[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000213595A - Vibration isolating member - Google Patents

Vibration isolating member

Info

Publication number
JP2000213595A
JP2000213595A JP2037399A JP2037399A JP2000213595A JP 2000213595 A JP2000213595 A JP 2000213595A JP 2037399 A JP2037399 A JP 2037399A JP 2037399 A JP2037399 A JP 2037399A JP 2000213595 A JP2000213595 A JP 2000213595A
Authority
JP
Japan
Prior art keywords
vibration
granular material
container
vibration isolating
isolating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2037399A
Other languages
Japanese (ja)
Inventor
Susumu Kobayashi
晋 小林
Yuzo Okudaira
有三 奥平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2037399A priority Critical patent/JP2000213595A/en
Publication of JP2000213595A publication Critical patent/JP2000213595A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To adjust a spring constant and a loss coefficient which are vibration isolating factors, in a wide range by filling granular material in a container to form a vibration isolating member. SOLUTION: This vibration isolating member 5 used to support the flexible structure of a vibrating body 6 of a structure or equipment is constituted by filling granular material 2... such as glass beads in a container 1. In order to support the vibrating body 6 of 1 kg in mass in the vibration isolating state, a large number of granular material 2 with the grain diameter ϕ 125 μm are filled in the cylindrical container 1 with the inner diameter ϕ 50 m. A side wall part 3 of the container 1 of the vibration isolating member 5 is smaller in rigidity than the granular material 2 so that the side wall part 3 of the container 1 swells outward when receiving vibration, thus avoiding the granular material 2 being influenced by the rigidity of the side wall part 3. If necessary, viscoelastic material grain 4 formed of rubber material can be mixed in the powder and grain material 2. Frictional contact damping between the grains of the granular material 2 is therefore increased to adjust loss in a wide range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、防振部材に関し、
詳しくは様々な構造物や機器等から発生する振動を床部
や他の部位へ伝達させず、或いは、振動する床部の振動
を構造物や機器等へ伝達させないような防振、振動絶縁
の性能を有する防振部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anti-vibration member,
For details, do not transmit vibration generated from various structures and equipment to the floor and other parts, or prevent vibration and vibration insulation from transmitting vibration of the vibrating floor to structures and equipment. The present invention relates to a vibration isolating member having performance.

【0002】[0002]

【従来の技術】防振について、図9に示す振動の伝達特
性より説明する。図9中の横軸は周波数、縦軸は振動体
の振動がほかの部位へ何倍となって伝えるかをあらわす
振動伝達倍率を示す。図9中の曲線(A)、(B)は、
図10に示すような質量mの構造物や機器などの振動体
6にばね定数k、損失係数ηの柔構造の支持部5′を設
けた場合の振動伝達特性を示す。ここで、図9の曲線
(A)は支持部5′の損失係数ηが非常に小さい場合、
曲線(B)は損失係数ηが大きい場合の振動伝達特性を
示しており、また図中のf0は、振動体6の質量m、支
持部5′のばね定数kより決定される共振周波数をあら
わしており、この共振周波数f0の約1.4倍以下を振
幅増幅領域M(振動が1倍以上に増幅される領域)、そ
れ以上を防振領域N(振動が1倍以下に低減される領
域)と定義される。振動伝達特性の特徴としては、支持
部5′の損失が大きくなると、振幅増幅領域Mでは振動
伝達が低減されるが、防振領域Nでは振動伝達が増加す
る傾向を示す。
2. Description of the Related Art Vibration prevention will be described with reference to vibration transmission characteristics shown in FIG. In FIG. 9, the horizontal axis represents frequency, and the vertical axis represents the vibration transmission magnification representing how many times the vibration of the vibrating body is transmitted to other parts. The curves (A) and (B) in FIG.
FIG. 11 shows vibration transmission characteristics when a flexible structure supporting portion 5 ′ having a spring constant k and a loss coefficient η is provided on a vibrating body 6 such as a structure or a device having a mass m as shown in FIG. 10. Here, the curve (A) in FIG. 9 shows that the loss coefficient η of the support 5 ′ is very small.
The curve (B) shows the vibration transmission characteristics when the loss coefficient η is large, and f 0 in the figure represents the resonance frequency determined by the mass m of the vibrating body 6 and the spring constant k of the support 5 ′. The amplitude amplification region M (a region where the vibration is amplified by a factor of 1 or more) is approximately 1.4 times or less of the resonance frequency f 0 , and the vibration isolation region N is a region where the vibration is reduced by a factor of 1 or less. Area). As a characteristic of the vibration transmission characteristic, when the loss of the support portion 5 'is increased, the vibration transmission is reduced in the amplitude amplification region M, but is increased in the vibration isolation region N.

