JP2000274864A - Method for controlling absorption refrigerator - Google Patents
Method for controlling absorption refrigeratorInfo
- Publication number
- JP2000274864A JP2000274864A JP11075907A JP7590799A JP2000274864A JP 2000274864 A JP2000274864 A JP 2000274864A JP 11075907 A JP11075907 A JP 11075907A JP 7590799 A JP7590799 A JP 7590799A JP 2000274864 A JP2000274864 A JP 2000274864A
- Authority
- JP
- Japan
- Prior art keywords
- brine
- temperature
- flow rate
- cooling water
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷却または加熱し
たブラインを空調負荷などに循環供給して冷暖房などを
行う吸収式冷凍機に係わるものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption type refrigerator for cooling and heating by circulating and supplying cooled or heated brine to an air conditioning load or the like.
【0002】[0002]
【従来の技術】吸収式冷凍機においては、空調負荷など
の熱負荷の大きさを、熱負荷に供給しているブラインの
温度と、熱負荷から戻ってきたブラインの温度との温度
差などから求め、その大きさに基づいて再生器に投入す
る熱量を制御し、再生器における冷媒の蒸発分離量を制
御してその能力を調節している。2. Description of the Related Art In an absorption refrigerator, the magnitude of a heat load such as an air-conditioning load is determined by a temperature difference between a temperature of brine supplied to the heat load and a temperature of brine returned from the heat load. The amount of heat to be supplied to the regenerator is controlled based on the obtained magnitude, and the amount of the refrigerant evaporated and separated in the regenerator is controlled to adjust the capacity.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記従来の吸
収式冷凍機においては、熱負荷が小さい部分負荷の時に
も、ブラインの熱負荷への循環供給量と、吸収器と凝縮
器に供給する冷却水の流量は定格負荷運転の時と同量と
していたため、負荷が小さいときにもブラインや冷却水
を搬送する電力コストの削減が図れないと云った問題点
があり、この点の解決が課題となっていた。However, in the above-mentioned conventional absorption refrigerator, even when the heat load is a small partial load, the amount of brine supplied to the heat load and the amount supplied to the absorber and the condenser are supplied. Since the flow rate of the cooling water was the same as that during the rated load operation, there was a problem that it was not possible to reduce the power cost of transporting brine and cooling water even when the load was small. Had been an issue.
【0004】[0004]
【課題を解決するための手段】本発明は上記従来技術の
課題を解決するための具体的手段として、冷却または加
熱して熱負荷に循環供給するブラインの出入口温度差な
どから熱負荷の大きさを求め、この熱負荷の大きさに基
づいてブラインに対する熱操作量を制御すると共に、ブ
ラインの循環量を制御する吸収式冷凍機において、前記
熱負荷の大きさが定格負荷未満であるときにはブライン
の循環量を熱負荷の定格負荷に対する比率に基づいて先
ず制御し、この循環量で循環しているブラインの出入口
部の温度と、定格運転時のブラインの出入口部の設定温
度とのずれに基づいてブラインの循環量の補正値を求
め、ブラインの循環量を補正するようにした第1の制御
方法と、According to the present invention, as a specific means for solving the above-mentioned problems in the prior art, the magnitude of the heat load is determined based on the difference in temperature between the inlet and outlet of the brine which is cooled or heated and circulated to the heat load. And controlling the amount of thermal operation on the brine based on the magnitude of the heat load, and controlling the amount of brine circulated.In an absorption refrigerator, when the magnitude of the heat load is less than the rated load, First, the amount of circulation is controlled based on the ratio of the heat load to the rated load, and based on the difference between the temperature of the inlet / outlet of the brine circulating at this amount of circulation and the set temperature of the inlet / outlet of the brine during the rated operation. A first control method for obtaining a correction value of the amount of brine circulation and correcting the amount of brine circulation;
【0005】冷却または加熱して熱負荷に循環供給する
ブラインの出入口温度差などから熱負荷の大きさを求
め、この熱負荷の大きさに基づいてブラインに対する熱
操作量を制御すると共に、吸収器と凝縮器に供給する冷
却水の流量を制御する吸収式冷凍機において、前記熱負
荷の大きさが定格負荷未満であるときには冷却水の流量
を熱負荷の定格負荷に対する比率に基づいて先ず制御
し、冷却水をこの流量にしたときのブラインの出入口部
の温度と、定格運転時のブラインの出入口部の設定温度
とのずれに基づいて冷却水の流量の補正値を求め、冷却
水の流量を補正するようにした第2の制御方法と、[0005] The magnitude of the thermal load is determined from the temperature difference between the inlet and the outlet of the brine which is cooled or heated and circulated to the thermal load, and the amount of thermal operation on the brine is controlled based on the magnitude of the thermal load. And in the absorption refrigerator controlling the flow rate of the cooling water supplied to the condenser, when the magnitude of the heat load is less than the rated load, the flow rate of the cooling water is first controlled based on the ratio of the heat load to the rated load. Then, a correction value of the flow rate of the cooling water is obtained based on a difference between the temperature of the inlet / outlet portion of the brine when the cooling water is set at this flow rate and the set temperature of the inlet / outlet portion of the brine during the rated operation, and the flow rate of the cooling water is determined. A second control method for correcting, and
【0006】冷却または加熱して熱負荷に循環供給する
ブラインの出入口温度差などから熱負荷の大きさを求
め、この熱負荷の大きさに基づいてブラインに対する熱
操作量を制御すると共に、ブラインの循環量と、吸収器
と凝縮器に供給する冷却水の流量とを制御する吸収式冷
凍機において、前記熱負荷の大きさが定格負荷未満であ
るときにはブラインおよび冷却水の流量を熱負荷の定格
負荷に対する比率に基づいて先ず制御し、ブラインおよ
び冷却水をこの流量にしたときのブラインの出入口部の
温度と、定格運転時のブラインの出入口部の設定温度と
のずれに基づいてブラインおよび冷却水の流量の補正値
を求め、ブラインおよび冷却水の流量を補正するように
した第3の制御方法と、[0006] The magnitude of the thermal load is determined from the temperature difference between the inlet and outlet of the brine that is cooled or heated and circulated to the thermal load, and the amount of thermal operation on the brine is controlled based on the magnitude of the thermal load. In the absorption refrigerator in which the circulation amount and the flow rate of the cooling water supplied to the absorber and the condenser are controlled, when the magnitude of the heat load is less than the rated load, the flow rates of the brine and the cooling water are adjusted to the rated heat load. First, control is performed based on the ratio to the load, and the brine and the cooling water are set based on the difference between the temperature of the inlet and outlet of the brine when the brine and the cooling water are set to this flow rate and the set temperature of the inlet and outlet of the brine during the rated operation. A third control method for obtaining a correction value of the flow rate of the second and correcting the flow rates of the brine and the cooling water;
【0007】冷却または加熱して熱負荷に循環供給する
ブラインの出入口温度差などから熱負荷の大きさを求
め、この熱負荷の大きさに基づいてブラインに対する熱
操作量を制御する吸収式冷凍機の吸収器と凝縮器とに供
給する冷却水の温度が定格温度未満であるときには冷却
水の流量を冷却水温度毎に定めた燃料消費量比と冷凍能
力比との関係式に基づいて先ず制御し、冷却水をこの流
量にしたときのブラインの出入口部の温度と、定格運転
時のブラインの出入口部の設定温度とのずれに基づいて
冷却水の流量の補正値を求め、冷却水の流量を補正する
ようにした第4の制御方法と、An absorption chiller that determines the magnitude of the thermal load from the difference in temperature between the inlet and outlet of the brine that is cooled or heated and circulates and supplies the thermal load to the thermal load, and that controls the amount of thermal operation on the brine based on the magnitude of the thermal load. When the temperature of the cooling water supplied to the absorber and the condenser is lower than the rated temperature, the flow rate of the cooling water is first controlled based on the relational expression between the fuel consumption ratio and the refrigeration capacity ratio determined for each cooling water temperature. Then, a correction value of the flow rate of the cooling water is obtained based on a difference between the temperature of the inlet / outlet of the brine when the cooling water is set at this flow rate and the set temperature of the inlet / outlet section of the brine during the rated operation. A fourth control method for correcting
【0008】前記第1〜第4何れかの構成の制御方法に
おいて、熱負荷の大きさが、ブラインの出入口温度差
と、ブラインの流量が入力されるカロリーメータによっ
て求められるようにした第4の制御方法と、を提供する
ことにより、前記した従来技術の課題を解決するもので
ある。[0008] In the control method according to any one of the first to fourth configurations, the magnitude of the heat load is obtained by a calorie meter to which the temperature difference between the inlet and the outlet of the brine and the flow rate of the brine are inputted. By providing a control method, the above-mentioned problem of the related art is solved.
