JP2000274881A - Liquid receiver-integrated type condenser - Google Patents
Liquid receiver-integrated type condenserInfo
- Publication number
- JP2000274881A JP2000274881A JP11078295A JP7829599A JP2000274881A JP 2000274881 A JP2000274881 A JP 2000274881A JP 11078295 A JP11078295 A JP 11078295A JP 7829599 A JP7829599 A JP 7829599A JP 2000274881 A JP2000274881 A JP 2000274881A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- liquid
- receiving tank
- liquid receiving
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/044—Condensers with an integrated receiver
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷媒を凝縮させる
凝縮器、及び凝縮器から流出する冷媒を気相冷媒と液相
冷媒とに分離して液相冷媒を流出する受液器(気液分離
器)が一体となった受液器一体型凝縮器に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser for condensing a refrigerant, and a receiver (gas-liquid) for separating a refrigerant flowing out of the condenser into a gas-phase refrigerant and a liquid-phase refrigerant and discharging the liquid-phase refrigerant. (A separator).
【0002】[0002]
【従来の技術】例えば特開平5−10633号公報に記
載の発明では、水平方向に延びる複数本のチューブから
凝縮器のコア部を構成するとともに、このチューブと平
行に(水平に)延びる受液タンクをコア部と一体化する
こよにより受液器一体型凝縮器を構成している。2. Description of the Related Art For example, in the invention described in Japanese Patent Application Laid-Open No. Hei 5-10633, a condenser core is constituted by a plurality of tubes extending in a horizontal direction, and a liquid receiver extends in parallel (horizontally) with the tubes. By integrating the tank with the core, a condenser integrated with a receiver is constructed.
【0003】[0003]
【発明が解決しようとする課題】ところで、受液器(受
液タンク)内では、気相冷媒と液相冷媒との密度差、換
言すれば気相冷媒に作用する重力と液相冷媒に作用する
重力との差を利用して両冷媒を分離するものである。し
たがって、確実に冷媒を気液分離するには、受液器(受
液タンク)の上下方向寸法を十分に確保して、受液器
(受液タンク)内の上方側に存在する気相冷媒と下方側
に存在する液相冷媒とが冷媒流れにより撹拌されて、再
び気相冷媒と液相冷媒とが混合してしまうことを防止す
る必要がある。In the receiver (liquid receiving tank), the density difference between the gaseous refrigerant and the liquid refrigerant, in other words, the gravity acting on the gaseous refrigerant and the liquid refrigerant acting on the liquid refrigerant. The two refrigerants are separated by utilizing the difference from the gravity of the refrigerant. Therefore, in order to surely separate the refrigerant into gas and liquid, the vertical dimension of the receiver (liquid receiving tank) is sufficiently ensured, and the gas-phase refrigerant existing on the upper side in the receiver (liquid receiving tank) is provided. It is necessary to prevent the gaseous refrigerant and the liquid-phase refrigerant from being mixed again with the liquid-phase refrigerant existing on the lower side and being stirred by the refrigerant flow.
【0004】これに対して、上記公報に記載の発明で
は、受液器(受液タンク)が水平方向に延びるように設
けられているので、上下方向寸法を拡大することが難し
く、受液器(受液タンク)内の冷媒流れにより内部が撹
拌されて、気相冷媒と液相冷媒とを十分に気液分離する
ことができない可能性がある。また、上記公報に記載の
発明において、気相冷媒と液相冷媒とを確実に分離すべ
く、受液器(受液タンク)の上下方向寸法を拡大する
と、これに呼応して受液器一体型凝縮器が大型化してし
まう本発明は、上記点に鑑み、受液器一体型凝縮器が大
型化を抑制しつつ、気相冷媒と液相冷媒とを確実に分離
することを目的とする。On the other hand, in the invention described in the above publication, the liquid receiver (liquid receiving tank) is provided so as to extend in the horizontal direction. There is a possibility that the inside is agitated by the flow of the refrigerant in the (liquid receiving tank) and the gas-phase refrigerant and the liquid-phase refrigerant cannot be sufficiently gas-liquid separated. In the invention described in the above publication, the size of the liquid receiver (liquid receiving tank) in the vertical direction is increased in order to surely separate the gas-phase refrigerant and the liquid-phase refrigerant. In view of the above, the present invention, in which a body condenser is enlarged, has an object to surely separate a gas-phase refrigerant and a liquid-phase refrigerant while suppressing an increase in the size of a receiver-integrated condenser. .
