[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2000202256A - Production of composite hollow fiber membrane, apparatus therefor and composite hollow fiber membrane - Google Patents

Production of composite hollow fiber membrane, apparatus therefor and composite hollow fiber membrane

Info

Publication number
JP2000202256A
JP2000202256A JP11005562A JP556299A JP2000202256A JP 2000202256 A JP2000202256 A JP 2000202256A JP 11005562 A JP11005562 A JP 11005562A JP 556299 A JP556299 A JP 556299A JP 2000202256 A JP2000202256 A JP 2000202256A
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
fiber membrane
hot water
composite hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11005562A
Other languages
Japanese (ja)
Inventor
Hideki Yamada
英樹 山田
Akihiro Yuchi
章浩 有地
Takashi Hayashi
貴史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP11005562A priority Critical patent/JP2000202256A/en
Publication of JP2000202256A publication Critical patent/JP2000202256A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To constitute a production process capable of continuos treatment and to enhance the productivity of a composite hollow fiber membrane as well as to enhance the reproducibility and stability of the performance of the membrane by allowing a microporous hollow fiber supporting membrane to travel in hot water under applied tension and forming a separation activity layer on the outer surface of the supporting membrane. SOLUTION: A polymer solution containing a polysulfone resin is ejected from the peripheral part of a spinning nozzle, an aqueous solution containing dimethylacetamide is ejected from the central part of the spinning nozzle and the ejected solutions are introduced into a solidifying bath through an aerial traveling part to obtain a microporous hollow fiber supporting membrane. The residual solvent in the supporting membrane is removed in a washing step, the supporting membrane is allowed to travel in a hot water treatment tank 11 and it is successively passed through an amine impregnation tank 31 and a drying tower 41 to remove the excess liquid film on the surface of the supporting membrane. The supporting membrane is then passed through an acid chloride contact tank 51, a Fluorinert(R) tank 52, an acetic acid tank 53, a drying tower 61 and a washing tank 71 to obtain the objective composite hollow fiber membrane with a separation activity layer on the outer surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、選択透過性を有す
る高分子重合体薄膜をいわゆる界面重合法により微多孔
性中空糸支持膜の外表面に形成させることによって複合
中空糸膜を製造する方法、製造装置および本方法によっ
て製造された膜に関するものである。本発明によって製
造された複合中空糸膜は、流体混合物の分離・濃縮に好
適であり、特に液体混合物の分離・ 濃縮に有用である。
具体的には逆浸透膜、ナノ濾過膜、限外濾過膜、透析膜
等の形で海水淡水化、かん水脱塩、水中の有害物質・不
純物質の除去、水溶液中の有価物の回収、排水処理等に
用いることが可能である。
TECHNICAL FIELD The present invention relates to a method for producing a composite hollow fiber membrane by forming a polymer thin film having selective permeability on the outer surface of a microporous hollow fiber support membrane by a so-called interfacial polymerization method. , A manufacturing apparatus and a film manufactured by the present method. The composite hollow fiber membrane produced by the present invention is suitable for separating and concentrating a fluid mixture, and particularly useful for separating and concentrating a liquid mixture.
Specifically, seawater desalination, brackish water desalination, removal of harmful substances and impurities in water, recovery of valuable substances in aqueous solution, drainage in the form of reverse osmosis membrane, nanofiltration membrane, ultrafiltration membrane, dialysis membrane, etc. It can be used for processing and the like.

【0002】[0002]

【従来の技術】界面重合反応による半透性複合膜の製造
方法における支持膜の熱水前処理について、予め50℃か
ら100 ℃の温度範囲の水中に浸漬し、熱処理することを
特徴とする半透性複合膜の製造方法が特公平3-15485 に
開示されており、透水速度の向上と性能を安定させる効
果があることが記載されている。実施例においては平膜
状の支持膜の小片を90℃の水中に5分間浸漬する旨が記
載されている。本公報においては中空糸膜への適応につ
いては何ら開示も示唆もされていない。
2. Description of the Related Art In a method for producing a semipermeable composite membrane by an interfacial polymerization reaction, a pretreatment of a supporting membrane with hot water is performed by immersing the support membrane in water in a temperature range of 50 ° C. to 100 ° C. in advance and performing a heat treatment. A method for producing a permeable composite membrane is disclosed in Japanese Examined Patent Publication No. 3-15485, which describes that there is an effect of improving the water permeation rate and stabilizing the performance. In the embodiment, it is described that a small piece of a flat membrane-like support membrane is immersed in water at 90 ° C. for 5 minutes. This publication does not disclose or suggest any adaptation to hollow fiber membranes.

【0003】一方、多官能アミンと多官能酸ハロゲン化
物を界面重合反応させて、微多孔性中空糸支持膜の外表
面に分離活性層である薄膜を形成させた形態の複合中空
糸膜の製造方法についても、既に数件の特許出願がなさ
れているが、いずれも支持膜の熱水による前処理につい
ては触れられていない。
On the other hand, a multifunctional amine and a polyfunctional acid halide undergo an interfacial polymerization reaction to produce a composite hollow fiber membrane in which a thin film as a separation active layer is formed on the outer surface of a microporous hollow fiber support membrane. Regarding the method, several patent applications have already been filed, but none of them mentions the pretreatment of the support membrane with hot water.

【0004】例えば、特開昭60-87807号公報には、ロー
ルから巻き出した多孔質中空糸を、グリセリン等に浸漬
してモノマーを含む液体の侵入を防止したのち、重縮合
反応でポリマーを生成するモノマーの一方を含む第1液
体と他方のモノマーを含む第2液体とで形成される界面
を貫通させて複合中空糸膜を得る方法が開示されてい
る。この公報において、本発明における微多孔性中空糸
膜に相当する多孔質中空糸に関して、界面重合に際して
前記したようにモノマーを含む液体の侵入を行うほかは
何らかの前処理を行う旨の記述はない。多孔質中空糸に
関しては、材質と形状について簡単に触れているのみで
ある。
For example, Japanese Patent Application Laid-Open No. 60-87807 discloses that a porous hollow fiber unwound from a roll is immersed in glycerin or the like to prevent intrusion of a liquid containing a monomer, and then the polymer is subjected to a polycondensation reaction. A method of obtaining a composite hollow fiber membrane by penetrating an interface formed by a first liquid containing one of the generated monomers and a second liquid containing the other monomer is disclosed. In this publication, there is no description that the porous hollow fiber corresponding to the microporous hollow fiber membrane in the present invention is subjected to any pretreatment other than the intrusion of the liquid containing the monomer during the interfacial polymerization as described above. As for the porous hollow fiber, only the material and shape are simply mentioned.

【0005】特開昭62-95105号公報には、ボビンに巻き
取った中空糸状の微多孔質支持体膜をm-フェニレンジア
ミン水溶液中に配置し、該アミン水溶液とトリメソイル
クロライドのシクロヘキサン溶液の界面を通して微多孔
質支持体膜を引き上げること、等によって複合逆浸透膜
を得る方法が開示されている。この公報において、本発
明における微多孔性中空糸膜に相当する微多孔質支持体
膜に関して、界面重合に際して何らかの前処理を行う旨
の記述はなく、単に急冷浴に導いた紡糸原液をボビンに
巻き取り、これをm-フェニレンジアミン水溶液に浸漬す
ると記されているのみである。
Japanese Patent Application Laid-Open No. 62-95105 discloses that a hollow fiber-shaped microporous support membrane wound around a bobbin is arranged in an aqueous solution of m-phenylenediamine, and the aqueous solution of the amine and a cyclohexane solution of trimesoyl chloride are prepared. A method for obtaining a composite reverse osmosis membrane by, for example, pulling up a microporous support membrane through an interface is disclosed. In this publication, there is no description that any pretreatment is performed at the time of interfacial polymerization with respect to the microporous support membrane corresponding to the microporous hollow fiber membrane in the present invention, and the spinning stock solution simply introduced into a quenching bath is wound around a bobbin. It only states that this is immersed in an aqueous solution of m-phenylenediamine.