【0009】[0009]
【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。図6に例示したものは、図示
しない熱負荷に冷水または温水をブラインとして循環供
給する二重効用吸収式冷凍機であり、冷媒に水を、吸収
液に臭化リチウム(LiBr)水溶液を使用したもので
ある。Embodiments of the present invention will be described below in detail with reference to the drawings. The example illustrated in FIG. 6 is a double-effect absorption refrigerator that circulates cold or hot water as brine to a heat load (not shown), and uses water as a refrigerant and an aqueous solution of lithium bromide (LiBr) as an absorption liquid. Things.
【0010】図において、1は加熱バーナ1Bを備えた
高温再生器、2は低温再生器、3は凝縮器、4は蒸発
器、5は吸収器、6は低温熱交換器、7は高温熱交換
器、8〜11は吸収液管、13は吸収液ポンプ、14〜
18は冷媒管、19は冷媒ポンプ、21は図示しない空
調負荷に循環供給する冷水または温水が流れる冷温水
管、22は冷温水ポンプ、23は冷却水管、24は冷却
水ポンプ、25と26は均圧管、27〜30は開閉弁で
あり、これらの機器はそれぞれ図6に示したように配管
接続されており、この構成自体は従来周知である。In the figure, 1 is a high temperature regenerator provided with a heating burner 1B, 2 is a low temperature regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a low temperature heat exchanger, 7 is a high temperature heat Exchanger, 8-11 are absorption liquid pipes, 13 is absorption liquid pump, 14-
18 is a refrigerant pipe, 19 is a refrigerant pump, 21 is a cold / hot water pipe through which cold or hot water circulates to an air conditioning load (not shown), 22 is a cold / hot water pump, 23 is a cooling water pipe, 24 is a cooling water pump, and 25 and 26 are equalizers. The pressure pipes and 27 to 30 are on-off valves, and these devices are respectively connected by piping as shown in FIG. 6, and the configuration itself is well known in the related art.
【0011】そして、上記構成の二重効用吸収式冷凍機
において、開閉弁27・28・29・30を閉じ、冷却
水ポンプ24を起動して冷却水を流し、加熱バーナ1B
に点火して高温再生器1で稀吸収液を加熱すると、稀吸
収液から蒸発分離した冷媒蒸気と、冷媒蒸気を分離して
吸収液の濃度が高くなった中間吸収液とが得られる。[0011] In the double effect absorption refrigerator having the above structure, the on-off valves 27, 28, 29, and 30 are closed, the cooling water pump 24 is started to flow cooling water, and the heating burner 1B
When the rare absorbing liquid is heated by the high-temperature regenerator 1 and the refrigerant vapor is evaporated and separated from the rare absorbing liquid, an intermediate absorbing liquid in which the refrigerant vapor is separated and the concentration of the absorbing liquid is increased is obtained.
【0012】高温再生器1で生成された高温の冷媒蒸気
は、冷媒管14を通って低温再生器2に入り、高温再生
器1で生成され吸収液管9により高温熱交換器7を経由
して低温再生器2に入った中間吸収液を加熱して放熱凝
縮し、凝縮器3に入る。The high-temperature refrigerant vapor generated by the high-temperature regenerator 1 enters the low-temperature regenerator 2 through the refrigerant pipe 14 and is generated by the high-temperature regenerator 1 and passes through the high-temperature heat exchanger 7 by the absorbing liquid pipe 9. Then, the intermediate absorbing liquid that has entered the low-temperature regenerator 2 is radiated and condensed by heating and enters the condenser 3.
【0013】また、低温再生器2で加熱されて中間吸収
液から蒸発分離した冷媒は凝縮器3へ入り、冷却水管2
3内を流れる水と熱交換して凝縮液化し、冷媒管14か
ら凝縮して供給される冷媒と一緒になって冷媒管16を
通って蒸発器4に入る。The refrigerant heated in the low-temperature regenerator 2 and evaporated and separated from the intermediate absorbing liquid enters the condenser 3 and enters the cooling water pipe 2.
The refrigerant flows into the evaporator 4 through the refrigerant pipe 16 together with the refrigerant condensed and supplied from the refrigerant pipe 14 by exchanging heat with the water flowing in the inside 3.
【0014】蒸発器4に入って冷媒液溜りに溜まった冷
媒液は、冷温水管21に接続された伝熱管21Aの上に
冷媒ポンプ19によって散布され、冷温水管21を介し
て供給される水と熱交換して蒸発し、伝熱管21Aの内
部を流れる水を冷却する。The refrigerant liquid entering the evaporator 4 and stored in the refrigerant liquid reservoir is sprayed by a refrigerant pump 19 onto a heat transfer tube 21 A connected to the cold / hot water pipe 21, and is supplied with water supplied through the cold / hot water pipe 21. The heat exchange evaporates and cools the water flowing inside the heat transfer tube 21A.
【0015】そして、蒸発器4で蒸発した冷媒は吸収器
5に入り、低温再生器2で加熱されて冷媒を蒸発分離
し、吸収液の濃度が一層高まった吸収液、すなわち吸収
液管10により低温熱交換器6を経由して供給され、上
方から散布される濃吸収液に吸収される。The refrigerant evaporated in the evaporator 4 enters the absorber 5 and is heated in the low-temperature regenerator 2 to evaporate and separate the refrigerant. It is supplied through the low-temperature heat exchanger 6 and is absorbed by the concentrated absorbent sprayed from above.
