポットへのタブレット
装填から成形品の収納までを自動化した方式である。マ
ルチプランジャー方式は、トランスファー方式と比較し
て、1個のタブレット状成形体で製造される半導体装置
の数が少なく、半導体装置1個当たりのタブレット加工
費が高くなるといった欠点を有しているが、封止材料の
歩留りや自動化による人件費削減等の利点を有してい
る。そのため、近年では、トータルコストの面で、マル
チプランジャー方式が主流となってきている。[0005] Semiconductor encapsulation methods using the above-mentioned tablet-shaped molded body are roughly classified into a transfer method and a multi-plunger method. The transfer method is
After heating and melting the semiconductor encapsulating material charged into one pot (encapsulating material input port), a cavity (mold) in which hundreds of semiconductor elements and the like are arranged through a groove called a runner. This is a method in which semiconductor sealing is performed by injecting into semiconductor devices. On the other hand, the multi-plunger system is a system in which one or several semiconductor elements or the like are arranged in the vicinity of one pot so that a plurality of semiconductor elements are present in the same mold. It is a system that minimizes the amount of sealing material used in the process, etc., and automates the process from loading the tablet into the pot to storing the molded product. The multi-plunger method has the disadvantage that the number of semiconductor devices manufactured with one tablet-shaped molded article is smaller than that of the transfer method, and the tablet processing cost per semiconductor device becomes higher. However, there are advantages such as yield of the sealing material and labor cost reduction by automation. Therefore, in recent years, the multi-plunger system has become mainstream in terms of total cost.
【0004】[0004]
【発明が解決しようとする課題】最近、マルチプランジ
ャー方式において、よりコストダウンを図るために、タ
ブレット状成形体を用いず、粉または粒状(粉粒状)の
封止材料を用いることが検討されている。しかしなが
ら、上記タブレット状成形体の製造時に作製される粉砕
物をそのまま用いた場合、ホッパー(原料貯蔵容器),
計量器,ポットへの封止材料装填部等への付着等によ
り、計量誤差を発生させるという問題がある。その結
果、封止材料の過不足による未充填や加圧不良等が発生
し、半導体装置の信頼性や歩留りの低下を招来する。Recently, in the multi-plunger system, in order to further reduce the cost, the use of a powder or granular (powder-granular) sealing material without using a tablet-like molded body has been studied. ing. However, when the pulverized material produced during the production of the tablet-like molded body is used as it is, a hopper (raw material storage container),
There is a problem that a measurement error occurs due to adhesion of the sealing material loading portion to the measuring device and the pot. As a result, unfilling or insufficient pressurization due to excess or deficiency of the sealing material occurs, which lowers the reliability and yield of the semiconductor device.
【0005】また、設備の面では、粉砕物が半導体製造
装置内で付着や架橋現象を引き起こした場合、ポット内
への供給が滞ることとなり、半導体製造装置がトラブル
停止し、自動稼働ができず、生産性を低下させる等の問
題が生じる。さらに、それ以外にも、粉砕物から発生す
る粉塵により半導体装置を製造している環境を汚染する
等の問題もあり、実用化まで至っていないのが現状であ
る。On the equipment side, if the pulverized material causes adhesion or cross-linking in the semiconductor manufacturing equipment, the supply into the pot is interrupted, and the semiconductor manufacturing equipment is stopped due to trouble, and automatic operation cannot be performed. This causes problems such as lowering the productivity. In addition, there is another problem such as contamination of the environment in which the semiconductor device is manufactured due to dust generated from the pulverized material.
【0006】本発明は、このような事情に鑑みなされた
もので、封止材料としての諸特性を低下させることな
く、封止工程での付着や架橋現象等による詰まりを改善
し、安定した流動性、計量精度を示す粉粒状半導体封止
材料およびそれを用いた半導体装置の提供をその目的と
する。The present invention has been made in view of the above circumstances, and improves clogging due to adhesion and cross-linking phenomenon in a sealing process without deteriorating various properties as a sealing material, thereby achieving stable flow. It is an object of the present invention to provide a powdery and granular semiconductor encapsulating material exhibiting performance and measurement accuracy and a semiconductor device using the same.
【0007】[0007]
【課題を解決するための手段】上記の目的を達成するた
め、本発明は、熱硬化性樹脂組成物製の粉粒状半導体封
止材料であって、下記の式(1)で表される圧縮度が1
1%以下に設定されている粉粒状半導体封止材料を第1
の要旨とする。In order to achieve the above-mentioned object, the present invention relates to a powdery and granular semiconductor encapsulating material made of a thermosetting resin composition, which comprises a compression molding compound represented by the following formula (1): Degree 1
The powdery and granular semiconductor sealing material set to 1% or less
The summary of the
【0008】[0008]
【数3】 (Equation 3)
【0009】また、本発明は、上記粉粒状半導体封止材
料を用いて半導体素子を封止してなる半導体装置を第2
の要旨とする。Further, the present invention provides a semiconductor device in which a semiconductor element is sealed by using the above-mentioned powdery semiconductor sealing material.
The summary of the
【0010】すなわち、本発明者らは、封止材料として
の諸特性を低下させることなく、封止工程での付着や架
橋現象等による詰まりを改善し、安定した流動性、計量
精度を示す粉粒状半導体封止材料を得るため一連の研究
を重ねた。その過程で、本発明者らは、粉粒体の流動性
に深く関係し、最も流動状態に近い静止状態から、自
重、外力、運動等により粉粒体がどの程度締まるか(流
動状態から遠ざかるか)の度合いに関する指標、すなわ
ち上記式(1)で表される圧縮度に着目した。そして、
半導体封止に用いられる粉粒状半導体封止材料につき鋭
意検討を重ねた結果、上記圧縮度が特定の範囲に設定さ
れていれば所期の目的を達成できることを見出し本発明
に到達した。In other words, the present inventors have found that a powder exhibiting stable flowability and measuring accuracy can be provided without reducing various properties as a sealing material, improving clogging due to adhesion and crosslinking in the sealing step, and the like. A series of studies were conducted to obtain a granular semiconductor sealing material. In the process, the present inventors are deeply concerned with the fluidity of the granular material, and determine how much the granular material is tightened by its own weight, external force, movement, etc. from the stationary state, which is the closest to the fluidized state (away from the fluidized state) Or (2), that is, the compression degree represented by the above equation (1). And
As a result of intensive studies on a powdery and granular semiconductor sealing material used for semiconductor encapsulation, the present inventors have found that the intended object can be achieved if the above-mentioned compression degree is set in a specific range, and reached the present invention.