【0006】特開平2-2842号公報には中空糸状微多孔性
支持膜をりん酸三ナトリウムを含む多官能アミン水溶液
に浸漬、引き上げ、風乾した後、酸ハロゲン化物溶液に
浸漬し、引き上げて溶液を揮散させた後、さらに炭酸ナ
トリウム水溶液に浸漬し、水洗することによって、複合
中空糸膜を得ることが開示されている。この公報におい
て、本発明における微多孔性中空糸支持膜に相当する中
空糸状微多孔性支持膜に関しては、内外径および耐圧
性、材質の例、非対称構造が好ましいことが記されてい
るが、界面重合に際して中空糸状微多孔性支持膜に何ら
かの前処理を行う旨の記述はない。
Japanese Patent Application Laid-Open No. 2-2842 discloses a hollow fiber-shaped microporous support membrane immersed in a polyfunctional amine aqueous solution containing trisodium phosphate, pulled up, air-dried, immersed in an acid halide solution, pulled up, and dried. Is volatilized, and further immersed in an aqueous solution of sodium carbonate and washed with water to obtain a composite hollow fiber membrane. In this publication, it is described that the hollow fiber-like microporous support membrane corresponding to the microporous hollow fiber support membrane in the present invention preferably has an inner / outer diameter and pressure resistance, a material example, and an asymmetric structure. There is no description that any pretreatment is performed on the hollow fiber microporous support membrane during polymerization.

【0007】特開平6-114246号公報においては、亜硫酸
ナトリウムを含むアミン水溶液に中空糸状微多孔性支持
膜を浸漬、引き上げ、液切りし、酸クロライド溶液に浸
漬、引き上げて溶液を揮散させた後、さらに炭酸ナトリ
ウム水溶液に浸漬することによって複合中空糸膜を得る
ことが開示されている。この公報においても、本発明に
おける微多孔性中空糸膜に相当する中空糸状微多孔性支
持膜に関しては、内外径および耐圧性、材質の例、非対
称構造が好ましいことが記されているが、界面重合に際
して中空糸状微多孔性支持膜に何らかの前処理を行う旨
の記述はない。
In Japanese Patent Application Laid-Open No. 6-114246, a hollow fiber microporous support membrane is immersed in an aqueous amine solution containing sodium sulfite, pulled up, drained, dipped in an acid chloride solution, pulled up, and then evaporated. Further, it is disclosed that a composite hollow fiber membrane is obtained by immersing in a sodium carbonate aqueous solution. This publication also states that the hollow fiber-shaped microporous support membrane corresponding to the microporous hollow fiber membrane in the present invention preferably has an inner / outer diameter and pressure resistance, a material example, and an asymmetric structure. There is no description that any pretreatment is performed on the hollow fiber microporous support membrane during polymerization.

【0008】[0008]

【発明が解決しようとする課題】前記したような支持膜
の熱水処理を行わない方法によっても複合中空糸膜を得
ることは可能ではあるが、膜性能の再現性が低く、安定
な性能を得ることが困難であった。本発明は、膜性能の
再現性・安定性を高めるとともに、連続処理可能な生産
プロセスとすることによって効率よく複合中空糸膜を得
る方法を提供することを目的とする。
Although it is possible to obtain a composite hollow fiber membrane by the above-mentioned method in which the support membrane is not subjected to the hydrothermal treatment, the reproducibility of the membrane performance is low, and the stable performance is not improved. It was difficult to obtain. An object of the present invention is to provide a method for efficiently obtaining a composite hollow fiber membrane by improving the reproducibility and stability of the membrane performance and making the production process capable of continuous processing.

【0009】[0009]

【課題を解決するための手段】本発明は以下のものであ
る。 (1) 張力をかけた状態で微多孔性中空糸支持膜を熱水中
に走行させた後、該微多孔性中空糸支持膜の外表面に分
離活性層を形成させることを特徴とする複合中空糸膜の
製造方法。 (2) 熱水中に微多孔性中空糸支持膜を導入する前に、微
多孔性中空糸支持膜に残留している製膜溶媒を乾燥中空
糸膜1kg あたり50g 以下まで除去しておく上記(1)記載
の複合中空糸膜の製造方法。 (3) 熱水中に走行させる微多孔性中空支持膜にかける張
力が、その熱水温度における降伏張力未満である上記
(1) または (2)記載の複合中空糸膜の製造方法。 (4) 熱水中に走行させる微多孔性中空糸支持膜を、その
熱水温度における降伏伸度未満で延伸する上記(1) また
は (2)記載の複合中空糸膜の製造方法。 (5) 微多孔性中空糸支持膜がポリスルホン系樹脂から形
成されたものである上記(1) ないし(4) 記載の複合中空
糸膜の製造方法。 (6) 微多孔性中空糸支持膜がポリアミド系樹脂から形成
されたものである上記(1)ないし (4)記載の複合中空糸
膜の製造方法。 (7) 多官能アミンと多官能酸ハロゲン化物の界面重合反
応を、分離活性層の形成に利用する上記(1) ないし(6)
記載の複合中空糸膜の製造方法。 (8) 多官能アミンおよび多官能酸ハロゲン化物の少なく
とも一方の平均官能度が2.05以上である上記(1) な
いし(7) 記載の複合中空糸膜の製造方法。 (9) 多官能アミンがピペラジンまたはピペラジンを含む
アミン混合物、多官能酸ハロゲン化物がトリメシン酸ク
ロリドまたはトリメシン酸クロリドを含む酸ハロゲン化
物混合物である上記(1) ないし (8)記載の複合中空糸膜
の製造方法。 (10)張力をかけた状態で微多孔性中空糸支持膜を熱水中
に走行させることができる熱水処理槽を有することを特
徴とする複合中空糸膜製造装置。 (11)上記(1) ないし(9) に記載された製造方法で得られ
うる複合中空糸膜。
The present invention is as follows. (1) A composite characterized in that after the microporous hollow fiber support membrane is run in hot water under tension, a separation active layer is formed on the outer surface of the microporous hollow fiber support membrane. A method for producing a hollow fiber membrane. (2) Before introducing the microporous hollow fiber support membrane into hot water, remove the membrane-forming solvent remaining in the microporous hollow fiber support membrane to 50 g or less per 1 kg of dry hollow fiber membrane. The method for producing the composite hollow fiber membrane according to (1). (3) The tension applied to the microporous hollow support membrane running in hot water is less than the yield tension at the hot water temperature.
The method for producing a composite hollow fiber membrane according to (1) or (2). (4) The method for producing a composite hollow fiber membrane according to the above (1) or (2), wherein the microporous hollow fiber supporting membrane to be run in hot water is stretched at less than the yield elongation at the hot water temperature. (5) The method for producing a composite hollow fiber membrane according to the above (1) to (4), wherein the microporous hollow fiber support membrane is formed from a polysulfone-based resin. (6) The method for producing a composite hollow fiber membrane according to the above (1) to (4), wherein the microporous hollow fiber supporting membrane is formed from a polyamide resin. (7) The above-mentioned (1) to (6), wherein an interfacial polymerization reaction between a polyfunctional amine and a polyfunctional acid halide is used for forming a separation active layer.
A method for producing the composite hollow fiber membrane according to the above. (8) The method for producing a composite hollow fiber membrane according to any one of (1) to (7), wherein the average functionality of at least one of the polyfunctional amine and the polyfunctional acid halide is 2.05 or more. (9) The composite hollow fiber membrane according to the above (1) to (8), wherein the polyfunctional amine is piperazine or an amine mixture containing piperazine, and the polyfunctional acid halide is trimesic acid chloride or an acid halide mixture containing trimesic acid chloride. Manufacturing method. (10) An apparatus for producing a composite hollow fiber membrane, comprising: a hot water treatment tank capable of running the microporous hollow fiber support membrane in hot water under tension. (11) A composite hollow fiber membrane obtainable by the production method described in the above (1) to (9).