【0005】[0005]
【課題を解決するための手段】本発明は、上記目的を達
成するために、請求項1〜4に記載の発明では、冷媒が
流通するとともに、上下方向に延びる複数本のチューブ
(211)、及びチューブ(211)間に配設されて冷
媒と空気との熱交換を促進する放熱フィン(212)を
有するコア部(213)と、チューブ(211)の長手
方向両端側にてチューブ(211)の長手方向と直交す
る方向に延びるとともに、複数本のチューブ(211)
と連通する第1、2ヘッダタンク(214、215)
と、コア部(213)の端部にてチューブ(211)の
長手方向と平行な方向に延びて、両ヘッダタンク(21
4、215)のうちいずれか一方のヘッダタンクと連通
し、コア部(213)から流出する冷媒を気相冷媒と液
相とに分離して液相冷媒を流出させる受液タンク(22
1)とを備えることを特徴とする。In order to achieve the above object, according to the present invention, a plurality of tubes (211) extending vertically while a refrigerant flows therethrough are provided. And a core portion (213) provided between the tubes (211) and having radiation fins (212) for promoting heat exchange between the refrigerant and the air, and tubes (211) at both longitudinal ends of the tube (211). A plurality of tubes (211) extending in a direction perpendicular to the longitudinal direction of the
First and second header tanks (214, 215) communicating with
And extending in the direction parallel to the longitudinal direction of the tube (211) at the end of the core (213), and
4, 215), a liquid receiving tank (22) that separates the refrigerant flowing out of the core portion (213) into a gaseous refrigerant and a liquid phase and allows the liquid-phase refrigerant to flow out.
1).
【0006】これにより、受液器一体型凝縮器の大型化
を招くことなく、受液タンクを水平方向に延びるように
設けた上記公報に記載の発明に比べて、受液タンク(2
11)の上下方向寸法を拡大することができる。したが
って、本発明に係る受液器一体型凝縮器によれば、受液
器一体型凝縮器の大型化を抑制しつつ、気相冷媒と液相
冷媒とを確実に分離することができる。Accordingly, the liquid receiving tank (2) is provided without increasing the size of the condenser integrated with the liquid receiving tank as compared with the invention described in the above-mentioned publication in which the liquid receiving tank is provided so as to extend in the horizontal direction.
11) The vertical dimension can be enlarged. Therefore, according to the condenser integrated with a receiver according to the present invention, the gas-phase refrigerant and the liquid-phase refrigerant can be surely separated while suppressing an increase in the size of the condenser integrated with the receiver.
【0007】請求項2に記載の発明では、受液タンク
(221)は、受液タンク(221)の上端側にて、両
ヘッダタンク(214、215)のうち上方側に位置す
るヘッダタンク(214)と連通しており、さらに、受
液タンク(211)内には、ヘッダタンク(214)か
ら受液タンク(211)内に流入する冷媒を衝突させて
冷媒を撹拌する撹拌体(222)が設けられていること
を特徴とする。According to the second aspect of the present invention, the liquid receiving tank (221) is located at the upper end of the liquid receiving tank (221) and is located above the header tank (214, 215). The agitator (222) which is in communication with the liquid receiving tank (211), and in which the refrigerant flowing from the header tank (214) into the liquid receiving tank (211) collides and agitates the refrigerant. Is provided.
【0008】これにより、過冷却状態の液相冷媒と気相
冷媒とを撹拌(混合)することができるので、両冷媒を
熱的に均一化して冷媒の凝縮化を促進することができ
る。請求項3に記載の発明では、受液タンク(221)
は、受液タンク(221)の下端側にて、両ヘッダタン
ク(214、215)のうち下方側に位置するヘッダタ
ンク(215)と連通しており、さらに、受液タンク
(211)の冷媒流入口(211a)と冷媒流出口(2
11b)との間には、冷媒流入口(211a)から受液
タンク(211)内に流入した冷媒の流通方向を転向さ
せる転向案内部材(224)が設けられていることを特
徴とする。Accordingly, the liquid-phase refrigerant and the gas-phase refrigerant in a supercooled state can be stirred (mixed), so that both refrigerants can be thermally uniformized, and the condensation of the refrigerant can be promoted. In the invention according to claim 3, the liquid receiving tank (221)
Communicates at the lower end of the liquid receiving tank (221) with the header tank (215) located on the lower side of the two header tanks (214, 215). The inlet (211a) and the refrigerant outlet (2
11b), a turning guide member (224) for turning the flow direction of the refrigerant flowing into the liquid receiving tank (211) from the refrigerant inlet (211a) is provided.