【0011】そして、本発明者らは、さらに研究を重ね
る過程で、流動性を阻害する要因の一つである、粉粒体
表面の低分子成分や樹脂成分の付着性に着目した。すな
わち、微粉末は、一度付着すると、その付着力にまさり
脱落するだけの自重がないため、再流動するのは難しい
ことに着目した。そこで、本発明者らは、粉粒状の半導
体封止材料を実際に特にマルチプランジャー式の半導体
製造装置に供した後、ホッパー等の壁面に付着し堆積し
たものを採取し、その採取した微粉末の粒度分布につい
て調査した結果、その大半は80メッシュパス品である
ことを突き止めた。そして、80メッシュパス品の含有
割合と流動性の関係について検討を重ねた結果、粉粒状
半導体封止材料全体中に占める80メッシュパス品の含
有割合が15重量%未満であれば、流動性が良好で、ホ
ッパー等の壁面に堆積しにくいことを突き止めた。そし
て、本発明者らは、80メッシュパス品の含有割合を特
定の範囲に設定し、かつ前記式(2)で表される充填密
度を特定の範囲に設定すれば、より一層良好な結果が得
られることを突き止めた。In the course of further research, the present inventors have paid attention to the adhesion of a low molecular component and a resin component on the surface of a granular material, which is one of the factors inhibiting flowability. In other words, it has been noted that it is difficult for the fine powder to reflow once it has adhered, because it does not have its own weight to drop off more than its adhesive force. Therefore, the present inventors actually applied the semiconductor sealing material in the form of a powder to a multi-plunger type semiconductor manufacturing apparatus, and then collected and deposited the powder adhered and deposited on the wall surface of a hopper and the like. As a result of investigating the particle size distribution of the powder, it was found that most of them were 80 mesh pass products. As a result of repeated studies on the relationship between the content ratio of the 80-mesh pass product and the fluidity, if the content ratio of the 80-mesh pass product in the entire powdery semiconductor encapsulating material is less than 15% by weight, the fluidity is reduced. It was found that it was good and hard to deposit on the wall surface of a hopper or the like. The present inventors set the content ratio of the 80-mesh pass product in a specific range, and set the packing density represented by the formula (2) in a specific range, whereby a more favorable result can be obtained. I figured out what I could get.
【0012】さらに、粉粒状半導体封止材料全体が4メ
ッシュパス品であり、かつ全体中に占める80メッシュ
パス品の含有割合が15重量%未満であれば、より一層
良好な結果が得られることも突き止めた。[0012] Further, if the whole powdery and granular semiconductor encapsulating material is a 4-mesh pass product and the content ratio of the 80-mesh pass product in the whole is less than 15% by weight, better results can be obtained. Also found out.
【0013】[0013]
【発明の実施の形態】つぎに、本発明の実施の形態につ
いて詳しく説明する。Next, an embodiment of the present invention will be described in detail.
【0014】本発明の粉粒状半導体封止材料は、熱硬化
性樹脂組成物を用いて得られるものであり、その形態
は、粉または粒状(粉粒状)である。そして、上記式
(1)で表される圧縮度が、特定の範囲に設定されてい
るものである。The powdery and granular semiconductor encapsulating material of the present invention is obtained by using a thermosetting resin composition, and is in the form of powder or particles (powder and particle). Then, the compression degree represented by the above equation (1) is set in a specific range.
【0015】上記熱硬化性樹脂組成物としては、例えば
熱硬化性樹脂や硬化剤等を適宜の割合で配合した組成物
が用いられる。As the thermosetting resin composition, for example, a composition in which a thermosetting resin, a curing agent and the like are blended at an appropriate ratio is used.
【0016】上記熱硬化性樹脂としては、例えばエポキ
シ樹脂,マレイミド樹脂,ポリエステル樹脂等があげら
れ、なかでもエポキシ樹脂が好適である。上記エポキシ
樹脂としては、1分子中に2個以上のエポキシ基を有す
るものを用いることが好ましく、例えばクレゾールノボ
ラック型,ビスフェノールA型,ビフェニル型等の各種
のエポキシ樹脂があげられる。これらは単独であるいは
2種以上併せて用いられる。なお、上記エポキシ樹脂の
なかでも、エポキシ当量が100〜300g/epで、
軟化点が50〜130℃のものが好適に用いられる。The thermosetting resin includes, for example, an epoxy resin, a maleimide resin, a polyester resin and the like. Among them, an epoxy resin is preferable. As the epoxy resin, those having two or more epoxy groups in one molecule are preferably used, and examples thereof include various epoxy resins such as cresol novolak type, bisphenol A type, and biphenyl type. These may be used alone or in combination of two or more. In addition, among the above epoxy resins, the epoxy equivalent is 100 to 300 g / ep,
Those having a softening point of 50 to 130 ° C are preferably used.
【0017】また、上記硬化剤としては、例えばフェノ
ール樹脂,酸無水物,アミン系化合物等があげられ、な
かでもフェノール樹脂が好適である。このフェノール樹
脂としては、例えばフェノールノボラック型,ジシクロ
ペンタジエン型やフェノールアラルキル樹脂等の各種の
フェノール樹脂があげられる。これらは単独であるいは
2種以上併せて用いられる。なお、上記フェノール樹脂
のなかでも、水酸基当量が70〜150g/epで、軟
化点が50〜110℃のものが好適に用いられる。Examples of the curing agent include phenol resins, acid anhydrides, amine compounds and the like, and among them, phenol resins are preferred. Examples of the phenol resin include various phenol resins such as phenol novolak type, dicyclopentadiene type and phenol aralkyl resin. These may be used alone or in combination of two or more. Among the phenol resins, those having a hydroxyl equivalent of 70 to 150 g / ep and a softening point of 50 to 110 ° C. are preferably used.
【0018】上記フェノール樹脂と、上記エポキシ樹脂
とを組み合わせて用いる場合には、その配合割合を、上
記エポキシ樹脂中のエポキシ基1当量当たりフェノール
樹脂の水酸基が0.5〜2.0当量となるように設定す
ることが好ましい。より好ましくは、0.8〜1.2当
量の範囲である。When the phenol resin and the epoxy resin are used in combination, the mixing ratio is such that the hydroxyl group of the phenol resin is 0.5 to 2.0 equivalent per equivalent of epoxy group in the epoxy resin. It is preferable to set as follows. More preferably, it is in the range of 0.8 to 1.2 equivalents.