【0003】ここで、図10のように振動体6の柔構造
支持に使われる防振部材として、従来ではその防振の対
象により、図11に示すようなゴム材a、金属ばねb、
あるいは空気ばねcなどが利用されている。
Here, as shown in FIG. 10, as a vibration isolating member used to support the flexible structure of the vibrating body 6, a rubber material a, a metal spring b, and the like shown in FIG.
Alternatively, an air spring c or the like is used.

【0004】防振設計の基本的な考え方としては、防振
支持による共振周波数f0のピークをできるだけ低周波
数側へシフトさせ、振動体の加振周波数が防振領域Nの
周波数帯に入るように、柔構造支持のばね定数を設計す
る。
[0004] The basic idea of the vibration isolation design is to shift the peak of the resonance frequency f 0 due to the vibration isolation support to the lower frequency side as much as possible so that the vibration frequency of the vibrating body falls within the frequency band of the vibration isolation region N. Next, the spring constant of the flexible structure is designed.

【0005】しかしながら、支持部剛性の制約などによ
り、防振支持による共振ピークの低周波数側へのシフト
が不可能になるケースがある。この際には、支持部5′
の損失をできるだけ大きくし、振幅増幅領域Mでの共振
ピーク高さを低く抑える設計を行う。
However, there are cases where it is impossible to shift the resonance peak to a lower frequency side due to vibration-proof support due to restrictions on the rigidity of the support portion. At this time, the support portion 5 '
Is designed so that the loss of the resonance peak is as large as possible and the height of the resonance peak in the amplitude amplification region M is kept low.

【0006】さらに、加振源である振動体の周波数成分
が振動増幅領域Mを含む低周波数帯域から様々な成分を
有するランダム振動の場合や、衝撃的な外力が作用する
ケースも多くみられる。この際には、防振領域N、振動
増幅領域Mそれぞれにおいて、加振源の周波数成分に応
じた支持部5′のばね定数k、そして損失係数ηの最適
な設計を行わなければならない。
Further, there are many cases where the frequency component of the vibrating body as the excitation source is random vibration having various components from a low frequency band including the vibration amplification region M, or a case where an impact external force acts. In this case, in each of the vibration-proof region N and the vibration-amplifying region M, an optimal design of the spring constant k and the loss coefficient η of the support portion 5 ′ according to the frequency component of the vibration source must be performed.

【0007】以上のように、実際の防振設計では、振動
周波数など防振の対象に応じた部材の設計を行わなけれ
ばならない。ところが、従来の防振構造では、防振設計
因子であるばね定数k、損失係数ηの調整が容易ではな
く、その調整範囲が狭い。したがって、従来の防振設計
には、異なった材料、種々の形状の支持部5′の製作、
準備が必要であった。
As described above, in an actual anti-vibration design, a member must be designed according to an object to be anti-vibration such as a vibration frequency. However, in the conventional anti-vibration structure, it is not easy to adjust the spring constant k and the loss coefficient η, which are the anti-vibration design factors, and the adjustment range is narrow. Therefore, the conventional anti-vibration design includes different materials, manufacture of the support portion 5 'of various shapes,
Preparation was needed.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記の点に鑑
みてなされたものであり、その目的とするところは、防
振設計因子であるばね定数、損失係数の広範囲での調整
を可能とする防振部材を提供するにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object of the present invention is to make it possible to adjust a spring constant and a loss coefficient which are design factors for vibration isolation in a wide range. The object is to provide a vibration isolating member.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明は、防振部材5の容器1内に粉粒体材料2が封
入されていることを特徴としており、このように構成す
ることで、防振部材5のばね定数と損失係数の値は、防
振部材5の容器1内に封入される粉粒体物性条件などに
より決定される。例えば、粉粒体材料2の粒子剛性、粒
径、粒子表面摩擦、封入量等を変えることにより、防振
設計の重要な設計因子であるばね定数、損失係数の広範
囲での調整が可能となる。
In order to solve the above-mentioned problems, the present invention is characterized in that a granular material 2 is sealed in a container 1 of an anti-vibration member 5, and is configured as described above. Thus, the values of the spring constant and the loss coefficient of the vibration isolating member 5 are determined by the physical property conditions of the granular material sealed in the container 1 of the vibration isolating member 5 and the like. For example, by changing the particle stiffness, particle size, particle surface friction, sealing amount, etc. of the granular material 2, it is possible to adjust the spring constant and the loss coefficient, which are important design factors of the vibration isolation design, over a wide range. .