【0009】これにより、受液タンク(211)内に流
入した冷媒が気液分離することなく、冷媒流出口(21
1b)から受液タンク(211)から流出することを防
止できるので、確実に気液分離することができる。請求
項4に記載の発明では、受液タンク(211)から流出
する冷媒を冷却する過冷却器(230)を有し、過冷却
器(230)の冷媒出口(202)とヘッダタンク(2
14)の冷媒入口(201)とは、共にチューブ(21
1)の長手方向一端側に設けられていることを特徴とす
る。As a result, the refrigerant flowing into the liquid receiving tank (211) does not separate into gas and liquid, and the refrigerant outlet (21)
Since it can be prevented from flowing out of the liquid receiving tank (211) from 1b), gas-liquid separation can be reliably performed. According to the fourth aspect of the present invention, there is provided a subcooler (230) for cooling the refrigerant flowing out of the liquid receiving tank (211).
14) is connected to the tube (21)
It is characterized in that it is provided at one end in the longitudinal direction of 1).
【0010】これにより、冷媒出口(202)及び冷媒
入口(201)の両者が同一側に位置することとなるの
で、受液器一体型凝縮器の組み付け性を向上させること
ができる。因みに、上記各手段の括弧内の符号は、後述
する実施形態に記載の具体的手段との対応関係を示す一
例である。Thus, both the refrigerant outlet (202) and the refrigerant inlet (201) are located on the same side, so that the assemblability of the condenser integrated with the receiver can be improved. Incidentally, the reference numerals in parentheses of the above means are examples showing the correspondence with specific means described in the embodiments described later.
【0011】[0011]
【発明の実施の形態】(第1実施形態)図1は本発明の
第1実施形態に係る受液器一体型凝縮器を用いた車両用
冷凍サイクルの模式図であり、100は走行用エンジン
(図示せず)から駆動力を得て冷媒を吸入圧縮する圧縮
機である。DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIG. 1 is a schematic view of a vehicle refrigeration cycle using a receiver-integrated condenser according to a first embodiment of the present invention. This is a compressor that draws a driving force from a compressor (not shown) to suck and compress the refrigerant.
【0012】210は圧縮機100から流出する冷媒を
空気にて冷却して気相冷媒を凝縮させる凝縮器であり、
220は凝縮器210から流出する冷媒を気相冷媒と液
相冷媒とに分離して冷凍サイクル中の余剰冷媒を蓄える
とともに、液相冷媒を流出する受液器(レシーバ)であ
る。230は受液器220から流出する液相冷媒を空気
にて冷却し、冷媒の過冷却度(サブクール)を増大させ
る過冷却器(サブクーラ)であり、この過冷却器23
0、受液器220及び凝縮器210が一体となって本実
施形態に係る受液器一体型凝縮器200(一点鎖線で囲
まれたもの)を構成している。なお、受液器一体型凝縮
器200の詳細については、後述する。Reference numeral 210 denotes a condenser for cooling the refrigerant flowing out of the compressor 100 with air and condensing the gas-phase refrigerant.
Reference numeral 220 denotes a receiver that separates the refrigerant flowing out of the condenser 210 into a gas-phase refrigerant and a liquid-phase refrigerant, stores excess refrigerant in the refrigeration cycle, and discharges the liquid-phase refrigerant. Reference numeral 230 denotes a subcooler (subcooler) that cools the liquid refrigerant flowing out of the receiver 220 with air to increase the degree of subcooling of the refrigerant (subcooler).
0, the liquid receiver 220 and the condenser 210 are integrated to constitute a liquid receiver integrated condenser 200 (enclosed by a dashed line) according to the present embodiment. The details of the receiver-integrated condenser 200 will be described later.
【0013】300は過冷却器230(受液器一体型凝
縮器200)から流出する冷媒を減圧する減圧器であ
り、400は減圧器300にて減圧された冷媒を蒸発さ
せる蒸発器である。なお、減圧器300は、蒸発器40
0出口側の冷媒加熱度が所定値となるように減圧度(絞
り抵抗)が調節される温度式膨張弁である。次に、図2
に基づいて受液器一体型凝縮器200について述べる。A decompressor 300 decompresses the refrigerant flowing out of the supercooler 230 (condenser 200 integrated with the receiver), and an evaporator 400 evaporates the refrigerant depressurized by the decompressor 300. The decompressor 300 is provided by the evaporator 40.
This is a temperature-type expansion valve in which the degree of pressure reduction (throttle resistance) is adjusted so that the degree of heating of the refrigerant at the outlet 0 becomes a predetermined value. Next, FIG.
A description will be given of the condenser 200 with the integrated receiver.
