JP2000288747A - Friction welded member - Google Patents
Friction welded memberInfo
- Publication number
- JP2000288747A JP2000288747A JP11102206A JP10220699A JP2000288747A JP 2000288747 A JP2000288747 A JP 2000288747A JP 11102206 A JP11102206 A JP 11102206A JP 10220699 A JP10220699 A JP 10220699A JP 2000288747 A JP2000288747 A JP 2000288747A
- Authority
- JP
- Japan
- Prior art keywords
- friction welding
- cast iron
- spheroidal graphite
- graphite cast
- friction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001141 Ductile iron Inorganic materials 0.000 claims abstract description 102
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 85
- 239000010959 steel Substances 0.000 claims abstract description 85
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 27
- 239000010439 graphite Substances 0.000 claims abstract description 27
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 25
- 238000009864 tensile test Methods 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims description 150
- 238000003466 welding Methods 0.000 claims description 136
- 238000005304 joining Methods 0.000 claims description 28
- 238000001816 cooling Methods 0.000 abstract description 41
- 239000011159 matrix material Substances 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 description 47
- 229910000975 Carbon steel Inorganic materials 0.000 description 21
- 239000010962 carbon steel Substances 0.000 description 21
- 230000006698 induction Effects 0.000 description 19
- 238000000034 method Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 238000005266 casting Methods 0.000 description 7
- 229910001562 pearlite Inorganic materials 0.000 description 7
- 238000005242 forging Methods 0.000 description 6
- 238000001000 micrograph Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、摩擦圧接部材に関
し、より詳しくは、鋼材と球状黒鉛鋳鉄を摩擦圧接で接
合する摩擦圧接部材に関する。The present invention relates to a friction welding member, and more particularly, to a friction welding member for joining a steel material and a spheroidal graphite cast iron by friction welding.
【0002】[0002]
【従来の技術】例えばトラックなどの構成部品であるロ
アアーム、トルクロッドなどは、棒状またはパイプ状の
軸部に、コ字状やU字状の他部材との連結部を設けた構
造を有しており、一般に鍛造法により軸部および連結部
を一体で成形している。2. Description of the Related Art For example, a lower arm, a torque rod or the like, which is a component such as a truck, has a structure in which a rod-shaped or pipe-shaped shaft portion is provided with a connection portion with another U-shaped or U-shaped member. Generally, the shaft portion and the connecting portion are integrally formed by forging.
【0003】近年、過積載規制の問題からトラックおよ
びトラック部品の軽量化が求められている。そして、ロ
アアームやトルクロッド、またこのロアアームやトルク
ロッドに形状が類似しているプロペラシャフト、さらに
形状が複雑なアクスルハウジングなどの強度部材におい
ても、軸部を機械構造用炭素鋼などの中空パイプで、連
結部を炭素鋼から鍛造法で炭素鋼鍛鋼品に成形した後、
軸部の端面と連結部の端面同士を摩擦圧接することが行
われてきている。しかし、鍛造法のものは、鍛造成型時
の型抜き性から抜け勾配をつける必要があり、また、複
雑形状の連結部の場合にはこれを成形することは難し
く、その軽量化には限界がある。In recent years, there has been a demand for weight reduction of trucks and truck parts due to the problem of overloading regulations. Also, in the case of strength members such as lower arms and torque rods, propeller shafts similar in shape to these lower arms and torque rods, and axle housings with more complex shapes, the shaft is made of hollow pipes such as carbon steel for mechanical structures. After forming the connecting part from carbon steel to forged carbon steel product by forging method,
Friction welding has been performed between the end surface of the shaft portion and the end surface of the connecting portion. However, the forging method requires a draft angle due to the ease of die removal during forging, and it is difficult to form this in the case of a joint with a complicated shape. is there.
【0004】そこで、軸部を機械構造用炭素鋼などの鋼
材からなる中空パイプで、複雑形状の連結部を前記の炭
素鋼鍛鋼品(比重7.8)に代えて球状黒鉛鋳鉄材(比
重7.1)として鋳造法により作製し、端面同士を摩擦
圧接して強度部材を軽量化、高機能化することが考えら
れる。例えば、特開平4−231183号公報には、自
動車のアクスルハウジングに適用する炭素鋼からなる中
空エンドパイプと球状黒鉛鋳鉄材のハウジング本体との
摩擦圧接方法として、摩擦圧力20〜40MPa、摩擦
時間60〜120秒で摩擦しつつ相対運動させた後、ア
プセット圧力80〜140MPa、アプセット時間6〜
10秒でアプセットする記載がある。この特開平4−2
31183号公報よれば、小さな摩擦圧力と長い摩擦時
間とによって摩擦回転して材料の接合部を中心とする温
度勾配を緩やかにして、接合部の組織にマルテンサイト
およびセメンタイトの析出を防止すると共に黒鉛を接合
部から消失させて良好な状態で溶融させ、また大きなア
プセットと短いアプセット時間とでアプセットするので
材料を大きな強度で接合できるとしている。Therefore, the shaft portion is a hollow pipe made of a steel material such as carbon steel for mechanical structures, and the connecting portion having a complicated shape is replaced with the above-mentioned carbon steel forged steel (specific gravity 7.8) to replace the spheroidal graphite cast iron material (specific gravity 7). It is conceivable that the strength member is made lighter and more functional by friction-welding the end faces with each other by producing by a casting method. For example, Japanese Patent Application Laid-Open No. Hei 4-231183 discloses a method of friction-welding a hollow end pipe made of carbon steel applied to an axle housing of an automobile to a housing body made of spheroidal graphite cast iron, with a friction pressure of 20 to 40 MPa and a friction time of 60 mm. After relative motion while rubbing for ~ 120 seconds, upset pressure 80 ~ 140MPa, upset time 6 ~
There is a description of upsetting in 10 seconds. This Japanese Patent Laid-Open No. 4-2
According to Japanese Patent No. 31183, a frictional rotation is performed by a small friction pressure and a long friction time to moderate a temperature gradient around a joint of a material, thereby preventing precipitation of martensite and cementite in a structure of the joint and graphite. Are melted in a good condition by disappearing from the joint, and the material is joined with a large strength because the upset is performed with a large upset and a short upset time.
【0005】また特許第268033号公報(特開平5
−16605号公報)には、強度部材であるアクスルハ
ウジングの製造方法として、アクスルハウジング本体と
アクスルエンドパイプとを突き合わせて接合するアクス
ルハウジングの製造方法において、アクスルハウジング
本体を球状黒鉛鋳鉄材で形成すると共にアクスルエンド
パイプを炭素鋼で形成し、アクスルハウジング本体の鋳
込みの際にその接合部を急冷してチル化した後アクスル
エンドパイプの接合鋳物部と摩擦圧接する記載がある。
この特許第268033号公報(特開平5−16605
号公報)によれば、アクスルハウジングの接合鋳物部の
組織をセメンタイトとした状態で摩擦圧接し、黒鉛の析
出をなくして黒鉛による摩擦圧接の阻害を防止し、両部
材の接合部を単に直角に切断した状態で突き合わせても
十分な強度で摩擦圧接することができるとしている。ま
た、この特許第268033号公報(特開平5−166
05号公報)の段落番号0011には、アクスルハウジ
ング本体とアクスルエンドパイプの接合鋳物部の一方を
凸状のテーパ面に、他方をこの凸状のテーパ面と同一の
凹状のテーパ面に形成して両接合面の面積を増大させる
ことにより、さらに十分な強度で摩擦圧接することがで
きるとの記載がある。[0005] Japanese Patent No. 268033 (Japanese Unexamined Patent Application Publication No.
Japanese Patent Application Laid-Open No. 16605) discloses a method of manufacturing an axle housing as a strength member, in which an axle housing body is formed of a spheroidal graphite cast iron material. In addition, there is a description that an axle end pipe is formed of carbon steel, and when the axle housing main body is cast, a joint thereof is rapidly cooled and chilled and then frictionally welded to a joint casting of the axle end pipe.
Japanese Patent No. 268033 (JP-A-5-16605)
According to Japanese Patent Application Laid-Open Publication No. H11-157, friction welding is performed in a state where the structure of the joint casting part of the axle housing is cementite, graphite precipitation is prevented, and inhibition of friction welding by graphite is prevented. The company says that it can be friction-welded with sufficient strength even if it is abutted in a cut state. Also, Japanese Patent No. 268033 (JP-A-5-166)
Japanese Patent Publication No. 05-2005), one of the joint castings of the axle housing main body and the axle end pipe is formed with a convex tapered surface, and the other is formed with the same concave tapered surface as the convex tapered surface. It is described that the friction welding can be performed with more sufficient strength by increasing the area of both joining surfaces.
【0006】[0006]
【発明が解決しようとする課題】摩擦圧接は、母材の突
き合わせ面の酸化物などが摩擦工程中に破壊され押し出
されるので、圧接部には炭酸ガスや溶接などの溶融溶接
に見られる気孔や介在物が少なく、また溶融溶接に比べ
て加熱温度が低いので熱影響部が少なく、圧接条件を制
御することで工程を自動化して安定した品質が得られ、
経済性が高いなどの特徴を持っている。In the friction welding, since oxides and the like on the abutting surfaces of the base material are destroyed and extruded during the friction process, pores such as carbon dioxide gas and welds such as welds are formed in the welded portion. Since there are few inclusions and the heating temperature is lower than that of fusion welding, there are few heat affected zones, and by controlling the pressure welding conditions, the process is automated and stable quality is obtained.
It has features such as high economic efficiency.
【0007】しかしながら、炭素鋼など鋼材同士の摩擦
圧接に対しては上記の効果が得られるが、少なくとも一
方が球状黒鉛鋳鉄材の場合には、黒鉛が潤滑作用を行っ
て摩擦発熱が起こり難いこと、あるいは融点が低くて摩
擦圧接の固相面の温度が低いことなどから、鋼材同士の
摩擦圧接に比較してかなり難かしい。However, the above effect can be obtained with respect to friction welding between steel materials such as carbon steel. However, when at least one of the materials is a spheroidal graphite cast iron material, the graphite performs a lubricating action and hardly generates frictional heat. Also, since the melting point is low and the temperature of the solid phase surface of friction welding is low, it is considerably difficult compared with friction welding between steel materials.
【0008】前記特開平4−231183号公報に記載
の、小さな摩擦圧力と長い摩擦時間とで摩擦回転させ、
アプセット圧力、アプセット時間を制御すると、球状黒
鉛鋳鉄材の基地組織が摩擦熱によりパーライト基地など
硬い組織へと再結晶し見かけ上は強度が上がる。しか
し、中実丸棒と中空部を持つパイプのように熱容量差の
大きい部材同士を接合する場合、接合部の引張強さが、
圧接する鋼材または球状黒鉛鋳鉄材の引張強さより低く
なって接合部で破断することがあり、強度部材に適用す
ることは難しい。[0008] The friction rotation with a small friction pressure and a long friction time described in JP-A-4-231183,
When the upset pressure and the upset time are controlled, the matrix structure of the spheroidal graphite cast iron material is recrystallized into a hard structure such as a pearlite matrix by frictional heat, and apparently the strength increases. However, when joining members having a large difference in heat capacity, such as a solid round bar and a pipe having a hollow portion, the tensile strength of the joint is
It may be lower than the tensile strength of the steel material or the spheroidal graphite cast iron material to be pressed, and may be broken at the joint, and it is difficult to apply to a strength member.