【0010】本発明において、熱水とは50℃以上の水ま
たは水溶液を指し、5%未満の有機化合物、無機塩類等を
含んでいてもよい。また、熱水中の異物や微粒子等を極
力少なくすることが、欠陥のない分離活性層を形成させ
る為には重要であり、逆浸透膜、ナノ濾過膜、限外濾過
膜、精密濾過膜等で生成した水を熱交換器により加熱し
たものが好適に使用できる。
In the present invention, hot water refers to water or an aqueous solution at 50 ° C. or higher, and may contain less than 5% of organic compounds, inorganic salts, and the like. In addition, it is important to minimize foreign matter and fine particles in hot water in order to form a defect-free separation active layer, such as a reverse osmosis membrane, a nanofiltration membrane, an ultrafiltration membrane, and a microfiltration membrane. What produced by heating the water produced by the above with a heat exchanger can be used suitably.

【0011】熱水中を走行させる工程の好ましい条件と
して、まず第1に微多孔性中空糸支持膜に残留している
製膜溶媒を乾燥中空糸膜1kg あたり50g 以下まで除去し
ておくことがあげられる。残留溶媒が著しく多い状態で
熱水中に中空糸膜を導入すると、極端な伸びが生じて中
空糸膜の走行が不能になったり、極端な場合は糸切れが
生じる。中空糸膜の走行に支障がないレベルであっても
残留溶媒が多い状態では、微多孔性支持膜の透水性の低
下を起こし、望ましくない。第2に走行中の微多孔性中
空糸支持膜を熱水中での降伏伸度未満で延伸すること、
および、熱水中での降伏張力未満の張力を与えることが
重要である。熱水中を走行させると熱膨張および走行テ
ンションにより中空糸支持膜に若干伸びが生じ、等速引
き取りを行ったのではたるみが生じて中空糸膜の走行が
安定しないという問題が発生する。特に実際の製造プロ
セスにおいては生産効率を高める為に必然的に複数の中
空糸膜を同時に取り扱う工程となるが、このたるみの為
に隣接する中空糸膜がからまり、分離活性層の形成に支
障をきたしたり、糸切れの原因となったりする。わずか
に延伸することによって支持膜の走行を安定させること
が可能であるが、降伏伸度を超える延伸を行うと、中空
糸膜が不可逆的に延伸され、透水性能が低下する。延伸
を行う具体的な手段は、ローラー回転速度を工程が進む
につれて速くする、ローラーの回転速度は一定としてロ
ーラーの径を工程が進むにつれて大きくする、等の既知
の方法をとることができる。
As a preferable condition for the step of running in hot water, first, it is necessary to remove the membrane-forming solvent remaining in the microporous hollow fiber support membrane to 50 g or less per 1 kg of dry hollow fiber membrane. can give. If the hollow fiber membrane is introduced into hot water in a state in which the residual solvent is extremely large, the hollow fiber membrane will be extremely elongated and will not be able to travel, or in extreme cases, will break. Even at a level that does not hinder the running of the hollow fiber membrane, in a state where the residual solvent is large, the water permeability of the microporous support membrane is reduced, which is not desirable. Second, stretching the running microporous hollow fiber support membrane with a yield elongation of less than hot water,
And it is important to give a tension less than the yield tension in hot water. When running in hot water, the hollow fiber support membrane slightly elongates due to thermal expansion and running tension, and if it is taken out at a constant speed, there is a problem that slack occurs and the running of the hollow fiber membrane becomes unstable. In particular, in the actual manufacturing process, in order to increase the production efficiency, it is necessary to handle a plurality of hollow fiber membranes at the same time, but due to the slack, adjacent hollow fiber membranes become entangled and hinder the formation of the separation active layer. It may cause breakage or cause thread breakage. It is possible to stabilize the running of the support membrane by slightly stretching, but if the stretching exceeds the yield elongation, the hollow fiber membrane is irreversibly stretched, and the water permeability deteriorates. As a specific means for stretching, a known method such as increasing the roller rotation speed as the process progresses, increasing the roller diameter as the process progresses while keeping the roller rotation speed constant, or the like can be used.

【0012】以上のような工夫を加えることにより、複
合中空糸膜製造工程において、支持膜の連続的な熱水処
理が可能となり、膜性能の再現性・安定性を高めるとと
もに、連続処理可能な生産プロセスとすることによって
効率よく複合中空糸膜を得る方法を提供することが可能
となった。
[0012] By adding the above-mentioned contrivance, in the composite hollow fiber membrane manufacturing process, continuous hot water treatment of the support membrane becomes possible, and the reproducibility and stability of the membrane performance are improved, and the continuous treatment is possible. By using a production process, it has become possible to provide a method for efficiently obtaining a composite hollow fiber membrane.

【0013】なお、前記したような支持膜の熱水処理を
行わない従来の方法によっても複合中空糸膜を得ること
は可能ではあるが、膜性能の再現性が低く、安定な性能
を得ることが困難であった。これは微多孔性中空糸支持
膜とその外表面に形成された界面重合膜が異なる素材で
形成されているため、複合中空糸膜製造工程における温
度・液浸透・乾燥等の変化による膨張・収縮率が異な
り、製造工程の途中で剥離が生じることが原因であると
考えられる。本発明にいては、界面重合法による分離活
性層の形成に先立ち、多孔性中空糸支持膜を熱水中を走
行させることにより、多孔性中空糸支持膜の温度・液浸
透・乾燥等の変化による膨張・収縮率を抑えることによ
り、膜性能の再現性・安定性が向上したものと思われ
る。
Although it is possible to obtain a composite hollow fiber membrane by a conventional method in which the above-mentioned hot water treatment of the support membrane is not performed, the reproducibility of the membrane performance is low and a stable performance is obtained. Was difficult. This is because the microporous hollow fiber support membrane and the interfacial polymer membrane formed on its outer surface are made of different materials, so they expand and contract due to changes in temperature, liquid penetration, drying, etc. in the composite hollow fiber membrane manufacturing process. This is considered to be due to the fact that the rates differ and peeling occurs during the manufacturing process. In the present invention, prior to the formation of the separation active layer by the interfacial polymerization method, the porous hollow fiber support membrane is allowed to run in hot water to change the temperature, liquid permeation, drying, etc. of the porous hollow fiber support membrane. It is considered that the reproducibility and stability of the film performance were improved by suppressing the expansion / shrinkage ratio due to the above.

【0014】以下に、本発明におけるその他の事項につ
いて説明を加える。
Hereinafter, other items in the present invention will be described.

【0015】本発明においては、特記しない限り、複合
中空糸膜とは微多孔性中空糸支持膜の外表面に異なる素
材またはプロセスで形成された分離活性層をもつ分離膜
を指す。ここに、微多孔性支持膜とは、分離活性層を支
持する中空糸状の微多孔性膜を指し、分離活性層の分画
分子量の10倍〜10,000倍の分画分子量のもの、特に好ま
しくは100 〜1000倍の分画分子量のものが好適である。
なお、分画分子量とは複数の指標化合物の分子量と除去
率の関係から内挿して求めた、除去率90% に相当する分
子量のことを指すこととする。
In the present invention, unless otherwise specified, the composite hollow fiber membrane refers to a separation membrane having a separation active layer formed by a different material or process on the outer surface of a microporous hollow fiber support membrane. Here, the microporous support membrane refers to a hollow fiber-shaped microporous membrane that supports the separation active layer, and has a cutoff molecular weight of 10 to 10,000 times the cutoff molecular weight of the separation active layer, particularly preferably. Those having a cut-off molecular weight of 100 to 1000 times are preferred.
The molecular weight cutoff refers to a molecular weight corresponding to a removal rate of 90%, obtained by interpolation from the relationship between the molecular weights of a plurality of indicator compounds and the removal rate.