【0014】図2は受液器一体型凝縮器200を空気の
流通方向から見た断面図であり、211は冷媒が流通す
るとともに、上下方向(天地方向)に延びる複数本のコ
ンデンサチューブである。212はコンデンサチューブ
211間に配設されて冷媒と空気との熱交換を促進する
波状(コルゲート状)の放熱フィン(以下、フィンと略
す)であり、このフィン212及びコンデンサチューブ
211により凝縮器210のコア部213が構成されて
いる。FIG. 2 is a cross-sectional view of the condenser 200 integrated with the liquid receiver as viewed from the direction of air flow. Reference numeral 211 denotes a plurality of condenser tubes in which the refrigerant flows and extends in the vertical direction (vertical direction). . Reference numeral 212 denotes a corrugated (corrugated) radiation fin (hereinafter, abbreviated as a fin) that is disposed between the condenser tubes 211 to promote heat exchange between the refrigerant and the air. Are configured.
【0015】また、コンデンサチューブ211の長手方
向一端側(本実施形態では、上端側)及び他端側(本実
施形態では、下端側)には、コンデンサチューブ211
の長手方向と直交する方向(水平方向)に延びるととも
に、複数本のコンデンサチューブ211と連通する第
1、2ヘッダタンク214、215が設けられており、
コンデンサチューブ211の長手方向上端側に位置する
第1ヘッダタンク214の内部空間は、セパレータ21
6a、216bにより3つに仕切られている。Further, the condenser tube 211 is provided at one end side (upper end side in this embodiment) and the other end side (lower end side in this embodiment) of the condenser tube 211 in the longitudinal direction.
First and second header tanks 214 and 215 that extend in a direction (horizontal direction) orthogonal to the longitudinal direction of the first tube and that communicate with a plurality of condenser tubes 211 are provided.
The internal space of the first header tank 214 located at the upper end side in the longitudinal direction of the condenser tube 211 is
It is divided into three by 6a and 216b.
【0016】なお、セパレータ216a、216bによ
り形成され第1ヘッダタンク214の3つ空間(以下、
紙面右側から第1空間214a、第2空間214b、第
3空間314cと呼ぶ。)のうち第1、2空間214
a、214bはコンデンサチューブ211と連通してお
り、第3空間214cは、後述するサブクーラチューブ
231と連通している。The first header tank 214 has three spaces (hereinafter, referred to as "spaces") formed by the separators 216a and 216b.
The first space 214a, the second space 214b, and the third space 314c are called from the right side of the paper. ), The first and second spaces 214
a and 214b communicate with the condenser tube 211, and the third space 214c communicates with a subcooler tube 231 described later.
【0017】また、コンデンサチューブ211の長手方
向下端側に位置する第2ヘッダタンク215の内部空間
は、セパレータ217により2つの空間(以下、紙面右
側から第1空間215a、第2空間215bと呼ぶ。)
に仕切られており、第1空間215aはコンデンサチュ
ーブ211と連通しており、第2空間215bは、後述
するサブクーラチューブ231と連通している。。The internal space of the second header tank 215 located at the lower end side in the longitudinal direction of the condenser tube 211 is separated into two spaces by a separator 217 (hereinafter, referred to as a first space 215a and a second space 215b from the right side of the paper). )
The first space 215a is in communication with the condenser tube 211, and the second space 215b is in communication with a subcooler tube 231 described later. .
【0018】221は角パイプ状の受液タンクであり、
この受液タンク211は、コンデンサチューブ211の
長手方向と平行な方向(上下方向)に延びて、その上端
側で第1ヘッダタンク214(第2空間214b)と連
通している。また、受液タンク211内の上方側であっ
て、受液タンク211と第1ヘッダタンク214(第2
空間214b)との連通部より下方側には、第1ヘッダ
タンク214から受液タンク211内に流入する冷媒を
衝突させて冷媒を撹拌する撹拌体222が設けられてお
り、この撹拌体222は、薄板状の金属板に多数個の穴
をプレス成形したもの(パンチメタル)である。そし
て、本実施形態では、この撹拌体222及び受液タンク
211により受液器210が構成されている。Reference numeral 221 denotes a square pipe-shaped liquid receiving tank.
The liquid receiving tank 211 extends in a direction (vertical direction) parallel to the longitudinal direction of the condenser tube 211, and communicates with the first header tank 214 (second space 214b) at the upper end side. The upper side of the liquid receiving tank 211, the liquid receiving tank 211 and the first header tank 214 (second
Below the communication portion with the space 214b), there is provided a stirrer 222 that collides the refrigerant flowing into the liquid receiving tank 211 from the first header tank 214 to stir the refrigerant. It is a thin metal plate obtained by press-forming a large number of holes (punch metal). In the present embodiment, the liquid receiver 210 is configured by the stirring body 222 and the liquid receiving tank 211.
