[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000220534A - Egr gas cooling device - Google Patents

Egr gas cooling device

Info

Publication number
JP2000220534A
JP2000220534A JP11022474A JP2247499A JP2000220534A JP 2000220534 A JP2000220534 A JP 2000220534A JP 11022474 A JP11022474 A JP 11022474A JP 2247499 A JP2247499 A JP 2247499A JP 2000220534 A JP2000220534 A JP 2000220534A
Authority
JP
Japan
Prior art keywords
brazing
heat transfer
tube
egr gas
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11022474A
Other languages
Japanese (ja)
Inventor
Masayoshi Usui
正佳 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP11022474A priority Critical patent/JP2000220534A/en
Publication of JP2000220534A publication Critical patent/JP2000220534A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve fatigue failure resistance strength by arranging stress releasing means on a brazing part of at least an EGR gas flow-in side in brazing parts of a tube sheet and each heat transferring pipe, in the case where heat transferring pipe group is fixed to the tube sheets fixed in the vicinity of both end parts of an inner wall of a barrel pipe by means of brazing. SOLUTION: In a plurality of heat transferring pipes 20 in a multiple pipe type EGR gas cooling device, those both end parts are fixed to tube sheets 3 disposed in the vicinity of both end parts of an inner wall of a barrel pipe by means of brazing. In this case, a pipe enlarging part 20-1 is formed along a part positioned outward of an axial direction from a tip end part of a brazing material filet 5-1 in association with brazing 5 carried out after from a pipe end. A taper part 20-3 is formed along a primary pipe part 20-2 from the pipe enlarging part 20-1. The pipe enlarging part 20-1 and the taper part 20-3 are formed, and thereby, the maximum value tensile stress value on a surface of the heat transferring pipe 20 is reduced, a generating position of the maximum tensile stress value is shifted outward from a thin wall part of a brazing material filet 5-1 so as to improve fatigue failure resistance strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、クールドEGRシ
ステムにおけるエンジンの冷却液や専用の冷却水などに
よってEGRガスを冷却する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for cooling an EGR gas with a cooling liquid for an engine or a dedicated cooling water in a cooled EGR system.

【0002】[0002]

【従来の技術】排気ガスの一部を排気系から取出して、
再びエンジンの吸気系に戻し、混合気に加える方法は、
EGR(Exhaust Gas Recircula
tion:排気再循環)と称される。EGRはNOx
(窒素酸化物)の発生抑制、ポンプ損失の低減、燃焼ガ
スの温度低下に伴う冷却液への放熱損失の低減、作動ガ
ス量・組成の変化による比熱比の増大と、これに伴うサ
イクル効率の向上など、多くの効果が得られることか
ら、排気ガスを浄化しながらエンジンの熱効率を改善す
るには有効な方法とされている。
2. Description of the Related Art A part of exhaust gas is taken out of an exhaust system,
To return to the intake system of the engine and add it to the mixture,
EGR (Exhaust Gas Recircula)
Tion: exhaust gas recirculation). EGR is NOx
(Nitrogen oxides) generation, pump loss reduction, heat radiation loss to the cooling fluid due to lowering of combustion gas temperature, increase in specific heat ratio due to changes in working gas amount and composition, and reduction in cycle efficiency Since many effects such as improvement can be obtained, it is an effective method for improving the thermal efficiency of the engine while purifying the exhaust gas.

【0003】しかるに、EGRガスの温度が高くなりか
つEGRガス量が増大すると、その熱作用によりEGR
バルブの耐久性が劣化し、早期破損を招く場合があった
り、その防止のために水冷構造とする必要があることや
吸気温度の上昇に伴い充填効率の低下による燃費の低下
などが認識されている。このような事態を避けるため、
エンジンの冷却液などによってEGRガスを冷却するク
ールドEGRシステムが用いられている。このクールド
EGRシステム用の冷却装置としては、一般にオーステ
ナイト系ステンレス鋼製の多管式の熱交換器などが利用
される。
[0003] However, when the temperature of the EGR gas increases and the amount of the EGR gas increases, the heat effect of the EGR gas causes the EGR gas to increase.
It has been recognized that the durability of the valve may deteriorate, leading to premature breakage, the need for a water-cooled structure to prevent this, and the reduction in fuel efficiency due to the decrease in charging efficiency due to the rise in intake air temperature. I have. To avoid this,
2. Description of the Related Art A cooled EGR system that cools EGR gas with a coolant of an engine or the like is used. As a cooling device for the cooled EGR system, a multi-tube heat exchanger made of austenitic stainless steel is generally used.

【0004】この場合に利用される多管式の熱交換器と
しては、図10にその一例を示すごとく、両端部に冷却
媒体流入口1−1および冷却媒体流出口1−2を設けた
胴管1内部において、伝熱管群2の両端部が板金製のチ
ューブシート3にろう付けにより固定され、一方チュー
ブシート3はその外周端部を胴管1の内壁にろう付けに
より固着して配列され、前記胴管1の一方の端部にはE
GRガスの流入口4−1が設けられた端部キャップ4が
固着され、また他方の端部にはEGRガスの流出口4−
2が設けられた端部キャップ4が固着された構成となし
ている。
As a multi-tube heat exchanger used in this case, as shown in FIG. 10, a cylinder having a cooling medium inlet 1-1 and a cooling medium outlet 1-2 at both ends is provided. Inside the tube 1, both ends of the heat transfer tube group 2 are fixed to a sheet metal tube sheet 3 by brazing, while the tube sheet 3 is arranged with its outer peripheral end fixed to the inner wall of the body tube 1 by brazing. , One end of the body tube 1 has E
An end cap 4 provided with a GR gas inlet 4-1 is fixed, and an EGR gas outlet 4 is provided at the other end.
The end cap 4 provided with 2 is fixed.

【0005】[0005]

【発明が解決しようとする課題】上記したような多管式
の熱交換器において、チューブシート3と伝熱管群2の
両端がろう付けにより固定されているが、エンジンなど
の振動によりろう付け部のろう材フィレットにクラック
が発生し、このクラックが成長して伝熱管表面に達する
とこの部分に引張応力が集中し、これにより該伝熱管に
周方向の疲労破壊が発生する現象が発生した。
In the above-described multi-tube heat exchanger, both ends of the tube sheet 3 and the heat transfer tube group 2 are fixed by brazing. When the crack grows and reaches the surface of the heat transfer tube, tensile stress concentrates on this portion, thereby causing a phenomenon in which circumferential fatigue fracture occurs in the heat transfer tube.