【0010】また上記容器1の側壁部3の剛性を、粉粒
体材料2の剛性よりも小さくするのが好ましく、このよ
うに構成することで、粉粒体材料2が容器1の側壁部3
の剛性の影響を受けず、粉粒体材料2による防振部材5
のばね、損失の調整がより広範囲なものとなる。
It is preferable that the rigidity of the side wall 3 of the container 1 is smaller than the rigidity of the granular material 2.
The vibration damping member 5 made of the powder material 2 is not affected by the rigidity of the
The adjustment of the spring and the loss becomes wider.

【0011】また上記粉粒体材料2に粘弾性材料粒子4
が混入されているのが好ましく、このように構成するこ
とで、粘弾性材料粒子4の混入により粉粒体材料2の粒
子間の摩擦接触減衰が増加し、その混入量により防振部
材5の損失の値を広範囲で調整することが可能となる。
The viscoelastic material particles 4 are added to the granular material 2.
It is preferable to mix the viscoelastic material particles 4 to increase the frictional contact attenuation between the particles of the granular material 2. The value of the loss can be adjusted over a wide range.

【0012】また上記混入される粘弾性材料粒子4がゴ
ム系材料であるのが好ましく、このように構成すること
で、粘性の高いゴム系粒子の少量の混入によって、防振
部材5の損失の値をより広範囲で調整可能となる。
It is preferable that the viscoelastic material particles 4 to be mixed are rubber-based materials. With such a configuration, a small amount of high-viscosity rubber-based particles is mixed to reduce the loss of the vibration isolator 5. The value can be adjusted over a wider range.

【0013】[0013]

【発明の実施の形態】以下、本発明に係わる防振部材5
の代表的な実施形態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a vibration isolating member 5 according to the present invention will be described.
A typical embodiment will be described.

【0014】本実施形態の防振部材5は、図1に示すよ
うに、容器1内に粉粒体材料2が封入されて構成されて
いる。この防振部材5は、様々な構造物や機器等の振動
体6の柔構造支持に使われるものであり、振動体6から
発生する振動が他の床部7等へ伝達せず、逆に、振動す
る床部7等の振動を振動体6へ伝達しないような防振、
振動絶縁の性能を有している。本例では、質量1kgの
振動体6の防振支持ができるように、内径φ50mの円
筒容器1に粒径φ125μmのガラスビーズ2aを多数
個封入してある。
As shown in FIG. 1, the vibration damping member 5 of the present embodiment is configured by enclosing a granular material 2 in a container 1. The vibration isolating member 5 is used for supporting a flexible structure of the vibrating body 6 such as various structures and devices. Vibration generated from the vibrating body 6 is not transmitted to other floors 7 and the like. Anti-vibration so that vibration of the vibrating floor 7 and the like is not transmitted to the vibrating body 6;
Has vibration isolation performance. In this example, a large number of glass beads 2a having a particle diameter of 125 μm are sealed in a cylindrical container 1 having an inner diameter of 50 m so that the vibrating body 6 having a mass of 1 kg can be supported by vibration isolation.

【0015】図2は、ガラスビーズ2aの封入高さを異
ならせた場合の振動伝達特性を示している。曲線(C)
は封入高さL1が30mm、曲線(D)は封入高さL
2(>L 1)が50mmの場合をそれぞれ示している。こ
の図2からわかるように粉粒体材料2の封入量を多くす
ると、防振支持による共振周波数f0が低くなってい
る。つまり、防振支持のばね定数を低くできる。
FIG. 2 shows the difference in the height of the glass beads 2a.
The figure shows a vibration transmission characteristic in the case where the vibration is applied. Curve (C)
Is the filling height L1Is 30 mm, and curve (D) is the encapsulation height L.
Two(> L 1) Is 50 mm. This
As can be seen from FIG. 2 of FIG.
Then, the resonance frequency f0Is low
You. That is, the spring constant of the anti-vibration support can be reduced.