【0019】なお、撹拌体222は、受液タンク211
内に流入する冷媒を衝突させて過冷却状態の液相冷媒と
気相冷媒とを撹拌(混合)することにより、両冷媒を熱
的に均一化して冷媒の凝縮化を促進するものである。2
31は、受液タンク211の下方側端部に形成された冷
媒流出口223から第2ヘッダタンク215(第2空間
215b)内に流入した冷媒を第1ヘッダタンク214
(第3空間214c)に向けて流通させるサブクーラチ
ューブであり、このサブクーラチューブ231もコンデ
ンサチューブ211と同様に上下方向に延びて設けられ
ている。The stirring body 222 is provided with a liquid receiving tank 211.
By stirring (mixing) the liquid-phase refrigerant and the gas-phase refrigerant in a supercooled state by colliding the refrigerant flowing therein, the two refrigerants are thermally homogenized to promote the condensation of the refrigerant. 2
Reference numeral 31 denotes a first header tank 214 for transferring the refrigerant flowing into the second header tank 215 (the second space 215b) from the refrigerant outlet 223 formed at the lower end of the liquid receiving tank 211.
This is a subcooler tube that circulates toward the (third space 214c), and the subcooler tube 231 is provided so as to extend in the vertical direction like the condenser tube 211.
【0020】そして、サブクーラチューブ231、第1
ヘッダタンク214(第3空間214c)及び第2ヘッ
ダタンク215(第2空間215b)並びにサブクーラ
チューブ231間に配設された波状の放熱フィン232
により過冷却器230が構成されている。ところで、第
1ヘッダタンク214の長手方向一端側(コア部213
側)には、圧縮機100の吐出側に接続される冷媒流入
口201及び減圧器300の流入側に接続される冷媒流
出口202が形成されている。Then, the subcooler tube 231, the first
Wavy radiating fins 232 arranged between the header tank 214 (third space 214c) and the second header tank 215 (second space 215b) and the subcooler tube 231
Constitutes a subcooler 230. By the way, one end in the longitudinal direction of the first header tank 214 (the core portion 213)
A refrigerant inlet 201 connected to the discharge side of the compressor 100 and a refrigerant outlet 202 connected to the inflow side of the pressure reducer 300 are formed on the (side) side.
【0021】また、受液タンク221の側面のうち空気
の流通方向と直交する面は、両フィン212、332が
接触しており、受液タンク221、両フィン212、2
32、両チューブ211、231及び両ヘッダタンク2
14、215は、ろう付けにて一体接合されている。次
に、本実施形態の特徴を述べる。The two fins 212 and 332 are in contact with the side surface of the liquid receiving tank 221 perpendicular to the direction of air flow, and the liquid receiving tank 221 and the two fins 212 and
32, both tubes 211, 231 and both header tanks 2
14, 215 are integrally joined by brazing. Next, features of the present embodiment will be described.
【0022】本実施形態によれば、受液タンク211が
コンデンサチューブ211の長手方向と平行な方向(上
下方向)に延びて設けられているので、受液器一体型凝
縮器200の大型化を招くことなく、受液タンクを水平
方向に延びるように設けた上記公報に記載の発明に比べ
て、受液タンク211上下方向寸法を拡大することがで
きる。According to the present embodiment, since the liquid receiving tank 211 is provided so as to extend in the direction (vertical direction) parallel to the longitudinal direction of the condenser tube 211, the size of the condenser 200 can be increased. Without inviting, the vertical dimension of the liquid receiving tank 211 can be increased as compared with the invention described in the above publication in which the liquid receiving tank is provided so as to extend in the horizontal direction.
【0023】したがって、本実施形態に係る受液器一体
型凝縮器200によれば、受液器一体型凝縮器200の
大型化を抑制しつつ、気相冷媒と液相冷媒とを確実に分
離することができる。また、冷媒流入口201及び冷媒
流出口202の両者が、受液器一体型凝縮器200の上
端側に設けられているので、受液器一体凝縮器200に
外部配管(図示せず)を容易に組み付けることができ、
受液器一体凝縮器200の車両への搭載性(組み付け
性)を向上させることができる。Therefore, according to the condenser integrated with the receiver 200 according to the present embodiment, the gas-phase refrigerant and the liquid-phase refrigerant are reliably separated while suppressing the enlargement of the condenser with the integrated receiver 200. can do. Further, since both the refrigerant inlet 201 and the refrigerant outlet 202 are provided on the upper end side of the receiver integrated condenser 200, external piping (not shown) can be easily connected to the receiver integrated condenser 200. Can be assembled to
The mountability (assemblability) of the liquid receiver integrated condenser 200 on the vehicle can be improved.