【0019】そして、上記熱硬化性樹脂組成物には、熱
硬化性樹脂,硬化剤に加えて、無機質充填剤を配合する
ことが好ましい。この無機質充填剤としては、通常、結
晶性シリカ粉末,溶融シリカ粉末等のシリカ粉末やアル
ミナ粉末が用いられ、単独もしくは併せて用いられる。
そして、上記無機質充填剤は、通常、組成物全体中に7
0〜90重量%程度の割合で配合される。The thermosetting resin composition preferably contains an inorganic filler in addition to the thermosetting resin and the curing agent. As the inorganic filler, a silica powder such as a crystalline silica powder and a fused silica powder, and an alumina powder are usually used, and they are used alone or in combination.
And the above-mentioned inorganic filler usually contains 7 in the whole composition.
It is blended at a ratio of about 0 to 90% by weight.
【0020】さらに、上記無機質充填剤以外に、必要に
応じて、アミン系,イミダゾール系,リン系,ホウ素
系,リン−ホウ素系等の硬化促進剤、カルナバワックス
等の離型剤、臭素化エポキシ樹脂,三酸化アンチモン等
の難燃剤や難燃助剤、着色剤、シランカップリング剤等
の各種の添加剤を適宜に配合することができる。In addition to the above-mentioned inorganic fillers, if necessary, amine-, imidazole-, phosphorus-, boron-, phosphorus-boron-based curing accelerators, mold release agents such as carnauba wax, brominated epoxy Various additives such as a resin, a flame retardant such as antimony trioxide, a flame retardant auxiliary, a colorant, and a silane coupling agent can be appropriately compounded.
【0021】そして、上記熱硬化性樹脂組成物を用いて
得られる粉粒状半導体封止材料は、下記の式(1)で表
される圧縮度が11%以下に設定されていなければなら
ない。本発明は、粉粒状半導体封止材料の圧縮度を11
%以下に設定することにより、ホッパー等への付着や架
橋現象を防止し、安定した流動性、計量精度を示す封止
材料を得ることが最大の特徴だからである。なお、圧縮
度は、通常、6〜11%の範囲内に設定される。The degree of compression represented by the following formula (1) must be set to 11% or less in the powdery semiconductor encapsulating material obtained by using the thermosetting resin composition. According to the present invention, the compression degree of the granular semiconductor encapsulating material is set to 11
By setting the content to not more than%, the greatest feature is to prevent adhesion to a hopper or the like and a crosslinking phenomenon, and to obtain a sealing material exhibiting stable fluidity and measurement accuracy. Note that the degree of compression is usually set within a range of 6 to 11%.
【0022】[0022]
【数4】 (Equation 4)
【0023】上記式(1)中の初期かさ密度およびタッ
プかさ密度は、JIS R 1628−1997に準じ
て、なかでも定容積測定法に準じて測定される値であ
り、上記粉粒状半導体封止材料全体(母集団)から任意
に抽出される試料を用い、通常、つぎのようにして測定
される。すなわち、まず、有底円筒状の測定容器内に、
上記試料をあふれるまで充填する。ついで、測定容器の
上端面から盛り上がった試料を、すり切り板(ブレー
ド)を用いてすり切る。そして、試料の質量を、試料充
填済み測定容器の質量から測定容器自体の質量を差し引
くことにより算出し、その値を測定容器の容積で除して
(試料の質量/測定容器の容積)、初期かさ密度を算出
する。The initial bulk density and the tap bulk density in the above formula (1) are values measured in accordance with JIS R 1628-1997, especially in accordance with the constant volume measurement method. Using a sample arbitrarily extracted from the entire material (population), it is usually measured as follows. That is, first, in a bottomed cylindrical measurement container,
Fill the sample until it overflows. Next, the sample raised from the upper end surface of the measuring container is cut off using a cutting plate (blade). Then, the mass of the sample is calculated by subtracting the mass of the measurement container itself from the mass of the measurement container filled with the sample, and the value is divided by the volume of the measurement container (the mass of the sample / the volume of the measurement container). Calculate the bulk density.
【0024】つぎに、上記すり切り後の試料充填済み測
定容器の上に、補助円筒を継ぎ足し、さらに試料を充填
する。そして、その状態のまま、図1に示すタップ装置
を用いて、充分にタッピングを行う(タップ速度60回
/分、タップ時間3分間)。なお、図示のタップ装置
は、カム1による機械的タップ機構をもつ装置であり、
カム1により、タップロッド2上の補助円筒付き測定容
器3が上下運動し、補助円筒付き測定容器3内の試料が
圧縮されるようになっている。図において、4はタップ
ブロックである。その後、補助円筒を取り外し、測定容
器の上端面から盛り上がった試料をすり切り、上記と同
様にして、試料の質量を算出する。そして、タッピング
後の試料の質量を測定容器の容積で除して(試料の質量
/測定容器の容積)、タップかさ密度を算出する。Next, an auxiliary cylinder is added to the measurement container filled with the sample after the grinding, and the sample is further filled. In this state, tapping is sufficiently performed using the tap device shown in FIG. 1 (tap speed 60 times / minute, tap time 3 minutes). The illustrated tap device is a device having a mechanical tap mechanism using the cam 1.
By the cam 1, the measuring container 3 with the auxiliary cylinder on the tap rod 2 moves up and down, and the sample in the measuring container 3 with the auxiliary cylinder is compressed. In the figure, 4 is a tap block. Thereafter, the auxiliary cylinder is removed, and the sample raised from the upper end surface of the measurement container is scraped off, and the mass of the sample is calculated in the same manner as described above. Then, the mass of the sample after tapping is divided by the volume of the measurement container (the mass of the sample / the volume of the measurement container) to calculate the tap bulk density.
【0025】なお、上記初期かさ密度およびタップかさ
密度は、通常、ホソカワミクロン社製のパウダーテスタ
ーにより、ゆるみ見掛比重および固め見掛比重として求
めることができる。The above initial bulk density and tap bulk density can be usually obtained as a loose apparent specific gravity and a solid apparent specific gravity using a powder tester manufactured by Hosokawa Micron Corporation.
【0026】そして、本発明では、上記圧縮度を算出す
るための初期かさ密度およびタップかさ密度として、通
常、上記のようにして求められる初期かさ密度およびタ
ップかさ密度の5点平均値を用いる。In the present invention, as the initial bulk density and the tap bulk density for calculating the degree of compression, a five-point average value of the initial bulk density and the tap bulk density obtained as described above is usually used.
【0027】上記圧縮度が特定の範囲に設定された粉粒
状半導体封止材料は、上記熱硬化性樹脂組成物を用い、
粉砕,造粒,押出切断,篩別等の各種の手法を単独また
は組み合わせることにより製造することができるが、例
えば下記に示す2種の方法があげられる。The above-mentioned thermosetting resin composition is used as the powdery or granular semiconductor encapsulant having the above-mentioned degree of compression set in a specific range.