【0016】図3の曲線(E)は、上記振動体6、容器
1と同条件において、粒径φ125μmのガラスビーズ
2aを高さ50mmまで封入した場合、曲線(F)は粒
径φ125μmのニトリルゴムビーズ2bを高さ50m
mまで封入した場合の振動伝達特性をそれぞれ示してい
る。この図3からわかるように粉粒体材料2をガラスビ
ーズ2aからニトリルゴムビーズ2bへ変えることによ
り、防振支持による共振周波数f0を大きく低周波数域
へシフトでき、また、その共振ピーク高さも損失の増加
により、低く抑えることができる。
FIG. 3 shows a curve (E) when the glass beads 2a having a particle diameter of 125 μm are sealed up to a height of 50 mm under the same conditions as those of the vibrator 6 and the container 1, and a curve (F) shows a nitrile having a particle diameter of 125 μm. Rubber beads 2b are 50m high
The vibration transmission characteristics when sealing up to m is shown. As can be seen from FIG. 3, by changing the granular material 2 from the glass beads 2a to the nitrile rubber beads 2b, the resonance frequency f 0 due to the vibration-proof support can be largely shifted to a lower frequency range, and the height of the resonance peak is also reduced. Due to the increased loss, it can be kept low.

【0017】このように粉粒体材料2を封入する同一の
容器形状において、粉粒体材料2の種類(ガラス、ニト
リルゴム等)や封入量を変えるだけで、防振支持の設計
因子であるばね、損失を変化させ、調整することができ
る。従って、振動周波数など防振の対象に応じた防振部
材5の設計を行う際に、従来のように防振領域N(図
9)、振動増幅領域M(図9)それぞれにおいて、加振
源の周波数成分に応じた防振部材5のばね定数k、そし
て損失係数ηの最適な設計を行う必要がなくなるので、
防振設計因子であるばね定数k、損失係数ηの調整が広
範囲で可能となる。
As described above, in the same container shape in which the granular material 2 is enclosed, only the type (glass, nitrile rubber, etc.) and the amount of the granular material 2 to be enclosed are design factors of the vibration-proof support. Spring, loss can be changed and adjusted. Therefore, when designing the vibration isolating member 5 according to the object of the vibration isolation such as the vibration frequency, the vibration source N in each of the vibration isolation region N (FIG. 9) and the vibration amplification region M (FIG. It is not necessary to design the spring constant k and the loss coefficient η of the vibration isolating member 5 in accordance with the frequency components of
It is possible to adjust the spring constant k and the loss coefficient η, which are design factors for vibration isolation, in a wide range.

【0018】また、粉粒体材料2の種類や封入量以外
に、粒子剛性、粒径、粒子表面摩擦などを変えた場合で
も、防振支持の設計因子であるばね、損失を変化させ、
調整することができる。以下にその例を説明する。
Further, even when the particle stiffness, particle size, particle surface friction, etc. are changed in addition to the type and amount of the granular material 2, the spring and loss, which are design factors of the vibration isolation support, are changed.
Can be adjusted. An example will be described below.

【0019】図4は、防振部材5の容器1の側壁部3の
剛性を粉粒体2の剛性より小さくした場合を示してい
る。振動が加わると容器1内の粉粒体同士が接触してエ
ネルギー減衰が生じ、振動エネルギーが吸収される。こ
のとき、粉粒体材料2の剛性よりも容器1の側壁部3の
剛性が小さいので、図4(c)のように振動を受けると
容器1の側壁部3が外側に膨らむようになり、これによ
り粉粒体材料2は容器1の側壁部3の剛性の影響を受け
なくなり、粉粒体材料2による防振部材5のばね、損失
の調整がより広範囲なものとなる。
FIG. 4 shows a case where the rigidity of the side wall 3 of the container 1 of the vibration isolating member 5 is smaller than the rigidity of the granular material 2. When vibration is applied, the powders in the container 1 come into contact with each other to cause energy attenuation, and the vibration energy is absorbed. At this time, since the rigidity of the side wall portion 3 of the container 1 is smaller than the rigidity of the granular material 2, the side wall portion 3 of the container 1 expands outward when subjected to vibration as shown in FIG. As a result, the granular material 2 is not affected by the rigidity of the side wall 3 of the container 1, and the adjustment of the spring and the loss of the vibration isolating member 5 by the granular material 2 becomes wider.