【0024】ところで、近年、エンジンルームの省スペ
ース化が強く望まれている。このため、凝縮器210や
受液器220とエンジンとが近接してきたため、エンジ
ンからの熱により受液器220が加熱され、冷凍能力が
低下してしまうという問題が、近年、顕著になってき
た。この問題に対して、断熱部材を受液器220とエン
ジンとの間に配設するといった手段が考えられるが、こ
の手段では、部品点数が増加してしまうので、冷凍サイ
クルの製造原価上昇を招くおそれがある。In recent years, there has been a strong demand for space saving in an engine room. For this reason, since the condenser 210 or the liquid receiver 220 and the engine have come close to each other, the problem that the liquid receiver 220 is heated by the heat from the engine and the refrigeration capacity is reduced has been remarkable in recent years. . To solve this problem, a means of disposing a heat insulating member between the liquid receiver 220 and the engine can be considered. However, this means increases the number of parts and increases the manufacturing cost of the refrigeration cycle. There is a risk.
【0025】これに対して、本実施形態では、受液タン
ク221と側面に両フィン212、232が接触してい
るので、受液タンク221を冷却することができ、冷凍
能力が低下してしまうことを防止できる。(第2実施形
態)本実施形態は、図3に示すように、受液タンク21
1の下端側で受液タンク211と第2ヘッダタンク21
5とを連通させるとともに、受液タンク211の冷媒流
入口211aと冷媒流出口211bとの間に、冷媒流出
口221aから受液タンク211内に流入した冷媒の流
通方向を転向させるセパレータ224(転向案内部材)
を設けたものである。On the other hand, in the present embodiment, since both the fins 212 and 232 are in contact with the liquid receiving tank 221 and the side surface, the liquid receiving tank 221 can be cooled, and the refrigerating capacity decreases. Can be prevented. (Second Embodiment) In the present embodiment, as shown in FIG.
The liquid receiving tank 211 and the second header tank 21
5 and a separator 224 (turning) between the refrigerant inlet 211a and the refrigerant outlet 211b of the liquid receiving tank 211 for turning the flow direction of the refrigerant flowing into the liquid receiving tank 211 from the refrigerant outlet 221a. Guide member)
Is provided.
【0026】なお、セパレータ224は、冷媒流出口2
21aから受液タンク211内に流入した冷媒の流通方
向を転向させることにより、受液タンク211内に流入
した冷媒が気液分離することなく、冷媒流出口211b
から受液タンク211(受液器210)から流出するこ
とを防止し、確実に気液分離を図るものである。ところ
で、上述の実施形態では、冷媒流入口201及び冷媒流
出口202受液器一体型凝縮器200の上端側に設けた
が、両者201、202を下端側(第2ヘッダタンク2
15側)に形成してもよい。The separator 224 is connected to the refrigerant outlet 2
By turning the flow direction of the refrigerant flowing into the liquid receiving tank 211 from the liquid receiving tank 211, the refrigerant flowing into the liquid receiving tank 211 does not undergo gas-liquid separation, and the refrigerant outlet 211 b
From the liquid receiving tank 211 (liquid receiver 210). By the way, in the above-described embodiment, the refrigerant inlet 201 and the refrigerant outlet 202 are provided on the upper end side of the receiver-integrated condenser 200, but both 201 and 202 are provided on the lower end side (the second header tank 2).
15).
【0027】また、上述の実施形態では、受液タンク2
11を角パイプ状としたが、丸パイプ状としてもよい。In the above embodiment, the liquid receiving tank 2
Although 11 has a square pipe shape, it may have a round pipe shape.
【図1】冷凍サイクルの模式図である。FIG. 1 is a schematic diagram of a refrigeration cycle.
【図2】第1実施形態に係る受液器一体型凝縮器の断面
図である。FIG. 2 is a cross-sectional view of the condenser integrated with a liquid receiver according to the first embodiment.
【図3】第2実施形態に係る受液器一体型凝縮器の断面
図である。FIG. 3 is a cross-sectional view of a condenser integrated with a receiver according to a second embodiment.
200…受液器一体型凝縮器、210…凝縮器、211
…コンデンサチューブ、212…放熱フィン、213…
コア部、214…第1ヘッダタンク、215…第2ヘッ
ダタンク、220…受液器、221…受液タンク、22
2…撹拌体、230…過冷却器、231…サブクーラチ
ューブ、232…放熱フィン。200: condenser integrated with receiver, 210: condenser, 211
... condenser tube, 212 ... radiation fin, 213 ...