It can be produced by various methods such as pulverization, granulation, extrusion cutting, sieving or the like, alone or in combination. Examples thereof include the following two methods.
【0028】〔第1の方法〕まず、上記熱硬化性樹脂組
成物の各成分を所定の割合で配合し、各種の混合機を用
いて混合する。ついで、この混合物を、溶融混合釜,加
熱ロール,スクリュー式の混練機や押出機等を用いて通
常数分〜数時間溶融混練する。この際、樹脂温度は、7
0〜120℃の範囲内に設定されていることが好まし
い。樹脂温度が70℃を下回ると、樹脂成分の溶融が不
充分で樹脂相互や無機質充填剤等との分散が不良となる
おそれがあり、逆に120℃を上回ると硬化が進行して
増粘し、封止時に半導体素子等に損傷を与えるおそれが
あるからである。また、スクリュー式の装置を用いた場
合、その回転数は、20〜150rpmの範囲に設定さ
れていることが好ましい。なお、この操作により、上記
樹脂温度で、半固形状の樹脂組成物が得られる。[First Method] First, the respective components of the thermosetting resin composition are blended at a predetermined ratio and mixed using various mixers. Next, the mixture is usually melt-kneaded for several minutes to several hours using a melt-mixing pot, a heating roll, a screw-type kneader or an extruder. At this time, the resin temperature is 7
It is preferable that the temperature is set in the range of 0 to 120 ° C. When the resin temperature is lower than 70 ° C., the melting of the resin component is insufficient, and the dispersion between the resin and the inorganic filler may be poor. Conversely, when the temperature exceeds 120 ° C., the curing proceeds and the viscosity increases. This is because there is a possibility that a semiconductor element or the like may be damaged at the time of sealing. When a screw-type device is used, the rotation speed is preferably set in a range of 20 to 150 rpm. By this operation, a semi-solid resin composition is obtained at the above-mentioned resin temperature.
【0029】つぎに、得られた混練物を、ロールにて圧
延し、冷却することにより、板状体を得る。この板状体
は、厚み3mm以下、通常0.5〜1mmの範囲に設定
されていることが好ましい。板状体の厚みが大き過ぎる
と粉砕し難く、また粒度調整も難しくなるおそれがある
からである。Next, the obtained kneaded material is rolled with a roll and cooled to obtain a plate-like body. It is preferable that the thickness of the plate is set to 3 mm or less, usually in the range of 0.5 to 1 mm. This is because if the thickness of the plate-like body is too large, it is difficult to pulverize and the particle size adjustment may be difficult.
【0030】そして、得られた板状体を、各種の粉砕機
を用いて粉砕して粉砕物とする。上記粉砕機としては、
衝撃力で粉砕するハンマーミルが一般的であるが、ロー
ルミル等の凹凸が噛み合う一対のロール間で圧力をかけ
て粉砕するものも用いることができる。粉砕部の回転数
は、通常、ハンマーミルの場合、2000〜3000r
pm程度、ロールミルの場合は、100〜1000rp
m程度に設定される。粉砕後、例えば振動フィーダーを
用い、9メッシュを通過させた後、80メッシュ上に残
留したものを採取することにより、目的とする粉粒状半
導体封止材料が得られる。Then, the obtained plate-like body is pulverized using various pulverizers to obtain a pulverized material. As the above crusher,
Although a hammer mill that crushes by an impact force is generally used, a roll mill or the like that crushes by applying pressure between a pair of rolls in which irregularities mesh with each other can be used. The number of rotations of the pulverizing unit is usually 2000 to 3000 r in the case of a hammer mill.
pm, in the case of a roll mill, 100 to 1000 rpm
m. After the pulverization, for example, using a vibrating feeder, the mixture is passed through 9 meshes, and the remaining powders on the 80 meshes are collected to obtain the desired powdery and granular semiconductor sealing material.
【0031】〔第2の方法〕まず、上記第1の方法と同
様にして、粉砕物を得る。ついで、得られた粉砕物を篩
別する。この篩別は、例えば振動フィーダー等を用い、
9メッシュを通過させた後、80メッシュ上に残留した
ものを採取することにより行われる。その後、外部に加
温装置を備えた臼型をした容器内の中央部に攪拌羽根が
設置された攪拌機に装填し、通常、100〜1500r
pm程度で攪拌する。この操作により、粉砕物の表面の
みを溶融させ粉砕物の角をとる。この攪拌機としては、
三井鉱山社製のヘンシェルミキサーやカワタ社製のスー
パーミキサー等が一般に知られている。そして、必要に
応じて篩別することにより、目的とする粉粒状半導体封
止材料が得られる。[Second Method] First, a pulverized product is obtained in the same manner as in the first method. Next, the obtained pulverized material is sieved. This sieving, for example, using a vibration feeder,
After passing through 9 meshes, it is performed by collecting what remains on 80 meshes. Then, it is charged into a stirrer having a stirring blade installed at the center in a mortar-shaped container provided with a heating device outside, and usually 100 to 1500 r.
Stir at about pm. By this operation, only the surface of the pulverized material is melted to form a corner of the pulverized material. As this stirrer,
A Henschel mixer manufactured by Mitsui Mining Co., and a super mixer manufactured by Kawata are generally known. Then, by sieving as required, a desired powdery semiconductor encapsulating material can be obtained.
【0032】本発明の粉粒状半導体封止材料は、下記の
式(2)で表される充填密度が、46%以上に設定され
ていることが好ましい。すなわち、充填密度が46%未
満であると、ホッパー内において粒子間に空隙が多く存
在することになり、また粉粒状半導体封止材料の流動性
が不安定になり、計量精度が低下しやすくなる。その結
果、粉粒状半導体封止材料を成形してなる成形体中にボ
イド等の不良が発生する傾向があるからである。It is preferable that the powdery semiconductor encapsulating material of the present invention has a packing density represented by the following formula (2) set to 46% or more. That is, when the packing density is less than 46%, there are many voids between particles in the hopper, and the fluidity of the powdery semiconductor encapsulating material becomes unstable, and the measurement accuracy tends to decrease. . As a result, defects such as voids tend to occur in a molded product obtained by molding the granular semiconductor sealing material.
【0033】[0033]
【数5】 (Equation 5)
【0034】上記式(2)中の初期かさ密度は、上記粉
粒状半導体封止材料全体(母集団)から任意に抽出され
る試料を用い、上記と同様にして求められる。The initial bulk density in the above formula (2) can be obtained in the same manner as described above, using a sample arbitrarily extracted from the whole (population) of the above-mentioned granular semiconductor encapsulating material.