【0016】吸収器5で冷媒を吸収して濃度の薄くなっ
た吸収液、すなわち稀吸収液は吸収液ポンプ13の運転
により、低温熱交換器6・高温熱交換器7を経由して高
温再生器1へ吸収液管8から送られる。The absorption liquid whose concentration has been reduced by absorbing the refrigerant in the absorber 5, that is, the diluted absorption liquid, is regenerated at a high temperature via the low-temperature heat exchanger 6 and the high-temperature heat exchanger 7 by the operation of the absorption liquid pump 13. It is sent from the absorbing liquid tube 8 to the vessel 1.
【0017】上記のように吸収式冷凍機の運転が行われ
ると、蒸発器4の内部に配管された伝熱管21Aにおい
て冷媒の気化熱によって冷却された冷水が、冷温水ポン
プ22の運転により冷温水管21を介して図示しない空
調負荷に循環供給できるので、冷房運転などが行える。When the absorption chiller is operated as described above, the cold water cooled by the heat of vaporization of the refrigerant in the heat transfer pipe 21A piped inside the evaporator 4 is cooled by the operation of the cold / hot water pump 22. Since the air-conditioning load (not shown) can be circulated and supplied through the water pipe 21, a cooling operation or the like can be performed.
【0018】一方、開閉弁27・28・29・30を開
け、冷却水管23に冷却水を流さないで加熱バーナ1B
に点火して高温再生器1で稀吸収液を加熱すると、高温
再生器1で稀吸収液から蒸発した冷媒は主に流路抵抗の
小さい冷媒管14・15を通って吸収器5・蒸発器4に
入り、冷温水管21から供給される水と伝熱管21Aを
介して熱交換して凝縮し、主にこのときの凝縮熱によっ
て伝熱管21Aの内部を流れる水が加熱される。On the other hand, the opening / closing valves 27, 28, 29, and 30 are opened, and the heating burner 1B
When the rare absorbent is heated by the high-temperature regenerator 1 and the refrigerant evaporated from the rare absorbent in the high-temperature regenerator 1, the refrigerant mainly passes through the refrigerant pipes 14 and 15 having a small flow path resistance and the absorber 5 and the evaporator. 4, heat exchange with the water supplied from the cold / hot water pipe 21 via the heat transfer tube 21A is condensed, and the water flowing inside the heat transfer tube 21A is heated mainly by the heat of condensation at this time.
【0019】蒸発器4で加熱作用を行って凝縮した冷媒
は、冷媒管17・18を通って吸収器5に入り、高温再
生器1で冷媒を蒸発分離して吸収液管11から流入する
吸収液と混合され、吸収液ポンプ13の運転によって低
温熱交換器6・高温熱交換器7を経て高温再生器1へ送
られる。The refrigerant condensed by performing the heating action in the evaporator 4 enters the absorber 5 through the refrigerant pipes 17 and 18, evaporates and separates the refrigerant in the high-temperature regenerator 1, and absorbs the refrigerant flowing from the absorption liquid pipe 11. The mixture is mixed with the liquid and sent to the high-temperature regenerator 1 through the low-temperature heat exchanger 6 and the high-temperature heat exchanger 7 by the operation of the absorption liquid pump 13.
【0020】そして、蒸発器4内部の伝熱管21Aで加
熱された温水を冷温水ポンプ22の運転により冷温水管
21を介して図示しない空調負荷に循環供給することに
より、暖房運転などが行なわれる。Then, the hot water heated by the heat transfer tube 21A inside the evaporator 4 is circulated and supplied to the air-conditioning load (not shown) through the cold / hot water pipe 21 by the operation of the cold / hot water pump 22, thereby performing a heating operation and the like.
【0021】なお、冷却水管23内で停滞している冷却
水が吸収器5で加熱されても、均圧管26の開閉弁30
が開弁して圧力の逃げが可能であるので、冷却水管23
の圧力が異常に高くなることはない。It should be noted that even if the cooling water stagnating in the cooling water pipe 23 is heated by the absorber 5, the on-off valve 30
Can be opened to release the pressure.
Pressure does not rise abnormally.
【0022】Cは、上記のような動作機能を有する二重
効用吸収式冷凍機に設けた制御器であり、マイコンや記
憶手段などを備えて構成され、図示しない空調負荷に冷
温水を循環供給するための冷温水管21に蒸発器4内の
伝熱管21Aから流れ出た冷温水の温度T2を、冷温水
管21の蒸発器4出口側に設けた温度センサ32から取
り込み、この冷温水の蒸発器出口側温度が所定の設定温
度に維持されるように、加熱バーナ1Bに接続された図
示しない加熱量制御弁の開度を調節して高温再生器1へ
の入熱量を制御する従来周知の容量制御機能を備えてい
る。Reference numeral C denotes a controller provided in the double effect absorption refrigerator having the above-described operation functions, which is provided with a microcomputer, a storage means, and the like, and circulates and supplies cold and hot water to an air conditioning load (not shown). The temperature T2 of the cold / hot water flowing out of the heat transfer tube 21A in the evaporator 4 is taken into the cold / hot water pipe 21 from the temperature sensor 32 provided on the outlet side of the evaporator 4 of the cold / hot water pipe 21, and the cold / hot water evaporator outlet is taken out. Conventionally known capacity control for controlling the amount of heat input to the high-temperature regenerator 1 by adjusting the opening of a heating amount control valve (not shown) connected to the heating burner 1B so that the side temperature is maintained at a predetermined set temperature. Has functions.
【0023】すなわち、制御器Cには、予め決めた設定
温度と温度センサ32が検出した冷温水の温度T2との
差が大きければ大きいほど、加熱バーナ1Bに接続され
た加熱量制御弁の開度を大きくし、温度T2が設定温度
に達すると、加熱量制御弁の開度を設定開度に抑える
か、閉じる等の通常の容量制御を行うための制御プログ
ラムを記憶手段に格納して備えている。That is, as the difference between the predetermined set temperature and the temperature T2 of the cold / hot water detected by the temperature sensor 32 increases, the controller C opens the heating amount control valve connected to the heating burner 1B. When the temperature T2 reaches the set temperature, the opening degree of the heating amount control valve is suppressed to the set opening degree, or a control program for performing normal capacity control such as closing is stored in the storage means. ing.
【0024】また、制御器Cは、高温再生器1にある吸
収液の液面が所定のレベルを維持するように吸収液ポン
プ13の運転を制御すると共に、冷房運転時に温度セン
サ32が検出した冷水の温度T2が設定温度(例えば7
℃)より高いときに冷媒ポンプ19を運転するための制
御プログラムも記憶手段に備えている。The controller C controls the operation of the absorbent pump 13 so that the level of the absorbent in the high temperature regenerator 1 is maintained at a predetermined level, and the temperature sensor 32 detects the temperature during cooling operation. The temperature T2 of the cold water is equal to the set temperature (for example, 7
A control program for operating the refrigerant pump 19 when the temperature is higher than (° C.) is also provided in the storage means.