【0009】また特許第268033号公報(特開平5
−16605号公報)に記載の、球状黒鉛鋳鉄材のアク
スルハウジング本体を鋳込みの際にその接合部を急冷し
てチル化した後、炭素鋼で形成したアクスルエンドパイ
プと摩擦圧接する製造方法では、アクスルハウジング本
体を鋳込みの際のチル化によって球状黒鉛鋳鉄母材の靭
性を損ないかねない。約700℃で1時間保持する熱処
理でチルを消去することはできるが、この熱処理を行う
と約15〜20%も疲労強度が低下することがあり、強
度部材に適用することは難しい。Also, Japanese Patent No. 268033 (Japanese Patent Laid-Open No.
JP-A-16605) discloses a manufacturing method in which an axle housing body made of a spheroidal graphite cast iron material is chilled by quenching at the time of casting and then frictionally welded to an axle end pipe formed of carbon steel. Chilling of the axle housing body during casting may impair the toughness of the spheroidal graphite cast iron base material. Chill can be eliminated by a heat treatment at about 700 ° C. for 1 hour, but if this heat treatment is performed, the fatigue strength may be reduced by about 15 to 20%, and it is difficult to apply to a strength member.
【0010】また特許第268033号公報(特開平5
−16605号公報)の段落番号0011に記載のよう
に、凸状と凹状のテーパ面同士で接合すると、球状黒鉛
鋳鉄材に存在する黒鉛が、摩擦圧接での摩擦時に潤滑の
役割をして発熱がなかなか進まず、良好な接合を得るた
めには長時間を要する。また、テーパ面同士で接合する
と、縁部の肉厚が著しく薄くなって変形を生じかねな
い。そして、接合部の引張強さが、圧接する鋼材または
球状黒鉛鋳鉄材の引張強さより低くなるおそれがある。[0010] Japanese Patent No. 268033 (Japanese Unexamined Patent Application Publication No.
As described in paragraph No. 0011 of JP-A-16605), when the convex and concave tapered surfaces are joined to each other, the graphite present in the spheroidal graphite cast iron material plays a role of lubrication during friction in friction welding to generate heat. However, it takes a long time to obtain good bonding. In addition, when the tapered surfaces are joined together, the thickness of the edge portions becomes extremely thin, which may cause deformation. Then, the tensile strength of the joint may be lower than the tensile strength of the steel material or the spheroidal graphite cast iron material to be pressed.
【0011】通常、摩擦圧接においては、摩擦発熱の際
の熱バランスを均等にするため、接合される材料の接合
部を同じような形状としている。しかし同じような形状
にできない、すなわち接合材の熱容量が大きく異なる場
合には、接合部は急冷されやすく、高硬度で低靱性とな
りやすい。また球状黒鉛鋳鉄材は鋼材に比べ炭素を多く
含むためマルテンサイトが発生しやすく、同じような形
状であっても熱容量の小さな場合はマルテンサイトが発
生しやすい。このようなことから、鋼材と球状黒鉛鋳鉄
材を摩擦圧接して強度部材とすることは困難であった。Normally, in friction welding, the joints of the materials to be joined have the same shape in order to equalize the heat balance during frictional heating. However, when the shapes cannot be the same, that is, when the heat capacities of the joining materials are largely different, the joined portions are easily cooled, and are likely to have high hardness and low toughness. In addition, spheroidal graphite cast iron material tends to generate martensite because it contains more carbon than steel material, and even in the case of a similar shape, martensite is likely to be generated when the heat capacity is small. For these reasons, it has been difficult to frictionally weld steel and spheroidal graphite cast iron to form a strength member.
【0012】本発明の課題は、鋼材と球状黒鉛鋳鉄を摩
擦圧接で接合する摩擦圧接部材において、接合部の引張
強さが優れ、ロアアーム、プロペラシャフト、トルクロ
ッド、またはアクスルハウジングなどの強度部材に適用
して、軽量化、高機能化できる摩擦圧接部材を得ること
にある。SUMMARY OF THE INVENTION An object of the present invention is to provide a friction welding member for joining steel and spheroidal graphite cast iron by friction welding, which has an excellent tensile strength at a joint and is suitable for a strength member such as a lower arm, a propeller shaft, a torque rod, or an axle housing. An object of the present invention is to provide a friction welding member that can be applied to reduce the weight and enhance the function.
【0013】[0013]
【課題を解決するための手段】本発明者らは、鋼材と球
状黒鉛鋳鉄材を摩擦圧接で接合する摩擦圧接において、
接合部の引張強さを向上するための接合部形状や接合部
の組織などを鋭意研究した。そして、摩擦圧接後の接合
部形状を軸心方向断面視でV状、L状、または、V状と
L状の組み合わせとすると、強固に接合して接合部の引
張強さが向上することを見いだした。ここで接合部と
は、組成または組織が急激に変化する部分をいう。Means for Solving the Problems The present inventors have proposed a friction welding method for joining steel material and spheroidal graphite cast iron material by friction welding.
We studied the joint shape and the structure of the joint to improve the tensile strength of the joint. If the shape of the joint after friction welding is V-shaped, L-shaped, or a combination of V-shaped and L-shaped in a sectional view in the axial direction, it is possible to improve the tensile strength of the joint by firmly joining. I found it. Here, the joint refers to a portion where the composition or the structure changes rapidly.
【0014】また、さらに引張強さを向上するには、球
状黒鉛鋳鉄材の接合部の熱影響によるマルテンサイトを
少なくまたは消去すればよく、摩擦発熱工程中または摩
擦発熱工程後、所定の冷却速度で通過させることで達成
できることを見いだした。そして、鋼材と球状黒鉛鋳鉄
材同士の寸法や体積が異なっても球状黒鉛鋳鉄材のマル
テンサイト発生を抑止し、接合部を挟んで引張試験した
とき、接合部より0.1mm以上離れた位置で破断する
摩擦圧接部材とすることで、ロアアーム、プロペラシャ
フト、トルクロッド、アクスルハウジングなどの強度部
材にも適用できて、軽量化、鋼機能化できることを見い
だし本発明に想到した。Further, in order to further improve the tensile strength, it is only necessary to reduce or eliminate martensite due to the thermal influence of the joint of the spheroidal graphite cast iron, and a predetermined cooling rate during or after the friction heating step. Found that it can be achieved by passing through. And even if the dimensions and the volume of the steel material and the spheroidal graphite cast iron material are different, the martensite generation of the spheroidal graphite cast iron material is suppressed, and when a tensile test is performed across the joint, at a position 0.1 mm or more away from the joint The inventors of the present invention have found that the friction welding member that can be broken can be applied to strength members such as a lower arm, a propeller shaft, a torque rod, and an axle housing, and can be reduced in weight and made functional.
【0015】すなわち、本発明の摩擦圧接部材は、鋼材
と球状黒鉛鋳鉄を摩擦圧接で接合する摩擦圧接部材であ
って、前記接合部を挟んで引張試験したとき、接合部よ
り0.1mm以上離れた位置で破断することを特徴とす
る。That is, the friction welding member of the present invention is a friction welding member for joining steel material and spheroidal graphite cast iron by friction welding. It is characterized in that it breaks at the position where it is bent.
【0016】そして、接合部の形状が、軸心方向断面視
でV状、またはL状、または、V状とL状の組み合わせ
の何れかを有することを特徴とする。[0016] The shape of the joint portion is characterized in that it has one of a V-shape and an L-shape or a combination of the V-shape and the L-shape in a sectional view in the axial center direction.
【0017】また、接合部が、実質的に中空部を有する
ことを特徴とする。Further, the joint portion has a substantially hollow portion.
【0018】そして、球状黒鉛鋳鉄材の熱影響部は、基
地組織が黒鉛を除いたマルテンサイト面積率が10%以
下であり、好ましくは1%以下であることを特徴とす
る。In the heat affected zone of the spheroidal graphite cast iron material, the matrix structure is characterized in that the martensite area ratio excluding graphite is 10% or less, preferably 1% or less.
【0019】そして、摩擦圧接部材がロアアーム、トル
クロッド、プロペラシャフト、アクスルハウジングであ
ることを特徴とする。The friction welding member is a lower arm, a torque rod, a propeller shaft, and an axle housing.
【0020】次に、本発明の摩擦圧接部材での構成の理
由を説明する。(1)接合部を挟んで引張試験したとき、接合部より
0.1mm以上離れた位置で破断 接合部を挟んで引張試験したとき、接合部より0.1m
m以上離れた位置で破断すれば、鋼材または球状黒鉛鋳
鉄材の何れか弱い方の引張強さで強度部材を設計でき
る。例えば、中空部を持つ構造用炭素鋼鋼管(JIS)
STKM13Aと、球状黒鉛鋳鉄材(JIS)FCD4
00同士を摩擦圧接する摩擦圧接部材であれば、構造用
炭素鋼鋼管(JIS)STKM13Aの引張強さは37
0N/mm 2 以上であり、また球状黒鉛鋳鉄(JIS)
FCD400の引張強さは400N/mm2 以上である
ので、弱い方の構造用炭素鋼鋼管(JIS)STKM1
3Aの引張強さをもとに形状設計できる。Next, the configuration of the friction welding member of the present invention will be explained.
Explain why.(1) When a tensile test is performed across the joint,
Break at a distance of 0.1 mm or more 0.1m from the joint when the tensile test is performed across the joint
m or more when broken at a distance of more than
Strength members can be designed with the weaker tensile strength of iron.
You. For example, structural carbon steel pipe with a hollow part (JIS)
STKM13A and spheroidal graphite cast iron (JIS) FCD4
If it is a friction welding member that friction welds 00
Tensile strength of carbon steel pipe (JIS) STKM13A is 37
0N / mm Two And spheroidal graphite cast iron (JIS)
The tensile strength of FCD400 is 400 N / mmTwo Is over
So, the weaker structural carbon steel pipe (JIS) STKM1
The shape can be designed based on the tensile strength of 3A.
【0021】(2)鋼材と球状黒鉛鋳鉄材の接合部の形
状 鋼材と球状黒鉛鋳鉄材の接合部が、軸心方向断面視でV
状であれば、V状の斜面および端面が強固に接合し、ま
た接合面積が増加して接合部の引張強さが向上する。軸
心方向断面視でL状であれば、円筒面および端面が強固
に接合し、また接合面積が増加して接合部の引張強さが
向上する。V状とL状の組み合わせであれば、V状の斜
面、円筒面および端面が強固に接合し、また接合面積が
増加して接合部の引張強さが向上する。ここで、V状
は、単なる突き合わせ摩擦圧接で形成される形状を除く
が、開いたV状、V状の底にRの付いたV状、U状、W
状などの形状を含む。 (2) Shape of Joint of Steel and Spheroidal Graphite Cast Iron
The joint between the steel- like material and the spheroidal graphite cast iron material is V
If the shape is V-shaped, the V-shaped slope and the end surface are firmly joined, and the joining area is increased, so that the tensile strength of the joint is improved. If it is L-shaped when viewed in the axial direction cross section, the cylindrical surface and the end surface are firmly joined, and the joining area is increased, so that the tensile strength of the joint is improved. In the case of the combination of the V shape and the L shape, the V-shaped slope, the cylindrical surface, and the end surface are firmly joined, and the joining area is increased to improve the tensile strength of the joint. Here, the V-shape excludes a shape formed by simple butt friction welding, but is an open V-shape, a V-shape having an R at the bottom of the V-shape, a U-shape, and a W-shape.