【0035】また、上記式(2)中の真比重は、JIS
K 7112−1980に準じて、なかでもA法(水
中置換法)に準じて測定される値であり、上記粉粒状半
導体封止材料全体(母集団)から任意に抽出される試料
の硬化体を用いて測定される。なお、上記硬化体は、通
常、抽出した試料(粉粒状半導体封止材料)をトランス
ファー成形(成形圧力:70kgf/cm2 )して製造
される。その他の硬化条件としては、硬化が充分に進ん
だ状態になるのであれば特に制限はなく、例えばエポキ
シ樹脂組成物の場合は、175℃×70kgf/cm2
×2分間のトランスファー成形と、それに引き続く17
5℃×5時間のアフターキュアーが硬化条件となる。The true specific gravity in the above equation (2) is calculated according to JIS.
It is a value measured in accordance with the method A (in-water replacement method) in accordance with K 7112-1980, and the cured product of the sample arbitrarily extracted from the entire powdery and granular semiconductor encapsulating material (population) It is measured using The cured product is usually produced by transfer molding (molding pressure: 70 kgf / cm 2 ) the extracted sample (powder-grained semiconductor sealing material). Other curing conditions are not particularly limited as long as curing is sufficiently advanced. For example, in the case of an epoxy resin composition, 175 ° C. × 70 kgf / cm 2
× 2 minutes transfer molding, followed by 17
After-curing at 5 ° C. for 5 hours is the curing condition.
【0036】そして、本発明では、上記充填密度を算出
するための初期かさ密度および真比重として、通常、上
記のようにして求められる初期かさ密度および真比重の
5点平均値を用いる。In the present invention, as the initial bulk density and the true specific gravity for calculating the packing density, a five-point average value of the initial bulk density and the true specific gravity obtained as described above is usually used.
【0037】本発明の粉粒状半導体封止材料は、全体中
に占める80メッシュパス品(タイラー標準篩を使用)
の含有割合が、15重量%未満に設定されていることが
好ましい。より好ましくは、5重量%未満である。すな
わち、80メッシュパス品の含有割合が15重量%以上
であると、ホッパー等に付着し堆積する量が増大するた
め、詰まりが発生しやすくなり、上記粉粒状半導体封止
材料を用いて製造した半導体装置に不良が発生するおそ
れがあるからである。また、80メッシュを通過する微
粒子が多く含まれることになるため、粉塵により半導体
装置を製造している環境を汚染するおそれもあるからで
ある。なお、80メッシュパス品の含有割合の測定につ
いても、通常、粉粒状半導体封止材料全体(母集団)か
ら任意に抽出される試料を用いて行う。The powdery and granular semiconductor encapsulating material of the present invention is an 80 mesh pass product occupying the whole (using a Tyler standard sieve).
Is preferably set to less than 15% by weight. More preferably, it is less than 5% by weight. That is, when the content ratio of the 80-mesh pass product is 15% by weight or more, the amount of adhering and depositing on a hopper or the like increases, so that clogging is likely to occur. This is because a defect may occur in the semiconductor device. Further, since a large amount of fine particles that pass through the 80 mesh are included, the environment in which the semiconductor device is manufactured may be contaminated by dust. In addition, the measurement of the content ratio of the 80-mesh pass product is also usually performed using a sample arbitrarily extracted from the whole (population) of the granular semiconductor encapsulating material.
【0038】また、本発明の粉粒状半導体封止材料とし
ては、全体が4メッシュパス品(タイラー標準篩を使
用)からなるものが好ましい。すなわち、4メッシュを
通過しないような大きい粒子が存在すると、移送過程で
詰まりを発生させたり、その大きな粒子が1〜2個入る
か否かで計量結果が大きく変わるおそれがあるからであ
る。なお、4メッシュパス品の含有割合の測定について
も、通常、粉粒状半導体封止材料全体(母集団)から任
意に抽出される試料を用いて行う。Further, as the powdery and granular semiconductor encapsulating material of the present invention, it is preferable that the whole is a 4-mesh pass product (using a Tyler standard sieve). That is, if there are large particles that do not pass through the 4-mesh, clogging may occur in the transfer process, or the measurement result may greatly change depending on whether one or two large particles are contained. In addition, the measurement of the content ratio of the 4-mesh pass product is also usually performed using a sample arbitrarily extracted from the whole (population) of the granular semiconductor encapsulating material.
【0039】本発明の粉粒状半導体封止材料を用いての
半導体装置の製造は、従来公知の各種の方法により行う
ことができるが、例えば上記粉粒状半導体封止材料を、
全体が略円錐状であってその頂部が下方供給口となるホ
ッパー(容量:50〜100cc程度)に装填した後、
重量を計量するシステムを有する自動定量供給装置によ
って、複数のポットを有する金型内に導入することによ
り半導体封止を行うことができる。The production of a semiconductor device using the granular semiconductor encapsulating material of the present invention can be carried out by various conventionally known methods.
After loading into a hopper (capacity: about 50 to 100 cc) which is generally conical and whose top is a lower supply port,
The semiconductor encapsulation can be performed by introducing into a mold having a plurality of pots by an automatic metering and feeding device having a system for measuring the weight.
【0040】つぎに、実施例について比較例と併せて説
明する。Next, examples will be described together with comparative examples.
【0041】まず、実施例および比較例に先立って下記
に示す組成の熱硬化性樹脂組成物を準備した。First, prior to Examples and Comparative Examples, thermosetting resin compositions having the following compositions were prepared.