【0006】この周方向の疲労破壊現象について本発明
者が種々の実験により調査した結果、つぎのような原因
に基づくことが分かった。すなわち一般にチューブシー
トは、厚さ1〜3mmのSUS 304やSUSU 3
16からなり、一方伝熱管は外径4.5〜8.0mm、
厚さ0.3〜0.7mmの同じくSUS 304やSU
SU 316からなるものであって、引張強度は約60
kgf/mm、疲労強度は30kgf/mm程度で
ある。一方ろう材はNi基ろう材が一般的に使用されて
いるが、このろう材の引張強度は約20kgf/mm
程度、疲労強度10kgf/mm程度である。
The inventor of the present invention has conducted various experiments on the circumferential fatigue fracture phenomenon and found that it is based on the following causes. That is, generally, the tube sheet is made of SUS 304 or SUSU 3 having a thickness of 1 to 3 mm.
16, while the heat transfer tube has an outer diameter of 4.5 to 8.0 mm,
SUS 304 or SU with a thickness of 0.3-0.7mm
SU 316 having a tensile strength of about 60
kgf / mm 2 , and the fatigue strength is about 30 kgf / mm 2 . On the other hand, a Ni-based brazing material is generally used as the brazing material, and the tensile strength of the brazing material is about 20 kgf / mm 2.
And fatigue strength of about 10 kgf / mm 2 .

【0007】このような材料から構成されるEGRガス
冷却装置に対して振動試験を実施した結果、図11に示
すように表面引張応力の最大値はろう材フィレット5−
1の薄肉部の幅l内に存在することが分かった。すなわ
ちチューブシート3は、振動方向には剛体で動かないた
め、該チューブシート3の端面部より前記伝熱管2に表
面引張応力が発生することになる。このように振動を加
えることによりろう材フィレット5−1の先端部より僅
かにチューブシート3側の伝熱管2表面に最大引張応力
点が現れ、伝熱管2より疲労限の低いろう材フィレット
5−1にまずクラックcが発生し、ついでこのクラック
cが成長して切欠効果によって伝熱管2表面に達し、応
力集中作用によって伝熱管2にも周方向の疲労破壊が発
生してしまう。
As a result of performing a vibration test on an EGR gas cooling device made of such a material, as shown in FIG.
It was found that it existed within the width 1 of the thin portion 1. That is, since the tube sheet 3 is rigid and does not move in the vibration direction, a surface tensile stress is generated in the heat transfer tube 2 from the end face of the tube sheet 3. By applying the vibration in this manner, a maximum tensile stress point appears on the surface of the heat transfer tube 2 on the tube sheet 3 side slightly from the tip end of the brazing material fillet 5-1, and the brazing material fillet 5-having a lower fatigue limit than the heat transfer tube 2. In FIG. 1, first, a crack c is generated, and then the crack c grows and reaches the surface of the heat transfer tube 2 by a notch effect.

【0008】このことは、本発明者が行ったエンジン試
験でも伝熱管が疲労破壊する位置はいずれもチューブシ
ート側面部より僅かに間隔をおいたろう材フィレットの
薄肉部であった。そしてこの疲労破壊現象は、特に許容
応力が低くなるEGRガス流入側のろう付け部のろう材
フィレットにおいて顕著であった。
[0008] This means that in the engine test conducted by the present inventor, the locations where the heat transfer tubes were fatigued and broken were all thin-walled portions of the brazing filler material slightly spaced from the tube sheet side portions. This fatigue fracture phenomenon was particularly remarkable in the brazing filler metal at the brazing portion on the EGR gas inflow side where the allowable stress was reduced.

【0009】本発明は、エンジンなどの加振状態下でも
優れた耐久信頼性を有し、かつ優れた耐疲労破壊強度を
発揮できるEGRガス冷却装置を提供することを目的と
するものである。
An object of the present invention is to provide an EGR gas cooling device which has excellent durability reliability even under a vibration state of an engine or the like and can exhibit excellent fatigue fracture resistance.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
本発明に係るEGRガス冷却装置は、両端部に冷却媒体
流入口および冷却媒体流出口が設けられた胴管の内壁の
両端部付近に固定されたチューブシートに伝熱管群がろ
う付けにて固着配列され、さらに前記胴管の両端部にE
GRガスの流入口および流出口が設けられた構造の多管
式のEGRガス冷却装置において、前記チューブシ−ト
と各伝熱管とのろう付け部のうち少なくともEGRガス
流入側のろう付け部に応力緩和手段を設けたことを特徴
とするものであり、前記応力緩和手段によって前記伝熱
管の外表面の最大引張応力点をろう材フィレット部より
軸方向で外方に位置せしめたことを特徴とするものであ
る。
In order to solve the above-mentioned problems, an EGR gas cooling apparatus according to the present invention is provided near both ends of an inner wall of a body tube provided with a cooling medium inlet and a cooling medium outlet at both ends. A heat transfer tube group is fixedly arranged on the fixed tube sheet by brazing, and E
In a multi-tube type EGR gas cooling device having a structure in which an inlet and an outlet for the GR gas are provided, stress is applied to at least a brazing portion on the EGR gas inflow side of a brazing portion between the tube sheet and each heat transfer tube. A relief means is provided, and the stress relaxation means positions a maximum tensile stress point on an outer surface of the heat transfer tube in an axial direction outward from the brazing filler material portion. Things.

【0011】そして本発明においては前記応力緩和手段
を前記伝熱管の端部付近に形成された拡管部とテーパ
部、垂直立上り部とテーパ部、あるいは厚肉部から構成
し、また前記肉厚部を前記伝熱管の外周側または内周側
の少なくとも一方に設けたり、または前記応力緩和手段
を前記伝熱管の端部付近に外嵌または内嵌されたスリー
ブから構成し、該スリーブは自由端側に先細りのテーパ
壁、あるいは自由端側にスリット部を有することを特徴
とするものである。
In the present invention, the stress relaxation means comprises an expanded portion and a tapered portion, a vertical rising portion and a tapered portion, or a thick portion formed near the end of the heat transfer tube. Is provided on at least one of the outer peripheral side and the inner peripheral side of the heat transfer tube, or the stress relaxation means is constituted by a sleeve externally or internally fitted near an end of the heat transfer tube, and the sleeve is provided on a free end side. And a slit portion on the free end side.

【0012】[0012]

【発明の実施の形態】つぎに本発明を添付図面に基づい
て説明する。図1は本発明の第1の実施態様に係る第1
の実施例を示す半截断面図、図2は本発明の第1の実施
態様に係る第2の実施例を示す同じく半截断面図、図3
は本発明の第1の実施態様に係る第4の実施例を示す同
じく半截断面図、図4は本発明の第1の実施態様に係る
第4の実施例を示す同じく半截断面図、図5は本発明の
第2の実施態様に係る第1の実施例を示す図で、(a)
は半截断面図、(b)は斜視図、図6は本発明の第2の
実施態様に係る第2の実施例を示す図で、(a)は半截
断面図、(b)は斜視図、図7は本発明の第2の実施態
様に係る第3の実施例を示す図で、(a)は半截断面
図、(b)は斜視図、図8は本発明の第2の実施態様に
係る第4の実施例を示す図で、(a)は半截断面図、
(b)は斜視図、図9は本発明の実施例と比較例の表面
応力分布を示すグラフであって、3はチューブシート、
20、30、40、50、60は伝熱管、21、31、
41、51はスリーブである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a first embodiment according to the first embodiment of the present invention.
FIG. 2 is a half sectional view showing a second embodiment according to the first embodiment of the present invention, and FIG.
FIG. 4 is a half sectional view showing a fourth embodiment according to the first embodiment of the present invention. FIG. 4 is a half sectional view showing a fourth embodiment according to the first embodiment of the present invention. FIG. 3A is a diagram showing a first example according to a second embodiment of the present invention, and FIG.
6A is a half sectional view, FIG. 6B is a perspective view, FIG. 6 is a view showing a second embodiment according to the second embodiment of the present invention, FIG. 6A is a half sectional view, FIG. 7A and 7B are views showing a third embodiment according to the second embodiment of the present invention, wherein FIG. 7A is a half sectional view, FIG. 7B is a perspective view, and FIG. FIG. 8A is a view showing the fourth embodiment, in which FIG.
(B) is a perspective view, FIG. 9 is a graph showing the surface stress distribution of the example of the present invention and the comparative example, 3 is a tube sheet,
20, 30, 40, 50, 60 are heat transfer tubes, 21, 31,
41 and 51 are sleeves.