Includes shapes such as shapes.
【0022】(3)鋼材または球状黒鉛鋳鉄材の少なく
とも一方が実質的に中空部 JIS(日本工業規格)に規定された中空部を持つ配管
用鋼管、熱伝達用鋼管、構造用鋼管、または特殊用途用
鋼管および合金管などの鋼材で成形すれば、軽量化が図
れ、かつ低コストで製造できる。中空部を持つ鋼材また
は球状黒鉛鋳鉄材を鍛造法、鋳造法、中実材からの機械
加工などによって製造しても、軽量化が図れる。ここで
実質的に中空部とは、鋼材または球状黒鉛鋳鉄材全体が
中空状、両端面部分が中空状、または片側の端面のみが
中空状であることを示す。球状黒鉛鋳鉄材によれば、複
雑形状として他部材との連結部を形成できる。そして、
鋼材と球状黒鉛鋳鉄材との摩擦圧接部材として、軽量
化、高機能化できる。 (3) Less steel or spheroidal graphite cast iron
If one side is formed of a steel material such as a steel pipe for piping, a steel pipe for heat transfer, a steel pipe for structure, or a steel pipe for special use and an alloy pipe having a hollow part substantially defined by JIS (Japanese Industrial Standards) , And can be manufactured at low cost. Even if a steel material having a hollow portion or a spheroidal graphite cast iron material is manufactured by forging, casting, machining from a solid material, etc., the weight can be reduced. Here, the substantially hollow portion indicates that the entire steel material or spheroidal graphite cast iron material is hollow, both end portions are hollow, or only one end surface is hollow. According to the spheroidal graphite cast iron material, a connection portion with another member can be formed as a complicated shape. And
As a friction welding member between steel and spheroidal graphite cast iron, it can be reduced in weight and improved in function.
【0023】(4)球状黒鉛鋳鉄材の熱影響部は、基地
組織の黒鉛を除いたマルテンサイト面積率が10%以
下、好ましくは1%以下 球状黒鉛鋳鉄材の接合部の熱影響部は、基地組織の黒鉛
を除いたマルテンサイト面積率が10%以下、好ましく
は1%以下であれば、接合部を挟んで引張試験したと
き、接合部より0.1mm以上離れた位置で破断するの
で、強度部材に適用できる。 (4) The heat affected zone of the spheroidal graphite cast iron material is
Martensite area ratio excluding graphite in the structure is 10% or less
Bottom, preferably 1% or less The heat-affected zone of the joint of the spheroidal graphite cast iron material has a martensite area ratio excluding graphite of the base structure of 10% or less, preferably 1% or less, with the joint being sandwiched. When subjected to a tensile test, it breaks at a distance of 0.1 mm or more from the joint, so that it can be applied to a strength member.
【0024】(5)摩擦圧接部材がロアアーム、トルク
ロッド、プロペラシャフト、またはアクスルハウジング 鋼材と球状黒鉛鋳鉄材を以上の手段を用いて摩擦圧接し
て、ロアアーム、トルクロッド、プロペラシャフト、ま
たはアクスルハウジングなどの摩擦圧接部材で、特に鋼
材または球状黒鉛鋳鉄材に中空部を形成することにより
軽量化でき、多材質で形成することにより高機能化でき
る。 (5) The friction welding member has a lower arm and a torque
Friction welding of rod, propeller shaft, or axle housing steel to spheroidal graphite cast iron using the above means, friction welding member such as lower arm, torque rod, propeller shaft, or axle housing, especially steel or spheroidal graphite cast iron The weight can be reduced by forming the hollow portion in the material, and the function can be enhanced by forming the material from multiple materials.
【0025】球状黒鉛鋳鉄の場合、摩擦工程後のA1変
態点を通過するときの冷却速度によって組織が決定され
る。A1変態点を含む780℃〜680℃の温度域を
4.0℃/秒より遅い冷却速度で通過させれば、マルテ
ンサイトの発生が少ない。摩擦工程後の冷却速度の制御
は、摩擦圧接装置に組合わされた高周波誘導加熱装置で
容易に行うことができる。In the case of spheroidal graphite cast iron, the microstructure is determined by the cooling rate when passing through the A1 transformation point after the friction step. When passing through the temperature range of 780 ° C. to 680 ° C. including the A1 transformation point at a cooling rate lower than 4.0 ° C./sec, the generation of martensite is small. Control of the cooling rate after the friction step can be easily performed by a high-frequency induction heating device combined with the friction welding device.
【0026】[0026]
【発明の実施の形態】(実施の形態1)図1は、鋼材2
と球状黒鉛鋳鉄材3とを接合させ、その接合部4を軸心
方向断面視でV状に形成した摩擦圧接部材1の片側要部
断面図であり、(a)は摩擦圧接前、(b)は摩擦圧接
後を示す。図1(a)に示すように、鋼材2の圧接前の
接合部は、外径2e、内径2fを持ち、端部2aには断
面が凸状の突起2bを形成している。一方、球状黒鉛鋳
鉄材3の圧接前の接合部は、外径3e、内径3fを持
ち、端部3aの端面3cに断面がV状の溝3bを形成し
ている。突起2bおよび溝3bの形成は、鋼材2、球状
黒鉛鋳鉄材3の何れでもよい。また、外径3e、内径3
fが適切であれば、突起2bを敢えて凸状に形成しなく
てもよい。図6は高周波誘導加熱装置6を設けた摩擦圧
接装置5の要部側面図であり、7は接合部4の外周に間
隙を持って配置した発熱体、8は主軸、9はスライドで
ある。摩擦圧接は次のとおり行う。まず、鋼材2を主軸
8に取り付け、球状黒鉛鋳鉄材3をスライド9に取り付
ける。主軸8を回転させつつスライド9を移動すること
で、凸状の突起2bがV状の溝3bに接触して摩擦発熱
する。そして、凸状の突起2bとV状の溝3bが相互に
埋め合う。摩擦発熱工程に続くアプセット工程でさらに
金属的に結合する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) FIG.
FIG. 6 is a cross-sectional view of a principal part of one side of a friction welding member 1 in which a joint 4 is formed in a V-shape in a sectional view in the axial direction, and FIG. ) Shows the state after friction welding. As shown in FIG. 1 (a), the joined portion of the steel material 2 before the pressure welding has an outer diameter 2e and an inner diameter 2f, and a projection 2b having a convex cross section is formed at the end 2a. On the other hand, the joint portion of the spheroidal graphite cast iron material 3 before the pressure welding has an outer diameter 3e and an inner diameter 3f, and forms a V-shaped groove 3b in the end face 3c of the end 3a. The projection 2b and the groove 3b may be formed of any of the steel material 2 and the spheroidal graphite cast iron material 3. In addition, outer diameter 3e, inner diameter 3
If f is appropriate, the projection 2b does not need to be formed in a convex shape. FIG. 6 is a side view of a main part of the friction welding device 5 provided with the high-frequency induction heating device 6, in which reference numeral 7 denotes a heating element arranged with a gap around the outer periphery of the joint 4, reference numeral 8 denotes a main shaft, and reference numeral 9 denotes a slide. The friction welding is performed as follows. First, the steel 2 is attached to the main shaft 8, and the spheroidal graphite cast iron 3 is attached to the slide 9. By moving the slide 9 while rotating the main shaft 8, the convex protrusion 2b comes into contact with the V-shaped groove 3b to generate frictional heat. Then, the convex protrusion 2b and the V-shaped groove 3b fill each other. Further metallic bonding is performed in an upset process following the friction heating process.
【0027】摩擦発熱後、高周波誘導加熱装置6に通電
して発熱体7を発熱させ、接合部4が780℃〜680
℃の温度域を4.0℃/秒より遅い冷却速度で通過させ
る冷却制御を行う。ここで、冷却条件が整えば敢えて冷
却制御を行わなくても良い。そして摩擦圧接後、摩擦圧
接装置5から圧接部材1を取り外す。After the frictional heating, the high-frequency induction heating device 6 is energized to cause the heating element 7 to generate heat.
Cooling control for passing the temperature range of ° C at a cooling rate lower than 4.0 ° C / sec is performed. Here, if the cooling conditions are prepared, the cooling control need not be performed. After the friction welding, the pressure welding member 1 is removed from the friction welding device 5.
【0028】摩擦圧接と冷却制御により、図1(b)に
示すように、接合部4がV状で接合される。そして、球
状黒鉛鋳鉄材3の接合部4の熱影響部3hは、基地組織
の黒鉛を除いたマルテンサイト面積率が0.1%以下で
ほぼ100%のパーライトとなり、また黒鉛形状に崩れ
はなく、ほぼ球形のままとなる。そして、接合部4を挟
んで引張試験したとき、鋼材2または球状黒鉛鋳鉄材3
の引張強さの何れか弱い方での接合部4より0.1mm
以上離れた位置で破断する。By the friction welding and the cooling control, as shown in FIG. 1B, the joining portion 4 is joined in a V shape. The heat-affected zone 3h of the joint 4 of the spheroidal graphite cast iron material 3 becomes almost 100% pearlite when the martensite area ratio excluding graphite of the base structure is 0.1% or less, and the graphite shape does not collapse. , Remains almost spherical. When the tensile test is performed with the joint 4 interposed therebetween, the steel material 2 or the spheroidal graphite cast iron material 3
0.1 mm from the joint 4 at the weaker one of the tensile strengths
It breaks at a distance more than that.
【0029】(実施の形態2)図2は、鋼材2と球状黒
鉛鋳鉄材3とを接合させ、その接合部4を軸心方向断面
視でL状に形成した摩擦圧接部材1の片側要部断面図で
あり、(a)は摩擦圧接前、(b)は摩擦圧接後を示
す。図2(a)に示すように、鋼材2の圧接前の接合部
は、外径2e、内径2fを持ち、端部2aは切断のまま
端面2cの断面をI状にしている。一方、球状黒鉛鋳鉄
材3の圧接前の接合部は、端面3cと、外径3e、内径
3fを持ち、端部3aは、鋼材2の内径2fに外径3d
を半径方向の隙間3gで遊合させて、断面をL状に形成
している。I状またはL状の形成は、鋼材2、球状黒鉛
鋳鉄材3の何れでもよい。実施の形態2においても、図
5に示す高周波誘導加熱装置6を設けた摩擦圧接装置5
により摩擦圧接を行う。まず、鋼材2を主軸8に取り付
け、球状黒鉛鋳鉄材3をスライド9に取り付ける。主軸
8を回転させつつスライド9を移動することで、鋼材2
の端面2cと球状黒鉛鋳鉄材3の端面3cが接触して摩
擦発熱する。この摩擦発熱の影響を受けて、鋼材2の内
径2fと球状黒鉛鋳鉄材3の段付き外径3dの間隙3g
が埋められる。摩擦発熱工程に続くアプセット工程で、
端面方向および円筒方向がさらに金属的に結合する。(Embodiment 2) FIG. 2 shows an essential part of one side of a friction welding member 1 in which a steel material 2 and a spheroidal graphite cast iron material 3 are joined and a joint 4 is formed in an L-shape in a sectional view in the axial direction. It is sectional drawing, (a) shows before friction welding and (b) shows after friction welding. As shown in FIG. 2 (a), the joined portion of the steel material 2 before the pressure welding has an outer diameter 2e and an inner diameter 2f, and the end 2a has an I-shaped cross section of the end face 2c while being cut. On the other hand, the joint portion of the spheroidal graphite cast iron material 3 before pressure welding has an end face 3c, an outer diameter 3e and an inner diameter 3f, and the end 3a has an outer diameter 3d and an inner diameter 2f of the steel material 2.