【0042】 〔熱硬化性樹脂組成物の配合組成〕 クレゾールノボラック型エポキシ樹脂 7重量部 (エポキシ当量195g/ep) 臭素化エポキシ樹脂 2重量部 フェノールノボラック樹脂 6重量部 (水酸基当量175g/ep) リン系硬化促進剤 0.5重量部 カルナバワックス 0.5重量部 無機質充填剤(溶融シリカ粉末) 81重量部 三酸化アンチモン 2重量部 カーボンブラック 0.5重量部 シランカップリング剤 0.5重量部[Blending Composition of Thermosetting Resin Composition] Cresol novolak type epoxy resin 7 parts by weight (epoxy equivalent 195 g / ep) Brominated epoxy resin 2 parts by weight Phenol novolak resin 6 parts by weight (hydroxyl equivalent 175 g / ep) Phosphorus System hardening accelerator 0.5 parts by weight Carnauba wax 0.5 parts by weight Inorganic filler (fused silica powder) 81 parts by weight Antimony trioxide 2 parts by weight Carbon black 0.5 parts by weight Silane coupling agent 0.5 parts by weight
【0043】[0043]
【実施例1】まず、上記配合組成の熱硬化性樹脂組成物
を、カワタ社製のスーパーミキサーにて2分間攪拌し
た。ついで、得られたものを二軸押出機を用い、スクリ
ュー回転80rpm,樹脂温度95℃の条件にて溶融混
練し、吐出されたものが厚み0.5〜1mm程度となる
ようにロールにて圧延し、スチールベルト上で空冷し
た。つぎに、得られた板状体をハンマーミルを用い、3
600rpmの条件にて粉砕し、一次粉砕物を得た。そ
して、この一次粉砕物を、振動フィーダーを用い、9メ
ッシュを通過させた後、80メッシュ上に残留したもの
を採取し、これを実施例1品とした。Example 1 First, the thermosetting resin composition having the above composition was stirred for 2 minutes using a super mixer manufactured by Kawata Corporation. Next, the obtained product is melt-kneaded using a twin-screw extruder under the conditions of a screw rotation of 80 rpm and a resin temperature of 95 ° C., and is rolled with a roll so that the discharged product has a thickness of about 0.5 to 1 mm. And air cooled on a steel belt. Next, the obtained plate-shaped body was
Pulverization was performed at 600 rpm to obtain a primary pulverized product. Then, the primary pulverized product was passed through 9 mesh using a vibration feeder, and the material remaining on 80 mesh was collected, and this was designated as Example 1 product.
【0044】[0044]
【実施例2】実施例1品(80メッシュオン品)に、そ
れに対し10重量%量相当の80メッシュパス品を添加
し、ロッキングミキサーで3分間混合したものを実施例
2品とした。Example 2 To a product of Example 1 (80 mesh on product) was added an 80 mesh pass product corresponding to the amount of 10% by weight, and the mixture was mixed for 3 minutes with a rocking mixer to obtain a product of Example 2.
【0045】[0045]
【実施例3】実施例1と同様にして得られた板状体を、
日本グラニュール社製のロール粉砕機に投入し、ロール
回転数500rpmで粉砕した。なお、このロール粉砕
機は、円周方向に三角の溝を有する一対のロール(寸
法:直径150mm、溝の深さ:1mm、溝ピッチ:
1.5mm)を、その溝が互いに噛み合うように配置さ
れた装置であって、その一対のロールが異方向に回転す
ることにより、供給される板状体が上記ロールの噛み合
う部分で粉砕されるようになっている。その後、得られ
た粉砕物を、4メッシュの篩にて篩別し、得られたもの
を実施例3品とした。Example 3 A plate obtained in the same manner as in Example 1 was used.
The mixture was put into a roll grinder manufactured by Nippon Granule Co., Ltd., and pulverized at a roll rotation speed of 500 rpm. This roll crusher is a pair of rolls having a triangular groove in the circumferential direction (dimensions: diameter 150 mm, groove depth: 1 mm, groove pitch:
1.5 mm) is a device in which the grooves are arranged so as to mesh with each other, and the supplied plate-like body is pulverized at the meshing portion of the rolls by rotating the pair of rolls in different directions. It has become. Thereafter, the obtained pulverized product was sieved with a 4-mesh sieve, and the obtained product was used as Example 3.
【0046】[0046]
【実施例4】実施例3品を、外部に加温装置を備えた臼
型をした容器内の中央部に攪拌羽根が設置された造粒機
(20リットルスーパーミキサー)に装填し、外浴温度
65℃、攪拌羽根400rpmの条件にて25分間造粒
を行い、空冷後、4メッシュの篩にて篩別して得られた
ものを実施例4品とした。Example 4 The product of Example 3 was charged into a granulator (20 liter supermixer) having a stirring blade installed at the center in a mortar-shaped container equipped with an external heating device, and an external bath. Granulation was performed at a temperature of 65 ° C. and a stirring blade of 400 rpm for 25 minutes, air-cooled, and sieved with a 4-mesh sieve to obtain a product of Example 4.
【0047】[0047]
【実施例5】実施例3品を、24メッシュの篩で篩別
し、篩上の残留物を実施例5品とした。Example 5 The product of Example 3 was sieved with a 24-mesh sieve, and the residue on the sieve was used as the product of Example 5.
【0048】[0048]
【比較例1】実施例1品(80メッシュオン品)に、そ
れに対し15重量%量相当の80メッシュパス品を添加
したこと以外は、実施例2と同様にして、比較例1品を
得た。Comparative Example 1 Comparative Example 1 was obtained in the same manner as in Example 2 except that an 80-mesh pass equivalent to the amount of 15% by weight was added to Example 1 (80 mesh-on). Was.
【0049】[0049]
【比較例2】実施例1で得られた一次粉砕品を比較例2
品とした。Comparative Example 2 The primary pulverized product obtained in Example 1 was used in Comparative Example 2.
Product.
【0050】このようにして得られた実施例品および比
較例品の粉粒状半導体封止材料について、全体中に占め
る80メッシュパス品の含有割合、全体中に占める6メ
ッシュパス品の含有割合、全体中に占める4メッシュパ
ス品の含有割合を測定し、その結果を後記の表1および
表2に示した。With respect to the powdery and granular semiconductor encapsulating materials thus obtained in Examples and Comparative Examples, the content ratio of 80 mesh pass products in the whole, the content ratio of 6 mesh pass products in the whole, The content ratio of the 4-mesh pass product in the whole was measured, and the results are shown in Tables 1 and 2 below.
【0051】また、ホソカワミクロン社製のパウダーテ
スターを用い、前述の方法に準じて、初期かさ密度(ゆ
るみ見掛比重、n=10の平均値)、タップかさ密度
(固め見掛比重、n=10の平均値)、前記式(1)で
表される圧縮度を求め、その結果を同表に併せて示し
た。なお、測定容器として、材質がSUS304で、容
積が100ccの有底円筒状のものを用いた。また、タ
ッピングは、タップ高さ(タップロッド2とタップブロ
ック4の衝撃面の距離、図1参照)20mm、タップ速
度60回/分、タップ時間3分間の条件で行った。Using a powder tester manufactured by Hosokawa Micron Co., Ltd., the initial bulk density (loose apparent specific gravity, average value of n = 10) and tap bulk density (solid apparent specific gravity, n = 10) according to the method described above. ) And the degree of compression represented by the above formula (1), and the results are shown in the same table. The measurement container used was a SUS304 material having a cylindrical shape with a bottom and a volume of 100 cc. The tapping was performed under the conditions of a tap height (distance between the impact surface of the tap rod 2 and the tap block 4; see FIG. 1), a tap speed of 60 times / min, and a tap time of 3 minutes.