【0016】本発明における微多孔性中空糸膜の形成方
法は特に限定されないが、乾湿式法が好ましく用いられ
る。乾湿式法とは、ポリマー溶液をノズルから空中に吐
出させ、さらにこれを凝固浴中に導くことによる中空糸
膜の製造方法を指す。この際、内腔部形成剤として空気
等のガス、前記ポリマー溶液に対して凝固性の液体、非
凝固性の液体を注入することができる。これらのガスお
よび液体は純物質であっても混合物であってもよい。ま
た前記ポリマー溶液には、前記ポリマーに対する良溶
媒、貧溶媒、非溶媒、界面活性剤、塩類等が添加されて
いてもよい。また前記空中とは空気中に限らず、窒素、
ヘリウム等の不活性ガス雰囲気中、湿度・温度・圧力の
制御されたガス雰囲気中、溶媒蒸気が混在する雰囲気中
であってもよい。凝固浴は水と前記ポリマー溶液に含ま
れる成分の混合物が一般的に用いられるが、前記ポリマ
ー溶液を凝固させるものであれば、特に限定されず、ま
た界面活性剤や無機塩類等が共存していてもよい。
The method for forming the microporous hollow fiber membrane in the present invention is not particularly limited, but a dry-wet method is preferably used. The dry-wet method refers to a method for producing a hollow fiber membrane by discharging a polymer solution from a nozzle into the air and guiding the polymer solution into a coagulation bath. At this time, a gas such as air, a coagulating liquid, or a non-coagulating liquid with respect to the polymer solution can be injected as the lumen forming agent. These gases and liquids may be pure substances or mixtures. Further, a good solvent, a poor solvent, a non-solvent, a surfactant, salts, and the like for the polymer may be added to the polymer solution. In addition, the air is not limited to air, but nitrogen,
The atmosphere may be an inert gas atmosphere such as helium, a gas atmosphere in which humidity, temperature, and pressure are controlled, or an atmosphere in which a solvent vapor is mixed. As the coagulation bath, a mixture of water and components contained in the polymer solution is generally used, but is not particularly limited as long as it coagulates the polymer solution, and a surfactant, an inorganic salt, and the like coexist. You may.

【0017】本発明における微多孔性中空糸膜の内径は
特に限定されないが、50〜1000μmが好ましく、より好
ましくは100 〜800 μm 、200 〜400 μm であることが
特に好ましい。内径が小さくなると、中空糸膜内腔部を
透過液が通過する際の流動圧損が大きくなり、供給圧力
あたりの透水性を低下させる要因となり好ましくない。
また内径が大きくなると、外径も大きくせざるをえず、
単位容積あたりに充填できる膜面積が小さくなるため、
モジュール容積あたりの透水性を低下させることなり、
望ましくない。微多孔性中空糸膜の外径に関しても特に
限定されないが、70〜2000μm が好ましく、より好まし
くは200 〜1000μm 、300 〜500 μm であることが特に
好ましい。外径は、モジュール容積あたり膜面積を大き
くし、モジュール体積あたりの透水性を高めるために、
できる限り小さい方が好ましいが、支持膜としての力学
的形態保持機能を果たせる範囲で、また、モジュールと
しての耐濁質性その他の要求を満たす範囲で、更には後
述する好ましい膜構造が得られる範囲で適切な値に設定
される。
The inner diameter of the microporous hollow fiber membrane in the present invention is not particularly limited, but is preferably from 50 to 1000 μm, more preferably from 100 to 800 μm, and particularly preferably from 200 to 400 μm. When the inner diameter is small, the flow pressure loss when the permeated liquid passes through the hollow portion of the hollow fiber membrane becomes large, which is a factor that lowers the water permeability per supply pressure, which is not preferable.
Also, as the inner diameter increases, the outer diameter must be increased,
Because the membrane area that can be filled per unit volume is small,
It will reduce the water permeability per module volume,
Not desirable. The outer diameter of the microporous hollow fiber membrane is not particularly limited, but is preferably 70 to 2000 μm, more preferably 200 to 1000 μm, and particularly preferably 300 to 500 μm. The outer diameter increases the membrane area per module volume and increases water permeability per module volume.
It is preferable that the membrane is as small as possible.However, a range in which a mechanical shape maintaining function as a support membrane can be achieved, a range in which turbidity resistance and other requirements as a module are satisfied, and a range in which a preferable membrane structure described later is obtained. Is set to an appropriate value.

【0018】本発明における微多孔性中空糸膜の断面構
造は特に限定されないが、外表面が比較的緻密であり、
内部は粗な構造をとる非対称構造であることが好まし
い。内表面は外表面と同程度に緻密であっても差し支え
ないが、より粗な構造である方が透水抵抗を軽減でき有
効である。外表面の平均孔径は1 〜1000nmであることが
好ましく、5 〜100nm であることがより好ましい。分離
活性層との比較で表現すれば、分離活性層の分画分子量
の10倍〜10,000倍、特に好ましくは100 〜1000倍の範囲
に微多孔性中空糸支持膜の分画分子量があることが好適
である。平均孔径が小さすぎると透水抵抗が過大とな
り、また、大きすぎると分離活性層に欠陥が生じやす
い。また、断面構造においてはいわゆるフィンガーライ
クキャビティーが1層あるいは複数層存在してもよい
し、また膜厚方向全体が比較的均一なスポンジ状構造か
らなっていてもよい。
The cross-sectional structure of the microporous hollow fiber membrane in the present invention is not particularly limited, but the outer surface is relatively dense,
The interior is preferably an asymmetric structure having a rough structure. The inner surface may be as dense as the outer surface, but a rougher structure is more effective because it can reduce water permeability. The average pore size on the outer surface is preferably from 1 to 1000 nm, more preferably from 5 to 100 nm. Expressed in comparison with the separation active layer, the molecular weight cut off of the microporous hollow fiber support membrane may be in the range of 10 to 10,000 times, particularly preferably 100 to 1000 times, the molecular weight cut off of the separation active layer. It is suitable. If the average pore diameter is too small, the water permeation resistance becomes excessive, and if it is too large, defects are apt to occur in the separation active layer. Further, in the cross-sectional structure, a so-called finger-like cavity may be present in one layer or a plurality of layers, or may be formed of a sponge-like structure in which the entire film thickness direction is relatively uniform.

【0019】本発明における微多孔性中空糸支持膜の材
質は特に限定されず、従来公知のあらゆる高分子化合物
およびその混合物から選択することができる。具体的に
は、ポリスルホン、ポリエーテルスルホン、ポリアリル
スルホン、ポリアクリロニトリル、ポリアミド、ポリイ
ミド、ポリフッ化ビニリデン、酢酸セルロース類などが
例示できる。特にポリスルホン、ポリエーテルスルホ
ン、ポリアミドが好ましい。
The material of the microporous hollow fiber support membrane in the present invention is not particularly limited, and can be selected from all conventionally known polymer compounds and mixtures thereof. Specific examples include polysulfone, polyether sulfone, polyallyl sulfone, polyacrylonitrile, polyamide, polyimide, polyvinylidene fluoride, and cellulose acetates. Particularly, polysulfone, polyether sulfone, and polyamide are preferable.

【0020】本発明において、分離活性層は、微多孔性
中空糸膜外表面付近での多官能アミンと多官能酸ハロゲ
ン化物の界面重合反応によって形成されるのが好まし
い。
In the present invention, the separation active layer is preferably formed by an interfacial polymerization reaction between a polyfunctional amine and a polyfunctional acid halide near the outer surface of the microporous hollow fiber membrane.