【0013】まず、図1に示す本発明の多管式のEGR
ガス冷却装置の場合は、管端から後に実施されるろう付
けに伴うろう材フィレットの先端部より軸方向に外方に
位置する部分に亘って拡管部20−1を形成し、かつ該
拡管部より原管部20−2に亘りテーパ部20−3を有
する伝熱管20の両端部を、板金製のチューブシート3
に穿設された取付孔3−1に挿入してろう付けする。こ
の場合、ろう付け部5のろう材フィレット5−1は拡管
部20−1に位置することになる。
First, the multi-tube EGR of the present invention shown in FIG.
In the case of a gas cooling device, an expanded portion 20-1 is formed from a pipe end to a portion located axially outward from a tip end portion of a brazing material fillet accompanying brazing performed later, and the expanded portion is formed. The two ends of the heat transfer tube 20 having the tapered portion 20-3 over the original tube portion 20-2 are connected to the tube sheet 3 made of sheet metal.
Is inserted into the mounting hole 3-1 drilled and brazed. In this case, the brazing material fillet 5-1 of the brazing part 5 is located at the expanded part 20-1.

【0014】ここで本発明で用いる伝熱管の材質として
は、SUS304、SUS304L、SUS316、S
US316L、SUS321などのオーステナイト系ス
テンレス鋼などが用いられ、外径は6.35mmや5.
00mmで、長さは120〜600mm程度のものが多
いが特に長さの制限はなく、また胴管やチューブシート
も前記と同様の材質である。そしてこのような材質のE
GRガス冷却装置における伝熱管20とチューブシート
3の固定に使用されるろう材としては、例えばCr7重
量%、B3重量%、Si4重量%、Fe3重量%、残部
NiからなるNi基ろう材が一般的であるが、本出願人
が提案した特願平11−18464号および特願平11
−18465号に開示したろう材が優れた耐硫酸耐食性
を有するために好ましい。
The material of the heat transfer tube used in the present invention includes SUS304, SUS304L, SUS316, S
Austenitic stainless steel such as US316L and SUS321 is used, and the outer diameter is 6.35 mm or 5.
Although the length is usually about 120 mm to about 600 mm, the length is not particularly limited, and the body tube and tube sheet are made of the same material as described above. And E of such material
As a brazing material used for fixing the heat transfer tube 20 and the tube sheet 3 in the GR gas cooling device, for example, a Ni-based brazing material composed of Cr 7% by weight, B 3% by weight, Si 4% by weight, Fe 3% by weight, and the balance Ni is generally used. It is important to note that Japanese Patent Application Nos. 11-18364 and 11
The brazing material disclosed in No. -18465 is preferable because of having excellent sulfuric acid corrosion resistance.

【0015】このように図1の実施例では、伝熱管20
の管端部付近に拡管部20−1とテーパ部20−3を形
成することによって伝熱管20の表面の最大引張応力値
を低下させ、かつ伝熱管20の表面の最大引張応力値の
発生位置をろう付け部5のろう材フィレット5−1の薄
肉部より外方に外すことができ、これにより加振状態下
での使用でも優れた耐疲労破壊強度を有するEGRガス
冷却装置を得ることが可能となった。
As described above, in the embodiment shown in FIG.
By forming the expanded portion 20-1 and the tapered portion 20-3 near the end of the tube, the maximum tensile stress value on the surface of the heat transfer tube 20 is reduced, and the position where the maximum tensile stress value on the surface of the heat transfer tube 20 is generated Can be removed from the thin portion of the brazing material fillet 5-1 of the brazing portion 5, thereby obtaining an EGR gas cooling device having excellent fatigue fracture resistance even when used under a vibrating state. It has become possible.

【0016】なお本発明は伝熱管の両端部と両チューブ
シートとの両ろう付け部に適用することが好ましいが、
この疲労破壊現象が特に許容応力が低くなるEGRガス
流入側のろう付け部のろう材フィレットにおいて顕著で
あるため、少なくともEGRガス流入側のろう付け部に
は適用することが肝要である。
Although the present invention is preferably applied to both brazed portions of both ends of the heat transfer tube and both tube sheets,
Since this fatigue fracture phenomenon is particularly remarkable in the brazing material fillet of the brazing portion on the EGR gas inflow side where the allowable stress is low, it is important to apply the method to at least the brazing portion on the EGR gas inflow side.

【0017】つぎに図2に示す本発明の多管式のEGR
ガス冷却装置の場合は、管端からチューブシート3の厚
さに対応する間隔をおいて垂直立上り部30−1とテー
パ部30−2とからなるバルジ部30−3を形成された
伝熱管30の両端部を、板金製のチューブシート3に穿
設された取付孔3−1に挿入してろう付けする。この場
合もろう付け部5のろう材フィレット5−1は前記バル
ジ部30−3の頂部に位置することになり、したがって
伝熱管30の表面の最大引張応力値を低下し、かつ伝熱
管30の表面の最大引張応力値の発生位置をろう付け部
5のろう材フィレット5−1の薄肉部より外方へ外すこ
とができ、これにより加振状態下での使用でも優れた耐
疲労破壊強度を有するEGRガス冷却装置を得ることが
可能となった。
Next, the multi-tube EGR of the present invention shown in FIG.
In the case of a gas cooling device, a heat transfer tube 30 having a bulge portion 30-3 formed of a vertical rising portion 30-1 and a tapered portion 30-2 formed at an interval corresponding to the thickness of the tube sheet 3 from the pipe end. Are inserted into the mounting holes 3-1 formed in the sheet metal tube sheet 3 and brazed. Also in this case, the brazing material fillet 5-1 of the brazing portion 5 is located at the top of the bulge portion 30-3, so that the maximum tensile stress value on the surface of the heat transfer tube 30 is reduced, and The position where the maximum tensile stress value is generated on the surface can be removed outward from the thin-walled portion of the brazing filler material 5-1 of the brazing portion 5, thereby providing excellent fatigue fracture strength even when used under vibration. It has become possible to obtain an EGR gas cooling device having the above.