Core part, 214 ... first header tank, 215 ... second header tank, 220 ... liquid receiver, 221 ... liquid receiver tank, 22
2. Stirrer, 230 supercooler, 231 subcooler tube, 232 radiation fins.
Claims (4)
びる複数本のチューブ(211)、及び前記チューブ
(211)間に配設されて冷媒と空気との熱交換を促進
する放熱フィン(212)を有するコア部(213)
と、 前記チューブ(211)の長手方向両端側にて前記チュ
ーブ(211)の長手方向と直交する方向に延びるとと
もに、前記複数本のチューブ(211)と連通する第
1、2ヘッダタンク(214、215)と、 前記コア部(213)の端部にて前記チューブ(21
1)の長手方向と平行な方向に延びて、前記両ヘッダタ
ンク(214、215)のうちいずれか一方のヘッダタ
ンクと連通し、前記コア部(213)から流出する冷媒
を気相冷媒と液相とに分離して液相冷媒を流出させる受
液タンク(221)とを備えることを特徴とする受液器
一体型凝縮器。1. A plurality of tubes (211) vertically extending while a refrigerant flows, and radiation fins (212) disposed between the tubes (211) to promote heat exchange between the refrigerant and air. (213) having a core portion
First and second header tanks (214, 214) extending at both ends in the longitudinal direction of the tube (211) in a direction orthogonal to the longitudinal direction of the tube (211) and communicating with the plurality of tubes (211). 215) and the tube (21) at the end of the core (213).
The refrigerant extending in the direction parallel to the longitudinal direction of 1) communicates with one of the header tanks (214, 215) and flows out of the core portion (213) into gaseous refrigerant and liquid. And a liquid receiving tank (221) for separating the liquid phase refrigerant from the liquid phase.
タンク(221)の上端側にて、前記両ヘッダタンク
(214、215)のうち上方側に位置するヘッダタン
ク(214)と連通しており、 さらに、前記受液タンク(211)内には、前記ヘッダ
タンク(214)から前記受液タンク(211)内に流
入する冷媒を衝突させて冷媒を撹拌する撹拌体(22
2)が設けられていることを特徴とする請求項1に記載
の受液器一体型凝縮器。2. The liquid receiving tank (221) communicates at an upper end side of the liquid receiving tank (221) with a header tank (214) located above the two header tanks (214, 215). Further, in the liquid receiving tank (211), a stirrer (22) that agitates the refrigerant by colliding a refrigerant flowing from the header tank (214) into the liquid receiving tank (211).
2. The condenser integrated with a receiver according to claim 1, wherein 2) is provided.
タンク(221)の下端側にて、前記両ヘッダタンク
(214、215)のうち下方側に位置するヘッダタン
ク(215)と連通しており、 さらに、前記受液タンク(211)の冷媒流入口(21
1a)と冷媒流出口(211b)との間には、前記冷媒
流入口(211a)から前記受液タンク(211)内に
流入した冷媒の流通方向を転向させる転向案内部材(2
24)が設けられていることを特徴とする請求項1に記
載の受液器一体型凝縮器。3. The liquid receiving tank (221) communicates at a lower end side of the liquid receiving tank (221) with a header tank (215) located below the header tanks (214, 215). Further, a refrigerant inlet (21) of the liquid receiving tank (211) is provided.
1a) and a refrigerant outlet (211b), a turning guide member (2) for turning the flow direction of the refrigerant flowing from the refrigerant inlet (211a) into the liquid receiving tank (211).