【0021】本発明における多官能性アミンには、脂環
族多官能性アミン、脂肪族多官能性アミン、芳香族多官
能性アミンを含み、1分子中に2個以上の、酸ハロゲン
化物基と反応しうるアミノ基を含むものが好適である。
これらは単独で、あるいは2種類以上の混合物として使
用することができる。更に、ポリエチレンイミン、アミ
ン変性ポリエピクロロヒドリン、アミノ化ポリスチレン
等の複数の反応性アミノ基を有するポリマーも適用可能
である。
The polyfunctional amine in the present invention includes an alicyclic polyfunctional amine, an aliphatic polyfunctional amine, and an aromatic polyfunctional amine, and two or more acid halide groups per molecule. Those containing an amino group capable of reacting with are preferred.
These can be used alone or as a mixture of two or more. Further, a polymer having a plurality of reactive amino groups such as polyethyleneimine, amine-modified polyepichlorohydrin, and aminated polystyrene is also applicable.

【0022】脂環族多官能性アミンの例としては、1,3-
ジアミノシクロヘキサン等のシクロヘキサン環をもつ第
1級アミン、ピペラジン等のピペラジン環をもつ第2級
アミン、1,3-ビス(4- ピペリジル) メタン等のピペリジ
ン環をもつ第2級アミン、4-( アミノメチル) ピペリジ
ン等第1 級アミンと第2級アミンの両方を分子中にもつ
アミンがあげられる。
Examples of alicyclic polyfunctional amines include 1,3-
Primary amine having a cyclohexane ring such as diaminocyclohexane, secondary amine having a piperazine ring such as piperazine, secondary amine having a piperidine ring such as 1,3-bis (4-piperidyl) methane, 4- ( Amines having both primary and secondary amines in the molecule, such as aminomethyl) piperidine.

【0023】脂肪族多官能性アミンの例としては、エチ
レンジアミン、1,2-ジアミノプロパン、1,2-ジアミノ-2
- メチルプロパン、2,2-ジメチル-1,3- プロパンジアミ
ン、2-エチル-2- メチル-1,3- プロパンジアミン等があ
げられる。
Examples of the aliphatic polyfunctional amine include ethylenediamine, 1,2-diaminopropane, 1,2-diamino-2
-Methylpropane, 2,2-dimethyl-1,3-propanediamine, 2-ethyl-2-methyl-1,3-propanediamine and the like.

【0024】芳香族多官能アミンの例としては、ジアミ
ノベンゼン、トリアミノベンゼン、フェニレンジアミ
ン、ジアミノジフェニルメタン、ジアミノジフェニルエ
ーテル、ジアミノジフェニルスルホン、ジアミノ安息香
酸等があげられる。
Examples of the aromatic polyfunctional amine include diaminobenzene, triaminobenzene, phenylenediamine, diaminodiphenylmethane, diaminodiphenylether, diaminodiphenylsulfone, diaminobenzoic acid and the like.

【0025】一方、本発明における多官能性酸ハロゲン
化物には、脂環族多官能性酸ハロゲン化物、脂肪族多官
能性酸ハロゲン化物、芳香族多官能性酸ハロゲン化物を
含み、1分子中に2個以上の、アミノ基と反応しうる酸
ハロゲン化物基を含むものが好適である。また、酸ハロ
ゲン化物としては酸クロライドが特に好適である。これ
らは単独で、あるいは2種類以上の混合物として使用す
ることができる
On the other hand, the polyfunctional acid halide in the present invention includes an alicyclic polyfunctional acid halide, an aliphatic polyfunctional acid halide, and an aromatic polyfunctional acid halide. Those containing two or more acid halide groups capable of reacting with an amino group are preferred. Acid chloride is particularly preferred as the acid halide. These can be used alone or as a mixture of two or more.

【0026】脂環族多官能性酸ハロゲン化物の例として
はシクロヘキサントリカルボン酸ハライド等が、芳香族
多官能性酸ハロゲン化物の例としてはトリメシン酸クロ
ライド、トリメリット酸クロライド、ピロメリット酸ク
ロライド、ベンゾフェノンテトラカルボン酸クロライ
ド、イソフタル酸クロライド、テレフタル酸クロライ
ド、ナフタレンジカルボン酸クロライド等があげられ
る。
Examples of alicyclic polyfunctional acid halides include cyclohexanetricarboxylic acid halides, and examples of aromatic polyfunctional acid halides include trimesic acid chloride, trimellitic chloride, pyromellitic chloride, and benzophenone. Examples thereof include tetracarboxylic acid chloride, isophthalic acid chloride, terephthalic acid chloride, and naphthalenedicarboxylic acid chloride.

【0027】[0027]

【実施例】以下、実施例および比較例を示して本発明を
説明するが、本発明はこれらに限定されるものではな
い。なお、実施例および比較例で示された各種物性、性
能等は以下の条件で測定されたものである。
The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples. Various physical properties, performances, and the like shown in Examples and Comparative Examples were measured under the following conditions.

【0028】1) 複合中空糸膜のサッカロース水溶液分
離性能 サッカロース80g をRO水80L に溶解し、1000mg/L水溶液
を得た。塩酸または水酸化ナトリウム水溶液を微量添加
して、pHを6.0 ±0.3 に制御し、水温25℃、圧力0.30MP
a 、膜面平均流速13cm/sec、回収率1%未満で中空糸膜外
側に供給した。回収率Rcは下記の式で定義される。 Rc(%)=Qp/Qf ×100 (Qp:透過液の流量、Qf:供給液の流量) 1 時間後、中空部から流出する透過液の流量とサッカロ
ース濃度を測定した。透水性は単位面積(m2 ) 、単位時
間( 日) あたりの透過液体積で表し、除去率Rjは下記の
式で定義される値とした。なお、サッカロース濃度の測
定は、アンスロン硫酸法で行った。 Rj(%)=(1-Cp/Cf) ×100 (Cp:透過液のサッカロース濃度、Cf:供給液のサッカ
ロース濃度)
1) Separation performance of sucrose aqueous solution of composite hollow fiber membrane 80 g of saccharose was dissolved in 80 L of RO water to obtain a 1000 mg / L aqueous solution. Add a small amount of hydrochloric acid or sodium hydroxide aqueous solution to control the pH to 6.0 ± 0.3, water temperature 25 ° C, pressure 0.30MP
a, The membrane was supplied to the outside of the hollow fiber membrane at an average flow rate of 13 cm / sec and a recovery rate of less than 1%. The recovery Rc is defined by the following equation. Rc (%) = Qp / Qf × 100 (Qp: flow rate of permeate, Qf: flow rate of feed liquid) After one hour, the flow rate of permeate flowing out of the hollow portion and the sucrose concentration were measured. The water permeability was represented by the permeate volume per unit area (m 2 ) and per unit time (day), and the removal rate Rj was a value defined by the following equation. The saccharose concentration was measured by the anthrone sulfate method. Rj (%) = (1-Cp / Cf) × 100 (Cp: sucrose concentration of permeate, Cf: sucrose concentration of feed solution)

【0029】2) 残留溶媒の測定方法 中空糸膜を長さ1cm 程度に切断し、メタノールで18時
間、ソックスレー抽出を行った。抽出液をガスクロマト
グラフで分析して抽出液中の溶媒濃度を測定し、乾燥膜
重量と抽出液重量から、乾燥膜1kgあたりの残留溶媒量
を算出した。
2) Method for measuring residual solvent The hollow fiber membrane was cut into a length of about 1 cm, and subjected to Soxhlet extraction with methanol for 18 hours. The extract was analyzed by gas chromatography to measure the solvent concentration in the extract, and the residual solvent amount per 1 kg of the dry film was calculated from the weight of the dry film and the weight of the extract.

【0030】3) 中空糸膜の降伏伸度および降伏強度の
測定方法 所定温度に温調したRO水に中空糸膜を浸漬し、1分間経
過した後、伸長速度100%/ 分で応力と伸びの相関線を求
め、降伏伸度および降伏強力を求めた。
3) Method for measuring the yield elongation and yield strength of hollow fiber membrane The hollow fiber membrane is immersed in RO water adjusted to a predetermined temperature, and after 1 minute, the stress and elongation are increased at an elongation rate of 100% / min. Were obtained to determine the yield elongation and yield strength.

【0031】(実施例1)チューブインオリフィス型紡
糸ノズルの外周部からはポリスルホン系樹脂(テイジン
アモコエンジニアリングプラスチックス、Udel P-3500
)20重量部、ジメチルアセトアミド75.5重量部、トリ
エチレングリコール4 重量部、ラウリルベンゼンスルホ
ン酸ナトリウム0.5 重量部からなるポリマー溶液を、中
心部からはジメチルアセトアミド30重量部と水70重量部
からなる水溶液を吐出させ、6cm の空中走行部を経て、
水を主成分とする凝固浴中に15m/分で引き取り、微多孔
性中空糸支持膜を得た。水洗工程において中空糸膜中の
残留溶媒を3g/kg-乾燥中空糸膜まで除去した後、微多孔
性中空糸支持膜を70℃に温度調節した熱水処理槽11内を
1 分間走行させた。熱水処理槽11に突入直前の中空糸膜
をサンプリングして強伸度の測定を行ったところ、降伏
伸度は3.1 %、降伏強力は22. 5g/ 本であった。熱水処
理槽内のローラーの径は順次大きくなっており、最後の
ローラーの径は最初のローラーの径の101%となってい
る。次にピペラジン2 重量部、トリエチレンジアミン1
重量部、ラウリルベンゼンスルホン酸ナトリウム0.07重
量部をふくむ水溶液が入ったアミン含浸槽31中を通過さ
せ、更に乾燥塔41内を通過させる間に自然流下と水分蒸
発乾燥により微多孔性中空糸膜表面の余分な液膜を除去
した。次いでトリメシン酸クロリド1重量部を含むヘキ
サン溶液(51)、フロリナートFC70(52)、1%酢酸水溶液
(53)に順次接触させて、乾燥塔61で乾熱処理を行った。
更に水洗槽71で余剰モノマー・副生成物等の除去を行
い、外表面に架橋ポリピペラジンアミドからなる分離活
性層を有する複合中空糸膜を得た。得られた中空糸膜を
1hr ごとに24回サンプリングし、前記した条件でサッカ
ロース水溶液の分離テスト行った。サッカロース除去率
の平均値は96.7% 、標準偏差0.80、透水性の平均値は30
0L/m2/日、標準偏差12.4となった。後述する比較例に比
べてバラツキが少なく、高除去率の中空糸膜を得ること
ができた。
(Example 1) A polysulfone resin (Teijin Amoco Engineering Plastics, Udel P-3500) was applied from the outer periphery of a tube-in-orifice type spinning nozzle.
) A polymer solution consisting of 20 parts by weight, 75.5 parts by weight of dimethylacetamide, 4 parts by weight of triethylene glycol, and 0.5 part by weight of sodium laurylbenzenesulfonate. From the center, an aqueous solution consisting of 30 parts by weight of dimethylacetamide and 70 parts by weight of water. Discharge, and through the 6cm aerial traveling section,
The microporous hollow fiber support membrane was obtained at 15 m / min in a coagulation bath containing water as a main component. After removing the residual solvent in the hollow fiber membrane to 3 g / kg-dry hollow fiber membrane in the water washing step, the microporous hollow fiber support membrane is heated in a hot water treatment tank 11 at 70 ° C.
Ran for 1 minute. When the hollow fiber membrane immediately before entering the hot water treatment tank 11 was sampled and the strength and elongation were measured, the yield elongation was 3.1% and the yield strength was 22.5 g / piece. The diameter of the rollers in the hot water treatment tank is gradually increasing, and the diameter of the last roller is 101% of the diameter of the first roller. Next, 2 parts by weight of piperazine and 1 part of triethylenediamine
Parts, an aqueous solution containing 0.07 parts by weight of sodium laurylbenzenesulfonate is passed through an amine impregnation tank 31 containing an aqueous solution, and further, while passing through a drying tower 41, the surface of the microporous hollow fiber membrane is allowed to flow naturally and by evaporating and drying. The excess liquid film was removed. Next, a hexane solution (51) containing 1 part by weight of trimesic acid chloride, Fluorinert FC70 (52), a 1% aqueous acetic acid solution
(53), and a dry heat treatment was performed in the drying tower 61.
Further, excess monomers and by-products were removed in the water washing tank 71 to obtain a composite hollow fiber membrane having a separation active layer made of crosslinked polypiperazinamide on the outer surface. The obtained hollow fiber membrane
Sampling was performed 24 times every 1 hour, and a separation test of the saccharose aqueous solution was performed under the above conditions. The average sucrose removal rate is 96.7%, the standard deviation is 0.80, and the average permeability is 30.
0 L / m 2 / day, the standard deviation was 12.4. As compared with a comparative example described later, a variation was small, and a hollow fiber membrane having a high removal rate could be obtained.

【0032】(比較例1)熱水処理槽11をバイパスさせ
た他は実施例1と同様にして複合中空糸膜を得た。サッ
カロース除去率の平均値は92.9% 、標準偏差2.51、透水
性の平均値は287L/m2/日、標準偏差32.0となった。実施
例1に比べ、性能のバラツキが大きく、平均値も低いも
のとなった。
Comparative Example 1 A composite hollow fiber membrane was obtained in the same manner as in Example 1 except that the hot water treatment tank 11 was bypassed. The average value of the saccharose removal rate was 92.9%, the standard deviation was 2.51, the average value of the water permeability was 287 L / m 2 / day, and the standard deviation was 32.0. Compared with Example 1, the dispersion of the performance was large and the average value was low.

【0033】(比較例2)熱水処理槽11のローラーを全
て等径のものに変えた他は実施例1と同様にして複合中
空糸膜の製膜を試みた。微多孔性中空糸膜に伸びが生ず
るため走行テンションをかけることができず、熱水処理
槽11内で中空糸膜の走行が不安定となり、隣接する中空
糸膜相互のからみが一部生じ、製膜を継続することが困
難であった。
Comparative Example 2 An attempt was made to form a composite hollow fiber membrane in the same manner as in Example 1 except that all the rollers of the hot water treatment tank 11 were changed to have the same diameter. The running tension cannot be applied because the microporous hollow fiber membrane is stretched, the running of the hollow fiber membrane becomes unstable in the hot water treatment tank 11, and a part of the entanglement between adjacent hollow fiber membranes occurs, It was difficult to continue film formation.