Are made to fit together in a radial gap 3g to form an L-shaped cross section. The I-shaped or L-shaped formation may be made of either the steel material 2 or the spheroidal graphite cast iron material 3. Also in the second embodiment, the friction welding device 5 provided with the high-frequency induction heating device 6 shown in FIG.
To perform friction welding. First, the steel 2 is attached to the main shaft 8, and the spheroidal graphite cast iron 3 is attached to the slide 9. By moving the slide 9 while rotating the main shaft 8, the steel 2
And the end face 3c of the spheroidal graphite cast iron material 3 generates frictional heat. Under the influence of the frictional heat, a gap 3 g between the inner diameter 2 f of the steel material 2 and the stepped outer diameter 3 d of the spheroidal graphite cast iron material 3.
Is buried. In the upset process following the friction heating process,
The end face direction and the cylindrical direction are further metallically connected.
【0030】摩擦発熱後、高周波誘導加熱装置6に通電
して発熱体7を発熱させ、接合部4が780℃〜680
℃の温度域を4.0℃/秒より遅い冷却速度で通過させ
る冷却制御を行う。ここで、冷却条件が整えば敢えて冷
却制御を行わなくても良い。そして摩擦圧接後、摩擦圧
接装置5から圧接部材1を取り外す。After the frictional heating, the high-frequency induction heating device 6 is energized to cause the heating element 7 to generate heat.
Cooling control for passing the temperature range of ° C at a cooling rate lower than 4.0 ° C / sec is performed. Here, if the cooling conditions are prepared, the cooling control need not be performed. After the friction welding, the pressure welding member 1 is removed from the friction welding device 5.
【0031】摩擦圧接と冷却制御により、図2(b)に
示すように、接合部4がL状に接合される。そして、球
状黒鉛鋳鉄材3の接合部4の熱影響部3hは、基地組織
の黒鉛を除いたマルテンサイト面積率が0.1%以下で
ほぼ100%のパーライトとなり、また黒鉛形状に崩れ
はなく、ほぼ球形のままとなる。そして、接合部4を挟
んで引張試験したとき、鋼材2または球状黒鉛鋳鉄材3
の引張強さの何れか弱い方での接合部4より0.1mm
以上離れた位置で破断する。By the friction welding and the cooling control, as shown in FIG. 2B, the joining portion 4 is joined in an L shape. The heat-affected zone 3h of the joint 4 of the spheroidal graphite cast iron material 3 becomes almost 100% pearlite when the martensite area ratio excluding graphite of the base structure is 0.1% or less, and the graphite shape does not collapse. , Remains almost spherical. When the tensile test is performed with the joint 4 interposed therebetween, the steel material 2 or the spheroidal graphite cast iron material 3
0.1 mm from the joint 4 at the weaker one of the tensile strengths
It breaks at a distance more than that.
【0032】(実施の形態3)図3は、鋼材2と球状黒
鉛鋳鉄材とを接合させ、その接合部4を軸心方向断面視
でV状とL状を組み合わせた形状とした摩擦圧接部材1
の片側要部断面図であり、(a)は摩擦圧接前、(b)
は摩擦圧接後を示す。図3(a)に示すように、鋼材2
の圧接前の接合部は、外径2e、内径2fを持ち、端部
2aには断面が凸状の突起2bを形成している。一方、
球状黒鉛鋳鉄材3の圧接前の接合部は、外径3e、内径
3fを持ち、端部3aの端面3cにV状の溝3bを形成
するのに加え、端面3cから鋼材2の内径2fに段付き
外径3dを突出させて、半径方向の隙間3gで遊合さ
せ、断面をL状に形成している。突起2bおよび溝3b
の形成は、鋼材2、球状黒鉛鋳鉄材3の何れでもよい。
外径2e、内径2fが適切であれば、突起2bを敢えて
凸状に形成しなくてもよい。L状の形成は、鋼材2、球
状黒鉛鋳鉄材3の何れでもよい。実施の形態3において
も、図5に示す高周波誘導加熱装置6を設けた摩擦圧接
装置5により摩擦圧接を行う。まず、鋼材2を主軸8に
取り付け、球状黒鉛鋳鉄材3をスライド9に取り付け
る。主軸8を回転させつつスライド9を移動すること
で、凸状の突起2cがV状の溝3cに接触して摩擦発熱
する。そして、凸状の突起2cとV状の溝3cが相互に
埋め合う。また、この摩擦発熱の影響を受けて、鋼材2
の内径2fと球状黒鉛鋳鉄材3の段付き外径3dの間隙
3gが埋められる。そして、摩擦発熱工程に続くアプセ
ット工程で、端面方向および円筒方向がさらに金属的に
結合する。(Embodiment 3) FIG. 3 shows a friction welding member in which a steel material 2 and a spheroidal graphite cast iron material are joined, and a joint 4 is formed by combining a V shape and an L shape in a sectional view in the axial direction. 1
3A is a cross-sectional view of a main part of one side of FIG.
Indicates the state after friction welding. As shown in FIG.
Has an outer diameter 2e and an inner diameter 2f, and a projection 2b having a convex cross section is formed at the end 2a. on the other hand,
The joint portion of the spheroidal graphite cast iron material 3 before the pressure welding has an outer diameter 3e and an inner diameter 3f. The stepped outer diameter 3d is made to protrude and fit in the radial gap 3g to form an L-shaped cross section. Projection 2b and groove 3b
May be formed on any of the steel material 2 and the spheroidal graphite cast iron material 3.
If the outer diameter 2e and the inner diameter 2f are appropriate, the projection 2b does not need to be intentionally formed in a convex shape. The L-shaped formation may be made of either the steel material 2 or the spheroidal graphite cast iron material 3. Also in the third embodiment, friction welding is performed by the friction welding device 5 provided with the high-frequency induction heating device 6 shown in FIG. First, the steel 2 is attached to the main shaft 8, and the spheroidal graphite cast iron 3 is attached to the slide 9. By moving the slide 9 while rotating the main shaft 8, the convex protrusion 2c comes into contact with the V-shaped groove 3c to generate frictional heat. Then, the convex protrusion 2c and the V-shaped groove 3c fill each other. Under the influence of the frictional heat, the steel material 2
The gap 3g between the inner diameter 2f and the stepped outer diameter 3d of the spheroidal graphite cast iron material 3 is filled. Then, in the upset process following the friction heating process, the end face direction and the cylindrical direction are further metallically connected.
【0033】摩擦発熱後、高周波誘導加熱装置6に通電
して発熱体7を発熱させ、接合部4が780℃〜680
℃の温度域を4.0℃/秒より遅い冷却速度で通過させ
る冷却制御を行う。ここで、冷却条件が整えば敢えて冷
却制御を行わなくても良い。そして摩擦圧接後、摩擦圧
接装置5から圧接部材1を取り外す。After the frictional heating, the high-frequency induction heating device 6 is energized to cause the heating element 7 to generate heat.
Cooling control for passing the temperature range of ° C at a cooling rate lower than 4.0 ° C / sec is performed. Here, if the cooling conditions are prepared, the cooling control need not be performed. After the friction welding, the pressure welding member 1 is removed from the friction welding device 5.
【0034】摩擦圧接と冷却制御により、図3(b)に
示すように、接合部4がV状とL状に組み合わされた形
状に接合される。そして、球状黒鉛鋳鉄材の接合部4の
熱影響部3hは、黒鉛を除いた基地組織のマルテンサイ
ト面積率が0.1%以下でほぼ100%のパーライトと
なり、また黒鉛形状に崩れはなく、ほぼ球形のままとな
る。そして、接合部4を挟んで引張試験したとき、鋼材
2または球状黒鉛鋳鉄材3の引張強さの何れか弱い方で
の接合部4より0.1mm以上離れた位置で破断する。By the friction welding and the cooling control, as shown in FIG. 3 (b), the joining portion 4 is joined in a shape combining V and L shapes. The heat-affected zone 3h of the joint 4 of the spheroidal graphite cast iron material becomes almost 100% pearlite when the martensite area ratio of the base structure excluding graphite is 0.1% or less, and the graphite shape does not collapse. It remains almost spherical. Then, when a tensile test is performed with the joint 4 interposed therebetween, the joint 4 breaks at a position 0.1 mm or more away from the joint 4 at the weaker of the tensile strengths of the steel material 2 and the spheroidal graphite cast iron material 3.
【0035】[0035]
【実施例】(実施例1)Example (Example 1)
【0036】鋼材として(JIS)STKM13Aで、
外径34.0mm、厚さ2.3mm[引張強さ370N
/mm2 以上、耐力215N/mm2 以上、伸び(12
号試験片縦方向30%以上)]の機械構造用炭素鋼鋼管
を用い、球状黒鉛鋳鉄材として(JIS)FCD400
[引張強さ370N/mm2 以上]で、外径34.0m
m、厚さ5.0mmを用いて、表1に示す圧接部の形状
と摩擦発熱後の冷却速度を種々変更して摩擦圧接を行っ
た。As the steel material, (JIS) STKM13A,
Outer diameter 34.0mm, thickness 2.3mm [tensile strength 370N
/ Mm 2 or more, yield strength 215 N / mm 2 or more, elongation (12
No. 30% or more in the longitudinal direction of the test piece)], and as a spheroidal graphite cast iron material (JIS) FCD400
[Tensile strength of 370 N / mm 2 or more] and outer diameter of 34.0 m
The friction welding was performed by changing the shape of the pressure contact portion shown in Table 1 and the cooling rate after frictional heating in various ways using m and thickness of 5.0 mm.