【0020】図5は、防振部材5に封入される粉粒体材
料2に粘弾性材料粒子4が混入されている場合を示して
いる。粘弾性材料粒子4の混入により、粉粒体材料2の
粒子間の摩擦接触減衰が増加し、その混入量により損失
を広範囲に調整することが可能となる。
FIG. 5 shows a case where the viscoelastic material particles 4 are mixed in the granular material 2 sealed in the vibration isolating member 5. The mixing of the viscoelastic material particles 4 increases the frictional contact attenuation between the particles of the granular material 2, and the loss can be adjusted over a wide range depending on the mixing amount.

【0021】ここで、上記混入される粘弾性材料粒子4
としてゴム系材料が好ましい。このゴム系材料は、低弾
性体で、弾性変形による粘性(ヒステリシス性)を有す
るものであり、イソプレンゴム(IR)、スチレン−ブ
タジエンゴム(SBR)、ブタジエンゴム(BR)、エ
チレンーブロピレンゴム(EPM、EPDM)、ブチル
ゴム(IIR)、クロロプレンゴム(CR)、ニトリル
ゴム(NBR)、アクリルゴム(ACM)、エピクロル
ヒドリンゴム(CO、ECO)、塩素化ポリエチレン
(CM)、クロロスルホン化ポリエチレン(CSM)な
どの合成ゴムなどが挙げられる。 また、天然ゴム(N
R)、そしてリサイクル利用の再生ゴムなども対象であ
る。このようにゴム系材料に関する限定は、粘性の高い
ゴム系粒子による少量の混入によって、防振部材5の損
失調整のための損失増加が可能となる。
Here, the mixed viscoelastic material particles 4
Is preferably a rubber-based material. This rubber-based material is a low-elastic material and has a viscosity (hysteresis property) due to elastic deformation, and isoprene rubber (IR), styrene-butadiene rubber (SBR), butadiene rubber (BR), ethylene-propylene rubber (EPM, EPDM), butyl rubber (IIR), chloroprene rubber (CR), nitrile rubber (NBR), acrylic rubber (ACM), epichlorohydrin rubber (CO, ECO), chlorinated polyethylene (CM), chlorosulfonated polyethylene (CSM) ) And the like. Natural rubber (N
R), and recycled rubber for recycling. As described above, the limitation on the rubber-based material makes it possible to increase the loss for adjusting the loss of the vibration isolating member 5 by mixing a small amount of highly viscous rubber-based particles.

【0022】図6の曲線(G)は、内径φ50mmの円
筒容器1に粒径φ125μmのガラスビーズを高さ40
mmまで充填し、その上に1kgの振動体を乗せた場合
の床への振動伝達倍率を示している。また、図6の曲線
(H)、(I)、(J)は、ガラスビーズ(粉粒体材
料)に粒径φ50μmのニトリルゴムビーズ(粘弾性材
料粒子)を混入した場合を示している。曲線(H)はニ
トリルゴムビーズの質量比率が5%、(I)は10%、
(J)は20%の場合を示している。この図6からわか
るようにニトリルゴムビーズの混入の比率が増加するに
したがい、共振の周波数f0のピーク高さが低下してお
り、減衰が大きく増加していることが確認できる。この
粘弾性材料粒子4の混入量の調整により、本発明の防振
部材の損失の値を広範囲にて調整できることがわかる。
The curve (G) in FIG. 6 shows that glass beads having a particle diameter of 125 μm are placed in a cylindrical container 1 having an inner diameter of 50 mm and a height of 40 μm.
mm is shown, and the vibration transmission magnification to the floor when a 1 kg vibrator is placed thereon is shown. Curves (H), (I), and (J) in FIG. 6 show the case where nitrile rubber beads (viscoelastic material particles) having a particle diameter of 50 μm are mixed into glass beads (powder material). Curve (H) shows a mass ratio of nitrile rubber beads of 5%, (I) shows 10%,
(J) shows the case of 20%. According proportion of incorporation of the nitrile rubber beads as can be seen from FIG. 6 is increased, have reduced peak height of the frequency f 0 of the resonance, it can be confirmed that the attenuation has increased greatly. It can be seen that by adjusting the amount of the viscoelastic material particles 4 mixed, the loss value of the vibration isolating member of the present invention can be adjusted over a wide range.