【0025】さらに、この制御器Cは、空調負荷の大き
さに基づいて冷温水ポンプ22の回転数を制御し、空調
負荷に循環供給する冷温水の流量を調節する図1に示す
制御プログラムも記憶手段に備えている。The controller C also controls the rotation speed of the cold / hot water pump 22 based on the magnitude of the air-conditioning load, and adjusts the flow rate of the cold / hot water circulated to the air-conditioning load, as shown in FIG. It is provided in storage means.
【0026】すなわち、吸収式冷凍機には、図示しない
空調負荷で冷房または暖房作用を終えて冷温水管21に
より蒸発器4に還流している冷温水の温度T1を検出す
る温度センサ31と、冷温水の流量に関係する冷温水管
21の蒸発器4出入口部の圧力差ΔPを検出する圧力セ
ンサ33とがさらに設置され、制御器Cには加熱バーナ
1B、吸収液ポンプ13、冷媒ポンプ19などを前記の
ように制御するメイン制御のサブルーチン制御として構
成された、図1に示す制御プログラムが備えられてい
る。That is, the absorption type refrigerator has a temperature sensor 31 for detecting the temperature T1 of the cold / hot water flowing back to the evaporator 4 through the cold / hot water pipe 21 after the cooling or heating operation is completed by an air conditioning load (not shown); A pressure sensor 33 for detecting the pressure difference ΔP between the inlet and the outlet of the evaporator 4 of the cold / hot water pipe 21 related to the flow rate of water is further provided. The controller C includes the heating burner 1B, the absorbent pump 13, the refrigerant pump 19 and the like. A control program shown in FIG. 1 is provided, which is configured as a subroutine control of the main control for controlling as described above.
【0027】すなわち、ステップS1においては蒸発器
4に還流している冷温水の温度T1と、伝熱管21Aで
熱操作されて蒸発器4から冷温水管21に流出した冷温
水の温度T2と、冷温水管21の蒸発器4出入口部の圧
力差ΔPとを検出する。That is, in step S1, the temperature T1 of the cold and hot water flowing back to the evaporator 4 and the temperature T2 of the cold and hot water that has been heated by the heat transfer pipe 21A and flowed out of the evaporator 4 to the cold and hot water pipe 21, The pressure difference ΔP between the entrance and exit of the evaporator 4 of the water pipe 21 is detected.
【0028】ステップS2においては、ステップS1で
検出した冷温水の温度T1、T2と、圧力差ΔPに基づ
いて、そのときの空調負荷率を算出する。In step S2, the air conditioning load factor at that time is calculated based on the temperatures T1 and T2 of the cold and hot water detected in step S1 and the pressure difference ΔP.
【0029】ステップS3においては、予め設定した空
調負荷率と冷温水流量との関係、例えば図2などの関係
式より、ステップS2で算出した空調負荷率に基づいて
そのときの冷温水の適正流量を求め、冷温水ポンプ22
の回転数を制御して空調負荷に循環供給する冷温水の流
量を調節する。In step S3, the appropriate flow rate of the chilled and hot water at that time is determined based on the relationship between the preset air conditioning load factor and the flow rate of the cold and hot water, for example, the relational expression shown in FIG. 2 based on the air conditioning load factor calculated in step S2. And the cold and hot water pump 22
To control the flow rate of cold and hot water circulating and supplied to the air conditioning load.
【0030】ステップS4においては、蒸発器4に還流
している冷温水の温度T1と、蒸発器4から冷温水管2
1に流出した冷温水の温度T2とを所定時間、例えば5
分間に渡って連続して検出する。In step S4, the temperature T1 of the cold / hot water flowing back to the evaporator 4 and the temperature of the cold / hot water pipe 2
1 and the temperature T2 of the cold / hot water flowing out for a predetermined time, for example, 5
Detect continuously over minutes.
【0031】そして、ステップS5ではステップS4で
検出した冷温水の温度T1、T2それぞれの変動幅ΔT
1、ΔT2を求め、それぞれが所定温度、例えば0.5
℃以内であるか否かを判定し、イエスと判定されたとき
にはステップS6に移行し、ノーと判定されたときには
メイン制御に戻り、加熱バーナ1Bの容量制御加熱など
の所要の制御を行った後、ステップS1からの上記制御
を繰り返す。Then, in step S5, the fluctuation width ΔT of each of the cold and hot water temperatures T1 and T2 detected in step S4.
1, and ΔT2 are determined, each of which is a predetermined temperature, for example, 0.5
It is determined whether the temperature is within ° C or not. If the determination is yes, the process proceeds to step S6. If the determination is no, the process returns to the main control, and after performing required control such as capacity control heating of the heating burner 1B. , The above control from step S1 is repeated.
【0032】ステップS6においては、ステップS4で
検出した冷温水の温度T1、T2(何れも所定時間に渡
る平均値であっても良いし、計測終了時の値であっても
良い)と、定格運転時の設定温度とのずれから冷温水の
補正流量を算出する。In step S6, the temperatures T1 and T2 of the cold and hot water detected in step S4 (both may be average values over a predetermined time or may be values at the end of measurement) and rated The correction flow rate of the cold / hot water is calculated from the deviation from the set temperature during operation.
【0033】そして、ステップS7においては、ステッ
プS6で算出した冷温水の補正流量に基づいて冷温水ポ
ンプ22の回転数を制御し、空調負荷に循環供給する冷
温水の流量を補正してメイン制御に戻る。In step S7, the rotational speed of the cold / hot water pump 22 is controlled based on the corrected flow rate of the cold / hot water calculated in step S6, and the flow rate of the cold / hot water circulating to the air conditioning load is corrected. Return to
【0034】具体的事例として、図示しない空調負荷に
冷温水管21を介して7℃の冷水を循環供給し、空調負
荷を冷却して冷房作用を果たした冷水が12℃で蒸発器
4に還流する構成の吸収式冷凍機の冷水流量を調節する
例を以下に説明する。As a specific example, chilled water of 7 ° C. is circulated and supplied to an air conditioning load (not shown) through a cold / hot water pipe 21, and the cooling water which has cooled the air conditioning load and performed a cooling operation is returned to the evaporator 4 at 12 ° C. An example of adjusting the chilled water flow rate of the absorption chiller having the configuration will be described below.
【0035】温度センサ31が検出した冷水の温度T1
が例えば10℃、温度センサ32が検出した冷水の温度
T2が7℃、冷水流量が定格値でしたがって空調負荷率
が60%であれば、冷温水ポンプ22の回転数を制御し
て冷水流量を定格運転時の60%に調節する。The temperature T1 of the cold water detected by the temperature sensor 31
Is 10 ° C., the temperature T2 of the cold water detected by the temperature sensor 32 is 7 ° C., the flow rate of the cold water is the rated value, and thus the air-conditioning load factor is 60%. Adjust to 60% of rated operation.