【0018】また図3に示す本発明の多管式のEGRガ
ス冷却装置の場合は、管端から後に実施されるろう付け
に伴うろう材フィレットより軸方向に外方に位置する部
分に亘って内周面側に厚肉部40−1を形成された伝熱
管40の両端部を、板金製のチューブシート3に穿設さ
れた取付孔3−1に挿入してろう付けするものであっ
て、この場合もろう付け部5のろう材フィレット5−1
は厚肉部40−1に位置することになり、したがって伝
熱管40の表面の最大引張応力値を下げ、かつ伝熱管4
0の表面の最大引張応力値の発生位置をろう付け部5の
ろう材フィレット5−1の薄肉部より外方に外すことが
でき、この結果加振状態下での使用でも優れた耐疲労破
壊強度を有するEGRガス冷却装置を得ることが可能と
なった。なお図3において、40−2は前記厚肉部40
−1と原管部40−3との間に形成されたテーパ壁であ
る。
In the case of the multi-pipe type EGR gas cooling apparatus of the present invention shown in FIG. 3, the portion extending from the pipe end to the portion located axially outward from the brazing filler metal for brazing performed later is used. It inserts and brazes both ends of the heat transfer tube 40 having the thick wall portion 40-1 formed on the inner peripheral surface side into a mounting hole 3-1 formed in the tube sheet 3 made of sheet metal. Also in this case, the brazing material fillet 5-1 of the brazing portion 5
Is located in the thick portion 40-1, so that the maximum tensile stress value on the surface of the heat transfer tube 40 is reduced and the heat transfer tube 4
The position where the maximum tensile stress value occurs on the surface of No. 0 can be removed from the thin-walled portion of the brazing material fillet 5-1 of the brazing portion 5, and as a result, excellent fatigue fracture resistance even when used under vibration. It has become possible to obtain a strong EGR gas cooling device. In FIG. 3, reference numeral 40-2 denotes the thick portion 40.
-1 and a tapered wall formed between the original pipe portion 40-3.

【0019】さらに図4に示す本発明の多管式のEGR
ガス冷却装置の場合は、管端から後に実施されるろう付
けに伴うろう材フィレットより軸方向に外方に位置する
部分に亘って外周面側に厚肉部50−1を形成された伝
熱管50の両端部を、板金製のチューブシート3に穿設
された取付孔3−1に挿入してろう付けするものであ
る。この場合もまたろう付け部5のろう材フィレット5
−1は厚肉部50−1に位置することにより、伝熱管5
0の表面の最大引張応力値を大幅に下げることができる
結果、加振状態下での使用でも優れた耐疲労破壊強度を
有するEGRガス冷却装置を得ることが可能となった。
Further, the multi-tube EGR of the present invention shown in FIG.
In the case of a gas cooling device, a heat transfer tube in which a thick portion 50-1 is formed on the outer peripheral surface side from a pipe end to a portion located in an axial direction outward from a brazing material fillet accompanying brazing performed later. 50 are inserted into the mounting holes 3-1 formed in the sheet metal tube sheet 3 and brazed. Also in this case, the brazing material fillet 5 of the brazing portion 5 is also used.
-1 is located in the thick portion 50-1, and the heat transfer tube 5
As a result, it was possible to obtain an EGR gas cooling device having excellent fatigue fracture resistance even when used in a vibrating state.

【0020】なお図4において、50−2は前記厚肉部
50−1と原管部50−3との間に形成されたテーパ壁
である。
In FIG. 4, reference numeral 50-2 denotes a tapered wall formed between the thick portion 50-1 and the original tube portion 50-3.

【0021】上記した通り図3および図4では厚肉部を
伝熱管40、50の内周面あるいは外周面のいずれか一
方に設けた実施例を図示したが、厚肉部を伝熱管の内周
面と外周面の両面に形成してもよいことはいうまでもな
い。
As described above, FIGS. 3 and 4 show an embodiment in which the thick portion is provided on either the inner peripheral surface or the outer peripheral surface of the heat transfer tubes 40 and 50. However, the thick portion is provided inside the heat transfer tube. It goes without saying that it may be formed on both the peripheral surface and the outer peripheral surface.

【0022】以上の実施例では伝熱管の管端部付近に拡
管部とテーパ部、垂直立上り部とテーパ部、あるいは厚
肉部を形成してこれを応力緩和手段としたものを示した
が本発明はこのような実施例に限定されるものではな
く、伝熱管には何らの加工を施さず該伝熱管の端部付近
に別途、例えばSUS 304、SUS 316製など
のスリーブ、あるいは断面がほぼC字状になるよう微小
なスリットを軸方向の全長に亘って設けたスリット付き
スリーブなどを嵌合して応力緩和手段を構成することも
できる。このような実施例を図5〜図8について以下に
説明する。
In the above embodiment, the heat transfer tube is formed with an expanded portion and a tapered portion, a vertical rising portion and a tapered portion, or a thick portion near the end of the heat transfer tube, which are used as stress relaxation means. The present invention is not limited to such an embodiment, and the heat transfer tube is not subjected to any processing and a sleeve such as SUS 304, SUS 316, or the like, or a cross-section is substantially provided near the end of the heat transfer tube. It is also possible to form a stress relief unit by fitting a sleeve with a slit provided with a minute slit over the entire length in the axial direction so as to form a C-shape. Such an embodiment is described below with reference to FIGS.

【0023】まず図5に示す本発明の多管式のEGRガ
ス冷却装置の場合は、伝熱管60の両端部を板金製のチ
ューブシート3に穿設された取付孔3−1に挿入し、か
つ円筒状のスリーブ21をその一端面21−1がチュー
ブシート3の側面に当接するように位置せしめて全体を
ろう付けするものである。この場合、前記スリーブ21
の長さを、その自由端面21−2が前記チューブシート
3の側面から後に実施されるろう付けに伴うろう材フィ
レットより軸方向で外方に位置するような長さとするこ
とにより、伝熱管60の表面の最大引張応力値を低下
し、かつ伝熱管60の表面の最大引張応力値の発生位置
をろう付け部5のろう材フィレット5−1の薄肉部より
外方に外すことができ、これにより加振状態下での使用
でも優れた耐疲労破壊強度を有するEGRガス冷却装置
を得ることが可能となった。なお引張応力をより一層効
果的に分散させるためには図6のように円筒状のスリー
ブ31の自由端面31−2を先細りのテーパ面31−3
に形成することが好ましい。
First, in the case of the multi-tube type EGR gas cooling apparatus of the present invention shown in FIG. 5, both ends of the heat transfer tube 60 are inserted into mounting holes 3-1 formed in the sheet metal tube sheet 3. In addition, the cylindrical sleeve 21 is positioned so that one end surface 21-1 thereof is in contact with the side surface of the tube sheet 3, and the whole is brazed. In this case, the sleeve 21
Is set so that its free end face 21-2 is positioned axially outward from the side surface of the tube sheet 3 with respect to the brazing filler material for the brazing performed later, whereby the heat transfer tube 60 is formed. The maximum tensile stress value of the surface of the heat transfer tube 60 can be reduced, and the position where the maximum tensile stress value of the surface of the heat transfer tube 60 is generated can be removed outside the thin portion of the brazing filler material 5-1 of the brazing portion 5. Accordingly, it has become possible to obtain an EGR gas cooling device having excellent fatigue fracture resistance even when used under a vibration state. In order to disperse the tensile stress more effectively, the free end face 31-2 of the cylindrical sleeve 31 is tapered as shown in FIG.
It is preferable to form it.