【0023】以下、本発明に係わる防振部材の代表的な
実施例について説明する。 (実施例)防振部材は、内径φ50mm、側壁厚さ0.
5mmのゴム材料の円筒容器に粒径φ125μmのガラ
スビーズを高さ40mmまで充填し、これに粒径φ50
μmのニトリルゴムビーズをガラスビーズとの質量比率
が10%となるように混入している。そして、この防振
部材5は図7に示すように、健康家電機器51に接着さ
れている。図7はある健康家電機器51の支持部に本発
明の防振部材5を4個設置し、図中に示す振動加速度セ
ンサー53より設置床部60の振動を計測する場合を示
している。また図8は本発明の実施例による振動加速度
レベルの低減を示す測定結果のグラフであり、曲線
(A)は防振部材なしの場合、曲線(B)は外径φ50
mm,高さ40mmの防振ブチルゴムを用いた場合、曲
線(C)は適切に部材のばね、損失調整をした本発明の
防振部材を用いた場合において、それぞれの振動加速度
1/3オクターブバンドレベルの比較結果を示してい
る。曲線(C)で示されるように本発明の防振部材が高
い防振性能を有していることが確認できる。
Hereinafter, typical embodiments of the vibration isolating member according to the present invention will be described. (Example) An anti-vibration member has an inner diameter of 50 mm and a side wall thickness of 0.1 mm.
A 5 mm rubber material cylindrical container is filled with glass beads having a particle diameter of 125 μm to a height of 40 mm.
The nitrile rubber beads of μm are mixed so that the mass ratio with the glass beads becomes 10%. Then, as shown in FIG. 7, the vibration isolating member 5 is adhered to a healthy home appliance 51. FIG. 7 shows a case where four vibration damping members 5 of the present invention are installed on a support portion of a certain healthy home appliance 51, and the vibration of the installation floor 60 is measured by a vibration acceleration sensor 53 shown in the figure. FIG. 8 is a graph of measurement results showing the reduction of the vibration acceleration level according to the embodiment of the present invention. The curve (A) shows the case without the vibration isolating member, and the curve (B) shows the outer diameter φ50.
In the case of using a vibration-isolating butyl rubber having a height of 40 mm and a height of 40 mm, the curve (C) shows the respective vibration accelerations of 1/3 octave band in the case of using the spring of the member and the vibration-insulating member of the present invention whose loss has been adjusted. The level comparison result is shown. As shown by the curve (C), it can be confirmed that the anti-vibration member of the present invention has high anti-vibration performance.

【0024】[0024]

【発明の効果】上記のように本発明のうち請求項1記載
の発明は、防振部材の容器内に粉粒体材料が封入されて
いるので、防振部材のばね定数と損失係数の値は、防振
部材の容器内に封入される粉粒体物性条件などにより決
定される。例えば、粉粒体材料2の粒子剛性、粒径、粒
子表面摩擦、封入量等を変えることにより、振動周波数
など防振の対象に応じた防振部材の設計を行う際に、防
振設計因子であるばね定数、損失係数の広範囲での調整
が可能となる。
As described above, according to the first aspect of the present invention, since the granular material is sealed in the container of the vibration isolating member, the values of the spring constant and the loss coefficient of the vibration isolating member are reduced. Is determined by physical property conditions of the granular material sealed in the container of the vibration isolation member. For example, by changing the particle stiffness, particle size, particle surface friction, sealing amount, etc. of the granular material 2, when designing a vibration isolating member according to a vibration isolating object such as a vibration frequency, a vibration isolating design factor The spring constant and the loss coefficient can be adjusted over a wide range.

【0025】また請求項2記載の発明は、請求項1記載
の効果に加えて、容器の側壁部の剛性を、粉粒体材料の
剛性よりも小さくしたので、粉粒体材料が容器の側壁部
の剛性の影響を受けず、粉粒体材料による防振部材のば
ね、損失の調整がより広範囲なものとなる。
According to the second aspect of the present invention, in addition to the effect of the first aspect, the rigidity of the side wall portion of the container is made smaller than the rigidity of the granular material, so that the granular material is formed on the side wall of the container. The adjustment of the spring and the loss of the vibration isolating member by the granular material becomes wider without being affected by the rigidity of the portion.

【0026】また請求項3記載の発明は、請求項1又は
請求項2記載の効果に加えて、粉粒体材料に粘弾性材料
粒子が混入されているので、粘弾性材料粒子の混入によ
り粉粒体材料の粒子間の摩擦接触減衰が増加し、その混
入量により防振部材の損失の値を広範囲で調整すること
が可能となる。
According to a third aspect of the present invention, in addition to the effect of the first or second aspect, since the viscoelastic material particles are mixed in the granular material, the powder is mixed with the viscoelastic material particles. The frictional contact attenuation between the particles of the granular material increases, and the value of the loss of the vibration damping member can be adjusted over a wide range depending on the amount of the mixing.