【0036】この部分負荷運転時においては、吸収式冷
凍機の効率が定格運転時より上昇するので、その後例え
ば5分間に渡って連続して温度センサ31が検出した冷
水の温度T1の平均値が11.5℃、同様に検出した冷
水の温度T2の平均値が7.0℃であり、その間の冷水
の温度T1、T2の変動幅が共に0.5℃以内である
と、冷水の補正流量を60×11.5÷12.0=5
7.5%と算出し、冷温水ポンプ23の回転数を補正し
て、空調負荷に循環供給する冷水の流量を定格運転時の
57.5%に補正する。At the time of the partial load operation, the efficiency of the absorption chiller is higher than at the time of the rated operation, so that the average value of the cold water temperature T1 detected by the temperature sensor 31 continuously for, for example, 5 minutes thereafter is calculated. If the average value of the cold water temperature T2 similarly detected is 11.5 ° C. and 7.0 ° C., and the fluctuation range of the cold water temperatures T1 and T2 is within 0.5 ° C., the corrected flow rate of the cold water 60 × 11.5 ÷ 12.0 = 5
It is calculated to be 7.5%, the rotational speed of the cold / hot water pump 23 is corrected, and the flow rate of the cold water circulated to the air conditioning load is corrected to 57.5% of the rated operation.
【0037】また、図示しない空調負荷に冷温水管21
を介して55℃の温水を循環供給し、空調負荷を加熱し
て暖房作用を果たした温水が50℃で蒸発器4に還流す
る構成の吸収式冷凍機の温水流量を調節する例を以下に
説明する。A cold / hot water pipe 21 is connected to an air conditioning load (not shown).
An example of adjusting the hot water flow rate of an absorption refrigerator having a configuration in which hot water of 55 ° C. is circulated and supplied through the chiller to heat an air-conditioning load and the hot water that has performed a heating action is returned to the evaporator 4 at 50 ° C. explain.
【0038】温度センサ31が検出した温水の温度T1
が例えば53℃、温度センサ32が検出した温水の温度
T2が55℃、温水流量が定格値でしたがって空調負荷
率が40%であれば、冷温水ポンプ22の回転数を制御
して温水流量を定格運転時の40%に調節する。The temperature T1 of the hot water detected by the temperature sensor 31
Is 53 ° C., the temperature T2 of the hot water detected by the temperature sensor 32 is 55 ° C., the flow rate of the hot water is the rated value, and therefore the air-conditioning load factor is 40%. Adjust to 40% of rated operation.
【0039】この部分負荷運転時においても、吸収式冷
凍機の効率は定格運転時より上昇するので、例えば5分
間に渡って連続して温度センサ31が検出した温水の温
度T1の平均値が54.0℃、同様に検出した温水の温
度T2の平均値が55.0℃であり、その間の温水の温
度T1、T2の変動幅が共に0.5℃以内であると、温
水の補正流量を40×54.0÷55.0=39.3%
と算出し、冷温水ポンプ23の回転数を補正して、空調
負荷に循環供給する温水の流量を定格運転時の39.3
%に補正する。Even during the partial load operation, the efficiency of the absorption chiller is higher than that during the rated operation, so that the average value of the temperature T1 of the hot water detected by the temperature sensor 31 continuously for 5 minutes is 54, for example. 0.0 ° C., the average value of the temperature T2 of the hot water similarly detected is 55.0 ° C., and the fluctuation range of the temperatures T1 and T2 of the hot water both within 0.5 ° C. 40 × 54.0 ÷ 55.0 = 39.3%
Is corrected, and the rotation speed of the cold / hot water pump 23 is corrected, and the flow rate of the hot water circulated to the air conditioning load is set to 39.3 at the rated operation.
Correct to%.
【0040】本発明によれば、上記したように空調負荷
への冷温水の循環量が空調負荷に応じて調節されると共
に、部分負荷運転時の効率上昇に見合った量だけ冷温水
の流量が削減されるので、ランニングコストの一層の削
減が図れる。According to the present invention, as described above, the circulation amount of the cold and hot water to the air conditioning load is adjusted according to the air conditioning load, and the flow rate of the cold and hot water is increased by an amount corresponding to the increase in the efficiency during the partial load operation. Since it is reduced, the running cost can be further reduced.
【0041】また、制御器Cとしては、例えば図3に示
したように空調負荷の大きさに基づいて冷却水ポンプ2
4の回転数を制御し、吸収器5、凝縮器3に供給する冷
却水の流量を調節するようにしても良い。As the controller C, for example, as shown in FIG.
The rotation speed of the cooling water 4 may be controlled to adjust the flow rate of the cooling water supplied to the absorber 5 and the condenser 3.
【0042】冷却水流量をこのように制御しても、図1
で示した場合と同様にランニングコストを削減すること
ができる。Even if the flow rate of the cooling water is controlled in this way,
The running cost can be reduced as in the case shown by.
【0043】具体的事例として、図示しない空調負荷に
冷温水管21を介して7℃の冷水を循環供給し、空調負
荷を冷却して冷房作用を果たした冷水が12℃で蒸発器
4に還流する構成の吸収式冷凍機の冷却水流量を調節す
る例を以下に説明すると、As a specific example, chilled water of 7 ° C. is circulated and supplied to an air conditioning load (not shown) through a cold / hot water pipe 21, and the cooling water that cools the air conditioning load and performs a cooling operation is returned to the evaporator 4 at 12 ° C. An example of adjusting the cooling water flow rate of the absorption chiller having the configuration will be described below.
【0044】温度センサ31が検出した冷水の温度T1
が例えば10℃、温度センサ32が検出した冷水の温度
T2が7℃、冷水流量が定格値でしたがって空調負荷率
が60%であれば、冷却水ポンプ23の回転数を制御し
て冷却水流量を定格運転時の60%に調節する。The temperature T1 of the cold water detected by the temperature sensor 31
For example, if the cooling water temperature T2 detected by the temperature sensor 32 is 7 ° C., the cooling water flow rate is the rated value, and the air conditioning load factor is 60%, the rotation speed of the cooling water pump 23 is controlled to control the cooling water flow rate. Is adjusted to 60% of the rated operation.
【0045】この部分負荷運転時においても、吸収式冷
凍機の効率は定格運転時より上昇するので、例えば5分
間に渡って連続して温度センサ31が検出した冷水の温
度T1の平均値が11.5℃、同様に検出した冷水の温
度T2の平均値が7.0℃であり、その間の冷水の温度
T1、T2の変動幅が共に0.5℃以内であると、冷却
水の補正流量を60×11.5÷12.0=57.5%
と算出し、冷却水ポンプ23の回転数を補正して、吸収
器5、凝縮器3に循環供給する冷却水の流量を定格運転
時の57.5%に補正する。Even during this partial load operation, the efficiency of the absorption chiller is higher than during the rated operation, so that the average value of the cold water temperature T1 detected by the temperature sensor 31 for 11 minutes is, for example, 11 minutes. If the average value of the temperature T2 of the chilled water detected in the same manner is 0.5 ° C. and the fluctuation range of the chilled water temperatures T1 and T2 is 0.5 ° C. or less, the corrected flow rate of the chilled water. 60 × 11.5 ÷ 12.0 = 57.5%
And the rotation speed of the cooling water pump 23 is corrected to correct the flow rate of the cooling water circulated to the absorber 5 and the condenser 3 to 57.5% of the rated operation.
【0046】また、図4に示したように吸収器5に流入
している冷却水の温度が低い程、吸収式冷凍機の冷凍能
力は発揮されるので、冷却水管23の吸収器5入口側に
温度センサ34を設置し、制御器Cとしては例えば図5
に示したようにこの温度センサ34が検出した冷却水の
温度T3に基づいて冷却水ポンプ24の回転数を制御
し、吸収器5、凝縮器3に供給する冷却水の流量を調節
するようにしても良い。Further, as shown in FIG. 4, the lower the temperature of the cooling water flowing into the absorber 5, the more the refrigeration capacity of the absorption refrigerator is exhibited. A temperature sensor 34 is installed in the controller C.
As shown in (2), the rotation speed of the cooling water pump 24 is controlled based on the temperature T3 of the cooling water detected by the temperature sensor 34, and the flow rate of the cooling water supplied to the absorber 5 and the condenser 3 is adjusted. May be.
【0047】具体的事例として、図示しない空調負荷に
冷温水管21を介して7℃の冷水を循環供給し、空調負
荷を冷却して冷房作用を果たした冷水が12℃で蒸発器
4に還流する構成の吸収式冷凍機の冷却水流量を調節す
る例を以下に説明すると、As a specific example, 7 ° C. cold water is circulated and supplied to an air conditioning load (not shown) through a cold / hot water pipe 21, and the cooling water that cools the air conditioning load and performs a cooling operation is returned to the evaporator 4 at 12 ° C. An example of adjusting the cooling water flow rate of the absorption chiller having the configuration will be described below.
【0048】温度センサ34が検出する冷却水の温度T
3が32℃の時を定格として運転しているときに、温度
センサ34が検出した冷却水の温度T3が例えば24℃
であれば、詳細に定めた冷却水温度毎の燃料消費量比と
冷凍能力比との関係式に基づいて冷却水ポンプ23の回
転数を制御して冷却水流量を削減する。The temperature T of the cooling water detected by the temperature sensor 34
When the temperature of the cooling water detected by the temperature sensor 34 is, for example, 24 ° C.
If this is the case, the number of rotations of the cooling water pump 23 is controlled based on the relational expression between the fuel consumption ratio and the refrigeration capacity ratio for each cooling water temperature, which is determined in detail, to reduce the cooling water flow rate.
【0049】この冷却水温度が定格温度より低いときに
も、吸収式冷凍機の効率は定格運転時より上昇するの
で、例えば5分間に渡って連続して温度センサ31が検
出した冷水の温度T1の平均値が11.5℃、同様に検
出した冷水の温度T2の平均値が7.0℃であり、その
間の冷水の温度T1、T2の変動幅が共に0.5℃以内
であると、冷却水の補正流量を先に求めた流量に11.
5÷12.0を乗算して得られる流量に冷却水ポンプ2
3の回転数を制御して、吸収器5、凝縮器3に循環供給
する冷却水の流量を補正する。When the cooling water temperature is lower than the rated temperature, the efficiency of the absorption chiller is higher than during the rated operation. Therefore, for example, the temperature T1 of the cooling water detected by the temperature sensor 31 continuously for 5 minutes. Is 11.5 ° C., the average value of the similarly detected cold water temperature T2 is 7.0 ° C., and the fluctuation range of the cold water temperatures T1 and T2 during that time is within 0.5 ° C. 10. The corrected flow rate of the cooling water is changed to the flow rate obtained earlier.
The cooling water pump 2 is added to the flow rate obtained by multiplying 5 ÷ 12.0.
The rotation speed of the cooling water 3 is controlled to correct the flow rate of the cooling water circulated to the absorber 5 and the condenser 3.
【0050】冷却水流量をこのように制御しても、上記
した場合と同様にランニングコストを削減することがで
きる。Even if the flow rate of the cooling water is controlled in this way, the running cost can be reduced as in the case described above.
【0051】また、上記図5の冷却水温度に基づく冷却
水流量の制御を、空調負荷に基づく冷温水の流量制御、
空調負荷に基づく冷却水の流量制御などと組み合わせた
り、冷温水と冷却水の両方を空調負荷率に基づいて制御
するようにしても良い。The control of the flow rate of the cooling water based on the temperature of the cooling water in FIG.
It may be combined with the flow rate control of the cooling water based on the air conditioning load, or may be controlled based on the air conditioning load factor for both the cold / hot water and the cooling water.
【0052】また、ステップS4などにおける冷温水の
温度T1、T2の検出は、所定時間の間隔をおいて検出
するようにしても良い。The temperatures T1 and T2 of the cold and hot water in step S4 and the like may be detected at predetermined time intervals.
【0053】また、冷温水管21の蒸発器4出入口部の
圧力差ΔPを検出する代わりに、冷温水管1を流れる冷
温水の流量を流量計によって直接検出したり、冷温水ポ
ンプ22の回転数などから検出して、空調負荷率を算出
するようにしても良い。Instead of detecting the pressure difference ΔP between the inlet and the outlet of the evaporator 4 of the cold / hot water pipe 21, the flow rate of the cold / hot water flowing through the cold / hot water pipe 1 is directly detected by a flow meter, and the rotation speed of the cold / hot water pump 22. , And the air conditioning load factor may be calculated.
【0054】また、空調負荷の大きさは、上記したよう
に制御器Cのマイコンなどで算出するようにしても良い
し、冷温水の蒸発器4出入口温度差と冷温水の流量とを
積算して熱量を求めるカロリーメータによって算出する
ようにしても良い。The magnitude of the air-conditioning load may be calculated by the microcomputer of the controller C as described above, or the temperature difference between the cold / hot water evaporator 4 inlet and outlet and the flow rate of the cold / hot water may be integrated. May be calculated by a calorie meter that calculates the amount of heat.
【0055】[0055]
【発明の効果】以上説明したように本発明によれば、熱
負荷が小さい部分負荷運転時には、ブラインの熱負荷へ
の循環供給量か、吸収器と凝縮器に供給する冷却水の流
量か、或いはその両方の流量が削減されるので、ブライ
ンや冷却水を搬送する電力コストが削減でき、これによ
りランニングコストの削減が図れる。As described above, according to the present invention, during partial load operation with a small heat load, the amount of circulating supply of brine to the heat load, the flow rate of cooling water supplied to the absorber and the condenser, Alternatively, since the flow rates of both of them are reduced, the power cost for transporting the brine and the cooling water can be reduced, thereby reducing the running cost.
【0056】また、請求項4発明によれば、冷却水の温
度が低下して冷凍機の能力が増加すると、冷却水の流量
を減少させるので、冷却水を搬送する電力コストが削減
でき、これによりランニングコストの削減が図れる。According to the fourth aspect of the invention, when the temperature of the cooling water decreases and the capacity of the refrigerator increases, the flow rate of the cooling water decreases, so that the power cost for transporting the cooling water can be reduced. As a result, the running cost can be reduced.
【0057】また、請求項5発明によれば、制御器に内
蔵させるマイコンなどに空調負荷を算出するための演算
式を書き込む必要がなくなる。According to the fifth aspect of the present invention, there is no need to write an arithmetic expression for calculating the air conditioning load in a microcomputer incorporated in the controller.
【図1】空調負荷の大きさに基づいて冷温水の流量を制
御する制御方法の説明図である。FIG. 1 is an explanatory diagram of a control method for controlling the flow rate of cold and hot water based on the magnitude of an air conditioning load.
【図2】空調負荷率と冷温水流量との関係を示す説明図
である。FIG. 2 is an explanatory diagram showing a relationship between an air conditioning load factor and a flow rate of cold and hot water.
【図3】空調負荷の大きさに基づいて冷却水の流量を制
御する制御方法の説明図である。FIG. 3 is an explanatory diagram of a control method for controlling a flow rate of cooling water based on a magnitude of an air conditioning load.
【図4】冷却水温度毎に定めた燃料消費量比と冷凍能力
比との関係を示す説明図である。FIG. 4 is an explanatory diagram showing a relationship between a fuel consumption ratio and a refrigerating capacity ratio determined for each cooling water temperature.
【図5】冷却水の温度に基づいて冷却水の流量を制御す
る制御方法の説明図である。FIG. 5 is an explanatory diagram of a control method for controlling the flow rate of the cooling water based on the temperature of the cooling water.
【図6】装置構成の説明図である。FIG. 6 is an explanatory diagram of a device configuration.
【符号の説明】 1 高温再生器 1B 加熱バーナ 2 低温再生器 3 凝縮器 4 蒸発器 5 吸収器 6 低温熱交換器 7 高温熱交換器 8〜11 吸収液管 13 吸収液ポンプ 14〜18 冷媒管 19 冷媒ポンプ 21 冷温水管 22 冷温水ポンプ 23 冷却水管 24 冷却水ポンプ 25・26 均圧管 27〜30 開閉弁 31・32 温度センサ 33 圧力センサ 34 温度センサ C 制御器[Description of Signs] 1 High temperature regenerator 1B Heating burner 2 Low temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 Low temperature heat exchanger 7 High temperature heat exchanger 8-11 Absorbing liquid pipe 13 Absorbing liquid pump 14-18 Refrigerant pipe DESCRIPTION OF SYMBOLS 19 Refrigerant pump 21 Cold / hot water pipe 22 Cold / hot water pump 23 Cooling water pipe 24 Cooling water pump 25/26 Equalization pipe 27-30 Open / close valve 31/32 Temperature sensor 33 Pressure sensor 34 Temperature sensor C controller
Claims (5)
るブラインの出入口温度差などから熱負荷の大きさを求
め、この熱負荷の大きさに基づいてブラインに対する熱
操作量を制御すると共に、ブラインの循環量を制御する
吸収式冷凍機において、前記熱負荷の大きさが定格負荷
未満であるときにはブラインの循環量を熱負荷の定格負
荷に対する比率に基づいて先ず制御し、この循環量で循
環しているブラインの出入口部の温度と、定格運転時の
ブラインの出入口部の設定温度とのずれに基づいてブラ
インの循環量の補正値を求め、ブラインの循環量を補正
することを特徴とする吸収式冷凍機の制御方法。1. A magnitude of a thermal load is determined from a difference in temperature between an inlet and an outlet of a brine that is cooled or heated and circulated to a thermal load, and a thermal operation amount for the brine is controlled based on the magnitude of the thermal load. In the absorption chiller for controlling the amount of circulating brine, when the magnitude of the heat load is less than the rated load, the amount of circulating brine is first controlled based on the ratio of the heat load to the rated load, and the circulating amount is circulated based on the circulating amount. Determining the correction value of the amount of circulating brine based on the difference between the temperature of the entrance and exit of the brine being performed and the set temperature of the entrance and exit of the brine during rated operation, and correcting the amount of circulating brine. Control method of absorption refrigerator.
るブラインの出入口温度差などから熱負荷の大きさを求
め、この熱負荷の大きさに基づいてブラインに対する熱
操作量を制御すると共に、吸収器と凝縮器に供給する冷
却水の流量を制御する吸収式冷凍機において、前記熱負
荷の大きさが定格負荷未満であるときには冷却水の流量
を熱負荷の定格負荷に対する比率に基づいて先ず制御
し、冷却水をこの流量にしたときのブラインの出入口部
の温度と、定格運転時のブラインの出入口部の設定温度
とのずれに基づいて冷却水の流量の補正値を求め、冷却
水の流量を補正することを特徴とする吸収式冷凍機の制
御方法。2. A magnitude of a thermal load is determined from a temperature difference between an inlet and an outlet of the brine which is cooled or heated and circulated to a thermal load, and a thermal operation amount for the brine is controlled based on the magnitude of the thermal load. In an absorption refrigerator controlling the flow rate of cooling water supplied to an absorber and a condenser, when the magnitude of the heat load is less than the rated load, the flow rate of the cooling water is first determined based on a ratio of the heat load to the rated load. Control, and calculates a correction value of the flow rate of the cooling water based on a difference between the temperature of the inlet / outlet section of the brine when the cooling water is set at this flow rate and the set temperature of the inlet / outlet section of the brine during the rated operation. A method for controlling an absorption refrigerator, wherein the flow rate is corrected.
るブラインの出入口温度差などから熱負荷の大きさを求
め、この熱負荷の大きさに基づいてブラインに対する熱
操作量を制御すると共に、ブラインの循環量と、吸収器
と凝縮器に供給する冷却水の流量とを制御する吸収式冷
凍機において、前記熱負荷の大きさが定格負荷未満であ
るときにはブラインおよび冷却水の流量を熱負荷の定格
負荷に対する比率に基づいて先ず制御し、ブラインおよ
び冷却水をこの流量にしたときのブラインの出入口部の
温度と、定格運転時のブラインの出入口部の設定温度と
のずれに基づいてブラインおよび冷却水の流量の補正値
を求め、ブラインおよび冷却水の流量を補正することを
特徴とする吸収式冷凍機の制御方法。3. The magnitude of the thermal load is determined from the difference in temperature between the inlet and the outlet of the brine, which is cooled or heated and circulated to the thermal load, and the amount of thermal operation on the brine is controlled based on the magnitude of the thermal load. In an absorption refrigerator that controls the circulation amount of brine and the flow rate of cooling water supplied to the absorber and the condenser, when the magnitude of the heat load is less than the rated load, the flow rate of the brine and the cooling water is reduced by the heat load. Is controlled first based on the ratio of the brine to the rated load, and the brine and the coolant are set based on the difference between the temperature of the inlet and outlet of the brine when the flow rate is set to this flow rate and the set temperature of the inlet and outlet of the brine during the rated operation. A method for controlling an absorption refrigerator, wherein a correction value of a flow rate of cooling water is obtained, and a flow rate of brine and cooling water is corrected.