【0024】また図7に示す本発明の多管式のEGRガ
ス冷却装置の場合は、伝熱管60の両端部を板金製のチ
ューブシート3に穿設された取付孔3−1に挿入し、か
つ自由端面41−2側に開口するよう軸方向に延長する
複数のスリット41−3を形成された円筒状のスリーブ
41をその一端面41−1がチューブシート3の側面に
当接するように位置せしめて全体をろう付けするもので
ある。この場合、前記スリーブ41の長さを、その自由
端面41−2が前記チューブシート3の側面から後に実
施されるろう付けに伴うろう材フィレット5−1より軸
方向で外方に位置するような長さとすることにより、伝
熱管60の表面の最大引張応力値を下げ、かつ伝熱管6
0の表面の最大引張応力値の発生位置をろう付け部5の
ろう材フィレット5−1の薄肉部より外方へ外すことが
でき、さらに伝熱管60に作用する表面引張応力をスリ
ット41−3により効果的に分散し、これにより加振状
態下での使用でも優れた耐疲労破壊強度を有するEGR
ガス冷却装置を得ることが可能となった。
In the case of the multi-tube type EGR gas cooling apparatus of the present invention shown in FIG. 7, both ends of the heat transfer tube 60 are inserted into mounting holes 3-1 formed in the tube sheet 3 made of sheet metal. A cylindrical sleeve 41 having a plurality of slits 41-3 extending in the axial direction so as to open toward the free end surface 41-2 is positioned such that one end surface 41-1 abuts against the side surface of the tube sheet 3. At the very least, the whole is brazed. In this case, the length of the sleeve 41 is set such that its free end face 41-2 is located axially outward from the side surface of the tube sheet 3 with respect to the brazing filleret 5-1 associated with brazing performed later. By setting the length, the maximum tensile stress value on the surface of the heat transfer tube 60 is reduced, and
The position of the maximum tensile stress value on the surface of the brazing material 5 can be removed outward from the thin portion of the brazing filler material 5-1 of the brazing part 5, and the surface tensile stress acting on the heat transfer tube 60 is reduced by the slit 41-3. EGR that has excellent fatigue fracture resistance even when used under vibration conditions
It has become possible to obtain a gas cooling device.

【0025】さらに図8に示す本発明の多管式のEGR
ガス冷却装置の場合は、伝熱管60の両端部を板金製の
チューブシート3に穿設された取付孔3−1に挿入し、
かつ截頭円錐状のスリーブ51をその底面端面51−1
がチューブシート3の側面に当接するように位置せしめ
て全体をろう付けするものである。この場合も前記スリ
ーブ51の長さを、頂面自由端面51−2が前記チュー
ブシート3の側面から後に実施されるろう付けに伴うろ
う材フィレット5−1より軸方向で外方に位置するよう
な長さとすることにより、伝熱管60の表面の最大引張
応力値を低下し、かつ伝熱管60の表面の最大引張応力
値の発生位置をろう付け部5のろう材フィレット5−1
の薄肉部より外方へ外すことができ、これにより加振状
態下での使用でも優れた耐疲労破壊強度を有するEGR
ガス冷却装置を得ることが可能となった。なお図5〜図
8において、6は各スリーブの自由端面と伝熱管60と
のろう付け部であるが、このろう付け部6はスリーブが
伝熱管60の動きに追随するために、ろう付け部5とは
異なり殆ど表面引張応力の影響を受けないものである。
FIG. 8 shows a multi-tube EGR according to the present invention.
In the case of the gas cooling device, both ends of the heat transfer tube 60 are inserted into the mounting holes 3-1 formed in the sheet metal tube sheet 3;
And a frusto-conical sleeve 51 with its bottom end face 51-1
Is positioned so as to contact the side surface of the tube sheet 3 and brazing is performed as a whole. Also in this case, the length of the sleeve 51 is set such that the top free end surface 51-2 is positioned axially outward from the brazing filleret 5-1 accompanying the brazing performed later from the side surface of the tube sheet 3. By setting the maximum length, the maximum tensile stress value on the surface of the heat transfer tube 60 is reduced, and the position where the maximum tensile stress value on the surface of the heat transfer tube 60 is generated is determined by the brazing material fillet 5-1 of the brazing portion 5.
EGR with excellent fatigue fracture resistance even when used under vibration conditions
It has become possible to obtain a gas cooling device. In FIGS. 5 to 8, reference numeral 6 denotes a brazing portion between the free end face of each sleeve and the heat transfer tube 60, and the brazing portion 6 is a brazing portion because the sleeve follows the movement of the heat transfer tube 60. Unlike No. 5, it is hardly affected by surface tensile stress.

【0026】以上の図5〜図8に示す実施例では伝熱管
60の外周面にスリーブ21、31、41、51を外嵌
するものを示したが、伝熱管の端部付近の内周面側にこ
れらスリーブを内嵌しろう付けしても前記と同様な作用
効果を発揮するできることはいうまでもない。
In the embodiments shown in FIGS. 5 to 8, the sleeves 21, 31, 41 and 51 are externally fitted to the outer peripheral surface of the heat transfer tube 60, but the inner peripheral surface near the end of the heat transfer tube is shown. It goes without saying that the same function and effect as described above can be exerted even if these sleeves are internally fitted and brazed.

【0027】[0027]

【実施例】つぎに本発明の実施例を比較例とともに説明
する。 [実施例1]厚さ1.5mmのSUS 304製のチュ
ーブシート3に内径7.0mmの取付孔3−1を穿設し
た。一方図1に示す構造となるように原管部20−2が
外径6.35mmで肉厚が0.4mmのSUS 304
製の伝熱管20に、その管端から長さ6.5mmに亘り
かつ外径が7.0mmとなるよう拡管部20−1を成形
し、かつテーパ部20−3の幅を2.0mmとした。
Next, examples of the present invention will be described together with comparative examples. [Example 1] A mounting hole 3-1 having an inner diameter of 7.0 mm was formed in a SUS 304 tube sheet 3 having a thickness of 1.5 mm. On the other hand, SUS 304 having an outer diameter of 6.35 mm and a wall thickness of 0.4 mm is used so that the original tube portion 20-2 has the structure shown in FIG.
The heat transfer tube 20 is formed with an expanded tube portion 20-1 having a length of 6.5 mm and an outer diameter of 7.0 mm from the end of the tube, and a tapered portion 20-3 having a width of 2.0 mm. did.

【0028】以上のような構成を有する伝熱管20の拡
管部20−1をチューブシート3の取付孔3−1に挿入
してCr7重量%、B3重量%、Si4重量%、Fe3
重量%、残部NiからなるNi基ろう材によりろう付け
した。この結果、チューブシート3の側面から伝熱管2
0の軸方向に0.5mmに亘ってろう材フィレット5−
1が形成された。
The expanded portion 20-1 of the heat transfer tube 20 having the above-described configuration is inserted into the mounting hole 3-1 of the tube sheet 3 to insert 7% by weight of Cr, 3% by weight of B, 4% by weight of Si, and 3% by weight of Fe3.
The brazing was carried out with a Ni-based brazing filler metal consisting of wt% and the balance being Ni. As a result, the heat transfer tubes 2
0 mm in the axial direction of the brazing filler material 5-
1 was formed.

【0029】このようにして得られた試料管の自由端部
に100Gを掛け、その瞬間の伝熱管の表面の引張応力
値の分布状況を有限要素法(FEM)解析し、その解析
結果を図9に示す。
The free end of the sample tube obtained in this manner was multiplied by 100 G, and the distribution of the tensile stress value on the surface of the heat transfer tube at that moment was analyzed by the finite element method (FEM). It is shown in FIG.

【0030】[実施例2]前記実施例1と同様な材質、
寸法のチューブシート3に内径6.35mmの取付孔3
−1を穿設した。一方図2に示す構造となるよう外径
6.35mmで肉厚0.4mmのSUS 304製の伝
熱管30にその管端から1.5mmの箇所に外径が7.
5mmとなり、かつ幅が5mmとなるバルジ部30−3
を成形し、前記取付孔3−1に端部を挿入するととも
に、該バルジ部30−3の垂直立上り部30−1をチュ
ーブシート3の側面に当接させて実施例1と同様なろう
材によってろう付けした。この結果、チューブシート3
の側面から伝熱管30の軸方向に0.5mmに亘ってろ
う材フィレット5−1が形成された。このようにして得
られた試料管の自由端部に100Gを掛け、その瞬間の
伝熱管の表面の引張応力値の分布状況をFEM解析し、
その解析結果を図9に示す。
[Embodiment 2] The same materials as in Embodiment 1 above,
Mounting hole 3 with inner diameter 6.35 mm in tube sheet 3 of dimensions
-1 was drilled. On the other hand, a heat transfer tube 30 made of SUS 304 having an outer diameter of 6.35 mm and a thickness of 0.4 mm having an outer diameter of 7.35 mm at a position 1.5 mm from the end of the tube so as to have the structure shown in FIG.
Bulge part 30-3 having a width of 5 mm and a width of 5 mm
A brazing material similar to that of the first embodiment is formed by inserting an end into the mounting hole 3-1 and bringing the vertical rising portion 30-1 of the bulge portion 30-3 into contact with the side surface of the tube sheet 3. Brazed by As a result, the tube sheet 3
, A brazing filler material 5-1 was formed in the axial direction of the heat transfer tube 30 over 0.5 mm. The free end of the sample tube obtained in this way was multiplied by 100 G, and the distribution of the tensile stress value on the surface of the heat transfer tube at that moment was analyzed by FEM.
FIG. 9 shows the analysis result.

【0031】[実施例3]前記実施例2と同様な材質、
寸法でかつ同様な内径の取付孔3−1が穿設されたチュ
ーブシート3の該取付孔3−1に、実施例2と同様な材
質、外径を有し、かつ図3に示すように管端から6.5
mmに亘り内周面側が厚肉となるよう肉厚を0.7mm
とした厚肉部40−1と2mmに亘るテーパ面40−3
とを有する伝熱管40の端部を挿入して実施例1と同様
なろう材によってろう付けした。この結果、チューブシ
ート3の側面から伝熱管40の軸方向に0.5mmに亘
ってろう材フィレット5−1が形成された。このように
して得られた試料管の自由端部に100Gを掛け、その
瞬間の伝熱管の表面の引張応力値の分布状況をFEM解
析し、その解析結果を図9に示す。
[Embodiment 3] The same materials as in Embodiment 2 above,
As shown in FIG. 3, the mounting holes 3-1 of the tube sheet 3 in which the mounting holes 3-1 having the same size and the same inner diameter are formed have the same material and outer diameter as those of the second embodiment, and 6.5 from pipe end
0.7 mm thick so that the inner peripheral surface side is thick
Thick portion 40-1 and tapered surface 40-3 over 2 mm
Then, the end portion of the heat transfer tube 40 having the following was inserted and brazed with the same brazing material as in Example 1. As a result, a brazing filler material 5-1 was formed from the side surface of the tube sheet 3 in the axial direction of the heat transfer tube 40 by 0.5 mm. 100G is applied to the free end of the sample tube thus obtained, and the distribution of the tensile stress value on the surface of the heat transfer tube at that moment is analyzed by FEM. The analysis result is shown in FIG.

【0032】[実施例4]前記実施例1と同様な材質、
寸法でかつ同様な内径の取付孔3−1が穿設されたチュ
ーブシート3の該取付孔3−1に、実施例1と同様な材
質および原管部50−3の外径を有し、かつ図4に示す
ように管端から6.5mmに亘り外周面側が厚肉となる
よう肉厚を0.7mmとした厚肉部50−1と2mmに
亘るテーパ面50−2とを有する伝熱管50の端部を挿
入して実施例1と同様なろう材によってろう付けした。
この結果、チューブシート3の側面から伝熱管50の軸
方向に0.5mmに亘ってろう材フィレット5−1が形
成された。このようにして得られた試料管の自由端部に
100Gを掛け、その瞬間の伝熱管の表面の引張応力値
の分布状況をFEM解析し、その解析結果を図9に示
す。
[Embodiment 4] The same materials as in Embodiment 1 above,
The mounting hole 3-1 of the tube sheet 3 having the dimensions and the same inner diameter as the inner diameter has the same material as that of the first embodiment and the outer diameter of the original pipe portion 50-3. Further, as shown in FIG. 4, a transmission having a thick portion 50-1 having a thickness of 0.7 mm and a tapered surface 50-2 having a thickness of 2 mm so that the outer peripheral surface is thicker over 6.5 mm from the pipe end. The end of the heat tube 50 was inserted and brazed with the same brazing material as in Example 1.
As a result, the brazing filler material 5-1 was formed from the side surface of the tube sheet 3 to 0.5 mm in the axial direction of the heat transfer tube 50. 100G is applied to the free end of the sample tube thus obtained, and the distribution of the tensile stress value on the surface of the heat transfer tube at that moment is analyzed by FEM. The analysis result is shown in FIG.

【0033】[比較例]前記実施例2と同様な材質、寸
法でかつ同様な内径の取付孔が穿設されたチューブシー
トの該取付孔に、実施例2と同様な材質、外径を有し、
かつ均一な肉厚の伝熱管の端部を挿入して実施例1と同
様なろう材によってろう付けした。この結果、チューブ
シートの側面から伝熱管の軸方向に0.5mmに亘って
ろう材フィレットが形成された。このようにして得られ
た試料管の自由端部に100Gを掛け、その瞬間の伝熱
管の表面の引張応力値の分布状況をFEM解析し、その
解析結果を図9に示す。
Comparative Example A tube sheet having the same material and dimensions as those of the second embodiment and having the same inner diameter as that of the second embodiment is provided with the same material and outer diameter as those of the second embodiment. And
The end of the heat transfer tube having a uniform thickness was inserted and brazed with the same brazing material as in Example 1. As a result, a brazing filler material was formed from the side surface of the tube sheet over 0.5 mm in the axial direction of the heat transfer tube. 100G is applied to the free end of the sample tube thus obtained, and the distribution of the tensile stress value on the surface of the heat transfer tube at that moment is analyzed by FEM. The analysis result is shown in FIG.

【0034】図9から分かる通り本発明の実施例1、2
および4が、比較例に比べてろう材フィレットにおいて
発生する表面引張応力の最大値が著しく低下するととも
に、最大引張応力の発生位置がろう材フィレットの薄肉
部である0.5mmの部分より外方に外れており、また
実施例2は最大引張応力の発生位置はろう材フィレット
の薄肉部にあるものの、その最大値が極めて大幅に低下
しているためにそれぞれ振動に対する耐久性が向上して
いた。
As can be seen from FIG. 9, Embodiments 1 and 2 of the present invention
And 4, the maximum value of the surface tensile stress generated in the brazing filler material is significantly reduced as compared with the comparative example, and the position where the maximum tensile stress is generated is located outside the 0.5 mm portion which is the thin portion of the brazing filler material. In Example 2, although the position where the maximum tensile stress was generated was in the thin portion of the brazing filler material, the maximum value was extremely significantly reduced, so that the durability against vibration was improved. .

【0035】[0035]

【発明の効果】以上述べた通り本発明によれば、伝熱管
の加振により発生する最大引張応力点が疲労限の低いろ
う材フィレット内から疲労限の高い伝熱管表面へ移行し
たことによって、前記伝熱管とチューブシートとのろう
付け部のろう材フィレットの薄肉部からの振動による前
記伝熱管の周方向の疲労破壊が効果的に防止され、EG
Rガス冷却装置に加わる振動に対する耐久信頼性が著し
く向上したEGRガス冷却装置を提供することが可能と
なった。
As described above, according to the present invention, the maximum tensile stress point generated by the vibration of the heat transfer tube shifts from the inside of the brazing filler metal having a low fatigue limit to the surface of the heat transfer tube having a high fatigue limit. Circumferential fatigue destruction of the heat transfer tube due to vibration from the thin portion of the brazing material fillet of the brazing portion between the heat transfer tube and the tube sheet is effectively prevented, and EG
It has become possible to provide an EGR gas cooling device in which the durability reliability against vibration applied to the R gas cooling device has been significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施態様に係る第1の実施例を
示す半截断面図である。
FIG. 1 is a half sectional view showing a first embodiment according to the first embodiment of the present invention.

【図2】本発明の第1の実施態様に係る第2の実施例を
示す同じく半截断面図である。
FIG. 2 is a half sectional view showing a second embodiment according to the first embodiment of the present invention.

【図3】本発明の第1の実施態様に係る第3の実施例を
示す同じく半截断面図である。
FIG. 3 is a half sectional view showing a third embodiment according to the first embodiment of the present invention.

【図4】本発明の第1の実施態様に係る第4の実施例を
示す同じく半截断面図である。
FIG. 4 is a half sectional view showing a fourth embodiment according to the first embodiment of the present invention.

【図5】本発明の第2の実施態様に係る第1の実施例を
示す図で、(a)は半截断面図、(b)は斜視図であ
る。
FIGS. 5A and 5B are views showing a first embodiment according to a second embodiment of the present invention, wherein FIG. 5A is a half sectional view and FIG. 5B is a perspective view.

【図6】本発明の第2の実施態様に係る第2の実施例を
示す図で、(a)は半截断面図、(b)は斜視図であ
る。
FIGS. 6A and 6B are views showing a second embodiment according to the second embodiment of the present invention, wherein FIG. 6A is a half sectional view, and FIG. 6B is a perspective view.

【図7】本発明の第2の実施態様に係る第3の実施例を
示す図で、(a)は半截断面図、(b)は斜視図であ
る。
FIGS. 7A and 7B are views showing a third embodiment according to the second embodiment of the present invention, wherein FIG. 7A is a half sectional view and FIG. 7B is a perspective view.

【図8】本発明の第2の実施態様に係る第4の実施例を
示す図で、(a)は半截断面図、(b)は斜視図であ
る。
FIGS. 8A and 8B are views showing a fourth embodiment according to the second embodiment of the present invention, wherein FIG. 8A is a half sectional view and FIG. 8B is a perspective view.

【図9】本発明の実施例と比較例の表面応力分布を示す
グラフである。
FIG. 9 is a graph showing surface stress distributions of an example of the present invention and a comparative example.

【図10】従来の多管式の熱交換器からなるEGRガス
冷却装置の概略断面図である。
FIG. 10 is a schematic cross-sectional view of a conventional EGR gas cooling device including a multi-tube heat exchanger.

【図11】従来のろう付け部のろう材フィレットの亀裂
を説明する図で、(a)はクラック発生位置を示す断面
説明図、(b)は引張応力の分布状況を示すグラフであ
る。
11A and 11B are diagrams for explaining a crack in a brazing filler material of a conventional brazing portion, in which FIG. 11A is a cross-sectional explanatory view showing a crack occurrence position, and FIG. 11B is a graph showing a distribution state of tensile stress.

【符号の説明】[Explanation of symbols]

1 胴管 1−1 冷却媒体流入口 1−2 冷却媒体流入口 2 伝熱管群 3 チューブシート 3−1 取付孔 4 端部キャップ 4−1 EGRガス流入口 4−2 EGRガス流出口 5、6 ろう付け部 5−1 ろう材フィレット 20、30、40、50、60 伝熱管 20−1 拡管部 20−2 原管部 20−3 テーパ部 30−1 垂直立上り部 30−2 テーパ部 30−3 バルジ部 40−1、50−1 厚肉部 40−2、50−2 テーパ部 40−3、50−3 原管部 21、31、41、51 スリーブ 21−1、21−2、31−2、41−2、51−1、
51−2 端面 31−3 テーパ面 41−3 スリット
DESCRIPTION OF SYMBOLS 1 Body pipe 1-1 Cooling medium inflow port 1-2 Cooling medium inflow port 2 Heat transfer tube group 3 Tube sheet 3-1 Mounting hole 4 End cap 4-1 EGR gas inflow port 4-2 EGR gas outflow port 5, 6 Brazing part 5-1 Brazing material fillet 20, 30, 40, 50, 60 Heat transfer tube 20-1 Expanding part 20-2 Original pipe part 20-3 Tapered part 30-1 Vertical rising part 30-2 Tapered part 30-3 Bulge part 40-1, 50-1 Thick part 40-2, 50-2 Taper part 40-3, 50-3 Original pipe part 21, 31, 41, 51 Sleeve 21-1, 21-2, 31-2 , 41-2, 51-1,
51-2 End surface 31-3 Tapered surface 41-3 Slit

【手続補正書】[Procedure amendment]

【提出日】平成11年4月19日(1999.4.1
9)
[Submission date] April 19, 1999 (1999.4.1
9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

【図3】 FIG. 3

【図4】 FIG. 4

【図5】 FIG. 5

【図6】 FIG. 6

【図7】 FIG. 7

【図8】 FIG. 8

【図9】 FIG. 9

【図10】 FIG. 10

【図11】 ─────────────────────────────────────────────────────
FIG. 11 ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年5月10日(1999.5.1
0)
[Submission date] May 10, 1999 (1999.5.1
0)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図11[Correction target item name] FIG.

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図11】 FIG. 11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 両端部に冷却媒体流入口および冷却媒体
流出口が設けられた胴管の内壁の両端部付近に固定され
たチューブシートに伝熱管群がろう付けにて固着配列さ
れ、さらに前記胴管の両端部にEGRガスの流入口およ
び流出口が設けられた構造の多管式のEGRガス冷却装
置において、前記チューブシ−トと各伝熱管とのろう付
け部のうち少なくともEGRガス流入側のろう付け部に
応力緩和手段を設けたことを特徴とするEGRガス冷却
装置。
A heat transfer tube group is fixedly arranged by brazing on a tube sheet fixed near both ends of an inner wall of a body tube provided with a cooling medium inlet and a cooling medium outlet at both ends. In a multi-tube type EGR gas cooling device having a structure in which an EGR gas inlet and an outlet are provided at both ends of a body tube, at least an EGR gas inflow side of a brazing portion between the tube sheet and each heat transfer tube. An EGR gas cooling device characterized in that a stress relaxation means is provided at the brazing portion.
【請求項2】 前記応力緩和手段によって前記伝熱管の
外表面の最大引張応力点をろう材フィレット部より軸方
向で外方に位置せしめたことを特徴とする請求項1記載
のEGRガス冷却装置。
2. The EGR gas cooling device according to claim 1, wherein the stress relaxation means locates the maximum tensile stress point on the outer surface of the heat transfer tube in the axial direction outward from the brazing material fillet portion. .
【請求項3】 前記応力緩和手段は前記伝熱管の端部付
近に形成された拡管部とテーパ部、垂直立上り部とテー
パ部、あるいは厚肉部からなることを特徴とする請求項
1または2記載のEGRガス冷却装置。
3. The stress relaxation means according to claim 1, wherein the heat transfer tube comprises an expanded portion and a tapered portion, a vertical rising portion and a tapered portion, or a thick portion formed near the end of the heat transfer tube. An EGR gas cooling device as described in the above.
【請求項4】 前記肉厚部は前記伝熱管の外周側または
内周側の少なくとも一方に設けられていることを特徴と
する請求項3記載のEGRガス冷却装置。
4. The EGR gas cooling device according to claim 3, wherein the thick portion is provided on at least one of an outer peripheral side and an inner peripheral side of the heat transfer tube.
【請求項5】 前記応力緩和手段は前記伝熱管の端部付
近に外嵌または内嵌されたスリーブからなることを特徴
とする請求項1または2記載のEGRガス冷却装置。
5. The EGR gas cooling device according to claim 1, wherein said stress relieving means comprises a sleeve externally or internally fitted near an end of said heat transfer tube.
【請求項6】 前記スリーブは自由端側に先細りのテー
パ壁、あるいは自由端側にスリット部を有することを特
徴とする請求項5記載のEGRガス冷却装置。
6. The EGR gas cooling device according to claim 5, wherein the sleeve has a tapered wall on a free end side or a slit on a free end side.
JP11022474A 1999-01-29 1999-01-29 Egr gas cooling device Withdrawn JP2000220534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11022474A JP2000220534A (en) 1999-01-29 1999-01-29 Egr gas cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11022474A JP2000220534A (en) 1999-01-29 1999-01-29 Egr gas cooling device

Publications (1)

Publication Number Publication Date
JP2000220534A true JP2000220534A (en) 2000-08-08

Family

ID=12083728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11022474A Withdrawn JP2000220534A (en) 1999-01-29 1999-01-29 Egr gas cooling device

Country Status (1)

Country Link
JP (1) JP2000220534A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034675A1 (en) * 2005-09-26 2007-03-29 Sanoh Industrial Co., Ltd. Egr pipe
JP2008068262A (en) * 2006-09-12 2008-03-27 Babcock Hitachi Kk Header/stab tube welding structure and boiler equipment having the same
JP2011196581A (en) * 2010-03-17 2011-10-06 Nhk Spring Co Ltd Fixing structure of metallic plate and heat transfer tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034675A1 (en) * 2005-09-26 2007-03-29 Sanoh Industrial Co., Ltd. Egr pipe
JPWO2007034675A1 (en) * 2005-09-26 2009-03-19 三桜工業株式会社 EGR pipe
JP2008068262A (en) * 2006-09-12 2008-03-27 Babcock Hitachi Kk Header/stab tube welding structure and boiler equipment having the same
JP2011196581A (en) * 2010-03-17 2011-10-06 Nhk Spring Co Ltd Fixing structure of metallic plate and heat transfer tube

Similar Documents

Publication Publication Date Title
AU2007207217B2 (en) Tube bundle heat exchanger
JP3774843B2 (en) Multi-tube heat exchanger
EP1978323B1 (en) Heat exchanger with telescopic expansion joint
JP4926892B2 (en) Flange connection structure of heat exchanger
US20070181294A1 (en) Exhaust gas heat exchanger and method of operating the same
WO2008056456A1 (en) Boiler water wall panel
CN106168453B (en) Heat exchanger
US5887628A (en) High pressure fuel injection pipe for diesel internal combustion engine
JP2004053002A (en) Connection structure of pipe to flange
JP2000220534A (en) Egr gas cooling device
JP4646383B2 (en) Multi-tube heat exchanger
WO2013118527A1 (en) Heat exchanger
CN103988006A (en) Welded connection structure of pipe
US9067289B2 (en) Heat exchanger with telescoping expansion joint
EP1821046A1 (en) A condensing boiler
JP2000282963A (en) Egr cooler device
JP4386491B2 (en) EGR gas cooling device and manufacturing method thereof
DE102012108821A1 (en) Method for producing a heat exchanger
JP3180377U (en) Heat exchanger
JP2003222498A (en) Multitubular heat exchanger
JP2000240514A (en) Egr gas cooling device
JP2004069255A (en) Multipipe heat exchanger
JPH07204843A (en) Welding structure for stub tube and header part using the same
JP2001263970A (en) Egr gas cooler for internal combustion engine
JPH09222292A (en) Header device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080801

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080827