【0052】さらに、前述の方法に準じて、初期かさ密
度(ゆるみ見掛比重、n=10の平均値)、真比重、前
記式(2)で表される充填密度を求め、その結果を同表
に併せて示した。Further, the initial bulk density (loose apparent specific gravity, average value of n = 10), the true specific gravity, and the packing density represented by the above equation (2) were determined in accordance with the above-mentioned method. It is also shown in the table.
【0053】そして、各粉粒状半導体封止材料を、実際
にマルチプランジャー方式による半導体製造装置のホッ
パー〔略円錐状であってその頂部が下方供給口となる形
状(上部径:50mm、供給口径:10mm、高さ70
mm、容量:57cc)〕内に装填し、半導体装置を製
造した。そして、ホッパー内の詰まりの有無を確認する
とともに、得られた半導体装置について、下記の示す方
法にて信頼性試験を行ない、その結果を同表に併せて示
した。Then, each of the granular semiconductor encapsulating materials is actually placed in a hopper of a semiconductor manufacturing apparatus using a multi-plunger system (an approximately conical shape having a top serving as a lower supply port (upper diameter: 50 mm, supply diameter) : 10mm, height 70
mm, capacity: 57 cc)] to manufacture a semiconductor device. Then, the presence or absence of clogging in the hopper was confirmed, and a reliability test was performed on the obtained semiconductor device by the following method. The results are shown in the same table.
【0054】〔半導体装置の信頼性試験(成形ボイド試
験)〕 成形条件: 成形温度 175℃ 注入時間 100kgf/cm2 注入時間 7秒間 パッケージ QFP80ピン,縦20mm×横14mm
×厚み2.7mm 成形ボイド評価:SAT,軟X線測定により、直径0.
1mm以上のボイドをカウントする(32キャビティに
ついてカウントし、1キャビティ当たりの平均個数を求
める)。[Reliability Test of Semiconductor Device (Molding Void Test)] Molding conditions: Molding temperature: 175 ° C. Injection time: 100 kgf / cm 2 Injection time: 7 seconds Package QFP 80 pin, 20 mm long × 14 mm wide
× Thickness 2.7mm Molded void evaluation: SAT and soft X-ray measurement revealed a diameter of 0.
Count voids of 1 mm or more (count for 32 cavities and find the average number per cavity).
【0055】[0055]
【表1】 [Table 1]
【0056】[0056]
【表2】 [Table 2]
【0057】上記表1および表2の結果から、全ての実
施例品は、ホッパー内に詰まりが発生せず、信頼性が高
い半導体装置が得られていることがわかる。これに対
し、比較例1品および2品は、ともに圧縮度が11%を
超えており、ホッパー内に詰まりが発生していることが
わかる。From the results shown in Tables 1 and 2, it can be seen that all of the products of the examples do not cause clogging in the hopper, and a highly reliable semiconductor device is obtained. On the other hand, Comparative Examples 1 and 2 both have a degree of compression of more than 11%, indicating that clogging has occurred in the hopper.
【0058】そして、実施例1品、3品、4品について
粒子形状を観察したところ、実施例3品、1品、4品の
順で粒子に角がなく丸みを帯び、また粒子の長手方向と
それに直交する方向(幅)との比が1に近くなってお
り、同様に充填密度も高くなっていることが確認でき
る。Observation of the particle shapes of the first, third, and fourth products of Example 3 showed that the particles were rounded without corners in the order of the third, first, and fourth products, and that the particles were in the longitudinal direction. It can be confirmed that the ratio between the width and the direction (width) perpendicular to the width is close to 1, and the packing density is also high.
【0059】[0059]
【発明の効果】以上のように、本発明の粉粒状半導体封
止材料は、熱硬化性樹脂組成物からなり、前記式(1)
で表される圧縮度が特定の範囲に設定されているもので
ある。このため、従来から問題となっていたホッパー等
への付着,架橋現象に伴う詰まりを改善し、安定した流
動性,計量精度を示すものとなる。したがって、上記粉
粒状半導体封止材料を用いて得られる半導体装置は、ボ
イド等の不良の発生が抑制された、信頼性の高いものと
なる。As described above, the powdery and granular semiconductor encapsulating material of the present invention comprises a thermosetting resin composition and has the formula (1)
Is set in a specific range. For this reason, adhesion to a hopper or the like, which has been a problem in the past, and clogging due to a crosslinking phenomenon are improved, and stable fluidity and measurement accuracy are exhibited. Therefore, a semiconductor device obtained by using the above-mentioned powdery semiconductor encapsulating material has high reliability in which occurrence of defects such as voids is suppressed.
【0060】特に、上記粉粒状半導体封止材料のなかで
も、充填密度が特定の範囲に設定され、かつ80メッシ
ュパス品の割合が特定の範囲に設定されている場合に
は、流動性が特に良好となり、ボイド等の不良の発生が
抑制され、結果、信頼性の高い半導体装置が得られると
いう利点がある。また、微粉末による粉塵の発生を抑制
できるという利点もある。In particular, when the packing density is set in a specific range and the ratio of 80 mesh pass products is set in a specific range, the fluidity is particularly low. It is advantageous in that defects such as voids are suppressed, and as a result, a highly reliable semiconductor device can be obtained. There is also an advantage that generation of dust due to fine powder can be suppressed.
【0061】また、上記粉粒状半導体封止材料のなかで
も、全体が4メッシュパス品からなり、かつ80メッシ
ュパス品の含有割合が特定の範囲に設定されている場合
には、粉粒状半導体封止材料中に4メッシュを通過しな
いような大きな粒子が存在しないため、計量精度が良好
で、大きな空隙もできにくくなり、結果、信頼性の高い
半導体装置が得られるという利点がある。また、微粉末
による粉塵の発生を抑制できるという利点もある。In addition, among the above-mentioned powdered and granular semiconductor sealing materials, when the whole is made of a 4-mesh pass product and the content ratio of the 80-mesh pass product is set in a specific range, the powdered and granular semiconductor sealing material is used. Since there are no large particles that do not pass through the 4 mesh in the stopper material, the measurement accuracy is good, and it is difficult to form a large void, and as a result, there is an advantage that a highly reliable semiconductor device can be obtained. There is also an advantage that generation of dust due to fine powder can be suppressed.
【図1】タップ装置の一例を示す説明図である。FIG. 1 is an explanatory diagram illustrating an example of a tap device.