【0027】また請求項4記載の発明は、請求項3記載
の効果に加えて、混入される粘弾性材料粒子がゴム系材
料であるので、粘性の高いゴム系粒子の少量の混入によ
って、防振部材の損失の値をより広範囲で調整可能とな
る。
According to a fourth aspect of the present invention, in addition to the effect of the third aspect, since the viscoelastic material particles to be mixed are rubber-based materials, a small amount of highly viscous rubber-based particles can be prevented from being mixed. The value of the loss of the vibration member can be adjusted over a wider range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の一例を示し、(a)は構造
物や機器などの振動体の支持部に本発明の防振部材を設
置した場合の説明図、(b)は防振部材の概念図であ
る。
FIGS. 1A and 1B show an example of an embodiment of the present invention, in which FIG. 1A is an explanatory view showing a case where a vibration isolating member of the present invention is installed on a supporting portion of a vibrating body such as a structure or a device, and FIG. It is a conceptual diagram of a member.

【図2】同上の防振部材への粉粒体材料の封入量の違い
による振動伝達特性の変化を示すグラフである。
FIG. 2 is a graph showing a change in vibration transmission characteristics due to a difference in the amount of a granular material filled in the vibration isolating member.

【図3】同上の粉粒体材料の違いによる振動伝達特性の
変化を示すグラフである。
FIG. 3 is a graph showing a change in a vibration transmission characteristic due to a difference in the granular material according to the first embodiment.

【図4】他の実施形態を示し、(a)(b)は構造物や
機器などの振動体の支持部に本発明の防振部材を設置し
た場合の説明図、(c)は防振部材に振動が加わった場
合の概念図である。
FIGS. 4A and 4B show another embodiment, wherein FIGS. 4A and 4B are explanatory views of a case where the vibration isolating member of the present invention is installed on a supporting portion of a vibrating body such as a structure or a device, and FIG. It is a conceptual diagram when vibration is applied to a member.

【図5】更に他の実施形態を示し、(a)は構造物や機
器などの振動体の支持部に本発明の防振部材を設置した
場合の説明図、(b)は粉粒体材料に粘弾性材料粒子を
混入した場合の概念図である。
5A and 5B show still another embodiment, in which FIG. 5A is an explanatory view showing a case where the vibration damping member of the present invention is installed on a supporting portion of a vibrating body such as a structure or a device, and FIG. FIG. 4 is a conceptual diagram when viscoelastic material particles are mixed into the slab.

【図6】同上の粉粒体材料への粘弾性材料粒子の混入量
の違いによる振動伝達特性の変化を示すグラフである。
FIG. 6 is a graph showing a change in vibration transmission characteristics due to a difference in the amount of viscoelastic material particles mixed into the above granular material.

【図7】本発明に係る健康家電機器の防振効果を確認す
るための測定に関する説明図である。
FIG. 7 is an explanatory diagram relating to measurement for confirming a vibration isolating effect of the healthy home appliance according to the present invention.

【図8】本発明の実施例による振動加速度レベルの低減
を示す測定結果のグラフである。
FIG. 8 is a graph of measurement results showing a reduction in vibration acceleration level according to an embodiment of the present invention.

【図9】防振の原理を説明するグラフである。FIG. 9 is a graph illustrating the principle of image stabilization.

【図10】(a)は振動体から床への振動伝達を説明す
る概念図、(b)は床から振動体への振動伝達を説明す
る概念図である。
10A is a conceptual diagram illustrating transmission of vibration from a vibrating body to a floor, and FIG. 10B is a conceptual diagram illustrating transmission of vibration from a floor to a vibrating body.

【図11】従来の防振部材の説明図であり、(a)はゴ
ム材、(b)は金属ばね、(c)は空気ばねの場合を示
している。
11A and 11B are explanatory diagrams of a conventional vibration isolating member, wherein FIG. 11A shows a case of a rubber material, FIG. 11B shows a case of a metal spring, and FIG. 11C shows a case of an air spring.