【0037】 (表1) 接合部 開始 終了 形状 温度 保持時間 保持後から終了までの時間 温度 冷却速度 (℃) (秒) (秒) (℃) (℃/秒) 実施例01 V 800 0 120 600 1.67 実施例02 V 800 0 60 600 3.34 実施例03 L 800 0 200 600 1.00 実施例04 V+L 750 5 15 700 3.33 比較例01 V 800 5 25 600 8.00 比較例02 突合せ 750 0 33 650 3.03 比較例03 突合せ 750 10 10 700 5.00(Table 1) Time from the start to the end of the joining part at the end of the temperature holding time to the end Temperature cooling rate (° C.) (second) (second) (° C.) (° C./second) Example 01 V 800 0 120 600 1.67 Example 02 V 800 0 60 600 3.34 Example 03 L 800 0 200 600 1.00 Example 04 V + L 750 5 15 700 3.33 Comparative Example 01 V 800 5 25 600 8.00 Comparative Example 02 Butt 750 0 33 650 3.03 Comparative Example 03 Butt 750 10 10 700 5.00
【0038】なお、表1で、実施例01は、鋼材と球状
黒鉛鋳鉄材を端面方向で接合して、その接合部を図1に
示す軸心方向断面視でV状とし、摩擦発熱後、800℃
から600℃までを120秒と1.67℃/秒の冷却速
度で冷却している。実施例02は、接合部の形状が実施
例01と同じで、鋼材と球状黒鉛鋳鉄材を端面方向で接
合して、その接合部を図1に示す軸心方向断面視でV状
とし、摩擦発熱後、800℃から600℃までを60秒
と3.34℃/秒の冷却速度で冷却している。実施例0
3は、端面方向および径方向で接合して、その接合部を
図2に示す軸方向断面視でL状とし、摩擦発熱後、80
0℃から600℃までを200秒と1.00℃/秒の冷
却速度で冷却している。実施例04は、端面方向および
径方向で接合して、その接合部を図3に示す軸心方向断
面視でV状とL状を組み合わせた形状とし、摩擦発熱
後、750℃で5秒保持後、700℃まで保持後から1
5秒と3.33℃/秒の冷却速度で冷却している。In Table 1, in Example 01, in Example 01, a steel material and a spheroidal graphite cast iron material were joined in the end face direction, and the joined portion was formed into a V shape in a sectional view in the axial center direction shown in FIG. 800 ° C
To 600 ° C for 120 seconds and a cooling rate of 1.67 ° C / second. In Example 02, the shape of the joining portion was the same as that of Example 01, and the steel material and the spheroidal graphite cast iron material were joined in the end face direction, and the joining portion was V-shaped in the axial center cross-sectional view shown in FIG. After the heat generation, cooling is performed from 800 ° C. to 600 ° C. at a cooling rate of 60 seconds and 3.34 ° C./second. Example 0
3 is joined in the end face direction and the radial direction, and the joined portion is formed into an L shape in an axial cross-sectional view shown in FIG.
Cooling from 0 ° C. to 600 ° C. is performed at a cooling rate of 200 seconds and 1.00 ° C./second. In Example 04, joining was performed in the end face direction and the radial direction, and the joined portion was formed into a shape combining V-shape and L-shape in the axial direction sectional view shown in FIG. Then, after holding to 700 ° C, 1
The cooling is performed at a cooling rate of 5 seconds and a cooling rate of 3.33 ° C./second.
【0039】一方、比較例01は、鋼材と球状黒鉛鋳鉄
材を端面方向で接合して、その接合部を図1に示す軸心
方向断面視でV状とし、摩擦発熱後、800℃で5秒保
持後、600℃まで保持後から25秒と8.00℃/秒
の冷却速度で冷却している。比較例02は、従来の突き
合わせによる摩擦圧接であって、鋼材と球状黒鉛鋳鉄材
を端面方向で接合して、その接合部を軸心方向断面視で
I状とし、摩擦発熱後、750℃から650℃までを3
3秒と3.03℃/秒の冷却速度で冷却している。比較
例03は、従来の突き合わせによる摩擦圧接であって、
鋼材と球状黒鉛鋳鉄材を端面方向で接合して、その接合
部を軸心方向断面視でI状とし、摩擦発熱後、750℃
で10秒保持後、700℃まで保持後から10秒と5.
00℃/秒の冷却速度で冷却している。On the other hand, in Comparative Example 01, a steel material and a spheroidal graphite cast iron material were joined in the end face direction, and the joined portion was formed into a V shape in a sectional view in the axial direction shown in FIG. After the second holding, cooling was performed at a cooling rate of 25 seconds and 8.00 ° C./second from the holding to 600 ° C. Comparative Example 02 is a conventional friction welding by butt welding, in which a steel material and a spheroidal graphite cast iron material are joined in an end face direction, and the joined portion is formed into an I shape in an axial sectional view. Up to 650 ° C
It is cooled at a cooling rate of 3 seconds and 3.03 ° C./second. Comparative Example 03 is friction welding by conventional butting,
A steel material and a spheroidal graphite cast iron material are joined in the end face direction, and the joined portion is formed into an I-shape in a sectional view in the axial direction.
After holding for 10 seconds at 700 ° C., 10 seconds and 5.
Cooling is performed at a cooling rate of 00 ° C./sec.
【0040】表1の実施例01〜04、および比較例0
1〜03について、(1)球状黒鉛鋳鉄材の熱影響部の
マルテンサイト面積率、(2)接合部を挟んだ試験片で
引張試験による引張強さ、また(3)破断部位を調べ
た。その結果を表2に示す。また、実施例01の接合部
の金属組織顕微鏡写真を図4に、実施例03の接合部の
金属組織顕微鏡写真を図5に、比較例01の金属組織顕
微鏡写真を図12に示す。Examples 01 to 04 in Table 1 and Comparative Example 0
With respect to Nos. 1 to 03, (1) the martensite area ratio of the heat-affected zone of the spheroidal graphite cast iron material, (2) the tensile strength by a tensile test using a test piece sandwiching the joint, and (3) the fracture site were examined. Table 2 shows the results. FIG. 4 is a metallographic micrograph of the joint of Example 01, FIG. 5 is a metallographic micrograph of the joint of Example 03, and FIG. 12 is a metallographic micrograph of Comparative Example 01.
【0041】 (表2) マルテンサイト面積率 接合部引張強さ 破断部位 (%) (N/mm2 ) 実施例01 0.9 420 接合部より5mm離れた(JIS)STKM13A 実施例02 9.2 395 接合部より3mm離れた(JIS)STKM13A 実施例03 0.8 415 接合部より7mm離れた(JIS)STKM13A 実施例04 8.7 400 接合部より3mm離れた(JIS)STKM13A 比較例01 12.0 360 接合部 比較例02 15.5 365 接合部 比較例03 20.0 350 接合部(Table 2) Martensite area ratio joint tensile strength fracture site (%) (N / mm 2 ) Example 01 0.9 420 (JIS) STKM13A 5 mm away from joint Example 02 9.2 395 From joint (JIS) STKM13A Example 3 0.8 415 3mm away from the joint (JIS) STKM13A Example 04 8.7 400 3mm away from the joint (JIS) STKM13A Comparative Example 01 12.0 360 Joint Part Comparative Example 02 15.5 365 Joint Part Comparative Example 03 20.0 350 Joint
【0042】表2から、実施例01〜04は、球状黒鉛
鋳鉄材の熱影響部のマルテンサイト面積率が10%以下
で、破断部の引張強さも確保され、接合部より0.1m
m以上離れた位置の(JIS)STKM13Aの機械構
造用炭素鋼鋼管で破断している。このことから、(JI
S)STKM13Aの機械構造用炭素鋼鋼管の引張強さ
で強度部材が設計できる。As can be seen from Table 2, in Examples 01 to 04, the martensite area ratio of the heat-affected zone of the spheroidal graphite cast iron material was 10% or less, the tensile strength of the fractured portion was secured, and 0.1 m from the joint.
It is broken by a carbon steel pipe for machine structure of (JIS) STKM13A at a position separated by m or more. From this, (JI
S) A strength member can be designed by the tensile strength of the carbon steel pipe for machine structure of STKM13A.
【0043】一方、比較例01〜03は、球状黒鉛鋳鉄
材の熱影響部のマルテンサイト面積率が10%を超え、
接合部の引張強さが(JIS)STKM13Aの機械構
造用炭素鋼鋼管または(JIS)FCD400の球状黒
鉛鋳鉄材のよりも低くなっており、接合部で破断してい
る。これでは、(JIS)STKM13A機械構造用炭
素鋼鋼管または(JIS)FCD400球状黒鉛鋳鉄材
の何れか弱い方の引張強さで、強度部材を設計すること
が難しくなる。On the other hand, in Comparative Examples 01 to 03, the martensite area ratio of the heat-affected zone of the spheroidal graphite cast iron material exceeded 10%,
The tensile strength of the joint is lower than that of the carbon steel pipe for machine structure (JIS) STKM13A or the spheroidal graphite cast iron material of (JIS) FCD400, and the joint breaks. In this case, it becomes difficult to design a strength member with a weaker tensile strength of (JIS) STKM13A carbon steel pipe for machine structural use or (JIS) FCD400 spheroidal graphite cast iron material.
【0044】(実施例2)図8はトラックの構成部品で
あるロアアーム21の摩擦圧接後の側面図であり、鋼材
22の各両端が、球状黒鉛鋳鉄材23A、球状黒鉛鋳鉄
材23Bと摩擦圧接している。そして、鋼材22は(J
IS)STKM13Aで外径34.0mm、厚さ2.3
mm[引張強さ370N/mm2 以上、耐力215N/
mm2 以上、伸び(12号試験片縦方向30%以上)]
の機械構造用炭素鋼鋼管、球状黒鉛鋳鉄材23Aおよび
は球状黒鉛鋳鉄材23B(JIS)FCD400[引張
強さ370N/mm2 以上]からなる。(Embodiment 2) FIG. 8 is a side view of a lower arm 21, which is a component of a truck, after friction welding, in which both ends of a steel material 22 are friction welded with spheroidal graphite cast irons 23A and 23B. are doing. And the steel material 22 is (J
IS) STKM13A, outer diameter 34.0 mm, thickness 2.3
mm [tensile strength 370 N / mm 2 or more, yield strength 215 N /
mm 2 or more, elongation (30% or more in the longitudinal direction of No. 12 test piece)]
Is composed of a carbon steel pipe for mechanical structure, a spheroidal graphite cast iron material 23A and a spheroidal graphite cast iron material 23B (JIS) FCD400 [tensile strength of 370 N / mm 2 or more].
【0045】摩擦圧接前、鋼材22は両端の端面を切断
のままで形成し、球状黒鉛鋳鉄材23Aおよび球状黒鉛
鋳鉄材23Bはその端面を断面がV字状に形成する。鋼
材22と球状黒鉛鋳鉄材23Aとを、図5に示す高周波
誘導加熱装置6と発熱体7を設けた摩擦圧接装置5によ
り摩擦圧接する。摩擦圧接装置5の主軸8に鋼材22
を、スライド9に球状黒鉛鋳鉄材23A取り付け、主軸
8の回転にあわせスライド9を移動させる。そして、摩
擦発熱工程は、摩擦圧力50〜75MPa、摩擦時間1
5〜40秒、摩擦速度1.0〜3.8m/sとして摩擦
発熱させ、その後、アプセット工程は、アプセット圧力
75〜90MPa、アプセット時間5〜10秒でアプセ
ットする。このアプセット工程に移ると同時に、高周波
誘導加熱装置6に通電して発熱体7を発熱させ、接合部
24Aを780℃〜680℃の温度域を4.0℃/秒よ
り遅い冷却速度で通過させる冷却制御を行う。Before the friction welding, the steel material 22 is formed with the end faces of both ends being cut, and the end faces of the spheroidal graphite cast iron material 23A and the spheroidal graphite cast iron material 23B are formed in a V-shaped cross section. The steel material 22 and the spheroidal graphite cast iron material 23A are friction-welded by the friction welding device 5 provided with the high-frequency induction heating device 6 and the heating element 7 shown in FIG. A steel material 22 is attached to the main shaft 8 of the friction welding device 5.
Is attached to the slide 9, and the slide 9 is moved in accordance with the rotation of the main shaft 8. The friction heating step includes a friction pressure of 50 to 75 MPa and a friction time of 1
Heat is generated by friction at a friction speed of 1.0 to 3.8 m / s for 5 to 40 seconds, and then the upset step is performed at an upset pressure of 75 to 90 MPa and an upset time of 5 to 10 seconds. Simultaneously with the upset process, the high-frequency induction heating device 6 is energized to cause the heating element 7 to generate heat and pass through the joint 24A through the temperature range of 780 ° C. to 680 ° C. at a cooling rate lower than 4.0 ° C./sec. Perform cooling control.
【0046】摩擦圧接後、摩擦圧接装置5から取り外す
と、接合部24Aの軸心方向断面がV状に接合される。
そして、球状黒鉛鋳鉄材23Aの接合部24Aの熱影響
部は、基地組織の黒鉛を除いたマルテンサイト面積率が
0.1%以下でほぼ100%のパーライトとなりまた黒
鉛形状に崩れはなく、ほぼ球形のままとなる。After being removed from the friction welding device 5 after the friction welding, the axial section of the joining portion 24A is joined in a V-shape.
Then, the heat-affected zone of the joint 24A of the spheroidal graphite cast iron material 23A becomes almost 100% pearlite when the martensite area ratio excluding the graphite of the base structure is 0.1% or less, and the graphite shape does not collapse. It remains spherical.
【0047】上記と同様に、球状黒鉛鋳鉄材23Aが摩
擦圧接された鋼材22と、球状黒鉛鋳鉄材23Bとを摩
擦圧接することで、接合部24Aおよび24Bの引張強
さが優れ、軽量化、高機能化されたロアアーム21を得
ることができる。Similarly to the above, by friction welding the steel material 22 to which the spheroidal graphite cast iron material 23A has been friction-welded and the spheroidal graphite cast iron material 23B, the joint portions 24A and 24B have excellent tensile strength and light weight. A highly functional lower arm 21 can be obtained.
【0048】(実施例3)図9はトラックの構成部品で
あるトルクロッド31の摩擦圧接後の側面図であり、鋼
材32の各両端が、球状黒鉛鋳鉄材33A、球状黒鉛鋳
鉄33Bと摩擦圧接している。そして、鋼材32は(J
IS)STKM17Cで外径76.3mm、厚さ4.0
mm[引張強さ650N/mm2 以上、耐力480N/
mm2 以上、伸び(12号試験片縦方向10%以上)]
の機械構造用炭素鋼鋼管、球状黒鉛鋳鉄材33Aおよび
33Bは(JIS)FCD700[引張強さ650N/
mm 2 以上]からなる。(Embodiment 3) FIG. 9 shows components of a truck.
FIG. 3 is a side view of a certain torque rod 31 after friction welding.
Each end of the material 32 has a spheroidal graphite cast iron material 33A,
It is in frictional pressure contact with iron 33B. And the steel material 32 is (J
IS) STKM17C, outer diameter 76.3 mm, thickness 4.0
mm [tensile strength 650 N / mmTwo Above, proof stress 480N /
mmTwo Elongation (10% or more in the longitudinal direction of No. 12 test piece)]
Carbon steel pipe for machine structural use, spheroidal graphite cast iron material 33A and
33B is (JIS) FCD700 [tensile strength 650 N /
mm Two Or more].
【0049】摩擦圧接前、鋼材32は両端の端部を切断
のままで形成し、球状黒鉛鋳鉄材33Aおよび球状黒鉛
鋳鉄材33Bはその端部に段付き外径33dを形成し、
鋼材32の内径32dに半径方向で0.2mmの間隙を
形成している。この間隙は、段付き外径33dの直径が
30〜150mmの場合、半径方向で0.04〜0.3
mmから選ぶことができる。なお、接合部の半径方向の
肉厚は、鋼材32が4.0mm、球状黒鉛鋳鉄材33
A、33Bが20mmである。Before the friction welding, the steel material 32 is formed with both ends being cut, and the spheroidal graphite cast iron material 33A and the spheroidal graphite cast iron material 33B form a stepped outer diameter 33d at the ends thereof.
A gap of 0.2 mm is formed in the inner diameter 32d of the steel material 32 in the radial direction. This gap is 0.04 to 0.3 in the radial direction when the stepped outer diameter 33d has a diameter of 30 to 150 mm.
mm. The thickness of the joint in the radial direction was 4.0 mm for the steel material 32, and the spheroidal graphite cast iron material 33.
A and 33B are 20 mm.
【0050】鋼材32と球状黒鉛鋳鉄材33Aとを、図
5に示す高周波誘導加熱装置6と発熱体7を設けた摩擦
圧接装置5により摩擦圧接する。摩擦圧接装置5の主軸
8に鋼材32を、スライド9に球状黒鉛鋳鉄材33A取
り付け、主軸8の回転にあわせスライド9を移動させ
る。そして、摩擦発熱工程は、摩擦圧力50〜75MP
a、摩擦時間15〜40秒、摩擦速度1.0〜3.8m
/sとして摩擦発熱させ、その後、アプセット工程は、
アプセット圧力75〜90MPa、アプセット時間5〜
10秒でアプセットする。このアプセット工程に移ると
同時に、高周波誘導加熱装置により、780℃〜680
℃の温度域を4.0℃/秒より遅い冷却速度で通過させ
る冷却制御を行う。The steel material 32 and the spheroidal graphite cast iron material 33A are friction-welded by a friction welding device 5 provided with a high-frequency induction heating device 6 and a heating element 7 shown in FIG. The steel material 32 is attached to the main shaft 8 of the friction welding device 5 and the spheroidal graphite cast iron material 33A is attached to the slide 9, and the slide 9 is moved in accordance with the rotation of the main shaft 8. Then, the friction heat generation step includes a friction pressure of 50 to 75MP.
a, friction time 15 to 40 seconds, friction speed 1.0 to 3.8 m
/ S to generate frictional heat.
Upset pressure 75 ~ 90MPa, upset time 5 ~
Upset in 10 seconds. At the same time as moving to this upset process, the high-frequency induction heating device is used to perform heating at 780 ° C.
Cooling control for passing the temperature range of ° C at a cooling rate lower than 4.0 ° C / sec is performed.
【0051】摩擦圧接後、摩擦圧接装置5から取り外す
と、接合部34Aの軸心方向断面がL状に接合される。
そして、球状黒鉛鋳鉄材33Aの接合部34Aの熱影響
部は、基地組織の黒鉛を除いたマルテンサイト面積率が
0.1%以下でほぼ100%のパーライトとなりまた黒
鉛形状に崩れはなく、ほぼ球形のままとなる。After being removed from the friction welding device 5 after the friction welding, the axial section of the joining portion 34A is joined in an L-shape.
The heat-affected zone of the joint 34A of the spheroidal graphite cast iron material 33A becomes almost 100% pearlite when the martensite area ratio excluding the graphite of the base structure is 0.1% or less, and the graphite shape is not collapsed. It remains spherical.
【0052】上記と同様に、球状黒鉛鋳鉄材33Aが摩
擦圧接された鋼材32と、球状黒鉛鋳鉄材33Bとを摩
擦圧接することで、接合部34Aおよび34Bの引張強
さが優れ、軽量化、高機能化されたプロペラシャフト3
1を得ることができる。Similarly to the above, by friction welding the steel material 32 to which the spheroidal graphite cast iron material 33A has been friction-welded and the spheroidal graphite cast iron material 33B, the joining parts 34A and 34B have excellent tensile strength and light weight. Highly functional propeller shaft 3
1 can be obtained.
【0053】(実施例4)図10はトラックの構成部品
であるプロペラシャフト41の摩擦圧接後の側面図であ
り、鋼材42Aの各両端が、球状黒鉛鋳鉄材43、鋼材
42Bと摩擦圧接している。そして、鋼材42Aは(J
IS)STKM14B[引張強さ500N/mm2 以
上]の機械構造用炭素鋼鋼管、球状黒鉛鋳鉄材43は
(JIS)FCD700[引張強さ700N/mm2 以
上]、鋼材42Bは(JIS)SFCM690S[引張
強さ690〜830N/mm2 ]のクロムモリブデン鋼
鍛鋼品からなる。(Embodiment 4) FIG. 10 is a side view of a propeller shaft 41 which is a component of a truck after friction welding, in which both ends of a steel material 42A are frictionally welded to a spheroidal graphite cast iron material 43 and a steel material 42B. I have. And the steel material 42A is (J
IS) STKM14B [tensile strength 500 N / mm 2 or more] carbon steel tube for machine structure, spheroidal graphite cast iron 43 (JIS) FCD700 [tensile strength 700 N / mm 2 or more], steel 42B (JIS) SFCM690S [ Chromium molybdenum steel forging having a tensile strength of 690 to 830 N / mm 2 ].
【0054】摩擦圧接前、鋼材42Aは両端の端部を切
断のままで形成し、球状黒鉛鋳鉄材43および鋼材42
Bはその端部に断面がV字状に加え、段付き外径42e
および43dを形成し、鋼材42Aの内径42dと半径
方向に0.04〜0.3mmの隙間を各々形成してい
る。Before the friction welding, the steel material 42A is formed by cutting both ends, and the spheroidal graphite cast iron material 43 and the steel material 42A are formed.
B has a V-shaped cross section at its end and a stepped outer diameter 42e.
And 43d, and a gap of 0.04 to 0.3 mm is formed in the radial direction with the inner diameter 42d of the steel material 42A.
【0055】まず、鋼材42Aと鋼材42Bとの摩擦圧
接を通常の摩擦圧接装置により行う。次に、図5に示す
高周波誘導加熱装置6と発熱体7を組合わした摩擦圧接
装置5を用いて、鋼材42Aと鋼材42Bとを摩擦圧接
したものと、球状黒鉛鋳鉄材43との摩擦圧接を行う。
摩擦圧接装置5の主軸8に鋼材42Aと鋼材42Bとを
摩擦圧接したものを、スライド9に球状黒鉛鋳鉄材43
取り付け、主軸8の回転にあわせスライド9を移動させ
る。そして、摩擦圧力40MPa、摩擦時間30秒、摩
擦速度3m/sとして摩擦発熱させ、その後、アプセッ
ト圧力70MPa、アプセット時間10秒でアプセット
する。このアプセット工程に移ると同時に、高周波誘導
加熱装置6に通電して発熱体7を発熱させ、800℃か
ら600℃までを200秒で冷却制御を行う。First, friction welding between the steel material 42A and the steel material 42B is performed by a normal friction welding device. Next, the friction welding between the steel material 42A and the steel material 42B and the spheroidal graphite cast iron material 43 using the friction welding device 5 combining the high frequency induction heating device 6 and the heating element 7 shown in FIG. I do.
The main shaft 8 of the friction welding device 5 is friction-welded with a steel material 42A and a steel material 42B.
The slide 9 is moved in accordance with the attachment and rotation of the main shaft 8. Then, frictional heat is generated at a friction pressure of 40 MPa, a friction time of 30 seconds, and a friction speed of 3 m / s, and thereafter, an upset is performed at an upset pressure of 70 MPa and an upset time of 10 seconds. Simultaneously with the upset process, the high-frequency induction heating device 6 is energized to generate heat in the heating element 7, and cooling control is performed from 800 ° C. to 600 ° C. in 200 seconds.
【0056】摩擦圧接後、摩擦圧接装置5から取り外す
と、接合部44Aが軸心方向断面視でV状とL状の組み
合わされた形状に接合される。そして、球状黒鉛鋳鉄材
43の接合部44Aの熱影響部は、基地組織の黒鉛を除
いたマルテンサイト面積率が0.1%以下でほぼ100
%のパーライトとなりまた黒鉛形状に崩れはなく、ほぼ
球形のままとなり、接合部44A、44Bの引張強さが
優れ、軽量化、高機能化されたプロペラシャフト41を
得ることができる。After being removed from the friction welding device 5 after the friction welding, the joining portion 44A is joined in a combined shape of a V shape and an L shape in a sectional view in the axial direction. The heat-affected zone of the joint 44A of the spheroidal graphite cast iron material 43 has a martensite area ratio of 0.1% or less excluding graphite of the base structure and is almost 100%.
%, And the graphite shape is not collapsed, remains substantially spherical, and the joint portions 44A and 44B have excellent tensile strength, so that a lightweight and highly functional propeller shaft 41 can be obtained.
【0057】(実施例5)図11はトラックの構成部品
であるアクスルハウジング51の摩擦圧接後の正面図で
あり、球状黒鉛鋳鉄材のアクスルハウジング本体53A
の各両端が、接合部54Aで炭素鋼のパイプ52の片側
で摩擦圧接され、さらに炭素鋼のパイプ52の片側が、
接合部54Bで球状黒鉛鋳鉄材のアクスルエンドパイプ
53Bと摩擦圧接している。なお、図11において、左
端の切断線より左側は、省略しているが、アクスルハウ
ジング本体53Aを中心にして右側と略対象である。(Embodiment 5) FIG. 11 is a front view of an axle housing 51, which is a component of a truck, after friction welding, and shows an axle housing main body 53A made of spheroidal graphite cast iron.
Are friction-welded on one side of the carbon steel pipe 52 at the joint 54A, and one side of the carbon steel pipe 52 is
The joint 54B is friction-welded to the axle end pipe 53B made of spheroidal graphite cast iron. In FIG. 11, the left side of the cutting line at the left end is omitted, but is substantially symmetric with the right side with respect to the axle housing main body 53A.
【0058】摩擦圧接前、パイプ52の両端部は切断の
ままの形状とし、アクスルハウジング本体53Aおよび
アクスルエンドパイプ53Bはその端部を断面がV状に
加え、段付き外径を形成し、パイプ52の内径42dと
半径方向に半径方向で0.04〜0.3mmの隙間を形
成している。Before the friction welding, both ends of the pipe 52 are cut as they are, and the ends of the axle housing main body 53A and the axle end pipe 53B have a V-shaped cross section to form a stepped outer diameter. A gap of 0.04 to 0.3 mm is formed in the radial direction with the inner diameter 42d of 52 in the radial direction.
【0059】まず、図5に示す高周波誘導加熱装置6と
発熱体7を組合わした摩擦圧接装置5を用いて、パイプ
52とアクスルエンドパイプ53Bの摩擦圧接を行う。
摩擦圧接装置5の主軸8にパイプ52を、スライド9に
アクスルエンドパイプ53Bを取り付け、主軸8の回転
にあわせスライド9を移動させる。そして、摩擦圧力4
0MPa、摩擦時間30秒、摩擦速度3m/sとして摩
擦発熱させ、その後、アプセット圧力70MPa、アプ
セット時間10秒でアプセットする。このアプセット工
程に移ると同時に、高周波誘導加熱装置6に通電して発
熱体7を発熱させ、800℃から600℃までを200
秒で冷却制御を行う。First, the friction welding of the pipe 52 and the axle end pipe 53B is performed by using the friction welding device 5 in which the high frequency induction heating device 6 and the heating element 7 shown in FIG. 5 are combined.
A pipe 52 is attached to the main shaft 8 of the friction welding apparatus 5 and an axle end pipe 53B is attached to the slide 9, and the slide 9 is moved in accordance with the rotation of the main shaft 8. And friction pressure 4
Heat is generated by friction at 0 MPa, friction time of 30 seconds and friction speed of 3 m / s, and then upset at an upset pressure of 70 MPa and an upset time of 10 seconds. Simultaneously with the upset process, the high-frequency induction heating device 6 is energized to cause the heating element 7 to generate heat.
Perform cooling control in seconds.
【0060】摩擦圧接後、摩擦圧接装置5から取り外す
と、接合部54Bが軸心方向断面視でV状とL状の組み
合わされた形状に接合される。そして、アクスルエンド
パイプ53Bの接合部54Bは、黒鉛を除いた基地組織
のマルテンサイト面積率が0.1%以下でほぼ100%
のパーライトとなりまた黒鉛形状に崩れはなく、ほぼ球
形のままとなる。When the joint 54B is removed from the friction welding device 5 after the friction welding, the joining portion 54B is joined in a V-shaped and L-shaped combined shape in a sectional view in the axial direction. The joint portion 54B of the axle end pipe 53B has a martensite area ratio of the base structure other than graphite of 0.1% or less and almost 100%.
And the graphite shape does not collapse and remains almost spherical.
【0061】次に、図5に示す高周波誘導加熱装置6と
発熱体7を組合わした摩擦圧接装置5を用いて、パイプ
52とアクスルエンドパイプ53Bを摩擦圧接したもの
と、アクスルハウジング本体53Aとを接合部54Aで
摩擦圧接する。Next, the pipe 52 and the axle end pipe 53B are friction-welded with the axle housing main body 53A using the friction welding apparatus 5 in which the high-frequency induction heating device 6 and the heating element 7 shown in FIG. Are friction-welded at the joint 54A.
【0062】摩擦圧接装置5の主軸8にパイプ52とア
クスルエンドパイプ53Bを摩擦圧接したものを、スラ
イド9にアクスルハウジング本体53Aを取り付け、主
軸8の回転にあわせスライド9を移動させる。そして、
摩擦圧力40MPa、摩擦時間30秒、摩擦速度3m/
sとして摩擦発熱させ、その後、アプセット圧力70M
Pa、アプセット時間10秒でアプセットする。このア
プセット工程に移ると同時に、高周波誘導加熱装置6に
通電して発熱体7を発熱させ、800℃から600℃ま
でを200秒で冷却制御を行う。The main shaft 8 of the friction welding device 5 is frictionally pressed between the pipe 52 and the axle end pipe 53B, and the axle housing main body 53A is attached to the slide 9, and the slide 9 is moved in accordance with the rotation of the main shaft 8. And
Friction pressure 40MPa, friction time 30 seconds, friction speed 3m /
s to generate frictional heat and then upset pressure 70M
Pa is upset at an upset time of 10 seconds. Simultaneously with the upset process, the high-frequency induction heating device 6 is energized to generate heat in the heating element 7, and cooling control is performed from 800 ° C. to 600 ° C. in 200 seconds.
【0063】摩擦圧接後、摩擦圧接装置5から取り外す
と、接合部54Aが軸心方向断面視でV状とL状の組み
合わされた形状に接合される。そして、アクスルハウジ
ング本体53Aの接合部54Aは、黒鉛を除いた基地組
織のマルテンサイト面積率が0.1%以下でほぼ100
%のパーライトとなりまた黒鉛形状に崩れはなく、ほぼ
球形のままとなる。After being removed from the friction welding device 5 after the friction welding, the joining portion 54A is joined in a combined shape of a V shape and an L shape in a sectional view in the axial direction. The joining portion 54A of the axle housing main body 53A has a martensite area ratio of the base structure excluding graphite of 0.1% or less and almost 100%.
% Pearlite, and the graphite shape does not collapse and remains almost spherical.
【0064】反対側のパイプ52とアクスルエンドパイ
プ53Bも、前述と同様にして摩擦圧接する。そして、
反対側の、パイプ52とアクスルエンドパイプ53Bを
摩擦圧接したものと、アクスルハウジング本体53Aと
の摩擦圧接も同様にして行うことで、接合部54A、5
4Bの引張強さが優れ、軽量化、高機能化されたアクス
ルハウジング51を得ることができるができる。The opposite pipe 52 and the axle end pipe 53B are also friction-welded in the same manner as described above. And
Friction welding between the pipe 52 and the axle end pipe 53B on the opposite side and friction welding between the axle housing body 53A and the axle end pipe 53B are performed in the same manner, so that the joining portions 54A,
An axle housing 51 having excellent tensile strength of 4B, light weight, and high functionality can be obtained.
【0065】[0065]
【発明の効果】本発明の摩擦圧接部材は以下の優れた効
果を奏する。 (1)接合部の面積が増加され、またマルテンサイトの
生成を防止した組織の接合部となって、接合部を挟んで
引張試験したとき、接合部より0.1mm以上離れた位
置で破断する。 (2)摩擦圧接前の鋼材または球状黒鉛鋳鉄材の何れか
弱い方の引張強さをもとに強度部材を設計できる。 (3)ロアアーム、プロペラシャフト、トルクロッド、
またはアクスルハウジングなどの強度部材に適用して軽
量化、高機能化が図れる。The friction welding member of the present invention has the following excellent effects. (1) The area of the joint is increased, and the joint becomes a joint where the formation of martensite is prevented. When a tensile test is performed across the joint, the joint breaks at a position 0.1 mm or more away from the joint. . (2) The strength member can be designed based on the weaker tensile strength of the steel material or the spheroidal graphite cast iron material before the friction welding. (3) Lower arm, propeller shaft, torque rod,
Alternatively, the present invention can be applied to a strength member such as an axle housing to achieve weight reduction and high functionality.
【図1】 鋼材と球状黒鉛鋳鉄材が端面方向で接合し、
その接合部が軸心方向断面視でV状に形成した摩擦圧接
部材の片側要部断面図である。Fig. 1 Steel and spheroidal graphite cast iron are joined in the end face direction,
FIG. 5 is a cross-sectional view of a principal part of one side of a friction welding member whose joint is formed in a V-shape in a sectional view in the axial direction.
【図2】 鋼材と球状黒鉛鋳鉄材が端面方向で接合し、
その接合部が方向断面視でL状に形成した摩擦圧接部材
の片側要部断面図である。Fig. 2 Steel and spheroidal graphite cast iron are joined in the end face direction.
FIG. 5 is a cross-sectional view of a main part on one side of a friction welding member whose joint is formed in an L-shape in a direction cross-sectional view.
【図3】 鋼材と球状黒鉛鋳鉄材が端面方向および径方
向で接合し、その接合部が軸心方向断面視でV状および
L状に形成した摩擦圧接部材の片側要部断面図である。FIG. 3 is a cross-sectional view of a principal part of one side of a friction welding member in which a steel material and a spheroidal graphite cast iron material are joined in an end face direction and a radial direction, and the joining portion is formed in a V-shape and an L-shape in a sectional view in the axial direction.
【図4】 実施例1の接合部の金属組織顕微鏡写真であ
る。FIG. 4 is a metallographic micrograph of the joint of Example 1.
【図5】 実施例3の接合部の金属組織顕微鏡写真であ
る。FIG. 5 is a metallographic micrograph of a joint of Example 3.
【図6】 高周波誘導加熱装置を設けた摩擦圧接装置の
側面図である。FIG. 6 is a side view of a friction welding device provided with a high-frequency induction heating device.
【図7】 引張試験に供した試験片の形状を示す図であ
る。FIG. 7 is a view showing the shape of a test piece subjected to a tensile test.
【図8】 摩擦圧接部材の一つであるロアアームの側面
図である。FIG. 8 is a side view of a lower arm which is one of the friction welding members.
【図9】 摩擦圧接部材の一つであるトルクロッドの側
面図である。FIG. 9 is a side view of a torque rod which is one of the friction welding members.
【図10】 摩擦圧接部材の一つであるプロペラシャフ
トの側面図である。FIG. 10 is a side view of a propeller shaft which is one of the friction welding members.