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 BH02W CC04X CC05X CD00W CD05W CD06W CF00W DE146 DJ016 FD016 GQ05 4M109 AA01 BA01 CA21 EA01 EA02 EA07 EA11 EB03 EB04 EB06 EB07 EB08 EB09 EB12 EB13 EC20 5F061 AA01 BA01 CA21 DE03 DE04 ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4J002 BH02W CC04X CC05X CD00W CD05W CD06W CF00W DE146 DJ016 FD016 GQ05 4M109 AA01 BA01 CA21 EA01 EA02 EA07 EA11 EB03 EB04 EB06 EB07 EB08 EB09 EB12 DE01 BA01
Claims (4)
止材料であって、下記の式(1)で表される圧縮度が1
1%以下に設定されていることを特徴とする粉粒状半導
体封止材料。 【数1】 1. A powdery and granular semiconductor encapsulant made of a thermosetting resin composition, wherein the compression degree represented by the following formula (1) is 1
A powdery and granular semiconductor encapsulating material, which is set to 1% or less. (Equation 1)
成物製の粉粒状半導体封止材料であって、下記の式
(2)で表される充填密度が46%以上に設定され、か
つ80メッシュパス品の含有割合が粉粒状半導体封止材
料全体中15重量%未満に設定されている請求項1記載
の粉粒状半導体封止材料。 【数2】 2. A powdery and granular semiconductor encapsulating material made of a thermosetting resin composition containing an inorganic filler, wherein the packing density represented by the following formula (2) is set to 46% or more, and 2. The powdery and granular semiconductor encapsulating material according to claim 1, wherein the content of the 80-mesh pass product is set to be less than 15% by weight in the entire powdery and granular semiconductor encapsulating material. (Equation 2)
封止材料であって、80メッシュパス品の含有割合が粉
粒状半導体封止材料全体中15重量%未満に設定されて
いる請求項1記載の粉粒状半導体封止材料。3. A powdery and granular semiconductor encapsulating material comprising a 4-mesh pass product, wherein the content ratio of an 80-mesh pass product is set to less than 15% by weight of the whole powdery and granular semiconductor encapsulating material. Semiconductor sealing material.
粒状半導体封止材料を用いて半導体素子を封止してなる
半導体装置。4. A semiconductor device comprising a semiconductor element encapsulated with the granular semiconductor encapsulating material according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03462399A JP4535213B2 (en) | 1999-02-12 | 1999-02-12 | Powder semiconductor encapsulant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03462399A JP4535213B2 (en) | 1999-02-12 | 1999-02-12 | Powder semiconductor encapsulant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000232188A true JP2000232188A (en) | 2000-08-22 |
JP4535213B2 JP4535213B2 (en) | 2010-09-01 |
Family
ID=12419528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03462399A Expired - Lifetime JP4535213B2 (en) | 1999-02-12 | 1999-02-12 | Powder semiconductor encapsulant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4535213B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013128889A1 (en) * | 2012-02-29 | 2013-09-06 | 住友ベークライト株式会社 | Method for packing encapsulating resin composition, package, and transportation method |
JP2014125592A (en) * | 2012-12-27 | 2014-07-07 | Kyocera Chemical Corp | Sealing resin composition, and semiconductor device |
KR20210021049A (en) | 2018-07-31 | 2021-02-24 | 교세라 가부시키가이샤 | Flaky sealing resin composition, and semiconductor device |
-
1999
- 1999-02-12 JP JP03462399A patent/JP4535213B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013128889A1 (en) * | 2012-02-29 | 2013-09-06 | 住友ベークライト株式会社 | Method for packing encapsulating resin composition, package, and transportation method |
CN104024126A (en) * | 2012-02-29 | 2014-09-03 | 住友电木株式会社 | Method for packing encapsulating resin composition, package, and transportation method |
JPWO2013128889A1 (en) * | 2012-02-29 | 2015-07-30 | 住友ベークライト株式会社 | Sealing resin composition packing method, packing material and transportation method |
JP2014125592A (en) * | 2012-12-27 | 2014-07-07 | Kyocera Chemical Corp | Sealing resin composition, and semiconductor device |
KR20210021049A (en) | 2018-07-31 | 2021-02-24 | 교세라 가부시키가이샤 | Flaky sealing resin composition, and semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP4535213B2 (en) | 2010-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5672335B2 (en) | Manufacturing method of semiconductor device | |
KR100573230B1 (en) | Method of producing epoxy for molding semiconductor device, molding material, and semiconductor device | |
KR102097798B1 (en) | Granule type epoxy resin composition for semiconductor encapsulation and semiconductor device encapsulated by using the same | |
JP2000232188A (en) | Granular semiconductor sealing material and semiconductor device using the same | |
JP4808686B2 (en) | Method for preventing blocking of epoxy molding compound powder and deterioration of flow characteristics | |
JP5277569B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same | |
TWI692066B (en) | Method for producing epoxy resin granule for encapsulating semiconductor device, epoxy resin granule for encapsulating semiconductor device, method for producing semiconductor device, and semiconductor device | |
JP4973325B2 (en) | Manufacturing method of epoxy resin composition for semiconductor encapsulation and manufacturing method of semiconductor device | |
US11702537B2 (en) | Tablet-type epoxy resin composition for sealing semiconductor device, and semiconductor device sealed using the same | |
KR101900549B1 (en) | Granule type epoxy resin composition for encapsulating a semiconductor deviece and semiconductor device encapsuled by using the same | |
JP6070529B2 (en) | Method for producing granular semiconductor sealing resin composition and semiconductor device | |
JP2008303368A (en) | Epoxy resin composition for sealing semiconductor and semiconductor device using the same | |
JP4300646B2 (en) | Thermosetting resin granules for molding and method for producing the same | |
JP4634083B2 (en) | Manufacturing method of tablets for semiconductor encapsulation | |
EP1498244B1 (en) | Method for producing a semiconductor-molding tablet | |
JP2018203839A (en) | Epoxy resin composition for encapsulation, manufacturing method of epoxy resin composition for encapsulation, and manufacturing method of semiconductor device | |
KR100319338B1 (en) | Epoxy resin encapsulating material for molding in a semiconductor chip and method of preparing the same | |
JP3132404B2 (en) | Manufacturing method of granular semiconductor sealing material | |
JP2005051030A (en) | Sealing material and semiconductor device | |
JP2012035468A (en) | Method and apparatus for manufacturing epoxy resin molding material and resin sealing type semiconductor apparatus | |
JPH11286013A (en) | Manufacture of granular epoxy resin composition for sealing semiconductor and semiconductor device | |
JPH05175259A (en) | Tablet manufacturing method of semiconductor sealing epoxy resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070828 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080311 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080512 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080610 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080807 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080929 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20081017 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100608 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160625 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |