JP2000273280A - Epoxy resin composition and semiconductor device - Google Patents
Epoxy resin composition and semiconductor deviceInfo
- Publication number
- JP2000273280A JP2000273280A JP11083820A JP8382099A JP2000273280A JP 2000273280 A JP2000273280 A JP 2000273280A JP 11083820 A JP11083820 A JP 11083820A JP 8382099 A JP8382099 A JP 8382099A JP 2000273280 A JP2000273280 A JP 2000273280A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- epoxy
- group
- groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、成形性、耐半田性
に優れ、特に薄型半導体パッケージに好適な半導体封止
用エポキシ樹脂組成物、及びこれを用いた半導体装置に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for semiconductor encapsulation which is excellent in moldability and solder resistance and is particularly suitable for a thin semiconductor package, and a semiconductor device using the same.
【0002】[0002]
【従来の技術】IC、LSI等の半導体素子の封止方法
としてエポキシ樹脂組成物のトランスファー成形が低コ
スト、大量生産に適しており、採用されて久しく、信頼
性の点でもエポキシ樹脂や硬化剤であるフェノール樹脂
の改良により特性の向上が図られてきた。しかし、近年
の電子機器の小型化、軽量化、高性能化の市場動向にお
いて、半導体の高集積化も年々進み、又、半導体装置の
表面実装化が促進されるなかで、半導体封止用エポキシ
樹脂組成物への要求は益々厳しいものとなってきてい
る。このため、従来からのエポキシ樹脂組成物では解決
出来ない問題点も出てきている。その最大の問題点は、
表面実装の採用により半導体装置が半田浸漬、或いはリ
フロー工程で急激に200℃以上の高温にさらされ、吸
湿した水分が爆発的に気化する際の応力により、半導体
装置にクラックが発生したり、チップ、リードフレー
ム、インナーリード上の各種メッキされた各接合部分と
樹脂組成物の硬化物の界面で、剥離が生じ信頼性が著し
く低下する現象である。2. Description of the Related Art Transfer molding of an epoxy resin composition is suitable as a method for encapsulating semiconductor elements such as ICs and LSIs at a low cost and suitable for mass production. The phenol resin has been improved to improve the characteristics. However, in the recent market trend of miniaturization, weight reduction and high performance of electronic devices, the integration of semiconductors has been increasing year by year, and the surface mounting of semiconductor devices has been promoted. Demands for resin compositions are becoming more stringent. For this reason, a problem which cannot be solved by the conventional epoxy resin composition has come out. The biggest problem is that
Due to the adoption of surface mounting, the semiconductor device is rapidly exposed to a high temperature of 200 ° C. or more in a solder immersion or reflow process, and cracks occur in the semiconductor device due to the stress when the absorbed moisture explosively evaporates, and This is a phenomenon in which peeling occurs at the interface between each of the plated joints on the lead frame and the inner lead and the cured product of the resin composition, and the reliability is significantly reduced.
【0003】更に、近年半導体装置の薄型化に伴い、半
導体装置中に占める樹脂組成物の厚みが一段と薄くなっ
てきており、例えば、64M、256MDRAM用のパ
ッケージは、1mm厚のTSOPが主流となりつつあ
る。これら薄型半導体装置には、成形時の充填性が良好
で、金線変形が少なく、チップやリードフレームの変形
(チップシフトやダイパッドシフトと呼ぶ)がない樹脂
組成物が要求され、そのためエポキシ樹脂組成物は、成
形時の流動性に優れることが必要である。半田処理によ
る信頼性低下の改善と、成形時の流動性向上を両立する
ために、エポキシ樹脂組成物中の溶融シリカ粉末の充填
量を増加させることで低吸湿化、高強度化、低熱膨張化
を達成し耐半田性を向上させるとともに、低溶融粘度の
樹脂を使用して、成形時に低粘度で高流動性を維持させ
る手法が一般的となりつつある。一方、半田処理による
信頼性において、エポキシ樹脂組成物の硬化物と半導体
パッケージ内部に存在する半導体素子やリードフレーム
等の基材との界面の接着性は非常に重要になってきてい
る。この界面の接着力が弱いと半田処理後の基材との界
面で剥離が生じ、更にはこの剥離に起因するパッケージ
クラックが発生する。界面の接着力向上の観点から、エ
ポキシ樹脂も多くの構造が提案されているが、特に式
(1)のエポキシ樹脂はその可撓性、低吸湿性において
特徴があり、本用途に好適であることが知られている
(特開平8−143648号公報など)。Further, in recent years, as semiconductor devices have become thinner, the thickness of a resin composition occupying the semiconductor device has been further reduced. For example, in packages for 64M and 256M DRAMs, TSOP having a thickness of 1 mm has become mainstream. is there. These thin semiconductor devices are required to have a resin composition that has a good filling property at the time of molding, has little deformation of a gold wire, and has no deformation of a chip or a lead frame (referred to as chip shift or die pad shift). The material needs to have excellent fluidity during molding. In order to achieve both improvement in reliability due to soldering and improvement in fluidity during molding, the amount of fused silica powder in the epoxy resin composition is increased to reduce moisture absorption, increase strength, and reduce thermal expansion. And improving the solder resistance, and using a resin having a low melt viscosity to maintain a low viscosity and high fluidity during molding is becoming common. On the other hand, the adhesiveness at the interface between a cured product of an epoxy resin composition and a base material such as a semiconductor element or a lead frame existing inside a semiconductor package has become very important in reliability by soldering. If the adhesive force at this interface is weak, peeling occurs at the interface with the base material after the soldering, and further, a package crack due to the peeling occurs. From the viewpoint of improving the adhesive force at the interface, many epoxy resins have been proposed, but the epoxy resin of the formula (1) is particularly suitable for this application because of its flexibility and low moisture absorption. It has been known (Japanese Patent Application Laid-Open No. 8-143648).
【0004】しかしながら、式(1)のエポキシ樹脂と
低分子量のフェノール樹脂を硬化剤として用いた樹脂組
成物では、成形温度での溶融粘度が低いという特徴はあ
るが、一方、エポキシ基密度が低く可撓性を有する式
(1)のエポキシ樹脂と低分子量フェノール樹脂の組み
合わせという官能基数の限界により硬化物のガラス転移
温度が低くなるという欠点を有する。このため成形時の
硬化が遅く、従って熱時硬度が低く、離型の際に成形品
が金型に付着したり、成形品が破損するといった現象が
みられ、これらの成形作業性改善のため、ガラス転移温
度を高くする必要性が指摘されている。又、これらの樹
脂組成物の成形品は、半田処理の温度での機械的強度が
低いことから、気化・膨張した水分の蒸気圧による発生
応力に耐える充分な強度を得るため、更にガラス転移温
度の向上が望まれている。[0004] However, a resin composition using the epoxy resin of the formula (1) and a low molecular weight phenol resin as a curing agent is characterized by a low melt viscosity at a molding temperature, but has a low epoxy group density. There is a drawback that the glass transition temperature of the cured product is lowered due to the limit of the number of functional groups of the combination of the flexible epoxy resin of the formula (1) and the low molecular weight phenol resin. For this reason, curing at the time of molding is slow, and therefore the hardness when heated is low, and the phenomenon that the molded product adheres to the mold or the molded product is broken at the time of mold release is observed. It is pointed out that the glass transition temperature must be increased. Further, since the molded products of these resin compositions have low mechanical strength at the temperature of the soldering treatment, the glass transition temperature is further increased in order to obtain sufficient strength to withstand the stress generated by the vapor pressure of vaporized and expanded water. There is a demand for improvement.
【0005】[0005]
【発明が解決しようとする課題】本発明は、薄型半導体
装置への充填性が良好で、金線変形、チップシフト、及
びダイパッドシフトの少ない、即ち成形時高流動性の特
徴を有し、しかも成形時の離型性及び硬化物の耐半田性
にも優れる樹脂組成物の開発を目的としてなされたもの
である。DISCLOSURE OF THE INVENTION The present invention has a good filling property in a thin semiconductor device, and has a feature of a small deformation of a wire, a chip shift, and a shift of a die pad, that is, a high fluidity at the time of molding. The purpose of the present invention is to develop a resin composition that is excellent in mold release property during molding and solder resistance of a cured product.
【0006】[0006]
【課題を解決するための手段】即ち、本発明は、(A)
一般式(1)で示されるエポキシ樹脂、(B)フェノー
ル樹脂、(C)溶融シリカ粉末、及び(D)硬化促進
剤、特に好適な硬化促進剤としてアミジン化合物、グア
ニジン化合物、イミダゾール化合物からなる群から選択
される少なくとも一個以上を必須成分とする半導体封止
用エポキシ樹脂組成物において、(B)フェノール樹脂
のフェノール性水酸基数に対する(A)エポキシ樹脂の
エポキシ基数の比率が1.1〜1.3である半導体封止
用エポキシ樹脂組成物、及びこれを用いて半導体素子を
封止してなる半導体装置である。That is, the present invention provides (A)
A group consisting of an epoxy resin represented by the general formula (1), (B) a phenolic resin, (C) a fused silica powder, and (D) a curing accelerator, particularly an amidine compound, a guanidine compound, and an imidazole compound as a suitable curing accelerator. In the epoxy resin composition for semiconductor encapsulation containing at least one or more as an essential component selected from the group consisting of (A) and (B), the ratio of the number of epoxy groups of the epoxy resin to the number of phenolic hydroxyl groups of the phenol resin is 1.1 to 1. 3 is an epoxy resin composition for semiconductor encapsulation, and a semiconductor device obtained by encapsulating a semiconductor element using the epoxy resin composition.
【化2】 (式(1)中のRは、水素原子、ハロゲン原子、又は炭
素数1から9までのアルキル基から選択される基であ
り、互いに同一であっても、異なっていても良い、nは
平均値で、1〜5の正数)Embedded image (R in the formula (1) is a group selected from a hydrogen atom, a halogen atom, or an alkyl group having 1 to 9 carbon atoms, and may be the same or different from each other. (Value, positive number from 1 to 5)
【0007】[0007]
【発明の実施の形態】以下に本発明を詳細に説明する。
本発明に用いられるエポキシ樹脂は、式(1)で示され
るエポキシ樹脂である。一般式(1)で示されるエポキ
シ樹脂の具体例を以下に示すが、これらに限定されるも
のではない。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The epoxy resin used in the present invention is an epoxy resin represented by the formula (1). Specific examples of the epoxy resin represented by the general formula (1) are shown below, but are not limited thereto.
【化3】 Embedded image
【0008】これらのエポキシ樹脂は、1分子中にエポ
キシ基を2個以上有するエポキシ化合物であり、エポキ
シ基間に疎水性構造を有することを特徴とする。フェノ
ール樹脂との硬化物は架橋密度が低く、かつ疎水性の構
造を多く有することから吸湿率が低いため、エポキシ樹
脂組成物の成形時の熱応力あるいは成形品である半導体
装置の吸湿後の半田処理における発生熱応力を低減し、
基材との密着性に優れる。一方、エポキシ基間の疎水性
構造は剛直なビフェニル骨格であることから、架橋密度
が低い割には耐熱性の低下が少ないという特徴を有す
る。These epoxy resins are epoxy compounds having two or more epoxy groups in one molecule, and are characterized by having a hydrophobic structure between epoxy groups. The cured product with phenolic resin has a low crosslink density and a large hydrophobic structure, and therefore has a low moisture absorption rate. Therefore, thermal stress at the time of molding the epoxy resin composition or soldering after moisture absorption of a semiconductor device as a molded product. Reduces thermal stress generated during processing,
Excellent adhesion to substrate. On the other hand, since the hydrophobic structure between the epoxy groups is a rigid biphenyl skeleton, it has a feature that the heat resistance is not significantly reduced despite the low crosslinking density.
【0009】本発明に用いられるエポキシ樹脂は、更に
他のエポキシ樹脂と併用しても差し支えない。併用可能
なエポキシ樹脂としては、エポキシ基を有するモノマ
ー、オリゴマー、ポリマー全般を指し、例えば、ビフェ
ニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイ
ドロキノン型エポキシ樹脂、ビスフェノールF型エポキ
シ樹脂などの結晶性エポキシ樹脂、ビスフェノールA型
エポキシ樹脂、オルソクレゾールノボラック型エポキシ
樹脂、ジシクロペンタジエン変性フェノール型エポキシ
樹脂、トリフェノールメタン型エポキシ樹脂、ナフトー
ル型エポキシ樹脂等が挙げられる。又、これらのエポキ
シ樹脂は、単独もしくは混合して用いても差し支えな
い。特にエポキシ樹脂組成物の溶融シリカ粉末の充填量
を高めるためには、室温では結晶性を示し、成形温度に
おいては溶融粘度が極めて低下する上記結晶性エポキシ
樹脂が好ましい。The epoxy resin used in the present invention may be used in combination with another epoxy resin. Epoxy resins that can be used in combination include monomers, oligomers, and polymers having an epoxy group, for example, biphenyl type epoxy resin, stilbene type epoxy resin, hydroquinone type epoxy resin, crystalline epoxy resin such as bisphenol F type epoxy resin, Bisphenol A type epoxy resin, orthocresol novolak type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, triphenol methane type epoxy resin, naphthol type epoxy resin and the like can be mentioned. These epoxy resins may be used alone or as a mixture. In particular, in order to increase the filling amount of the fused silica powder of the epoxy resin composition, the above-mentioned crystalline epoxy resin which exhibits crystallinity at room temperature and extremely lowers the melt viscosity at the molding temperature is preferable.
【0010】本発明に用いられるフェノール樹脂として
は、エポキシ樹脂と硬化反応し、架橋構造を形成できる
フェノール性水酸基を有するモノマー、オリゴマー、ポ
リマー全般を指し、例えば、フェノールノボラック樹
脂、クレゾールノボラック樹脂、キシリレン変性フェノ
ール樹脂、テルペン変性フェノール樹脂、ジシクロペン
タジエン変性フェノール樹脂、ビスフェノールA、トリ
フェノールメタン等が挙げられるが、これらに限定され
るものではない。樹脂組成物の硬化物の低吸湿性や基材
との密着性の向上のためには水酸基当量が130〜21
0の範囲のフェノール樹脂が特に好適である。The phenolic resin used in the present invention refers to all monomers, oligomers and polymers having a phenolic hydroxyl group capable of curing and reacting with an epoxy resin to form a crosslinked structure. Examples thereof include phenol novolak resins, cresol novolak resins, and xylylenes. Modified phenolic resins, terpene-modified phenolic resins, dicyclopentadiene-modified phenolic resins, bisphenol A, triphenolmethane, and the like are included, but are not limited thereto. The hydroxyl equivalent is preferably 130 to 21 in order to improve the low hygroscopicity of the cured product of the resin composition and the adhesion to the substrate.
Phenolic resins in the range of 0 are particularly preferred.
【0011】本発明に用いられる溶融シリカ粉末として
は、例えば、火炎中で溶融された天然シリカ、及び、テ
トラメトキシシラン、テトラエトキシシラン等を加水分
解して得られる合成シリカ等が挙げられる。又、その形
状・製法により球状シリカと破砕シリカがある。溶融シ
リカ粉末の配合量としては、全樹脂組成物中に75〜9
3重量%が好ましい。75重量%未満だと、樹脂組成物
の硬化物の吸湿量が増大し、しかも半田処理温度での強
度が低下してしまうため、半田処理時に半導体装置にク
ラックが発生し易くなり好ましくない。一方、93重量
%を越えると、樹脂組成物の成形時の流動性が低下し、
未充填やチップシフト、パッドシフトが発生し易くなり
好ましくない。特に溶融シリカ粉末を高充填するために
は、球状のものが好ましい。又、粒度分布としては広い
ものが、成形時の樹脂組成物の溶融粘度を低減するため
に有効である。The fused silica powder used in the present invention includes, for example, natural silica melted in a flame and synthetic silica obtained by hydrolyzing tetramethoxysilane, tetraethoxysilane and the like. Further, there are spherical silica and crushed silica depending on the shape and production method. The blending amount of the fused silica powder is 75 to 9 in the total resin composition.
3% by weight is preferred. If the content is less than 75% by weight, the amount of moisture absorbed by the cured product of the resin composition increases, and the strength at the soldering temperature is reduced. On the other hand, if it exceeds 93% by weight, the fluidity during molding of the resin composition decreases,
Unfilling, chip shift, and pad shift are likely to occur, which is not preferable. Particularly, in order to highly fill the fused silica powder, a spherical one is preferable. Further, a broad particle size distribution is effective for reducing the melt viscosity of the resin composition during molding.
【0012】本発明に用いられる硬化促進剤は、前記エ
ポキシ樹脂とフェノール樹脂との架橋反応の触媒となり
得るものを指し、具体例としては、トリブチルアミン、
1,8−ジアザビシクロ(5,4,0)ウンデセン−7
等のアミン系化合物、トリフェニルホスフィン、テトラ
フェニルホスホニウム・テトラフェニルボレート塩等の
有機リン系化合物、2−メチルイミダゾール等のイミダ
ゾール化合物等が挙げられるが、特に好適な硬化促進剤
はアミジン化合物、グアニジン化合物、及びイミダゾー
ル化合物からなる群から選ばれる一種以上である。これ
らの化合物は、前記エポキシ樹脂とフェノール樹脂との
架橋反応を促進するとともに、更にその塩基性の強さか
らエポキシ樹脂中のエポキシ基同士の開環重合の開始触
媒としても作用することが特徴である。アミジン化合物
としては、例えば、1,8−ジアザビシクロ(5,4,
0)ウンデセン−7、1,5−ジアザビシクロ(4,
3,0)ノネン−5、6−ジブチルアミノ−1,8−ジ
アザビシクロ(5,4,0)ウンデセン−7等が、グア
ニジン化合物としては、例えば、1,5,7−トリアザ
ビシクロ(4,4,0)デセン−5、7−メチル−1,
5,7−トリアザビシクロ(4,4,0)デセン−5、
ペンタメチルグアニジン、テトラメチルグアニジン等
が、又、イミダゾール化合物としては、例えば、2−メ
チルイミダゾール、2−エチル−4−メチル−イミダゾ
ール、2−フェニル−4−メチル−イミダゾール等が挙
げられるが、これらに限定されるものではない。又、上
記群の化合物は、無機酸或いは有機酸との塩の形でも使
用できる。又、これらは単独でも混合して用いても差し
支えない。The curing accelerator used in the present invention refers to a curing accelerator which can serve as a catalyst for a crosslinking reaction between the epoxy resin and the phenol resin. Specific examples include tributylamine,
1,8-diazabicyclo (5,4,0) undecene-7
And the like, amine-based compounds such as triphenylphosphine, organic phosphorus-based compounds such as tetraphenylphosphonium / tetraphenylborate, and imidazole compounds such as 2-methylimidazole. Particularly preferred curing accelerators are amidine compounds and guanidines. At least one selected from the group consisting of compounds and imidazole compounds. These compounds are characterized in that they promote the cross-linking reaction between the epoxy resin and the phenol resin and also act as a catalyst for initiating ring-opening polymerization between epoxy groups in the epoxy resin due to its basic strength. is there. Examples of the amidine compound include 1,8-diazabicyclo (5,4,
0) Undecene-7,1,5-diazabicyclo (4,
3,0) nonene-5,6-dibutylamino-1,8-diazabicyclo (5,4,0) undecene-7 and the like, as guanidine compounds, for example, 1,5,7-triazabicyclo (4, 4,0) decene-5,7-methyl-1,
5,7-triazabicyclo (4,4,0) decene-5,
Pentamethylguanidine, tetramethylguanidine and the like, and examples of the imidazole compound include, for example, 2-methylimidazole, 2-ethyl-4-methyl-imidazole, 2-phenyl-4-methyl-imidazole, and the like. However, the present invention is not limited to this. The compounds of the above group can also be used in the form of salts with inorganic acids or organic acids. These may be used alone or as a mixture.
【0013】本発明の樹脂組成物では、総フェノール樹
脂のフェノール性水酸基数に対する総エポキシ樹脂のエ
ポキシ基数の比率が1.1〜1.3の範囲にあることが
重要である。一般式(1)のエポキシ樹脂は低吸湿性、
可撓性のために、半導体装置の半田処理後の基材とエポ
キシ樹脂組成物の硬化物との界面の接着性が良好であ
り、又耐半田クラック性にも優れることは既に述べたと
おりであるが、一方、成形時の硬化性に劣る欠点があ
る。特に反応点であるエポキシ基の間に剛直なビフェニ
ル構造が存在するために立体障害の影響があるものと推
定されるが、エポキシ樹脂組成物中の全ての反応基の反
応が完結しにくいため、エポキシ基と水酸基の比率を
1:1で配合したエポキシ樹脂組成物の場合は、成形後
にエポキシ基及び水酸基が残ってしまう傾向が強い。硬
化物中に残存する反応基のうち、フェノール性水酸基が
残存すると、吸湿率が高く、又曲げ強度等の機械特性が
低下するため、半導体装置の耐半田性が低い結果とな
る。そこで、エポキシ樹脂のエポキシ基とフェノール樹
脂の水酸基との官能基数をエポキシ基過剰にすることに
より、エポキシ樹脂組成物の硬化性の向上が図れるとと
もに、硬化物中のフェノール性水酸基の残存率をほぼゼ
ロにすることが可能となり、吸湿特性、機械特性の低下
を防止することができる。総フェノール樹脂のフェノー
ル性水酸基数に対する総エポキシ樹脂のエポキシ基数の
比率が1.1より小さいとこの効果が得られず、一方
1.3より大きいと逆に架橋密度が小さくなりすぎて、
硬化性や耐熱性を損なう。なお、硬化物中に残存した過
剰なエポキシ基は半導体素子やリードフレームなどの基
材との接着性向上に効果があるため、上記範囲内であれ
ば好ましい結果を与える。In the resin composition of the present invention, it is important that the ratio of the total number of epoxy groups of the total epoxy resin to the total number of phenolic hydroxyl groups of the total phenolic resin is in the range of 1.1 to 1.3. The epoxy resin of the general formula (1) has low hygroscopicity,
Due to the flexibility, the adhesiveness at the interface between the substrate after the soldering of the semiconductor device and the cured product of the epoxy resin composition is good, and the solder crack resistance is also excellent as described above. However, on the other hand, there is a disadvantage that the curability at the time of molding is inferior. In particular, it is presumed that there is a steric hindrance due to the presence of a rigid biphenyl structure between the epoxy groups that are reaction points, but since the reaction of all the reactive groups in the epoxy resin composition is difficult to complete, In the case of an epoxy resin composition in which the ratio of the epoxy group to the hydroxyl group is 1: 1, there is a strong tendency that the epoxy group and the hydroxyl group remain after molding. When the phenolic hydroxyl group remains among the reactive groups remaining in the cured product, the moisture absorption rate is high, and mechanical properties such as bending strength are reduced, resulting in low solder resistance of the semiconductor device. Therefore, by increasing the number of functional groups of the epoxy group of the epoxy resin and the hydroxyl group of the phenol resin to an excess of the epoxy group, the curability of the epoxy resin composition can be improved and the residual ratio of the phenolic hydroxyl group in the cured product can be substantially reduced. It is possible to make it zero, and it is possible to prevent a decrease in moisture absorption characteristics and mechanical characteristics. If the ratio of the number of epoxy groups in the total epoxy resin to the number of phenolic hydroxyl groups in the total phenolic resin is less than 1.1, this effect cannot be obtained. On the other hand, if the ratio is more than 1.3, the crosslink density becomes too small.
Curability and heat resistance are impaired. The excess epoxy group remaining in the cured product is effective in improving the adhesiveness to a substrate such as a semiconductor element or a lead frame.
【0014】更に、総フェノール樹脂のフェノール性水
酸基数に対する総エポキシ樹脂のエポキシ基数の比率が
1.1〜1.3の範囲にあり、かつ硬化促進剤としてア
ミジン化合物、グアニジン化合物、及びイミダゾール化
合物からなる群から選ばれる一種以上を使用すると、エ
ポキシ基がフェノール性水酸基と付加反応すると同時
に、エポキシ基同士の開環重合も行い、硬化性の更なる
向上と硬化物のガラス転移温度を高くすることができ
る。エポキシ基同士の開環重合により樹脂組成物の硬化
物の架橋密度が向上し、ガラス転移温度が高くなるた
め、成形時の離型性に優れ、又、半田処理時の機械的強
度の上昇による耐半田性の向上も図ることができる。更
に、エポキシ基同士の開環重合では、フェノール性水酸
基との付加反応の場合と異なり、反応後に水酸基が生成
しないため、硬化物の吸湿率を低減できるという特徴も
有する。Further, the ratio of the total number of epoxy groups of the total epoxy resin to the total number of phenolic hydroxyl groups of the total phenolic resin is in the range of 1.1 to 1.3, and as a curing accelerator, an amidine compound, a guanidine compound or an imidazole compound is used. When one or more members selected from the group are used, the epoxy group undergoes an addition reaction with the phenolic hydroxyl group, and at the same time, the ring-opening polymerization of the epoxy groups is also performed to further improve the curability and raise the glass transition temperature of the cured product. Can be. The crosslink density of the cured product of the resin composition is improved by ring-opening polymerization between epoxy groups, and the glass transition temperature is increased, so that the mold releasability during molding is excellent, and the mechanical strength during soldering is increased. It is also possible to improve the solder resistance. Furthermore, unlike the case of the addition reaction with a phenolic hydroxyl group, the ring-opening polymerization between epoxy groups does not generate a hydroxyl group after the reaction, and thus has the characteristic that the moisture absorption of the cured product can be reduced.
【0015】本発明の樹脂組成物は、(A)〜(D)成
分の他、必要に応じて臭素化エポキシ樹脂、三酸化アン
チモン等の難燃剤、ポリシロキサン化合物に代表される
低応力剤、カップリング剤、カーボンブラックに代表さ
れる着色剤、天然ワックス及び合成ワックス等の離型剤
等が適宜配合可能である。本発明の樹脂組成物は、
(A)〜(D)成分、及びその他の添加剤等を、ミキサ
ー等を用いて混合後、加熱ニーダや熱ロールを用いて加
熱混練し、続いて冷却、粉砕することで得られる。本発
明の樹脂組成物を用いて、半導体素子等の電子部品を封
止し、半導体装置を製造するには、トランスファーモー
ルド、コンプレッションモールド、インジェクションモ
ールド等の従来の成形方法で硬化成形すればよい。The resin composition of the present invention comprises, in addition to the components (A) to (D), if necessary, a flame retardant such as a brominated epoxy resin or antimony trioxide, a low stress agent represented by a polysiloxane compound, Coupling agents, coloring agents represented by carbon black, release agents such as natural waxes and synthetic waxes, and the like can be appropriately compounded. The resin composition of the present invention,
It is obtained by mixing the components (A) to (D), other additives, and the like using a mixer or the like, heating and kneading using a heating kneader or a hot roll, and then cooling and pulverizing. In order to manufacture an electronic device such as a semiconductor device by encapsulating an electronic component using the resin composition of the present invention, it is only necessary to cure and mold by a conventional molding method such as transfer molding, compression molding and injection molding.
【0016】以下、本発明を実施例で具体的に説明す
る。配合単位は重量部とする。 実施例1 式(2)のエポキシ樹脂(エポキシ当量270、軟化点60℃) 7.6重量部Hereinafter, the present invention will be described specifically with reference to Examples. The mixing unit is parts by weight. Example 1 7.6 parts by weight of an epoxy resin of the formula (2) (epoxy equivalent 270, softening point 60 ° C.)
【化4】 Embedded image
【0017】 フェノールアラルキル樹脂(三井化学(株)・製 XL225−LL、軟化点 75℃、水酸基当量175;以下フェノールアラルキル樹脂という) 4.4重量部 球状溶融シリカ粉末 87.0重量部 トリフェニルホスフィン 0.2重量部 カルナバワックス 0.5重量部 カーボンブラック 0.3重量部 をミキサーを用いて混合した後、表面温度が90℃と4
5℃の2本ロールを用いて30回混練し、得られた混練
物シートを冷却後粉砕して、樹脂組成物を得た。得られ
た樹脂組成物を以下の方法で評価した。結果を表1に示
す。Phenol aralkyl resin (XL225-LL, manufactured by Mitsui Chemicals, Inc., softening point 75 ° C., hydroxyl equivalent 175; hereinafter referred to as phenol aralkyl resin) 4.4 parts by weight Spherical fused silica powder 87.0 parts by weight triphenylphosphine 0.2 parts by weight of carnauba wax, 0.5 parts by weight of carbon black, and 0.3 parts by weight of carbon black were mixed using a mixer.
The mixture was kneaded 30 times using two rolls at 5 ° C., and the obtained kneaded material sheet was cooled and pulverized to obtain a resin composition. The obtained resin composition was evaluated by the following method. Table 1 shows the results.
【0018】評価方法 スパイラルフロー:EMMI−I−66に準じたスパイ
ラルフロー測定用の金型を用いて、金型温度175℃、
注入圧力70kg/cm2、硬化時間2分で測定した。
単位はcm。 離型性:50ピンのリードオンチップ構造のTSOP
(パッケージサイズは、10×21mm、厚み1.0m
m、シリコンチップはサイズ9×18mm、リードフレ
ームは鉄/ニッケル合金(42アロイ)製、チップとイ
ンナーリード間は厚み100μmのポリイミドテープで
接着されている)を、金型温度175℃、成形圧力75
kg/cm2、硬化時間2分でトランスファー成形し
た。成形後、金型が開いた際の金型からの離型性を評価
した。○は離型性良好を示し、×は金型付着、又はラン
ナー折れが発生したことを示す。 熱時硬度:前記50ピンリードオンチップ構造のTSO
Pを成形後、金型が開いてから10秒後に、バーコル#
935硬度計を用いてパッケージ表面の硬度を測定し
た。 ガラス転移温度(Tg):金型温度175℃、射出圧力
75kg/cm2、硬化時間2分でトランスファー成形
したテストピースを、更に175℃、4時間で後硬化さ
せ、熱機械分析装置〔セイコー電子(株)・製TMA−
120、昇温速度5℃/分〕を用いて測定した。単位は
℃。 熱時強度:240℃での曲げ強さをJIS−K6911
に準じて測定した。単位はkgf/mm2。 耐半田性:100ピンTQFP(パッケージサイズは1
4×14mm、厚み1.4mm、シリコンチップサイズ
は8.0×8.0mm、リードフレームは42アロイ
製)を、金型温度175℃、射出圧力75kg/c
m2、硬化時間2分でトランスファー成形し、175
℃、8時間で後硬化させた。得られた半導体パッケージ
を85℃、相対湿度85%の環境下で168時間放置
し、その後240℃の半田槽に10秒間浸漬した。顕微
鏡で外部クラックを観察し、クラック数((クラック発
生パッケージ数)/(全パッケージ数)×100)を%
で表示した。又、チップと樹脂組成物との剥離面積の割
合を超音波探傷装置を用いて測定し、剥離率((剥離面
積)/(チップ面積)×100)として、5個のパッケ
ージの平均値を求め、%で表示した。Evaluation method Spiral flow: Using a mold for measuring spiral flow according to EMMI-I-66, using a mold temperature of 175 ° C.
The measurement was performed at an injection pressure of 70 kg / cm 2 and a curing time of 2 minutes.
The unit is cm. Releasability: 50-pin lead-on-chip TSOP
(Package size is 10 × 21mm, thickness 1.0m
m, silicon chip size 9 × 18 mm, lead frame made of iron / nickel alloy (42 alloy), chip and inner lead are bonded with 100 μm thick polyimide tape), mold temperature 175 ° C., molding pressure 75
Transfer molding was performed at kg / cm 2 for a curing time of 2 minutes. After the molding, the releasability from the mold when the mold was opened was evaluated. ○ indicates good releasability, and × indicates occurrence of mold adhesion or runner breakage. Hot hardness: TSO with 50-pin lead-on-chip structure
After molding P, 10 seconds after the mold is opened, Barcol #
The hardness of the package surface was measured using a 935 hardness meter. Glass transition temperature (Tg): A test piece formed by transfer molding at a mold temperature of 175 ° C., an injection pressure of 75 kg / cm 2 , and a curing time of 2 minutes is further post-cured at 175 ° C. for 4 hours. TMA-
120, and a heating rate of 5 ° C./min]. The unit is ° C. Heat strength: Flexural strength at 240 ° C. is determined according to JIS-K6911.
It measured according to. The unit is kgf / mm 2 . Solder resistance: 100-pin TQFP (package size is 1
4 × 14 mm, thickness 1.4 mm, silicon chip size 8.0 × 8.0 mm, lead frame made of 42 alloy), mold temperature 175 ° C., injection pressure 75 kg / c
transfer molding with m 2 , curing time 2 minutes, 175
Post-curing was performed at 8 ° C. for 8 hours. The obtained semiconductor package was left in an environment of 85 ° C. and a relative humidity of 85% for 168 hours, and then immersed in a 240 ° C. solder bath for 10 seconds. Observe the external cracks with a microscope and calculate the number of cracks ((number of cracked packages) / (total number of packages) × 100) by%.
Displayed with. Also, the ratio of the peeled area between the chip and the resin composition was measured using an ultrasonic flaw detector, and the average value of five packages was determined as the peeling rate ((peeled area) / (chip area) × 100). ,%.
【0019】実施例2〜5、比較例1〜4 表1に示す割合で各成分を配合し、実施例1と同様にし
て樹脂組成物を得、実施例1と同様にして評価した。結
果を表1に示す。なお、実施例2〜5、比較例1〜4で
用いたエポキシ樹脂の性状を以下に示す。式(3)を主
成分とするエポキシ樹脂(エポキシ当量195、融点1
05℃)、式(4)を主成分とするエポキシ樹脂(エポ
キシ当量200、軟化点65℃)、式(5)のフェノー
ル樹脂(水酸基当量195、軟化点70℃)。構造式
(3)〜(5)を以下に示す。Examples 2 to 5 and Comparative Examples 1 to 4 Each component was blended in the proportions shown in Table 1 to obtain a resin composition in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the results. The properties of the epoxy resins used in Examples 2 to 5 and Comparative Examples 1 to 4 are shown below. An epoxy resin having the formula (3) as a main component (epoxy equivalent 195, melting point 1)
05 ° C), an epoxy resin having the formula (4) as a main component (epoxy equivalent: 200, softening point: 65 ° C), and a phenol resin of the formula (5) (hydroxyl equivalent: 195, softening point: 70 ° C). The structural formulas (3) to (5) are shown below.
【化5】 Embedded image
【0020】[0020]
【化6】 Embedded image
【0021】[0021]
【化7】 Embedded image
【0022】[0022]
【表1】 [Table 1]
【0023】[0023]
【発明の効果】本発明の樹脂組成物を用いると、薄型半
導体装置への充填性と離型性に優れ、且つ封止された半
導体装置は、熱時強度、低吸湿性に優れるため、吸湿後
の耐半田性に優れる。The use of the resin composition of the present invention makes it possible to provide a thin semiconductor device with excellent filling properties and mold release properties, and to provide a sealed semiconductor device with excellent heat strength and low hygroscopicity. Excellent later solder resistance.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 23/29 H01L 23/30 R 23/31 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 23/29 H01L 23/30 R 23/31
Claims (3)
樹脂、(B)フェノール樹脂、(C)溶融シリカ粉末、
及び(D)硬化促進剤を必須成分とする半導体封止用エ
ポキシ樹脂組成物において、総フェノール樹脂のフェノ
ール性水酸基数に対する総エポキシ樹脂のエポキシ基数
の比率が1.1〜1.3であることを特徴とする半導体
封止用エポキシ樹脂組成物。 【化1】 (式(1)中のRは、水素原子、ハロゲン原子、又は炭
素数1から9までのアルキル基から選択される基であ
り、互いに同一であっても、異なっていても良い、nは
平均値で、1〜5の正数)(A) an epoxy resin represented by the general formula (1), (B) a phenol resin, (C) a fused silica powder,
And (D) in the epoxy resin composition for semiconductor encapsulation containing a curing accelerator as an essential component, the ratio of the number of epoxy groups in the total epoxy resin to the number of phenolic hydroxyl groups in the total phenol resin is 1.1 to 1.3. An epoxy resin composition for semiconductor encapsulation characterized by the following. Embedded image (R in the formula (1) is a group selected from a hydrogen atom, a halogen atom, or an alkyl group having 1 to 9 carbon atoms, and may be the same or different from each other. (Value, positive number from 1 to 5)
ニジン化合物、イミダゾール化合物からなる群から選択
される少なくとも一種以上である請求項1記載の半導体
封止用エポキシ樹脂組成物。2. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein (D) the curing accelerator is at least one member selected from the group consisting of an amidine compound, a guanidine compound and an imidazole compound.
ポキシ樹脂組成物を用いて半導体素子を封止してなるこ
とを特徴とする半導体装置。3. A semiconductor device comprising a semiconductor element encapsulated with the epoxy resin composition for semiconductor encapsulation according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11083820A JP2000273280A (en) | 1999-03-26 | 1999-03-26 | Epoxy resin composition and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11083820A JP2000273280A (en) | 1999-03-26 | 1999-03-26 | Epoxy resin composition and semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000273280A true JP2000273280A (en) | 2000-10-03 |
Family
ID=13813340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11083820A Pending JP2000273280A (en) | 1999-03-26 | 1999-03-26 | Epoxy resin composition and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000273280A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002284843A (en) * | 2001-03-28 | 2002-10-03 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2003064162A (en) * | 2001-08-30 | 2003-03-05 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
US6831129B2 (en) * | 2001-05-31 | 2004-12-14 | Mitsui Mining & Smelting Co. Ltd. | Resin-coated copper foil, and printed wiring board using resin-coated copper foil |
JP2010526907A (en) * | 2007-05-09 | 2010-08-05 | ダウ グローバル テクノロジーズ インコーポレイティド | Epoxy thermosetting composition containing excess epoxy resin and method for producing the same |
US7842762B2 (en) | 2007-08-08 | 2010-11-30 | Ppg Industries Ohio, Inc. | Electrodepositable coating composition containing a cyclic guanidine |
WO2013125620A1 (en) * | 2012-02-23 | 2013-08-29 | 新日鉄住金化学株式会社 | Polyvalent hydroxy resin, epoxy resin, method for producing same, epoxy resin composition and cured product thereof |
US9068089B2 (en) | 2013-03-15 | 2015-06-30 | Ppg Industries Ohio, Inc. | Phenolic admix for electrodepositable coating composition containing a cyclic guanidine |
US9688874B2 (en) | 2013-10-25 | 2017-06-27 | Ppg Industries Ohio, Inc. | Method of making a bicyclic guanidine-cured acrylic coating |
-
1999
- 1999-03-26 JP JP11083820A patent/JP2000273280A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002284843A (en) * | 2001-03-28 | 2002-10-03 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP4635360B2 (en) * | 2001-03-28 | 2011-02-23 | 住友ベークライト株式会社 | Semiconductor device |
US6831129B2 (en) * | 2001-05-31 | 2004-12-14 | Mitsui Mining & Smelting Co. Ltd. | Resin-coated copper foil, and printed wiring board using resin-coated copper foil |
JP2003064162A (en) * | 2001-08-30 | 2003-03-05 | Sumitomo Bakelite Co Ltd | Epoxy resin composition and semiconductor device |
JP2010526907A (en) * | 2007-05-09 | 2010-08-05 | ダウ グローバル テクノロジーズ インコーポレイティド | Epoxy thermosetting composition containing excess epoxy resin and method for producing the same |
US7842762B2 (en) | 2007-08-08 | 2010-11-30 | Ppg Industries Ohio, Inc. | Electrodepositable coating composition containing a cyclic guanidine |
US8884059B2 (en) | 2007-08-08 | 2014-11-11 | Ppg Industries Ohio, Inc. | Electrodepositable coating composition containing a cyclic guanidine |
WO2013125620A1 (en) * | 2012-02-23 | 2013-08-29 | 新日鉄住金化学株式会社 | Polyvalent hydroxy resin, epoxy resin, method for producing same, epoxy resin composition and cured product thereof |
JPWO2013125620A1 (en) * | 2012-02-23 | 2015-07-30 | 新日鉄住金化学株式会社 | Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof |
US9068089B2 (en) | 2013-03-15 | 2015-06-30 | Ppg Industries Ohio, Inc. | Phenolic admix for electrodepositable coating composition containing a cyclic guanidine |
US9688874B2 (en) | 2013-10-25 | 2017-06-27 | Ppg Industries Ohio, Inc. | Method of making a bicyclic guanidine-cured acrylic coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11147936A (en) | Epoxy resin composition for semiconductor sealing and semiconductor device | |
JP2000281750A (en) | Epoxy resin composition and semiconductor device | |
JP2000273280A (en) | Epoxy resin composition and semiconductor device | |
JP3292452B2 (en) | Epoxy resin composition and semiconductor device | |
JPH08157561A (en) | Semiconductor-sealing epoxy resin composition and semiconductor device | |
JP3365725B2 (en) | Epoxy resin composition and semiconductor device | |
JP2001002755A (en) | Epoxy resin composition and semiconductor device | |
JP2000281751A (en) | Epoxy resin composition and semiconductor device | |
JP2000273147A (en) | Epoxy resin composition and semiconductor device | |
JPH11172075A (en) | Epoxy resin composition and semiconductor device | |
JPH11130936A (en) | Epoxy resin composition and semiconductor device | |
JPH10158360A (en) | Epoxy resin composition | |
JP2000273277A (en) | Epoxy resin composition and semiconductor device | |
JP3608930B2 (en) | Epoxy resin composition and semiconductor device | |
JPH1045872A (en) | Epoxy resin composition | |
JP3649554B2 (en) | Epoxy resin composition and semiconductor device | |
JP3844098B2 (en) | Epoxy resin composition and semiconductor device | |
JP3390335B2 (en) | Semiconductor device | |
JP2001261777A (en) | Epoxy resin composition and semiconductor device | |
JPH1160901A (en) | Epoxy resin composition and semiconductor device | |
JPH1192631A (en) | Epoxy resin composition and semiconductor device | |
JP4639427B2 (en) | Epoxy resin composition and semiconductor device | |
JPH1192629A (en) | Epoxy resin composition and semiconductor device | |
JP2001040180A (en) | Epoxy resin composition and semiconductor device | |
JP2002020460A (en) | Epoxy resin composition and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080528 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080610 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081014 |