【0034】(実施例2)特公平7-42353 号公報に記載
の方法により、ポリ(テレフタロイル-4,4'-ジアミノジ
フェニルスルホン/ピペラジン(80/20) )共重合体を得
た。0.5g/dL N-メチル-2- ピロリドン溶液、30℃におけ
る還元粘度は0.97 dL/g であった。チューブインオリフ
ィス型紡糸ノズルの外周部から、上記のポリ(テレフタ
ロイル-4,4'-ジアミノジフェニルスルホン/ピペラジン
(80/20) )共重合体22重量部、N-メチル-2- ピロリドン
66重量部、トリエチレングリコール8 重量部、塩化カル
シウム・6水和物4 重量部からなる製膜原液を、中心部
からはN-メチル-2-ピロリドン20重量部と水80重量部か
らなる水溶液を吐出させ、8cm の空中走行部を経て、水
を主成分とする凝固浴中に25m/分で引き取り、微多孔性
中空糸支持膜を得た。水洗工程において中空糸膜中の残
留溶媒を5g/kg-乾燥中空糸膜まで除去した後、微多孔性
中空糸支持膜を90℃に温度調節した熱水処理槽11内を1
分間走行させた。熱水処理槽11に突入直前の中空糸膜を
サンプリングして強伸度の測定を行ったところ、降伏伸
度は4.3%、降伏強力は47.0g/本であった。熱水処理浴内
のローラーの径は順次大きくなっており、最後のローラ
ーの径は最初のローラーの径の102%となっている。次に
ピペラジン2 重量部、トリエチレンジアミン1 重量部、
ラウリルベンゼンスルホン酸ナトリウム0.05重量部をふ
くむ水溶液が入ったアミン含浸槽31中を通過させ、更に
乾燥塔41内を通過させる間に自然流下と水分蒸発乾燥に
より微多孔性中空糸膜表面の余分な液膜を除去した。次
いでトリメシン酸クロリド1重量部を含むヘキサン溶液
(51)、フロリナートFC70(52)、1%酢酸水溶液(53)に順
次接触させて、乾燥塔61で熱処理を行って架橋ピペラジ
ンアミドからなる分離活性層を形成させた。更に水洗槽
71で余剰モノマー・副生成物等の除去を行い、複合中空
糸膜を得た。得られた中空糸膜を1hr ごとに24回サンプ
リングした。サッカロース水溶液の分離性能を評価した
ところ、サッカロース除去率の平均値は97.6% 、標準偏
差0.64、透水性の平均値は233L/m2/日、標準偏差12.1で
あった。
Example 2 A poly (terephthaloyl-4,4'-diaminodiphenylsulfone / piperazine (80/20)) copolymer was obtained by the method described in JP-B-7-42353. The reduced viscosity of the 0.5 g / dL N-methyl-2-pyrrolidone solution at 30 ° C. was 0.97 dL / g. The above poly (terephthaloyl-4,4'-diaminodiphenyl sulfone / piperazine
(80/20)) 22 parts by weight of copolymer, N-methyl-2-pyrrolidone
A stock solution consisting of 66 parts by weight, 8 parts by weight of triethylene glycol and 4 parts by weight of calcium chloride hexahydrate, and an aqueous solution consisting of 20 parts by weight of N-methyl-2-pyrrolidone and 80 parts by weight of water from the center Was discharged and taken into a coagulation bath containing water as a main component at a rate of 25 m / min through an 8 cm 2 aerial running section to obtain a microporous hollow fiber supporting membrane. After the residual solvent in the hollow fiber membrane was removed to 5 g / kg-dry hollow fiber membrane in the water washing step, the inside of the hot water treatment tank 11 in which the temperature of the microporous hollow fiber support membrane was adjusted to 90 ° C was 1
Ran for minutes. When the hollow fiber membrane immediately before entering the hot water treatment tank 11 was sampled and the strength and elongation were measured, the yield elongation was 4.3% and the yield strength was 47.0 g / piece. The diameter of the rollers in the hot water treatment bath is gradually increasing, and the diameter of the last roller is 102% of the diameter of the first roller. Next, 2 parts by weight of piperazine, 1 part by weight of triethylenediamine,
After passing through an amine impregnation tank 31 containing an aqueous solution containing 0.05 parts by weight of sodium laurylbenzenesulfonate, and further passing through a drying tower 41, excess water on the surface of the microporous hollow fiber membrane is allowed to flow by natural flow and moisture evaporation and drying. The liquid film was removed. Next, a hexane solution containing 1 part by weight of trimesic acid chloride
(51), Fluorinert FC70 (52), and 1% acetic acid aqueous solution (53) were successively contacted, and heat treatment was performed in a drying tower 61 to form a separation active layer composed of cross-linked piperazinamide. Further washing tank
At 71, excess monomers and by-products were removed to obtain a composite hollow fiber membrane. The obtained hollow fiber membrane was sampled 24 times every 1 hour. When the separation performance of the sucrose aqueous solution was evaluated, the average value of the saccharose removal rate was 97.6%, the standard deviation was 0.64, the average value of the water permeability was 233 L / m 2 / day, and the standard deviation was 12.1.

【0035】[0035]

【発明の効果】本発明により、膜性能の再現性・安定性
を高めるとともに、連続処理可能な生産プロセスとする
ことによって効率よく複合中空糸膜を得ることができ
た。
According to the present invention, the composite hollow fiber membrane can be efficiently obtained by improving the reproducibility and stability of the membrane performance and making the production process capable of continuous processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合中空糸膜製造工程の概略フローの
一例を示す。
FIG. 1 shows an example of a schematic flow of a composite hollow fiber membrane production process of the present invention.

【符号の説明】[Explanation of symbols]

1. 微多孔性中空糸支持膜送出ドラム 2. ダンサーローラー 3.ダンサーローラー 4.複合中空糸膜巻取ドラム 11. 熱水処理槽 31. アミン含浸槽 41. 乾燥塔 51. 酸クロライド接触槽 52. フロリナート槽 53. 酢酸槽 61. 乾燥塔 71. 水洗槽 1. Microporous hollow fiber supporting membrane delivery drum 2. Dancer roller 3. Dancer roller 4. Composite hollow fiber membrane winding drum 11. Hot water treatment tank 31. Amine impregnation tank 41. Drying tower 51. Acid chloride contact tank 52 Florinert tank 53. Acetic acid tank 61. Drying tower 71. Rinse tank

フロントページの続き Fターム(参考) 4D006 GA03 GA06 GA13 HA01 MA01 MA06 MC54 MC62 MC72 MC78 NA41 NA62 NA64 NA73 PA04 PB03 PB06 4L033 AC15 BA01 BA28 BA48 BA57 4L045 AA03 BA03 BA27 BA49 BA54 BA60 DA03 DA32 Continued on the front page F term (reference) 4D006 GA03 GA06 GA13 HA01 MA01 MA06 MC54 MC62 MC72 MC78 NA41 NA62 NA64 NA73 PA04 PB03 PB06 4L033 AC15 BA01 BA28 BA48 BA57 4L045 AA03 BA03 BA27 BA49 BA54 BA60 DA03 DA32

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 張力をかけた状態で微多孔性中空糸支持
膜を熱水中に走行させた後、該微多孔性中空糸支持膜の
外表面に分離活性層を形成させることを特徴とする複合
中空糸膜の製造方法。
1. The method according to claim 1, wherein the microporous hollow fiber support membrane is run in hot water under tension, and then a separation active layer is formed on the outer surface of the microporous hollow fiber support membrane. Of producing a composite hollow fiber membrane.
【請求項2】 熱水中に微多孔性中空糸支持膜を導入す
る前に、微多孔性中空糸支持膜に残留している製膜溶媒
を乾燥中空糸膜1kg あたり50g 以下まで除去しておく請
求項1記載の複合中空糸膜の製造方法。
2. Prior to introducing the microporous hollow fiber support membrane into hot water, the membrane forming solvent remaining on the microporous hollow fiber support membrane is removed to 50 g or less per 1 kg of dry hollow fiber membrane. The method for producing a composite hollow fiber membrane according to claim 1.
【請求項3】 熱水中に走行させる微多孔性中空支持膜
にかける張力が、その熱水温度における降伏張力未満で
ある請求項1または2記載の複合中空糸膜の製造方法。
3. The method for producing a composite hollow fiber membrane according to claim 1, wherein the tension applied to the microporous hollow support membrane running in hot water is less than the yield tension at the hot water temperature.
【請求項4】 熱水中に走行させる微多孔性中空糸支持
膜を、その熱水温度における降伏伸度未満で延伸する請
求項1または2記載の複合中空糸膜の製造方法。
4. The method for producing a composite hollow fiber membrane according to claim 1, wherein the microporous hollow fiber supporting membrane run in hot water is stretched at a yield of less than the yield elongation at the hot water temperature.
【請求項5】 微多孔性中空糸支持膜がポリスルホン系
樹脂から形成されたものである請求項1ないし4記載の
複合中空糸膜の製造方法。
5. The method for producing a composite hollow fiber membrane according to claim 1, wherein the microporous hollow fiber support membrane is formed from a polysulfone resin.
【請求項6】 微多孔性中空糸支持膜がポリアミド系樹
脂から形成されたものである請求項1ないし4記載の複
合中空糸膜の製造方法。
6. The method for producing a composite hollow fiber membrane according to claim 1, wherein the microporous hollow fiber support membrane is formed of a polyamide resin.
【請求項7】 多官能アミンと多官能酸ハロゲン化物の
界面重合反応を、分離活性層の形成に利用する請求項1
ないし6記載の複合中空糸膜の製造方法。
7. The method according to claim 1, wherein an interfacial polymerization reaction between the polyfunctional amine and the polyfunctional acid halide is used for forming a separation active layer.
7. The method for producing a composite hollow fiber membrane according to any one of items 6 to 6.
【請求項8】 多官能アミンおよび多官能酸ハロゲン化
物の少なくとも一方の平均官能度が2.05以上である
請求項1ないし7記載の複合中空糸膜の製造方法。
8. The method for producing a composite hollow fiber membrane according to claim 1, wherein the average functionality of at least one of the polyfunctional amine and the polyfunctional acid halide is 2.05 or more.
【請求項9】 多官能アミンがピペラジンまたはピペラ
ジンを含むアミン混合物、多官能酸ハロゲン化物がトリ
メシン酸クロリドまたはトリメシン酸クロリドを含む酸
ハロゲン化物混合物である請求項1ないし8記載の複合
中空糸膜の製造方法。
9. The composite hollow fiber membrane according to claim 1, wherein the polyfunctional amine is piperazine or an amine mixture containing piperazine, and the polyfunctional acid halide is trimesic acid chloride or an acid halide mixture containing trimesic acid chloride. Production method.
【請求項10】 張力をかけた状態で微多孔性中空糸支
持膜を熱水中に走行させることができる熱水処理槽を有
することを特徴とする複合中空糸膜製造装置。
10. A composite hollow fiber membrane production apparatus comprising a hot water treatment tank capable of running a microporous hollow fiber support membrane in hot water under tension.
【請求項11】 請求項1ないし9に記載された製造方
法で得られうる複合中空糸膜。
11. A composite hollow fiber membrane obtainable by the production method according to claim 1.
JP11005562A 1999-01-12 1999-01-12 Production of composite hollow fiber membrane, apparatus therefor and composite hollow fiber membrane Withdrawn JP2000202256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11005562A JP2000202256A (en) 1999-01-12 1999-01-12 Production of composite hollow fiber membrane, apparatus therefor and composite hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11005562A JP2000202256A (en) 1999-01-12 1999-01-12 Production of composite hollow fiber membrane, apparatus therefor and composite hollow fiber membrane

Publications (1)

Publication Number Publication Date
JP2000202256A true JP2000202256A (en) 2000-07-25

Family

ID=11614656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11005562A Withdrawn JP2000202256A (en) 1999-01-12 1999-01-12 Production of composite hollow fiber membrane, apparatus therefor and composite hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2000202256A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447201C (en) * 2006-09-09 2008-12-31 湘潭大学 Nylon 6/inorganic particle/polytrimethylene terephthalate nano composite material and preparation method thereof
JP2011212602A (en) * 2010-03-31 2011-10-27 Toray Ind Inc Separation membrane support body and method for manufacturing the same
CN103492056A (en) * 2011-04-20 2014-01-01 三菱丽阳株式会社 Porous film production method and device
KR101415046B1 (en) 2013-04-03 2014-07-04 주식회사 휴비스 Meta aramid base hollow fiber membrane having improved thermal resistance and water permeability and preparing method of the same
CN105749758A (en) * 2016-03-28 2016-07-13 南京工业大学 Coating and solidifying device and method for preparing lining enhanced hollow fiber composite membrane
CN106310972A (en) * 2016-10-17 2017-01-11 天津膜天膜科技股份有限公司 Hollow fiber nanofiltration membrane and preparation method thereof
CN110935327A (en) * 2019-12-30 2020-03-31 碧菲分离膜(大连)有限公司 Internal pressure formula hollow fiber receives filter membrane production line

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447201C (en) * 2006-09-09 2008-12-31 湘潭大学 Nylon 6/inorganic particle/polytrimethylene terephthalate nano composite material and preparation method thereof
JP2011212602A (en) * 2010-03-31 2011-10-27 Toray Ind Inc Separation membrane support body and method for manufacturing the same
CN103492056A (en) * 2011-04-20 2014-01-01 三菱丽阳株式会社 Porous film production method and device
CN103492056B (en) * 2011-04-20 2016-04-27 三菱丽阳株式会社 The manufacture method of multiple aperture plasma membrane and manufacturing installation
KR101415046B1 (en) 2013-04-03 2014-07-04 주식회사 휴비스 Meta aramid base hollow fiber membrane having improved thermal resistance and water permeability and preparing method of the same
CN105749758A (en) * 2016-03-28 2016-07-13 南京工业大学 Coating and solidifying device and method for preparing lining enhanced hollow fiber composite membrane
CN106310972A (en) * 2016-10-17 2017-01-11 天津膜天膜科技股份有限公司 Hollow fiber nanofiltration membrane and preparation method thereof
CN110935327A (en) * 2019-12-30 2020-03-31 碧菲分离膜(大连)有限公司 Internal pressure formula hollow fiber receives filter membrane production line

Similar Documents

Publication Publication Date Title
JP5978998B2 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for producing composite semipermeable membrane
JP7214858B2 (en) Forward osmosis membrane, forward osmosis membrane module, and manufacturing method thereof
KR20110089254A (en) Composite semipermeable membrane and manufacturing method therefor
KR20140082532A (en) Method for composite membrane module
KR101114668B1 (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
JP3250644B2 (en) Composite hollow fiber membrane and method for producing the same
JP2000202256A (en) Production of composite hollow fiber membrane, apparatus therefor and composite hollow fiber membrane
US20230347298A1 (en) Reverse osmosis membrane and method for manufacturing same
AU2019343597B2 (en) Forward osmosis membrane and membrane module including same
KR102113397B1 (en) Reverse osmosis membrane for osmotic backwashing process and method of manufacturing the same
JP6273982B2 (en) Hollow fiber membrane, method for producing the same, and module using the same
KR100581206B1 (en) Polyvinylidene fluoride Porous Hollow Fiber Membrane and the Manufacturing Process thereof
KR20170047114A (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
JP7403524B2 (en) Composite hollow fiber membrane and method for manufacturing composite hollow fiber membrane
JP3242185B2 (en) Method for producing polyamide-based composite hollow fiber type reverse osmosis membrane
JP2000300972A (en) Manufacture of composite hollow fiber membrane, composite hollow fiber membrane manufacturing device, and composite hollow fiber membrane
KR101653414B1 (en) Method for Manufacturing Polyamide-based Reverse Osmosis Membrane having Antifouling Property
KR101716045B1 (en) Manufacturing method for polyamide watertreatment membranes having properies of high flux and water-treatment membranes manufactured by using the same
KR102212132B1 (en) Separation membrane, composition for active layer of separation membrane, and method for separation membrane
KR102524361B1 (en) Method of manufacturing membrane, membrane and water treatment module
JP3536501B2 (en) Method and apparatus for producing composite semipermeable membrane
Kumano et al. Development and Characterization of a New Composite Nanofiltration Hollow Fiber Membrane
JP2001000843A (en) Composite semipermeable membrane and composite semipermeable membrane module
JP2004034031A (en) Hollow fiber type separation membrane
JPH0866625A (en) Production of composite hollow fiber membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080416