【符号の説明】[Explanation of symbols]

1 容器 2 粉粒体材料 3 側壁部 4 粘弾性材料粒子 5 防振部材 DESCRIPTION OF SYMBOLS 1 Container 2 Granular material 3 Side wall part 4 Viscoelastic material particle 5 Vibration isolation member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 容器内に粉粒体材料を封入して成ること
を特徴とする防振部材。
An anti-vibration member characterized in that a granular material is sealed in a container.
【請求項2】 容器の側壁部の剛性が、粉粒体材料の剛
性よりも小さいことを特徴とする請求項l記載の防振部
材。
2. The vibration damping member according to claim 1, wherein the rigidity of the side wall of the container is smaller than the rigidity of the granular material.
【請求項3】 粉粒体材料に粘弾性材料粒子が混入され
ていることを特徴とする請求項1又は請求項2記載の防
振部材。
3. The vibration damping member according to claim 1, wherein viscoelastic material particles are mixed in the granular material.
【請求項4】 混入される粘弾性材料粒子がゴム系材料
であることを特徴とする請求項3記載の防振部材。
4. The vibration damping member according to claim 3, wherein the viscoelastic material particles to be mixed are rubber materials.
JP2037399A 1999-01-28 1999-01-28 Vibration isolating member Withdrawn JP2000213595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2037399A JP2000213595A (en) 1999-01-28 1999-01-28 Vibration isolating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2037399A JP2000213595A (en) 1999-01-28 1999-01-28 Vibration isolating member

Publications (1)

Publication Number Publication Date
JP2000213595A true JP2000213595A (en) 2000-08-02

Family

ID=12025268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2037399A Withdrawn JP2000213595A (en) 1999-01-28 1999-01-28 Vibration isolating member

Country Status (1)

Country Link
JP (1) JP2000213595A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303058B (en) * 2007-05-10 2011-11-16 吕崇耀 Broad band damp type vibrating isolation system
KR20150135464A (en) * 2013-03-28 2015-12-02 케이엘에이-텐코 코포레이션 Hybrid vibration isolation systems for metrology platforms
CN107323542A (en) * 2017-06-30 2017-11-07 武汉科技大学 Semi-active type cab mounting isolation mounting
JP2018013191A (en) * 2016-07-21 2018-01-25 Kyb株式会社 damper
WO2018193640A1 (en) * 2017-04-19 2018-10-25 Kyb株式会社 Damper

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303058B (en) * 2007-05-10 2011-11-16 吕崇耀 Broad band damp type vibrating isolation system
KR20150135464A (en) * 2013-03-28 2015-12-02 케이엘에이-텐코 코포레이션 Hybrid vibration isolation systems for metrology platforms
KR102102015B1 (en) * 2013-03-28 2020-04-20 케이엘에이 코포레이션 Hybrid vibration isolation systems for metrology platforms
JP2018013191A (en) * 2016-07-21 2018-01-25 Kyb株式会社 damper
WO2018193640A1 (en) * 2017-04-19 2018-10-25 Kyb株式会社 Damper
JP2018179227A (en) * 2017-04-19 2018-11-15 Kyb株式会社 Damper
CN107323542A (en) * 2017-06-30 2017-11-07 武汉科技大学 Semi-active type cab mounting isolation mounting

Similar Documents

Publication Publication Date Title
US6554112B2 (en) Vibration-damping device for vehicle
JPH08261279A (en) Limiting device of vibration between relatively movable part
US5918862A (en) High damping pneumatic isolator
JP2000213595A (en) Vibration isolating member
WO1995007419A1 (en) Liquid sealed rubber mount
JPS63293340A (en) Laminated rubber bearing
JP4964078B2 (en) Floor support legs
JP2001355672A (en) Particle vibration-isolating damper
JP2015137656A (en) Vibration control device
JP4339428B2 (en) Damping variable viscous fluid-filled damper
RU2672826C1 (en) Two-stage vibration absorber with dynamic damper
JPS61201946A (en) Vibration insulator
JP3298464B2 (en) Pole damping device
JPH0449384A (en) Oscillation-proof device for lightweight structure
JP4365004B2 (en) Vibration isolator
JP3987242B2 (en) Viscous fluid enclosed damper with variable spring constant
JPH1096280A (en) Vibration damper for pole
JP2000160819A (en) Floor-vibration proof device and soundproof double floor provided it
JPH0442588Y2 (en)
JP2001271867A (en) Variable spring constant type viscous fluid filled damper
JPH08121532A (en) Vibration control device
JP2001040863A (en) Floor vibration-proofing device and soundproof double floor with the same
JP2003202048A (en) Vibration isolator
JPH09280299A (en) Vibration control device
JPH01220741A (en) Dynamic absorption type vibration suppressor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404