24. The condenser integrated with a receiver according to claim 1, wherein 24) is provided.
冷媒を冷却する過冷却器(230)を有し、 前記過冷却器(230)の冷媒出口(202)と前記ヘ
ッダタンク(214)の冷媒入口(201)とは、共に
前記チューブ(211)の長手方向一端側に設けられて
いることを特徴とする請求項1ないし3のいずれか1つ
に記載の受液器一体型凝縮器。4. A supercooler (230) for cooling a refrigerant flowing out of the liquid receiving tank (211), wherein a refrigerant outlet (202) of the subcooler (230) and a refrigerant outlet (202) of the header tank (214) are provided. The condenser integrated with a receiver according to any one of claims 1 to 3, wherein both the refrigerant inlet (201) is provided at one longitudinal end of the tube (211).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11078295A JP2000274881A (en) | 1999-03-23 | 1999-03-23 | Liquid receiver-integrated type condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11078295A JP2000274881A (en) | 1999-03-23 | 1999-03-23 | Liquid receiver-integrated type condenser |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000274881A true JP2000274881A (en) | 2000-10-06 |
Family
ID=13657949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11078295A Pending JP2000274881A (en) | 1999-03-23 | 1999-03-23 | Liquid receiver-integrated type condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000274881A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2863041A1 (en) | 2003-11-27 | 2005-06-03 | Valeo Thermique Moteur Sa | VERTICAL CIRCULATION CONDENSER OF REFRIGERATING FLUID, IN PARTICULAR FOR AUTOMOBILE VEHICLE. |
JP2005212538A (en) * | 2004-01-28 | 2005-08-11 | Mitsubishi Heavy Ind Ltd | Condenser for vehicle and air conditioning device for vehicle equipped with the same |
WO2006070923A1 (en) * | 2004-12-28 | 2006-07-06 | Showa Denko K.K. | Heat exchanger |
CN108369043A (en) * | 2015-12-21 | 2018-08-03 | 江森自控科技公司 | Heat exchanger with water tank |
CN114992917A (en) * | 2022-05-19 | 2022-09-02 | 广东工业大学 | With CO 2 Plate-shell type heat exchanger with controllable dryness and supercooling degrees of working medium |
US11441826B2 (en) | 2015-12-21 | 2022-09-13 | Johnson Controls Tyco IP Holdings LLP | Condenser with external subcooler |
-
1999
- 1999-03-23 JP JP11078295A patent/JP2000274881A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2863041A1 (en) | 2003-11-27 | 2005-06-03 | Valeo Thermique Moteur Sa | VERTICAL CIRCULATION CONDENSER OF REFRIGERATING FLUID, IN PARTICULAR FOR AUTOMOBILE VEHICLE. |
JP2005212538A (en) * | 2004-01-28 | 2005-08-11 | Mitsubishi Heavy Ind Ltd | Condenser for vehicle and air conditioning device for vehicle equipped with the same |
WO2006070923A1 (en) * | 2004-12-28 | 2006-07-06 | Showa Denko K.K. | Heat exchanger |
CN108369043A (en) * | 2015-12-21 | 2018-08-03 | 江森自控科技公司 | Heat exchanger with water tank |
US10830510B2 (en) | 2015-12-21 | 2020-11-10 | Johnson Controls Technology Company | Heat exchanger for a vapor compression system |
CN108369043B (en) * | 2015-12-21 | 2021-03-19 | 江森自控科技公司 | Heat exchanger with water tank |
US11441826B2 (en) | 2015-12-21 | 2022-09-13 | Johnson Controls Tyco IP Holdings LLP | Condenser with external subcooler |
CN114992917A (en) * | 2022-05-19 | 2022-09-02 | 广东工业大学 | With CO 2 Plate-shell type heat exchanger with controllable dryness and supercooling degrees of working medium |
CN114992917B (en) * | 2022-05-19 | 2023-08-15 | 广东工业大学 | In the form of CO 2 Plate shell type heat exchanger with controllable dryness and supercooling degree of working medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5875650A (en) | Refrigerant condenser including super-cooling portion | |
US7669437B2 (en) | Heat exchanger module | |
JP3561957B2 (en) | Recipient integrated refrigerant condenser | |
US6470703B2 (en) | Subcooling-type condenser | |
US8534093B2 (en) | Unit for ejector-type refrigeration cycle, and refrigeration cycle device using the same | |
EP1365200A1 (en) | Multistage gas and liquid phase separation condenser | |
CN103162473A (en) | Condenser for vehicle | |
JPH06191262A (en) | Refrigerating device | |
CN103776207A (en) | Condenser for vehicle | |
JP2000274881A (en) | Liquid receiver-integrated type condenser | |
JP4016544B2 (en) | Radiator for supercritical vapor compression refrigeration cycle | |
JP2001174103A (en) | Refrigerant condenser | |
JP2001012823A (en) | Refrigerant condenser | |
JPH09318195A (en) | Laminated evaporator | |
JP2006266570A (en) | Vehicular cooling device | |
JP2000205706A (en) | Refrigerating device | |
WO2017150221A1 (en) | Heat exchanger and air conditioner | |
JP2003207230A (en) | Refrigerating cycle and method of determining volume of receiver of refrigerating cycle | |
JPH11211277A (en) | Subcool system condenser | |
JP4238434B2 (en) | Refrigeration cycle equipment | |
JP2004190955A (en) | Condenser | |
JP4043577B2 (en) | Subcool system capacitor | |
JP3855385B2 (en) | Refrigerating cycle receiver | |
KR100858514B1 (en) | Receiver drier - integrated condenser | |
JP3863217B2 (en) | Stacked evaporator |