【図11】 摩擦圧接部材の一つであるアクスルハウジ
ングの全体正面図である。FIG. 11 is an overall front view of an axle housing which is one of the friction welding members.
【図12】 比較例1の金属組織顕微鏡写真である。FIG. 12 is a metallographic micrograph of Comparative Example 1.
1:摩擦圧接部材、2:鋼材、2a:端部、2b:突
起、2c:端面、2e:外径、2f:内径、3:球状黒
鉛鋳鉄材、3a:端部、3b:溝、3d:段付き外径、
3h:熱影響部、4:接合部、5:摩擦圧接装置、6:
高周波誘導加熱装置、7:発熱体、8:主軸、9:スラ
イド、10:引張試験片、21:ロアアーム、31:ト
ルクロッド、41:プロペラシャフト、51:アクスル
ハウジング。1: friction welding member, 2: steel material, 2a: end, 2b: projection, 2c: end surface, 2e: outer diameter, 2f: inner diameter, 3: spheroidal graphite cast iron material, 3a: end, 3b: groove, 3d: Stepped outer diameter,
3h: heat affected zone, 4: joint, 5: friction welding device, 6:
High frequency induction heating device, 7: heating element, 8: spindle, 9: slide, 10: tensile test piece, 21: lower arm, 31: torque rod, 41: propeller shaft, 51: axle housing.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 103:06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B23K 103: 06
Claims (11)
る摩擦圧接部材であって、前記接合部を挟んで引張試験
したとき、接合部より0.1mm以上離れた位置で破断
することを特徴とする摩擦圧接部材。1. A friction welding member for joining a steel material and a spheroidal graphite cast iron by friction welding, wherein when subjected to a tensile test across the joint portion, the member breaks at a position 0.1 mm or more away from the joint portion. Friction welding member.
V状を有することを特徴とする請求項1に記載の摩擦圧
接部材。2. The friction welding member according to claim 1, wherein the shape of the joining portion has a V shape in a sectional view in the axial direction.
L状を有することを特徴とする請求項1に記載の摩擦圧
接部材。3. The friction welding member according to claim 1, wherein the shape of the joining portion has an L-shape as viewed in a sectional view in the axial center direction.
V状とL状の組み合わせであることを特徴とする請求項
1に記載の摩擦圧接部材。4. The friction welding member according to claim 1, wherein the shape of the joining portion is a combination of a V shape and an L shape in a sectional view in the axial direction.
とも一方が、実質的に中空部を有することを特徴とする
請求項1乃至請求項4何れか1項に記載の摩擦圧接部
材。5. The friction welding member according to claim 1, wherein at least one of the steel material and the spheroidal graphite cast iron material has a substantially hollow portion.
組織の黒鉛を除いたマルテンサイト面積率が10%以下
であることを特徴とする請求項1乃至請求項5何れか1
項に記載の摩擦圧接部材。6. The heat-affected zone of the spheroidal graphite cast iron material has a martensite area ratio excluding graphite of a base structure of 10% or less.
Item 8. The friction welding member according to Item 1.
1%以下であることを特徴とする請求項6に記載の摩擦
圧接部材。7. The friction welding member according to claim 6, wherein the martensite area ratio is preferably 1% or less.
とを特徴とする請求項1乃至請求項7何れか1項に記載
の摩擦圧接部材。8. The friction welding member according to claim 1, wherein the friction welding member is a lower arm.
ことを特徴とする請求項1乃至請求項7何れか1項に記
載の摩擦圧接部材。9. The friction welding member according to claim 1, wherein the friction welding member is a torque rod.
であることを特徴とする請求項1乃至請求項7何れか1
項に記載の摩擦圧接部材。10. The friction welding member according to claim 1, wherein the friction welding member is a propeller shaft.
Item 8. The friction welding member according to Item 1.
グであることを特徴とする請求項1乃至請求項7何れか
1項に記載の摩擦圧接部材。11. The friction welding member according to claim 1, wherein the friction welding member is an axle housing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11102206A JP2000288747A (en) | 1999-04-09 | 1999-04-09 | Friction welded member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11102206A JP2000288747A (en) | 1999-04-09 | 1999-04-09 | Friction welded member |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000288747A true JP2000288747A (en) | 2000-10-17 |
Family
ID=14321201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11102206A Pending JP2000288747A (en) | 1999-04-09 | 1999-04-09 | Friction welded member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000288747A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3445579B2 (en) | 2001-02-02 | 2003-09-08 | 自動車部品工業株式会社 | Bonding structure between dissimilar metal hollow members and bonding method thereof |
JP2007062538A (en) * | 2005-08-31 | 2007-03-15 | Press Kogyo Co Ltd | Welding structure of axle case for vehicle |
KR100762946B1 (en) * | 2006-04-11 | 2007-10-02 | 주식회사 세림테크 | Method for joining the precious metal tip to the center electrode of the spark plug |
DE102006021044A1 (en) * | 2006-05-05 | 2007-11-08 | Gesenkschmiede Schneider Gmbh | Friction welding and friction welded part |
EP2098326A3 (en) * | 2008-03-03 | 2010-12-15 | Universität Duisburg-Essen | Method for producing a metallic component |
JP2012110920A (en) * | 2010-11-24 | 2012-06-14 | Press Kogyo Co Ltd | Method of manufacturing axle case |
JP2014181551A (en) * | 2013-03-21 | 2014-09-29 | Nippon Steel & Sumitomo Metal | Recessed steel pipe joint, joint steel pipe, and joint method of steel pipe |
WO2015172936A1 (en) * | 2014-05-14 | 2015-11-19 | Saf-Holland Gmbh | Steering unit and method for producing a steering unit |
JP2018001244A (en) * | 2016-07-05 | 2018-01-11 | 新日鐵住金株式会社 | Joining method |
CN110525153A (en) * | 2019-08-23 | 2019-12-03 | 福建龙溪轴承(集团)股份有限公司 | The connection method of propulsion rod joint, straight type distance rod and V-type distance rod |
CN110587111A (en) * | 2019-08-26 | 2019-12-20 | 东北大学秦皇岛分校 | V-shaped gradient interface welding-based method |
JP2020066021A (en) * | 2018-10-23 | 2020-04-30 | 日之出水道機器株式会社 | Conjugate |
WO2023176261A1 (en) * | 2022-03-14 | 2023-09-21 | 日立Astemo株式会社 | Propeller shaft manufacturing method and propeller shaft |
-
1999
- 1999-04-09 JP JP11102206A patent/JP2000288747A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3445579B2 (en) | 2001-02-02 | 2003-09-08 | 自動車部品工業株式会社 | Bonding structure between dissimilar metal hollow members and bonding method thereof |
JP2007062538A (en) * | 2005-08-31 | 2007-03-15 | Press Kogyo Co Ltd | Welding structure of axle case for vehicle |
KR100762946B1 (en) * | 2006-04-11 | 2007-10-02 | 주식회사 세림테크 | Method for joining the precious metal tip to the center electrode of the spark plug |
DE102006021044A1 (en) * | 2006-05-05 | 2007-11-08 | Gesenkschmiede Schneider Gmbh | Friction welding and friction welded part |
DE102006021044B4 (en) * | 2006-05-05 | 2014-11-06 | Gesenkschmiede Schneider Gmbh | Friction welding |
EP2098326A3 (en) * | 2008-03-03 | 2010-12-15 | Universität Duisburg-Essen | Method for producing a metallic component |
JP2012110920A (en) * | 2010-11-24 | 2012-06-14 | Press Kogyo Co Ltd | Method of manufacturing axle case |
JP2014181551A (en) * | 2013-03-21 | 2014-09-29 | Nippon Steel & Sumitomo Metal | Recessed steel pipe joint, joint steel pipe, and joint method of steel pipe |
WO2015172936A1 (en) * | 2014-05-14 | 2015-11-19 | Saf-Holland Gmbh | Steering unit and method for producing a steering unit |
US10358007B2 (en) | 2014-05-14 | 2019-07-23 | Saf-Holland Gmbh | Link unit and method for producing a link unit |
JP2018001244A (en) * | 2016-07-05 | 2018-01-11 | 新日鐵住金株式会社 | Joining method |
JP2020066021A (en) * | 2018-10-23 | 2020-04-30 | 日之出水道機器株式会社 | Conjugate |
JP7112733B2 (en) | 2018-10-23 | 2022-08-04 | 日之出水道機器株式会社 | zygote |
CN110525153A (en) * | 2019-08-23 | 2019-12-03 | 福建龙溪轴承(集团)股份有限公司 | The connection method of propulsion rod joint, straight type distance rod and V-type distance rod |
CN110525153B (en) * | 2019-08-23 | 2022-09-16 | 福建龙溪轴承(集团)股份有限公司 | Connection method of thrust rod joint, straight thrust rod and V-shaped thrust rod |
CN110587111A (en) * | 2019-08-26 | 2019-12-20 | 东北大学秦皇岛分校 | V-shaped gradient interface welding-based method |
CN110587111B (en) * | 2019-08-26 | 2021-09-28 | 东北大学秦皇岛分校 | V-shaped gradient interface welding-based method |
WO2023176261A1 (en) * | 2022-03-14 | 2023-09-21 | 日立Astemo株式会社 | Propeller shaft manufacturing method and propeller shaft |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7156282B1 (en) | Titanium-aluminide turbine wheel and shaft assembly, and method for making same | |
JP2000288747A (en) | Friction welded member | |
US20090057287A1 (en) | Method and apparatus related to joining dissimilar metal | |
JP6579596B2 (en) | Low temperature bonding method for metal material and bonded structure | |
Nandan et al. | MIG and CMT brazing of aluminum alloys and steel: A review | |
WO2004105994A1 (en) | Liquid phase diffusion welding method for metallic machine part and metallic machine part | |
CN100494713C (en) | Bearing units joined by brazing or soldering | |
JP2002103048A (en) | Spot welding method for high strength steel sheet | |
FR3001738B1 (en) | METHOD FOR MANUFACTURING A COMPONENT OF THE AXLE OF A MOTOR VEHICLE | |
RU2636648C2 (en) | Manufacture method of composite rolls and composite roll | |
JP3187274B2 (en) | High strength drive shaft for power transmission and method of manufacturing the same | |
US20140125024A1 (en) | Tie rod tube assembly and method of forming by magnetic pulse welding | |
JP3395962B2 (en) | Friction joining method for graphite cast iron | |
JP2001025885A (en) | Friction welding member and its manufacture | |
JP2004001087A (en) | Method for friction pressure welding of wheel carriage member and wheel carriage member using the same | |
JP2005271016A (en) | Friction welding method of steel pipe and aluminum alloy hollow member | |
JPS59225806A (en) | A rolling roll with a strong neck part and its manufacturing method | |
JP5086672B2 (en) | Crankshaft and crankshaft manufacturing method | |
JP2000343210A (en) | Double structure tube and its production | |
JP2005271015A (en) | Friction welding method of steel pipe and aluminum alloy hollow member | |
JP2000015462A (en) | Friction welded member, and its manufacture | |
RU2106230C1 (en) | Method for manufacture of soldered telescopic construction | |
Senthil Murugan et al. | Analysis of UNS S31603 ferrous joint made by rotary friction welding | |
JP2838593B2 (en) | Light alloy vehicle wheels | |
JP2003025075A (en) | Friction press-joining method for cast iron and joined part |