るブラインの出入口温度差などから熱負荷の大きさを求
め、この熱負荷の大きさに基づいてブラインに対する熱
操作量を制御する吸収式冷凍機の吸収器と凝縮器とに供
給する冷却水の温度が定格温度未満であるときには冷却
水の流量を冷却水温度毎に定めた燃料消費量比と冷凍能
力比との関係式に基づいて先ず制御し、冷却水をこの流
量にしたときのブラインの出入口部の温度と、定格運転
時のブラインの出入口部の設定温度とのずれに基づいて
冷却水の流量の補正値を求め、冷却水の流量を補正する
ことを特徴とする吸収式冷凍機の制御方法。4. An absorption method for determining the magnitude of a heat load from a temperature difference between an inlet and an outlet of a brine which is cooled or heated and circulates and supplies the heat to a heat load, and controlling a heat operation amount for the brine based on the magnitude of the heat load. When the temperature of the cooling water supplied to the absorber and the condenser of the refrigerator is lower than the rated temperature, the flow rate of the cooling water is determined based on the relational expression between the fuel consumption ratio and the refrigerating capacity ratio determined for each cooling water temperature. First, control is performed, and a correction value of the flow rate of the cooling water is obtained based on a difference between the temperature of the inlet / outlet of the brine when the cooling water is set at this flow rate and the set temperature of the inlet / outlet of the brine during the rated operation. A method for controlling an absorption chiller, comprising correcting the flow rate of water.
度差と、ブラインの流量が入力されるカロリーメータに
よって求められることを特徴とする請求項1〜4何れか
に記載の吸収式冷凍機の制御方法。5. The absorption refrigerator according to claim 1, wherein the magnitude of the heat load is obtained by a calorie meter to which the difference between the temperature of the inlet and the outlet of the brine and the flow rate of the brine are inputted. Control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11075907A JP2000274864A (en) | 1999-03-19 | 1999-03-19 | Method for controlling absorption refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11075907A JP2000274864A (en) | 1999-03-19 | 1999-03-19 | Method for controlling absorption refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000274864A true JP2000274864A (en) | 2000-10-06 |
Family
ID=13589891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11075907A Pending JP2000274864A (en) | 1999-03-19 | 1999-03-19 | Method for controlling absorption refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000274864A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006057991A (en) * | 2004-07-23 | 2006-03-02 | Kawasaki Thermal Engineering Co Ltd | Absorptive freezer control method and absorptive freezer facility for controlling cooling water temperature in interlock with cooling load control operation |
JP2010078298A (en) * | 2008-09-29 | 2010-04-08 | Sanyo Electric Co Ltd | Absorption refrigerator |
JP2017207218A (en) * | 2016-05-16 | 2017-11-24 | パナソニックIpマネジメント株式会社 | Absorption type refrigerating machine |
KR101984242B1 (en) * | 2018-05-17 | 2019-05-30 | (주)티이 | Method for calculation of heating value of brine-refrigerant type heat pump system using geothermal heat energy |
US20210148617A1 (en) * | 2019-11-19 | 2021-05-20 | Yazaki Energy System Corporation | Absorption chiller |
CN115682572A (en) * | 2022-11-07 | 2023-02-03 | 珠海格力电器股份有限公司 | Chilled water unit load determining and loading and unloading control method, device and equipment |
CN116105392A (en) * | 2023-04-12 | 2023-05-12 | 广东美的暖通设备有限公司 | Control method and device for centrifugal water chilling unit |
-
1999
- 1999-03-19 JP JP11075907A patent/JP2000274864A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006057991A (en) * | 2004-07-23 | 2006-03-02 | Kawasaki Thermal Engineering Co Ltd | Absorptive freezer control method and absorptive freezer facility for controlling cooling water temperature in interlock with cooling load control operation |
JP4551233B2 (en) * | 2004-07-23 | 2010-09-22 | 川重冷熱工業株式会社 | Absorption-type refrigerator control method and absorption-type refrigerator installation for controlling cooling water temperature in conjunction with cooling load control operation |
JP2010078298A (en) * | 2008-09-29 | 2010-04-08 | Sanyo Electric Co Ltd | Absorption refrigerator |
JP2017207218A (en) * | 2016-05-16 | 2017-11-24 | パナソニックIpマネジメント株式会社 | Absorption type refrigerating machine |
KR101984242B1 (en) * | 2018-05-17 | 2019-05-30 | (주)티이 | Method for calculation of heating value of brine-refrigerant type heat pump system using geothermal heat energy |
US20210148617A1 (en) * | 2019-11-19 | 2021-05-20 | Yazaki Energy System Corporation | Absorption chiller |
JP2021081127A (en) * | 2019-11-19 | 2021-05-27 | 矢崎エナジーシステム株式会社 | Absorption type refrigerator |
JP6999628B2 (en) | 2019-11-19 | 2022-01-18 | 矢崎エナジーシステム株式会社 | Absorption chiller |
US11566825B2 (en) * | 2019-11-19 | 2023-01-31 | Yazaki Energy System Corporation | Absorption chiller |
CN115682572A (en) * | 2022-11-07 | 2023-02-03 | 珠海格力电器股份有限公司 | Chilled water unit load determining and loading and unloading control method, device and equipment |
CN116105392A (en) * | 2023-04-12 | 2023-05-12 | 广东美的暖通设备有限公司 | Control method and device for centrifugal water chilling unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003279186A (en) | Absorption type refrigerator and method for controlling same | |
JP2002357370A (en) | Control method of absorption refrigerating machine | |
JP2000274864A (en) | Method for controlling absorption refrigerator | |
JP6814071B2 (en) | Absorption chiller system and absorption chiller using waste heat | |
JP6871015B2 (en) | Absorption refrigeration system | |
JP2985513B2 (en) | Absorption cooling and heating system and its control method | |
JP4721783B2 (en) | Operation control method of absorption chiller / heater | |
JP2017036856A (en) | Waste heat input type absorption chiller heater and waste heat recovery amount control method thereof | |
JPH0989407A (en) | Absorption refrigerator | |
JP2858922B2 (en) | Absorption chiller / heater controller | |
JP5388660B2 (en) | Operation method of absorption chiller water heater | |
JP2708900B2 (en) | Absorption refrigerator | |
JPH07190537A (en) | Absorption type refrigerating machine | |
JP3819727B2 (en) | Absorption refrigerator control system | |
JP3748950B2 (en) | Heat input control device for absorption chiller / heater | |
JP3710907B2 (en) | Absorption refrigeration system | |
JP2002005538A (en) | Absorptive freezer and cooling water flow rate control method | |
JP3157349B2 (en) | Absorption refrigerator control device | |
JP4115020B2 (en) | Control method of absorption refrigerator | |
JP2883372B2 (en) | Absorption chiller / heater | |
JP4330522B2 (en) | Absorption refrigerator operation control method | |
JP2000161812A (en) | Control device of absorption refrigerating machine | |
JPH0868572A (en) | Dual-effect absorption refrigerator | |
JP3594453B2 (en) | Operating method of air conditioner | |
JPS6134058B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040513 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20051226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060725 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060920 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070313 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070320 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070420 |